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Abstract

The plethora of comparison shopping agents (CSAs) in today’s markets enables buyers to query

more than a single CSA when shopping, and an inter-CSAs competition naturally arises. We

suggest a new approach, termed “selective price disclosure”, which improves the attractiveness

of a CSA by removing some of the prices in the outputted list. The underlying idea behind this

approach is to affect the buyer’s beliefs regarding the chance of obtaining more attractive prices.

The paper presents two methods, which are suitable for fully-rational buyers, for deciding which

prices among those known to the CSA should be disclosed. The effectiveness and efficiency of the

methods are evaluated using real data collected from five CSAs. The methods are also evaluated

with human subjects, showing that selective price disclosure can be highly effective in this case as

well; however, the disclosed subset of prices should be extracted in a different (simplistic) manner.
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1. Introduction

Comparison shopping is the practice of comparing the prices of items from different sources in

order to find the best deal. Yet comparison-shopping is time consuming and requires resourceful-

ness. In today’s online world, comparison shopping can be substantially facilitated through the use

of commercial comparison shopping agents (CSAs) such as PriceGrabber.com, bizrate.

com and Shopper.com. These web-based intelligent software applications allow consumers to

compare many online stores’ prices, saving their time and money [2]. According to Consumer

Futures’ report from 2014 [3], 56% of the costumers in the UK declared that they have used a CSA

in the last two years. The 17th annual release of ShoppingBots and Online Shopping Resources

(shoppingbots.info) lists more than 350 different CSAs that are currently available online.

This rich set of comparison-shopping offerings available over the Internet as well as the fact that

each CSA covers only a small portion of the sellers offering a given product, allow prospective

buyers to query more than a single CSA for comparison shopping. This way they are more likely

to find a good price prior to making a purchase. This poses a great challenge to CSAs, as most of

them do not charge consumers for accessing their web sites, and therefore the bulk of their profits

is obtained, potentially alongside sponsored links or sponsored ads, via commercial relationships

with the sellers they list (most commonly in the form of a fixed payment paid every time a con-

sumer is referred to the seller’s website from the CSA) [4]. Therefore, if a CSA could influence

buyers to avoid querying additional CSAs, it would certainly improve its expected revenue. In the

CSA-buyer setting, the buyer’s decision of whether or not to resume exploration is based primarily

on the best price obtained thus far, her expectations regarding the prices that are likely to be ob-

tained through further CSA-querying, and the intrinsic cost of querying additional CSAs (e.g., cost

of time). Influencing the best price presented to the buyer can be achieved by increasing the num-

ber of sellers whose prices are being retrieved in response to the buyer’s query. Yet, this requires

consuming more resources and the expected marginal improvement in the best price decreases as

a function of the set size.

In this paper we take a different approach to influence the buyers’ decision whether or not to

query additional CSAs, in a way that discourages further querying. The idea is that by disclosing

only a subset of all the prices collected by the CSA, one can influence the buyer’s expectations

regarding the prices she is likely to encounter if she queries additional CSAs. The underlying
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assumption is that the buyer is a priori unfamiliar with the market price distribution of the specific

product she wants to buy, and her expectations are updated each time she obtains an additional

set of prices from a queried CSA [5]. An intelligent price disclosure strategy can thus decrease

the buyer’s confidence in obtaining a better price from the next CSA queried and, as a result,

discourage her from any additional querying. We emphasize that this new approach does not

conflict with, but rather complements, the idea of increasing the number of sellers whose prices

are checked in order to increase the chance of finding a more appealing (lower) price. The paper

focuses primarily on situations where the buyer queried a single CSA and needs to decide whether

to query more. This is because, as argued later on, this is the common setting, and overall the ability

to influence the buyer’s beliefs concerning the market price distribution decreases as a function of

the number of prices gathered by the buyer, i.e., the number of CSAs already queried.

The contributions of the paper are threefold. To begin with, we are the first to introduce the

idea of selective price disclosure in order to influence buyers to avoid querying additional CSAs.

We formally analyze the incentive of buyers to query additional CSAs and CSAs’ benefit in selec-

tively disclosing the prices with which they are acquainted whenever queried. Choosing the best

subset of prices to disclose from the original set of prices is computationally intractable, therefore

our second contribution is in presenting two price disclosure methods that CSAs can use. These

methods are aimed to improve the probability that a buyer will terminate her price-search process

and buy the product through the CSA applying the selective price disclosure. Both methods dis-

close the minimum price known to the CSA, thus the benefit from the partial price disclosure does

not conflict with increasing the number of prices the CSA initially obtains to potentially find a

more appealing (lower) price. The effectiveness of the methods when the buyer is fully rational is

evaluated using real data collected from five comparison shopping agents for four products. The

evaluation demonstrates the effectiveness of the resulting subsets of prices achieved with these

methods and the tradeoff between their performance and the time they are allowed to execute. Fi-

nally, we evaluate the methods using human subjects, to possibly discover that the best solution for

fully-rational buyers is less effective with people. This is partially explained by our experimental

findings, whereby people’s tendency to terminate their search increases as a function of the number

of prices they obtain from the CSA, even if the minimum price remains the same. For the latter

population we suggest a simple price disclosing method that has been shown to be highly effective
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in deterring people from querying additional CSAs.

The rest of the paper is organized as follows: in Section 2 we review related work regarding

CSAs, dynamic pricing and selective information disclosure. We formally present the model in

Section 3. In Section 4, we analyze the CSA and buyer’s strategies, and the effect of selective price

disclosing on the buyer’s decision to query additional CSAs. Later, in Sections 5-7, we discuss and

evaluate the selective price disclosing methods for fully rational agents and provide experimental

results exemplifying the applicability of the proposed methods with people. Finally, we conclude

with a discussions and directions for future research in Section 8.

2. Related Work

The agent-based comparison-shopping domain has attracted the attention of researchers and

market designers ever since the introduction of the first CSA (BargainFinder, [6]) [7, 8, 9]. CSAs

were expected to reduce the search cost associated with obtaining price information, as they allow

the buyer to query more sellers in the same amount of time (and cost) needed to query a seller

directly [2, 10, 11]. Consequently, the majority of CSA research has been mainly concerned with

analyzing the influence of CSAs on retailers’ and consumers’ behavior [12, 13, 14, 15, 16] and

with the cost of obtaining information [17, 18, 19].

Much emphasis has been placed on pricing behavior in the presence of CSAs [9, 20], and in

particular on the resulting price dispersion [21, 22] in markets where buyers apply comparison-

shopping. Substantial empirical research, mainly based on data from online books, CDs and travel

markets, has given evidence of the persistence of price dispersion in such markets [12, 21, 23,

24]. Other works have focused on optimizing CSAs’ performance, e.g., by better management of

the resources they allocate for the different queries they receive [25]. Many theories have been

suggested in order to explain the existence of the price dispersion. For example, dynamic pricing

theories suggest that sellers can benefit from frequent price adjustments of their goods, taking into

account competitors’ prices [26, 27]. Alternatively, e-retail managers may use “hit and run” sales

strategies, undertaking short-term price promotions at unpredictable intervals - a method shown to

be effective and widely used [24].

Significant emphasis has been placed on applying optimal search theories to investigate search

dynamics in markets where comparison-shopping principles are applied [19, 28]. The majority
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of these works, however, assume that the CSA and user interests are identical and that the CSA’s

sole purpose is to serve the buyer’s needs [29, 30]. Other works consider the buyer to be the CSA

entity itself [31, 32, 33], i.e., the CSA uses the most cost-effective search strategy to minimize

the buyer’s overall expense. Naturally, in such cases, the existence of CSAs improves the buyers’

performance, resulting in a lower benefit to sellers [34, 35]. The few works that do assume that

the CSAs are self-interested autonomous entities, as does our work, focus on CSAs that charge

buyers for their services [26, 36] (rather than sellers as in today’s markets [37]). The most closely

related work from this strand is the work of Kephart and Greenwald [36], which ,similar to our

work, demonstrates how a CSA can manipulate markets for its own advantage. However, there

are two major differences. First, their work studies markets where some portion of the buyer

population makes no use of search mechanisms while we assume that a rational buyer makes

her querying decision based on the search mechanism. Second, as already stated, in their work

the CSAs strategically price their information services to maximize their own profit while in our

model, the CSAs do not charge the buyers for their services.

The idea of selective price disclosure parallels recent developments in psychology, behavioral

economics and agents design [38, 39, 40]. By restructuring the decision-making problem itself, the

decision maker, believing that the restructured problem setting is indeed the reflection of the state

of the world, will act different than she would when facing the actual world state. Some works

in machine learning have used selective disclosure to remove potentially harmful knowledge that

will reduce the efficiency of solvers [41]. In particular, in the literature on agents, Elmalech et

al. [42] use selective disclosure in order to remove some of the options available to a searcher so

as to encourage her to use a search strategy that is better aligned with the optimal one. The main

difference between their work and ours is that the removal of options in their case is meant to

guarantee that they are essentially not used by the user. In our case, on the other hand, options

are removed for a completely different purpose — the options removed are those that will not be

chosen by the user in any case, and their removal is used to influence the user’s perception of the

quality of opportunities she is likely to find through further search. In prior work [43] we analyzed

common service schemes used by information platforms and the potential of selective disclosure.

That work proved the efficiency in selectively disclosing only some of the platform’s information

in order to maximize its expected profit while setting its service terms. Nonetheless, it assumed
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that the buyer is guaranteed to buy through a specific information platform and the price disclosure

is used by that information platform in order to maximize the expected profit. In our case, the

buyer is not guaranteed to buy through any specific CSA, and the price disclosure is used by a

CSA in order to discourage the buyer from querying additional CSAs. Furthermore, Azaria et

al. [44, 45] studied how an agent is able to persuade people to behave in certain ways by assigning

some uncertainty to alternatives rather than disclosing their exact values. This approach, of course,

is inapplicable in our case since CSAs are required to present deterministic prices and their goal is

in fact to disambiguate price uncertainty. Another recent work of ours [46] proposes a method for

a CSA to influence a buyer not to continue querying additional CSAs. The approach used there is

intended to improve the attractiveness of the CSA by presenting the prices to the buyer in a specific

and intelligent manner, which is based on known cognitive-biases, and it is thus suitable only for

human subjects. The selective disclosure approach, introduced in this paper, is effective for both

fully rational agents and for humans. Furthermore, our previous work [46] does not include the

option to disclose only a subset of prices as in this paper.

Finally, we note that although the properties, benefits and influence of belief revision have been

widely discussed in AI literature [47, 48, 49, 50], to the best of our knowledge, the advantage of

selective disclosure for belief revision in the CSA domain has not been researched to date.

3. Model

We consider an online shopping environment with numerous buyers (either people or au-

tonomous agents, hereafter denoted “searchers”), sellers and several comparison shopping agents

(CSAs), as depicted in Figure 1.

It is assumed that sellers set their prices exogenously, i.e., they are not affected by the existence

of CSAs. This is often the case when sellers operate in parallel markets [51], setting one price

for all markets. Pricing is assumed to be highly dynamic for the considerations reviewed in the

previous section, hence the price of a randomly selected seller is considered to be a random variable

Y associated with a probability distribution function f ∗(y).2 This assumption is commonly used in

E-commerce research [19, 22, 33] and is also supported by empirical research in well-established

2For exposition purposes we do not bound the range of possible prices from above, though the analysis holds even
when working with a finite interval of potential prices.
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Figure 1: Sequence diagram - the interaction between the entities in our model.

online markets [12, 21, 23, 24].

CSAs are assumed to be self-interested fully-rational agents, aiming to maximize their own

expected net benefit. The model assumes that CSAs do not charge searchers for their services, but

rather receive a payment from sellers every time a searcher, referred to their website by the CSA,

executes a transaction, as is common practice with today’s CSAs (e.g., PriceGrabber.com,

and Shopping.com) [4, 37]. Once queried by a searcher, a CSA will supply a set of prices for

which the requested product can be purchased at different online stores. Since all sellers’ prices

derive from the same probability distribution f ∗(y), there is no CSA that includes in its results

prices that are generally better (lower) than those returned by other CSAs. Also, as in today’s

online markets, the model assumes that there is no CSA that generally returns more prices than

another [21, 52]. Still, there may be overlaps in the results obtained from two or more competing

CSAs for the same product at any specific time, thus the expected number of “new” prices when

querying a new CSA is likely to be smaller than the total number of results obtained from the CSA.

Searchers are assumed to be interested in minimizing their overall expected expense, i.e., the

sum of the minimum price they eventually obtain and the costs incurred along the process. A
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searcher interested in buying a product can either query sellers directly or use CSAs for that pur-

pose. We assume that both actions incur a cost cquery , which is determined by each searcher. For

example, a human searcher will set cquery to the cost of the time it takes to browse the appropriate

website, specify the product of interest, as well as any other required complementary information,

and wait for the results. An agent will set cquery to the sum of its computational and communi-

cation costs. Since the searcher’s cost incurred when querying sellers or CSAs is the same, and

CSAs return more than a single price quote, the searcher will always find it beneficial to query a

CSA, if one is available, over querying sellers directly. The model assumes that the searcher has

no a priori knowledge about the number of sellers that each CSA will present. However, she is

acquainted with the average number of sellers listed in CSAs’ responses for a given product 3 and

can estimate the average number of new prices obtained if an additional CSA is queried in her

search. Based on the price quotes received during her exploration, the searcher needs to decide

at each step of her search process whether to terminate her exploration and buy the product at the

best (minimum) price found thus far 4, or query another CSA. The model assumes that searchers

execute their price search on an ad hoc basis and therefore they are unfamiliar with the distribu-

tion function f ∗(y). Instead, they learn the distribution of prices as they move along, based on

the results of their queries [5]. Hence, in the remainder of the paper we use f(y) to denote the

distribution of prices as perceived by the searcher based on the prices obtained so far during her

search.

4. Individual Strategies

In this section, we first analyze the searcher’s optimal search process and the effect of different

model parameters on her decision to query additional CSAs. Based on this analysis, we then

provide an analysis from the queried CSA’s point of view, discussing the different means available

for it to influence the searcher’s search strategy and consequently the CSA’s expected profit.

3Based on prior experience of buying products that are similar or from the same category.
4There is extensive empirical evidence showing that shoppers are mostly sensitive to prices. For example, according

to a 2013 survey by dunnhumby.com, which is based on the purchase behavior of over 60 million U.S. households,
the price, even more than convenience, is the most important factor determining where consumers decide to shop.
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4.1. Searcher’s Strategy

At any time throughout its search, the searcher can either buy the product at the lowest price

encountered thus far, denoted q, or query an additional CSA. Since all CSAs are a priori alike in

terms of the distribution from which their results derive and the number of prices they provide, the

searcher has no preference concerning the next CSA to be queried out of those that have not yet

been queried. If an additional CSA is queried, the searcher will incur a cost cquery and its expected

savings, in terms of the best price with which she will become acquainted, upon obtaining N new

prices, is:
∫ q
y=0

(q − y)fN(y)dy. Here, the function fN(y) is used to denote the probability distri-

bution of the minimum price among the N new listings in the next CSA’s output. By definition,

the probability distribution function fN(y) is calculated as the derivative of the probability that the

minimum price will be equal to or less than y, i.e.:

fN(y) =
∂[1− (1− F (y))N ]

∂y
= Nf(y)(1− F (y))N−1 (1)

Here, 1−(1−F (y))N is the probability that the minimum of theN new prices returned by the next

queried CSA will be lower than y (calculated as the complementary event to all N prices being

greater than y).

The searcher will thus prefer to terminate her search if cquery ≥
∫ q
y=0

(q − y)fN(y)dy. We

use ccritical(q,N) to denote the querying cost for which the searcher is indifferent to querying

an additional CSA or terminating the search, if the best known price so far is q and querying an

additional CSA will yield N new prices, calculated as:

ccritical(q,N) =

∫ q

y=0

(q − y)fN(y)dy. (2)

This equation is identical to the one used in the sequential search literature for extracting a

searcher’s optimal reservation-value in settings where the search is based on a variable sample size

[53]. Still, while the goal there was to find the value q for which the searcher is indifferent to the

cost of further search and the benefit from further search, in our case the goal is to find the cost at

which the searcher is indifferent to exploiting a known value q and continuing the search.

Due to the key role of ccritical(q,N) in the decision whether to terminate or resume the search,

CSAs have great incentive to attempt to influence it in ways that will decrease its value — the lower
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the ccritical(q,N) when calculated according to (2), the greater the number of searchers who will

terminate their search upon reaching the CSA and buy the product based on its best listing. Based

on Equation 2 we identified three parameters that affect ccritical(q,N): q, N and f(y). We began

by analyzing the effect of the minimum value q on ccritical(q,N). From Equation 2 we observed

that an increase in q increases the critical cost. The intuitive explanation is that an increase in q

results in a greater probability of obtaining a lower price for the product from other CSAs, hence

the greater the cost the searcher will be willing to incur for querying an additional CSA. This

effect is demonstrated in Figure 2a, which depicts the critical cost as a function of q, according

to Equation 2, for different N values. The product’s price distribution that is used for this graph

is depicted in Figure 2b. It is the price distribution for “HP LaserJet Pro 400”, based on prices

collected with PriceGrabber.com. The price distribution is fitted using the kernel density

estimation method (KDE) (also called theParzen-Rosenblatt window estimation [54]), which is a

non-parametric method to estimate the probability density function of a random variable.5

(a) Critical cost vs. the minimal price (q). (b) Probability density function - fitted using KDE.

Figure 2: The effect of q on the critical cost; data collected for “HP LaserJet Pro 400”.

As expected, the critical cost increases as q increases, and from some price q and above (e.g.,

$310 in the case of N = 18) there is nearly a linear ratio between q and the critical cost. This

is explained by the fact that Equation 2 can also be formulated as ccritical(q,N) =
∫ q
y=0

FN(y)dy

(using integration by parts, where FN(y) is the cumulative distribution function of the minimum

of N prices, i.e., FN(y) =
∫ q
y=0

fN(y)dy = 1− (1− F (y))N ) and once FN(y) becomes close to 1

(e.g., for 18 sellers: FN(y) = 1− (1− F (310))18 ≈ 1), the increase in the savings is equal to the

5This estimation method is based on dividing the data into a set of window widths, based on the number of
samples. Each window’s distribution is estimated separately based on a normal kernel function, and then the different
distributions are combined into a single one.
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increase in q.

For similar considerations we expect an increase in N to result in an increase in the critical

cost — the increase in N results in an increase in FN(y) for all y, and consequently in an increase

in ccritical(q,N). This is demonstrated in Figures 3a and 3b, depicting the effect of N on FN(y)

and ccritical(q,N), respectively. The figures were generated using the same empirical data that was

used in Figure 2, with q = 297, which is the real minimal price from the empirical data. Intuitively,

when N increases, the number of new prices that the next CSA is expected to present increases,

and consequently the value gained from querying it also increases.

(a) The effect of N on FN (y) (b) The effect of N on the critical cost

Figure 3: The effect of N on FN (y) and the critical cost.

Finally, we note that while the effect of changes in the function f(y) over ccritical(q,N) cannot

be directly extracted from Equation 2, it is the structure of the function within the interval (0, q)

that affects ccritical(q,N), as this is the interval over which the integral in the equation is defined.

In the next section we show how a queried CSA can actually manipulate the searcher’s belief of

f(y) in a way that decreases ccritical(q,N).

4.2. CSA’s strategy

As explained above, the lower the ccritical(q,N) calculated according to (2), the greater the

number of searchers that will terminate their search upon reaching the CSA and buy the product

based on its listings. Of the three parameters influencing ccritical(q,N) that were analyzed above

(q,N, f(y)), the queried CSA can only influence q and f(y). It is impossible to influence N since

it represents the number of prices supplied by another queried CSA. However, it is possible to
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influence q by extracting prices from more sellers. Nevertheless, this option requires allocation of

further resources, and can potentially detract from services offered to other prospective searchers.6

On the other hand, f(y), can be influenced without requiring the consumption of further re-

sources. Consider a CSA with the set Q = {q1, ..., qn} of n available sellers. The CSA can choose

to disclose only a subset Q′ ⊂ Q, in an attempt to influence the searcher’s beliefs concerning the

distribution of prices and consequently discourage further exploration. Naturally, when a CSA de-

cides to disclose only a subset of prices, it needs to preserve a minimal number of prices, denoted

ρ, otherwise the CSA would seem unreliable and its reputation would be affected. Furthermore, in

cases where the CSA is the first to be queried by the searcher, supplying a small subset of prices

will preclude an actual estimation of the distribution of prices and will not allow a decision based

on the principle given in (2). A reasonable value for ρ is one that is not too far from the num-

ber of sellers the searcher expects to obtain from a CSA in general (e.g., the average number of

results supplied by CSAs in general for a given product). Another restriction we employ on the

set of prices to be disclosed Q’ is that it must include the minimum price in Q. We note that for

the sole purpose of minimizing the critical cost, it is possible that the minimum price found by

the CSA may need to be excluded from the subset Q′.7 In these cases, there will be tradeoff be-

tween excluding the minimal price, hence affecting the probability of the lowest price, while on the

other hand increasing q and thus integrating over a larger interval when calculating ccritical(q,N)

in Equation 2. We note that these cases are extremely rare; for most cases this one price has a

small influence over the distribution perceived by the searcher as a whole, while the loss due to not

disclosing this price is catastrophic if the searcher visits any other CSA (as the minimum price it

knows is the only decision parameter for the searcher to choose a CSA through which to buy the

product, once deciding to terminate her exploration). Therefore, the methods we present rely on

always disclosing the minimum value found.

To summarize, given the set of available prices (Q) and the minimal number of prices to dis-

6This is because the CSA has limited resources, therefore querying more sellers of a given product can come at the
expense of serving other users’ requests.

7For example, if the minimum price found for a product is $297 and there are 17 other prices that are evenly
spread in the interval ($298, $306) then, based on estimating the probability distribution function using KDE as above,
the value of the critical cost is minimized if the minimal price is removed. Note, however, that in all of the price
distributions we collected for real products, there was no case where it was beneficial to exclude the minimal price.
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close (ρ), the CSA’s goal is to find a subset of prices to disclose Q′ ⊂ Q, |Q′| ≥ ρ, that will

maximize the probability that the searcher will terminate her exploration and will buy from that

CSA. In the next section we describe our suggested methods for achieving this goal and analyze

their performance.

5. Methods

Our price disclosure methods are designed in a way that makes them mostly effective in cases

where the CSA is the first to be queried by the searcher. This is for two main reasons. First,

empirical findings from recent years, indicate that the number of CSAs that searchers query is

generally quite modest. For example, a recent consumer intelligence report [55] revealed that the

average number of CSAs visited by motor insurance buyers in 2009 was 2.14. Therefore, when we

focus on the case where the CSA is the first to be queried, we account for almost 50% of the cases

in which the CSA will actually be queried in real-life. In most of the remaining cases the CSA will

be the last to be queried, hence selective price disclosure of the results will have no effect in any

event (assuming the minimum price found is kept and disclosed). Second, for the very few cases

where the CSA is not the first to be queried and the searcher would have resumed her search after

querying the CSA without selective price disclosure, the magnitude of the potential improvement

that can theoretically be achieved in terms of the chance the searcher will purchase the product

through it is a priori substantially limited as clarified in the explanation that follows. Assume

that the CSA is the kth to be queried, and if the searcher continue to query additional CSAs after

receiving the results then another j CSAs will be queried by the time the searcher terminates the

search. Since every CSA, of the total j + k queried by the searcher, queries the same number of

sellers (on average), the probability of each of them being the one associated with the minimum

price is equal. Therefore, the probability that the searcher will buy the product through the kth

CSA, if the searcher terminates the search right after it, is 1/k. However, if the searcher continues

the exploration the probability decreases to less than 1/(k + j). Therefore an upper bound for

the benefit of partial disclosure of prices when the CSA is the kth queried is an improvement of

1/k − 1/(k + j) = j/(k(k + j)) in the probability that the CSA will be the one through which

the product will be purchased (e.g., if the CSA is the fourth to be queried, and if by terminating

the search the exploration of an additional CSA can be avoided, then the maximum improvement
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is 5%). Figure 4 depicts the upper bound for this improvement based on the position of the CSA

in the querying sequence (represented by the parameter k) and the number of other CSAs the

searcher would have queried had she resumed her exploration. As can be observed in the figure,

the difference between the case where the CSA is the first to be queried and when it is not the first

is substantial.

Figure 4: Upper bound for the percentage of improvement that can potentially be achieved using selective price
disclosure, based on the CSA’s position in the search process and the number of other CSAs queried if the search is
resumed.

The actual improvement that can be achieved through selective price disclosure is far less than

j/(k(k + j)) since after querying the kth (k > 1) CSA, the probability that the searcher will

query further CSAs substantially decreases compared to the case of k = 1. This is because the

probability of having a price that is good (low) enough, such that an additional costly CSA query is

unjustified, increases as k increases. Furthermore, the chance of encountering sellers whose prices

have already been listed in the results returned by the former k CSAs increases as k increases.

Therefore, the benefit of exploring any further CSAs after the kth one decreases as k increases.

Finally, since the searcher’s beliefs concerning the distribution of prices are based on all prices

obtained from the CSAs queried so far, the extent of the effect that the partial price disclosure

will have on the searcher’s belief of the actual distribution of prices substantially decreases as k

increases.

14



5.1. Selective Disclosure Methods

Based on the observed distribution f(y), a fully-rational searcher’s decision of whether or not

to query an additional CSA depends on the relation between cquery and ccritical(q,N). As noted

above, if cquery ≥ ccritical(q,N) the searcher will terminate the search. Since we do not know the

value of cquery for each searcher, we cannot determine the improvement in the probability that the

searcher will decide not to query another CSA (termed hereafter as the “termination probability”),

which can be achieved by application of the different methods. Instead, we can measure the re-

duction achieved in ccritical(q,N). The lower the value of ccritical(q,N) is, the lesser the number

of searchers that will decide to query additional CSAs.

In order to find the set of prices that yields f(y) for which ccritical is minimal according to

Equation 2, the CSA can theoretically check all of the possible combinations of ρ ≤ k ≤ n prices

from the original n-size set of available prices (Q). Since the minimal price must be included, the

number of combinations to check is
∑n

k=ρ

(
n−1
k−1

)
. For example, if the CSA sampled n = 30 prices

and the minimum number of prices is ρ = 10, then 530, 000, 000 combinations need to be evalu-

ated.8 For each of these combinations, the CSA needs to estimate the distribution of prices f(y) as

perceived by the searcher, based on the subset of prices, and calculate the critical cost. Obviously,

this method is infeasible. Today’s E-commerce is characterized by quick interactions, and a price

disclosure method should return a result within seconds or milliseconds. Even a pre-processing

step will not help much in this case, since sellers change their prices quite often, resulting in fre-

quent changes in the set Q. We therefore propose two heuristic methods, the Monte-Carlo-based

disclosure and the Interval disclosure, for choosing a subset of prices to disclose.

5.2. Monte-Carlo-Based Disclosure

The Monte-Carlo-based method randomly samples different subsets of prices and calculates

their critical cost (see Algorithm 1 for pseudo code). At first, the CSA chooses a random number

of prices ρ ≤ k ≤ n to disclose to the searchers (Step 7). Then it randomly chooses a set of

k − 1 prices from the n− 1 known prices (i.e., other than the minimum price which is necessarily

part of the subset that will be returned to the searcher) in Step 8 and estimates the probability

8Similarly, with n = 20 and n = 25 prices, the number of combinations that need to be checked are 354, 522 and
15, 505, 590 , respectively.
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distribution f(y) based on this subset, which enables the calculation of the critical cost in Steps 10

and 11, respectively. This process is repeated as long as the CSA is able to delay its response to

the searcher (Steps 6-16). When a response is needed, the CSA returns the set characterized with

the best (minimal) critical cost. Consequently this is an anytime algorithm (i.e., one that can return

valid output given any amount of runtime) [56, 57] of the kind often used for decision-making

problems where the optimal solution is taken from a large set of possible decisions [58]. The

greater the number of subsets that can be sampled, the lower the expected critical cost that will be

achieved.

Algorithm 1 Monte-Carlo-based method of price selection
Input: ρ - The minimum number of prices to disclose
SampledPrices - The set of prices known to the CSA
Output: Disclose - Set of prices to disclose

1: n← |SampledPrices|
2: Disclose← SampledPrices
3: q ← min{SampledPrices}
4: Extract the f(x) and F (x) based on SampledPrices
5: BestCc← the critical cost, calculated according to Equation 2
6: while CSA can delay its response do
7: Randomly choose kε[ρ, . . . , n− 1]
8: Randomly choose k − 1 unique prices from the set SampledPrices and store in EvalSet
9: Add q to EvalSet

10: Extract the f(x) and F (x) based on EvalSet
11: CurrCc← the critical cost, calculated according to Equation 2
12: if CurrCc < BestCc then
13: BestCc← CurrCc
14: Disclose← EvalSet
15: end if
16: end while
17: return Disclose

5.3. Interval Disclosure

The Interval method attempts to make use of the unique properties of the calculation of ccritical(q,N).

The rationale behind this method is quite simple: If many prices are concentrated within a small in-

terval, then regardless of the distribution estimation method used, this interval and its surrounding

ones are likely to be assigned with a substantial probability mass. Consequentially, other intervals

are likely to be assigned with small probability masses. In particular, the values of f(y) within the
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interval [0, q], over which
∫ q
y=0

(q − y)fN(w)(y)dy in (2) is calculated, are likely to be low, result-

ing in a small critical cost. The method, which is given in Algorithm 2 in pseudo code, iterates

over all the possible sizes of the sets of prices that can potentially be disclosed to the searcher, i.e.,

ρ ≤ k ≤ n. For each size k (Step 7), it chooses an interval of prices (i.e., a sequence of consecutive

prices) with a size of k − 1 (since the minimum price is inevitably disclosed), estimates the prob-

ability distribution f(y), and calculates the critical cost (Steps 9, 10 and 11, respectively). Finally,

the algorithm returns the set characterized with the best (minimal) critical cost (Step 18). The

number of subsets that need to be evaluated is therefore (n−ρ+1)∗(1+(n−ρ+1))
2

(a sum of an arithmetic

progression {1, 2, . . . , n− ρ}).

Algorithm 2 Interval method of price selection
Input: ρ - The minimum number of prices to disclose
SampledPrices - The set of prices known to the CSA
Output: Disclose - Set of prices to disclose

1: n← |SampledPrices|
2: Sort SampledPrices from lowest to highest
3: Disclose← SampledPrices
4: q ← min{SampledPrices}
5: Extract the f(x) and F (x) based on SampledPrices
6: BestCc← the critical cost, calculated according to Equation 2
7: for k ← ρ to n− 1 do
8: for ind← 2 to n− k − 1 do
9: EvalSet← q

⋃
SampledPrices[ind : (ind+ (k − 2))]

10: Extract the f(x) and F (x) based on EvalSet
11: CurrCc← the critical cost, calculated according to Equation 2
12: if CurrCc < BestCc then
13: BestCc← CurrCc
14: Disclose← EvalSet
15: end if
16: end for
17: end for
18: return Disclose

5.4. Evaluation of Agent Searchers

In order to evaluate the above methods with fully rational searchers, we produced a simu-

lation environment based on real data. First, in order to validate our assumption that there is

no CSA that generally returns more prices than another, we randomly picked ten products and
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gathered their online prices. The products were: (1) HP LaserJet Pro 400 printer (“Printer”);

(2) Samsung UN60F8000 (“TV”); (3) Logitech Keyboard & Mouse (“Mouse”); (4) Microsoft

Windows 8 (“Software”); (5) Linksys E2500 (“Router”); (6) HP 2311x monitor (“Monitor”);

(7) Seagate Wireless Plus (1TB) (“External”); (8) NetGear N600 (“Router2”); (9) Sony WX50

camera (“Camera”); and (10) Sharp LC-70LE650 (“TV2”). The prices for these products were

mined using five well-known CSAs: PriceGrabber.com,Nextag.com,Bizrate.com,

Amazon.com and Shopper.com. Table 1 summarizes the number of prices obtained from each

CSA for each product. As can be observed from the table, there is no CSA that dominates another

in terms of the number of sellers it discloses, and there is no significant difference between the

number of prices that each CSA presents in the product level. This result is not surprising and, as

discussed in Section 3, supports findings in prior works [21, 52].

Product PriceGrabber.com Nextag.com Bizrate.com Amazon.com Shopper.com Average
Printer 24 13 23 28 15 20.6

TV 13 10 6 10 15 10.8
Mouse 33 20 36 25 19 26.6

Software 21 18 20 23 21 20.6
Router 28 12 18 24 19 20.2

Monitor 25 11 30 18 17 20.2
External 15 13 18 18 15 15.8
Router 2 27 23 34 31 16 26.2
Camera 16 9 17 19 12 14.6

TV 2 10 16 9 11 13 11.8

Table 1: The number of sellers each CSA presents for each product.

In order to evaluate the Monte-Carlo and Interval methods with agents (and later with people),

we randomly picked 4 products of the 10 given in Table 1 (“Printer”, “Mouse”, “Monitor”, “Cam-

era”). In order to estimate the number of new prices the searcher is likely to obtain if it queries an

additional CSA, we calculated the average number of overlapping results between any two CSAs

of the five for each product, resulting in an average overlap of 12%. We set ρ = 10, since the gap

between ρ and the average number of sellers that the other CSAs present should not be too large,

as discussed in the previous section.

In order to generate the initial set of prices available to the CSA, we first estimated the probabil-

ity distribution function for the product, f(y), with the KDE (kernel density estimation) method [54],

based on the set of prices collected from the CSA with the highest number of prices. We then chose
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30 prices such that there is an equal probability mass between any two consecutive prices (i.e., the

ith price was selected such that F (qi) − F (qi−1) = 1/(30 − 1), where q0 is the minimum price).

Using that set of prices and the expected number of prices that the searcher expects to observe, we

calculated the critical cost achieved with each method and with the original set of prices. Due to the

probabilistic nature of the Monte-Carlo-based method, we repeated the evaluation with the method

5,000 times and used the average. When using the above settings, i.e., n = 30 and ρ = 10, on a ma-

chine using our Matlab-based simulation framework with a Intel Core i5 CPU (750 @2.67GHz),

evaluating 1, 000 subsets using the Monte-Carlo method takes about 739.20 seconds (0.739 sec-

onds for each iteration) while evaluating all of the 231 subsets needed for the Interval method takes

169.5 seconds (0.733 seconds for each iteration).

(a) KDE (b) 17 Known Distributions

Figure 5: Critical cost as a function of the number of evaluated subsets: (a) KDE; (b) 17 known distributions.

Figure 5a depicts the performance of our methods as a function of the number of subsets evalu-

ated for the “Printer” product. Here, we assume that querying an additional CSA will yield 18 new

prices (20.6 minus the 12% overlap) according to the empirical findings. The figure also includes

the critical cost of the original set of 30 prices, as a reference. As can be observed in the figure,

both the Monte-Carlo-based and Interval disclosure methods substantially improve the critical cost

even after evaluating a relatively moderate number of subsets, where the improvement with the

Interval method is achieved with substantially fewer set-evaluations. Since n = 30 and ρ = 10,

the Interval method’s performance becomes fixed once it completes the evaluation of the 231 ap-

plicable continuous sets of prices, as no further sets need to be evaluated. Obviously, if the option

to evaluate a large enough set of subsets is possible, the Monte-Carlo method should yield at least
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as good results as the Interval method (as it resembles brute force). Yet, as can be observed in

Figure 6, which is essentially the same graph as Figure 5a but it is presents more subsets using a

logarithmic scale, even after evaluating 100, 000 subsets, the Monte-Carlo method did not manage

to outperform the Interval method, on average. Moreover, the average critical cost achieved by

the Interval method was 7.78% better. A similar analysis with the other three products, revealed

a similar pattern. Note that in contrast to the Monte-Carlo method, the Interval method is more

constrained and does not evaluate every subset. Still, it manage to perform better, i.e., results in a

lower critical cost than the Monte-Carlo method.

Figure 6: Critical cost as a function of the number of evaluated subsets using KDE. The x-axis is a logarithmic scale.

In order to get a better sense of the relative success exhibited by the Interval method compared

to the Monte-Carlo-based approach, we introduce Figures 7-8. These figures demonstrate the

fundamental differences in the solutions produced by the two methods. The figures present the sets

of prices chosen by each method after evaluating 10, 50, 100 and 200 subsets (Figure 7), and the

corresponding resulting probability density function (Figure 8). Since the Monte-Carlo method

randomly chooses the subsets to evaluate randomly, we include the results of 3 different runs

(hence the three graphs associated with this method in each figure). From the figures we observe

a pattern that supports a rather intuitive explanation: The Interval method emphasizes specific

intervals of prices, and hence gradually converges to the best continuous interval of prices, i.e.,

assigns a selected interval of prices with a substantial probability mass out of the entire probability

density function. Consequently, the [0, q] interval (i.e, the prices that are lower than the lowest
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price encountered thus far) is assigned with a lower probability mass, resulting in a relatively low

critical cost. With the Monte-Carlo method the prices are more scattered, as it is very unlikely that

a “good” interval will be found right away (as the method is randomly draws subsets). Hence the

resulting probability density function of the best subset found assigns a greater probability mass

to the interval [0, q] and consequently the critical cost found is greater (than the one found with

Intervals) for any number of evaluated subsets.

(a) Monte-Carlo - first run (b) Monte-Carlo - second run

(c) Monte-Carlo - third run (d) Interval

Figure 7: Prices chosen by each method for a different number of evaluated subsets using the Monte-Carlo and Interval
methods.

In order to demonstrate that the results presented in Figure 5a do not qualitatively depend on

the estimation method according to which the user constructs her belief concerning the distribution

of prices, we repeated the process with a different estimation method. The new estimation method

attempted to fit the data to 17 parametric probability distributions: Beta, Birnbaum-Saunders, Ex-

ponential, Extreme value, Gamma, Generalized extreme value, Generalized Pareto, Inverse Gaus-

sian, Logistic, Log-logistic, Log-normal, Nakagami, Normal, Rayleigh, Rician, t location-scale,
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(a) Monte-Carlo - first run (b) Monte-Carlo - second run

(c) Monte-Carlo - third run (d) Interval

Figure 8: Probability density function for a different number of evaluated subsets using the Monte-Carlo and Interval
methods.

and Weibull. Based on the fitting results, we chose the best distribution according to the Bayesian

information criterion [59]. The result for the Monte-Carlo-based and Interval based methods when

used with the new distribution estimation method are given in Figure 5b. As depicted in the figure,

the methods exhibit a similar behavior even with the new distribution estimation method, which,

unlike the KDE estimation method is parametric. Therefore, hereafter we use KDE as our distri-

bution estimation method.

Finally, we show that our results do not depend on the size of the initial set of prices. Indeed,

if the CSA initially queries more sellers, the number of subsets that the CSA is able to disclose

will increase respectively. In addition, by querying a larger population of sellers, the probability

of finding a better minimum value increases. Thus, it is important to check the effect of the size of

the set on the performance of our methods. We repeated the above evaluation and varied the initial

set size using 20 and 40 prices, while using the same distribution function for all sets. Figure 9
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shows the effect of the evaluated sets’ sizes on the performance of our methods when all of the

sets describe the same distribution function. As depicted in the figure, the behavior of the methods

remains the same, and thus does not depend on the size of the set.

(a) 20 Prices (b) 40 Prices

Figure 9: The effect of the initial number of prices on the performance of the Monte-Carlo and Interval methods.

While the typical methods’ behavior does not change, the critical cost decreases when we

increase the initial size of the set, as illustrated in Figure 10. When sampling the critical cost after

evaluation of 10,000 subsets, moving from 20 to 40 prices decreases the critical cost obtained with

the Monte-Carlo method from 1.89 to 1.64 (averaged over 1, 000 independent runs), and from 1.55

to 1.29 with the Interval method.

Figure 10: The critical cost based on the method used and the size of the set.

Based on the results, we conclude that the Interval method is substantially more effective than

the Monte-Carlo method in finding a set with a low critical cost when used with fully rational

expected-expense minimizing searchers. The method reaches a substantially reduced critical cost
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while requiring relatively short running time and hence is the one recommended when facing fully-

rational searchers.

6. Evaluation with People

While the methods described above are highly effective with fully rational agents, searchers in

today’s markets are usually human, and it is well known that people do not always make optimal

decisions [60]. In particular, people often follow rules of thumb and tend to simplify the informa-

tion they encounter. For example, in our online shopping setting, people may ignore the high-range

prices rather than use them as part of the distribution modeling [61] as they are unlikely to buy at

those prices in any case. Alternatively, they may be affected by other psychological properties [62].

In this section we report the results of an experimental evaluation of the Monte-Carlo-based and

Interval-based price disclosure methods when applied to human searchers. In addition, we report

the results of two complementary experiments. The first aims to evaluate the correlation between

the number of results presented by the CSA and the (human) searcher’s tendency to query an ad-

ditional CSA, partially explaining the findings concerning the effectiveness of the price disclosure

methods with people. The second aims to evaluate a third selective price disclosure method which

is more suitable for the case of human searchers.

6.1. Experimental Design

The experimental infrastructure developed for the experiments with people is a web-based ap-

plication that emulates a CSA’s online website. Participants were recruited using Amazon Mechan-

ical Turk (AMT), a crowdsourcing web service that coordinates the supply and demand of tasks

which require human intelligence to complete them. It has been shown [63, 64] that participants

from AMT exhibit the classic heuristics and biases and pay attention to directions at least as much

as subjects from traditional sources. Once accessing the website, the participant obtained a list of

sellers and their appropriate prices for a well-defined product (see a screenshot in Figure 11). The

list is given (as with real CSAs) in ascending order according to price, making it easy to identify

the best price in the list and to reason about the distribution of prices. At this point, the participant

is awarded her show-up fee (i.e., the “hit” promised in Mechanical Turk) and a bonus of a few

cents. We then offered the option to give up the bonus in exchange for sampling N additional
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prices. The participant was instructed that if the second set of prices that would be obtained would

include a better price, then she would obtain the difference (i.e., the savings due to the better price)

as a new bonus. Therefore, each participant faced the same tradeoff captured by querying an ad-

ditional CSA, where the bonus that the individual needed to give up was equivalent to the search

cost (e.g., the time it took to query the additional CSA) and the alternative bonus was equivalent

to the potential of finding a more appealing (lower) price for the product by querying an additional

CSA.

Figure 11: A screenshot of the first stage of the experiment.

In order to adequately set the initial bonus that participants were awarded (i.e., the sum was

equivalent to the search cost), we experimentally measured the time it takes a common user

to query a CSA. For this purpose we asked 30 undergraduate engineering students to browse

PriceGrabber.com and find the minimal price of a Brother HL-2240 printer. On average,

this took 60.9 seconds. Since we used AMT as our main test bed, and the average hourly salary

for a worker at AMT is $4.8 [65], we set the initial bonus accordingly at 8 cents.

The price data used for the experiments with people was the same real data that we used to

evaluate the Monte-Carlo and Interval sampling with fully rational agents as detailed in the previ-

ous section. Each scenario that we generated contained the minimal price as well as other prices,
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i.e., either the original ones or a subset according to the tested method.

6.2. Experimental Results

We started by testing whether searchers’ termination probability increases as a function of the

number of sellers that the CSA presents. For this purpose, we extracted the distribution of prices

for each of the four products using KDE, based on the real set of prices listed by the different CSAs

as can be seen in Figure 12. Then, we generated seven subsets of 5, 8, 10, 20, 30, 40 and 50 prices

(a) Mouse - Probability Density Function. (b) Printer - Probability Density Function.

(c) Monitor - Probability Density Function. (d) Camera - Probability Density Function.

Figure 12: Probability Density Functions.

where in each subset the minimum price is the minimum in the original set and the remaining prices

are generated in a way that divides the distribution function into equal probability mass intervals

as in the simulations with agents (i.e., the ith price is qi such that F (qi) − F (qi−1) = 1/(n − 1),

where n is the number of prices in the subset and q0 is the minimum price in the original set).

This way, all seven subsets of prices for the same product, although containing different prices,

similarly represented the same price distribution and had the same minimum price. For each sub-

set of each product (i.e., a total of 28 subsets), the subjects were offered an additional sample of

N prices according to the above guidelines (namely, giving up a bonus in exchange for gaining
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the potential price improvement). To avoid any learning effect, no participant received more than

one set of prices for a given product. Figure 13 summarizes the results of this experiment, depict-

ing the percentage of participants who chose to terminate the search and avoid querying another

CSA in each setting, i.e., the termination probability. As expected, the termination probability

Figure 13: Termination probability with different sizes of sets. The black trend line represents the statistical significant
difference in the termination probability between disclosing 10 and 30 prices.

monotonically increases as a function of the number of prices displayed up to a certain point (30

prices). Indeed, the transition from 30 to 40 prices for two products resulted in degradation in the

termination probability, which can possibly be explained by prior work that shows that listing too

many options in a CSA’s results leads to lower-quality choices and decreases the selectivity with

which consumers process options [66, 67]. For all four products, the difference in the termination

probability between 10 and 30 prices is statistically significant (the p-value for each of these sce-

narios is shown in Table 2)9, despite the fact that neither the underlying distribution of prices nor

the minimum price displayed changed.

The effect of the number of prices displayed per-se is unique to human searchers, as CSA-

querying decisions of fully rational searchers are only affected by the resulting estimated proba-

bility and the minimal price. The fact that with fewer prices displayed the tendency of people to

query additional CSAs substantially increases poses a great challenge to our selective price disclo-

9The statistical significance was calculated using contingency tables, which are the most suitable in this case,
because we needed to compare two or more groups with a categorical outcome (terminate the search vs. query another
CSA).
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Product Mouse Printer Monitor Camera
p-value 0.0224 0.0114 0.0467 0.0417

Table 2: Difference in the termination probability between 10 and 30 prices: p-values for the statistical significance.
The statistical test used is Fisher’s exact test.

sure approach, which essentially reduces the number of prices listed based on the searcher’s query.

As we show in the following paragraphs, even with human searchers, an effective selective price

disclosure method can be designed.

(a) Interval and Monte-Carlo.

(b) Interval and restricted sets. (c) Monte-Carlo and restricted sets.

Figure 14: Termination probability with Interval and Monte-Carlo, with restricted sets, applied to people.

To test the performance of Interval and Monte-Carlo based sampling with people, we fixed the

number of prices to 30, using the same prices that were generated for the experiments summarized

in Figure 13. This choice of the number of prices to begin with favors full price disclosure, as it

was found to improve people’s termination probability compared to lower numbers of prices for

all four products. Therefore, it is likely to be more challenging for our price disclosure approach

to present an improvement in this case. The number of subsets evaluated with the Monte-Carlo

sampling method in these experiments was set at 10, 000. Figure 14(a) summarizes the results

of applying the Interval and Monte-Carlo based sampling to the set of 30 prices, depicting the
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percentage of participants who chose to terminate the exploration with the use of each method.

Here, again, no participant received more than one set of prices for a given product in order to

avoid any learning effect. We note that there was no statistically significant improvement in the

termination probability for any of the products. We thus conclude that neither method succeeded in

increasing the termination probability, compared to full price disclosure, when used with people.

Based on the observation that people are highly affected by the number of prices with which

they are presented (Figure 13), a second set of experiments was carried out. This time however, the

number of prices that the methods must disclose was constrained to 10 and 20. The results of the

Interval sampling and the Monte-Carlo-based methods in this case are depicted in Figures 14(b)

and 14(c), respectively. As can be observed in the figures, there is no consistent improvement in

the termination probability when the Interval and Monte-Carlo based methods were augmented

with the 10 or 20-price constraint.

A possible explanation for the failure of the Interval sampling method with people is that it

produces price sets with a large gap between the minimum price and the rest of the prices. This

perhaps makes human searchers believe that there are lower prices that the CSA failed to query,

encouraging additional CSA exploration. Regarding the Monte-Carlo-based sampling, since many

random subsets are evaluated, it is likely that the subset that will eventually be selected will be one

that implies a complex distribution function, which is more difficult for people to estimate.

Therefore, we suggest an alternative selective price disclosure method that is more suitable for

human searchers. The new method, denoted “Minimal”, is a special case of the Interval method

which considers only intervals of prices that start with the minimal price (see Algorithm 3 for

pseudo code). As in the Interval method, the Minimal prices method estimates the probability

distribution f(y) and calculates the critical cost for each subset of prices in question. The chosen

subset is the one which is characterized with the best (minimal) critical cost. The method thus

requires the evaluation of only n− ρ+ 1 subsets (compared to (n−ρ+1)∗(1+(n−ρ+1))
2

in Interval).

Obviously, being a private case of Interval, the new method is dominated by Interval whenever

fully rational searchers (i.e., agent searchers) are considered. This dominance is illustrated in

Figure 15, which compares the critical cost achieved with both methods, using the same setting
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Algorithm 3 Minimal method of price selection
Input: ρ - The minimum number of prices to disclose
SampledPrices - The set of prices known to the CSA
Output: Disclose - Set of prices to disclose

1: n← |SampledPrices|
2: Sort SampledPrices from lowest to highest
3: Disclose← SampledPrices
4: q ← min{SampledPrices}
5: Extract the f(x) and F (x) based on SampledPrices
6: BestCc← the critical cost, calculated according to Equation 2
7: for k ← ρ to n− 1 do
8: ind← 2
9: EvalSet← q

⋃
SampledPrices[ind : (ind+ (k − 2))]

10: Extract the f(x) and F (x) based on EvalSet
11: CurrCc← the critical cost, calculated according to Equation 2
12: if CurrCc < BestCc then
13: BestCc← CurrCc
14: Disclose← EvalSet
15: end if
16: end for
17: return Disclose

that was used for Figure 5, i.e., based on the empirical prices sampled for the “Printer” product.10

From the figure, we observe that the critical cost achieved with the Minimal method is indeed

substantially greater than the one achieved with the Interval method.

Nevertheless, the dominance of Interval over Minimal, in terms of critical cost when used with

a fully rational searcher, does not translate to similar dominance when it comes to termination

probability when used with a human searcher. If fact, we hypothesize that the fact that the method

returns a bulk of closely grouped prices, where the minimum price among these is relatively close

to the other ones, may convince people that lower prices are scarce, or that finding a lower price

will require substantial effort. By excluding those high prices (i.e., those that are not within the

interval), we manage to artificially reduce the variance between prices, hence affecting the (human)

searcher’s belief that finding a substantially lower price is likely to require checking many more

CSAs, hence it is not beneficial.

The results of the Minimal method when tested with people are depicted in Figure 16 alongside

10Note that the Minimal method only evaluates 21 subsets in this case compared to 231 evaluated subsets when
using the Interval method.
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Figure 15: The critical cost as a function of the method used and the number of evaluated subsets.

the performance of the method when constrained to disclose 10 and 20 prices and when using full

price disclosure. In the figure we observe that the new method managed to improve the termina-

Figure 16: Termination probability with the Minimal prices method. The black trend line represents the statistical
significant difference in the termination probability between 30 prices and the subset characterized by the minimal
critical cost.

tion probability compared to full price disclosure of the 30 prices for all four products, and the

improvement is statistically significant (the p-value for each of these scenarios is given in Table 3).

Again, there was no consistent improvement in the termination probability when the minimum

method was augmented with the constraint of 10 or 20 prices.

To summarize, the empirical results obtained in our experiments with people show that CSAs

should act differently when dealing with fully rational agents in comparison with human searchers.
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Product Mouse Printer Monitor Camera
p-value 0.0355 0.0288 0.011 0.0168

Table 3: p-values for the difference in the termination probability between selective price disclosure according to
“Minimal prices” and full price disclosure. The statistical test used is Fisher’s exact test.

Moreover, people’s decision to terminate their search is affected by the number of prices that are

presented by the CSA. Nonetheless, we show that with a simplistic selection rule for the prices to

be disclosed, a substantial improvement can be achieved in the termination probability.

7. When the CSA is not the first to be queried

The price disclosure methods presented in the previous sections were designed to minimize

the critical cost (or termination probability) under the assumption that the CSA is the first to be

queried by the searcher. This implied that the prices to be disclosed exclusively influence the

searcher’s belief concerning the product’s price distribution. This choice has many motivations, as

discussed in detail in Section 5. Still, in some cases the CSA is the second to be queried (or even

the kth to be queried). These situations are less common and the chance of being queried as the

kth CSA decreases as k increases. This is mostly because, as the number of CSAs already queried

(and consequently the number of prices already obtained) increases, the chance of having the best

(lowest) price obtained so far be lower than the searcher’s critical cost increases. The phenomenon

was illustrated in Figure 4.

We emphasize that because our methods always return the minimum price found, the CSA

does not lose anything from selective disclosure in terms of its ability to compete with other CSAs

that the buyer may have queried before or will query after in price. It is possible, however, that

the combination of the set of prices disclosed and those obtained from formerly queried CSAs will

lead the searcher to query additional CSAs, i.e., ones she would not query if receiving the full set

of prices. This calls for an additional evaluation of the methods for focusing on settings where the

CSA is not the first to be queried.

In this section we experimentally show that our methods Interval and Minimal, which were

shown to be the dominating ones when dealing with fully rational searchers and people, respec-

tively, are still very useful even when the CSA is not the first to be queried. We focus on the case

where the CSA is the second to be used (i.e., k = 2). This choice is made for two primary reasons.
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First, the average number of CSAs visited by searchers in practice is quite low (e.g., 2.14 in motor

insurance [55]), hence if the CSA is not the first it is most likely to be the second. Second, as

the number of CSAs queried increases, the possible effect of selective disclosure diminishes, as

the number of prices with which the user is already acquainted by the time she queries the current

CSA increases.

7.1. Evaluation of Agent Searchers

In order to evaluate the selective disclosure methods presented in this paper for the case where

the CSA is the second to be queried, we use the same evaluation methodology described in Sec-

tion 5. The product picked for the evaluation is “Printer” and we used the same empirical price

distribution that is depicted in Figure 12b. The simulation used the same output received as the dis-

closed set when using our method, as in Section 5. This time, however, it joins the set of disclosed

prices with an additional set of N random prices (where N is the average number of sellers listed

in CSAs’ responses for the product used) drawn from the empirical product’s price distribution.

This latter set represents the prices obtained by the user from querying the first CSA. The critical

cost is calculated over the combined set of prices.

Figure 17: Critical cost as a function of the number of evaluated subsets, when the CSA is the second to be queried.

Figure 17 depicts the performance of our methods as a function of the number of subsets

evaluated as candidates for disclosure. Averaged over 100 independent runs, each uses a different

draw of prices for the first CSA. The figure also includes the critical cost when calculated using

the original set of prices alongside the set drawn for the first CSA, as a reference. Note that the

values represented by the different curves are not the critical costs seen by the CSA, as the CSA’s

reality is the set of prices with which it starts and the critical cost upon which it based its decisions
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is in fact the one depicted in Figure 6. As can be observed in the figure, the Monte-Carlo method

is not effective when the CSA is not the first to be queried as it increases the critical cost, while the

Interval disclosure still provide a substantial decrease in the critical cost compared to disclosing

the full set, even after evaluating a few of the subsets. The explanation for the failure of the Monte-

Carlo method is that the CSA attempts to minimize the critical cost resulting from the set of prices

it holds, whereas in fact it should be minimizing the one resulting from the set that also includes the

prices held by the searcher based on the previous queried CSA. Therefore the decision to exclude

some of the prices may have a negative effect over the actual critical cost (i.e., the one used by the

searcher for determining whether to terminate the search). The interval method is less affected by

the above, primarily due to its constraint of disclosing a continuous set of prices. Overall, all of the

CSAs sample their prices from the same distribution and therefore the Interval method’s attempt to

affect certain parts of that distribution is usually successful, even for a searcher that samples more

prices than those available to the method.

Figures 18-19 present an analysis similar to the one given in Figures 7-8, in order to get a

better sense of the relative success exhibited by the Interval method as compared to the Monte-

Carlo-based approach when the CSA is the second to be queried. As in Figures 7-8, we show

the prices chosen by each method after evaluating 10, 50, 100 and 200 subsets. In addition, we

set the prices presented by the first CSA to be the 30 prices known to the CSA (since all of the

sellers’ prices derive from the same probability distribution as discussed in Section 3), and estimate

the price probability function using KDE. As depicted in Figure 19, the Interval method is still

efficient in decreasing the critical cost while the Monte-Carlo method is no longer useful. The

reason in this case partially resembles the one given in Section 3, the basic idea of the Interval

method is to highlight parts of the prices’ distribution. If the CSA is not the first to be queried, then

highlighting some parts of the distribution has a lesser effect, since these parts are not highlighted

by the first CSA. However, despite being weaker, the effect is still substantial as at the end of the

day all of the sellers’ prices derive from the same probability distribution. On the other hand, the

Monte-Carlo method practically ignores the current price distribution and tries to create a new one.

It therefore fails when this new price distribution is combined with the prices that were presented

by the first CSA.

The above results strengthen our conclusion from Section 5 that the Interval method dominates
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(a) Monte-Carlo - first run (b) Monte-Carlo - second run

(c) Monte-Carlo - third run (d) Interval

Figure 18: Prices chosen by each method for a different number of evaluated subsets using the Monte-Carlo and
Interval methods.

the Monte-Carlo method in terms of the achieved critical cost. Moreover, in this case it even

dominates a brute force search for an optimal subset (as Monte-Carlo converges to brute force

over time). This non-intuitive result is explained by the difference in the knowledge available to

the CSA and the actual state of the world. Applying brute force from the CSA’s side attempts to

minimize the critical cost calculated based solely on the set it discloses, whereas the true critical

cost is, as explained above, calculated based on both sets.

7.2. Evaluation with People

Following Section 6, and for the same arguments given there, we also tested the performance

of the Minimal method, which was found to perform best with people. This time, however, the
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(a) Monte-Carlo - first run (b) Monte-Carlo - second run

(c) Monte-Carlo - third run (d) Interval

Figure 19: Probability density function as a function of a number of evaluated subsets using the Monte-Carlo and
Interval methods.

CSA is the second to be queried.11 In order to do so, we had to slightly adjust the initial web-

based framework to include another CSA that presents to the participants a set of N prices (the

average number of sellers listed in CSAs’ responses to requests for a given product) from the

empirical product’s price distribution before “our” CSA presents its prices. For this experiment we

recruited 140 participants from Amazon Mechanical Turk that had not participated in our previous

experiments (where the CSA was the first to be queried). The results of the experiment in terms of

the termination probability achieved are depicted in Figure 16. The performance of the Minimal

method is represented by the bright gray columns. The performance of the full price disclosure is

represented by the dark gray columns.

In the figure, we observe that the Minimal method managed to substantially improve the ter-

11As depicted in Figure 14, the Monte-Carlo and the Interval methods are ineffective with people, hence there is no
reason to test them again when the CSA is not the first to be queried.
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Figure 20: Termination probability with the Minimal prices method when the CSA is second to be queried.

mination probability compared to full price disclosure for all four products. The improvement was

found to be statistically significant using the Fisher’s exact test (the p-value for each product is

given in Table 4).

Product Mouse Printer Monitor Camera
p-value 0.0439 0.0420 0.0415 0.0497

Table 4: The statistical significance of the difference in the termination probability between using full disclosure and
the Minimal method when the CSA is second to be queried: p-values for the statistical significance. The statistical test
used is Fisher’s exact test.

8. Discussion and Conclusions

The significant increase in searchers’ search termination probability reported in the three pre-

ceding sections gives strong evidence for the usefulness of our selective price disclosure approach,

both with fully-rational agents and people, in improving a CSA’s expected revenue. As discussed in

the introduction, selective price disclosure does not conflict with the general practice of increasing

the number of sellers that the CSA queries, as a means for improving the CSA’s competitiveness,

depending on the available resources. Therefore, the suggested mode of operation is to have the

CSA obtain the prices of as many sellers as possible, benefiting from the potential decrease in the

expected minimum price found, and then disclose a subset of prices using the methods presented

in this paper, depending on whether the searcher is a fully rational agent or a person.

We stress that the methods presented in the paper for selecting the subset of prices to be dis-

closed do not make any assumption about the way the searcher constructs her set of beliefs and
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learns the distribution of prices. Indeed, the evaluation with both KDE and parametric distributions

revealed similar qualitative results. The methods are characterized by a polynomial computational

complexity and are demonstrated to be effective using real data.

The results reported in Section 6, dealing with people, make several important contributions.

First, they provide a simple method for selective price disclosure that substantially improves CSA’s

performance with people and requires minimal computation. Second, we empirically show that for

the typical range of the number of prices that CSAs present nowadays, presenting more prices is

generally more beneficial. This latter result strengthens the significance of the price disclosure

idea, as it suggests that the improvement achieved in people’s tendency to terminate their search is

much greater than the inherent resulting discouragement they experience due to the decrease in the

number of listings they receive from the CSA. Overall, the differences between the effectiveness of

the different price disclosure methods when applied to human and fully rational agents are not sur-

prising. Prior research in other domains has provided much evidence for the benefit in being able

to distinguish between these two populations in mechanism design [68, 69]. The results reported

in Section 7, on the performance of our methods of selective price disclosure when the CSA is not

the first to be queried, align with the ones reported in Sections 5 and 6. We thus conclude that

Interval method is recommended when facing fully-rational searchers, and the Minimal method is

recommended when facing human subjects, even if the CSA is not the first to be queried.

In a more general context, the selective disclosure approach can be useful for any situation

where a user who searches for the best option needs to estimate the distribution over the possible

options. For example, consider a searcher looking for a used car. After visiting each dealer, the

searcher needs to decide whether to stop the search and buy the best car so far or to continue her

exploration by visiting another dealer. Since exploration is costly, the searcher needs to consider

the probability distribution over the cars in the market in her decision-making process, and the

searcher estimates this distribution given the options already observed. In this case, our approach

can be used by the dealer to affect the searchers’ beliefs regarding the distribution of opportunities,

hence increasing the probability that the searcher will buy from the current dealer. Another exam-

ple would be a searcher looking for a partner on an online dating website. After examining her

options, the searcher needs to decide whether to stop the search and invite one of the candidates out

on a date or continue her exploration by visiting another dating website. Again, the searcher will
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base her decision-making on the probability distribution over the possible options, and the website

is able to use our approach to affect the searchers’ outlook.

There are many directions for future research evolving from the results presented in this paper.

Such directions include more detailed investigation of the source of differences in the decision

to resume exploration between agents and people (and also possibly bounded rational agents that

were developed by people). Another interesting direction would be the integration of comple-

mentary considerations into the selection of the subset of prices to be disclosed, e.g., additional

preferences the searcher may have (other than the price). Finally, we see a great interest in models

in which all CSAs act strategically and employ information disclosure techniques. The equilib-

rium analysis of such settings will definitely benefit from the methodologies, analysis and results

presented throughout this paper.
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