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Abstract

In this paper we study distributed agent matching in environments characterized by uncertain sig-
nals, costly exploration, and the presence of an information broker. Each agent receives information
about the potential value of matching with others. This information signal may, however, be noisy,
and the agent incurs some cost in receiving it. If all candidate agents agree to the matching the team
is formed and each agent receives the true unknown utility of the matching, and leaves the market.
We consider the effect of the presence of information brokers, or experts, on the outcomes of such
matching processes. Experts can, upon payment of either a fee or a commission, perform the service
of disambiguating noisy signals and revealing the true value of a match to any agent. We analyze
equilibrium behavior given the fee set by a monopolist expert and use this analysis to derive the rev-
enue maximizing strategy for the expert as the first mover in a Stackelberg game. Interestingly, we
find that better information can hurt: the presence of the expert, even if the use of her services is
optional, can degrade both individual agents’ utilities and overall social welfare. While in one-sided
search the presence of the expert can only help, in two-sided (and general k-sided) search the ex-
ternality imposed by the fact that others are consulting the expert can lead to a situation where the
equilibrium outcome is that everyone consults the expert, even though all agents would be better off
if the expert were not present. As an antidote, we show how market designers can enhance welfare
by compensating the expert to change the price at which she offers her services.

1 Introduction
This paper studies agent partnership or team formation using the framework of search theory. Two-
sided search has been used to model labor markets [19, 25], marriage and mating [5], and partnership
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formation among artificial agents [38]. The typical assumption in models of two-sided search is that
potential partners are matched through some mechanism, and then each of the partners receives a signal
which informs her of the value to her of that match [6, 7]. For example, in the case of employers
and workers, a worker is informed of the wage and the relevant non-wage characteristics of the job,
while the employer is informed of the productivity of the worker. However, in many realistic situations,
this information is not available when the initial matching occurs. Therefore, many have recently tried
to model the explicit process of pairs learning about each others’ quality, whether through a one-shot
interview process [24] or through repeated interactions like dating [10].

Agents may also learn about the quality of a matching by paying an information intermediary, or an
expert to conduct research on the quality of a potential match and share the information with that agent
prior to the agent having to decide on whether to accept the match. Examples of these kinds of experts
abound in real life. For example, headhunters for corporations, dating services, private investigators, or
contractors that conduct extensive background checks all serve as experts (some of them perform the
additional function of matchmaking by being part of the technology for arranging potential pairings).

We analyze the impact of the presence of such experts on two-sided search markets (and also extend
our analysis to general k-sided search for team formation). We start with a simple, but perhaps counter-
intuitive, observation about the value of information. In one-sided search, better information can never
hurt: a searcher receiving more accurate signals of the values of opportunities is always better off. How-
ever, even in a simple model of two-sided search [6, 7], we show that it is possible for all participants in
the market to be worse off (in expectation) when signals about the values of possible matches are more
precise. This typically happens when search costs are high, in which case more precise information can
lead to socially inefficient levels of search which are nevertheless, in equilibrium, individually rational
for each participant.

We go beyond this observation to consider more completely the impact of self-interested information
brokers who can disambiguate noisy signals upon payment of a fee. We extend the model of Burdett and
Wright [6] to allow for noisy signals and an expert (a la Chhabra et al.[9]) who will, upon payment of
either a fee or a commission, provide the “true” value of the potential match to a searcher. We assume
that the expert is honest for reputational or regulational reasons (cf. realtors or mortgage brokers). One-
sided search with experts can be modeled as a Stackelberg game, where the expert moves first by setting
a price for her services, and searchers respond by following their optimal search strategies. In two-
sided search models, however, the outcome of the system is more complex, because one has to consider
equilibrium behavior of the searchers under a particular cost structure, rather than just solving a single-
agent optimization problem. We solve for equilibrium for two different scenarios: (1) when experts
charge a fixed a la carte fee every time they perform the service of disambiguating a signal; (2) when
experts operate on a commission basis, charging a percentage of the value received if and only if a
successful match is made.

We characterize equilibrium strategies for searchers and experts in these models, and also investi-
gate some phenomenological properties of equilibria for some instantiated distributions of true values
and signals which satisfy the properties of our model. Some of these properties, mostly related to the
(reservation value) form of the equilibrium strategy, carry over from the model of one-sided search with
experts of Chhabra et al. [9]. Other properties are starkly different.

The basis for this difference can be intuitively understood from the example mentioned above, of
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how more precise signals can decrease expected utility. The need for agents to reason about the op-
timal behavior of others changes some of the major systemic properties of two-sided search markets
compared to one-sided search markets. These effects can be even more prominent in the presence of a
self-interested expert: it can be an equilibrium for everyone to consult the expert even though everyone
would be better off if they agreed that no one should consult the expert, or if the expert option did not
exist. The negative effects are not distributional: it is not the case that some agents are benefiting at the
expense of others. Instead, the new search frictions introduced by experts outweigh any benefits they
provide to the agents who are searching. The expert thus benefits at the expense of the searching agents.
Therefore, it is important to recognize this negative effect, and we suggest a means of correcting it from a
market designer’s perspective: introducing a (Pigovian) tax on expert services, or subsidizing the expert
to increase the fees she charges searchers, so that they consult her less frequently. We also investigate the
differences between the a la carte pricing model and the commission-based model from the perspective
of the expert, and find that, in the same setting as above, commission-based pricing may be preferable
for experts when search costs are low, while fee-based pricing yields higher profits when search costs are
high. The intuition for this extends that above: when search costs are lower, searchers typically search
longer and get matches of higher value. In the commission based model, the expert can take advantage
of this by charging a percentage of this value instead of a fixed price.

1.1 Related Work
This paper touches on several different literatures, but is primarily grounded in the theory of sequential
distributed two-sided matching. The autonomous agents literature has engaged with the problem of
costly search [20, 21, 38, 39], in particular in the absence of a central information source which provides
instant reliable information on other agents, their availability and states, and the environment. The
introduction of search costs into multiagent systems (MAS) models leads to a more realistic description
of MAS environments. In particular, search costs are known to be important in electronic commerce
environments where agents need to invest/consume some of their resources in order to obtain information
concerning the good or the transaction offered by other prospective agents [4, 20].

The underlying foundation for costly search analysis is the theory of sequential search [27, 11, 30].
Utility-maximizing individuals are considered to be sequentially reviewing different opportunities where
search incurs a cost [28, 17, 35, and references therein]. Two-sided search models were developed in an
effort to understand the effect of simultaneous search on both sides of the market in costly environments
[7, 38, 42]. Unlike stable matching scenarios [15, 2] which do not involve costly search, equilibrium
in two-sided search stems from the existence of search costs because of which searchers are reluctant
to resume their search for potentially better outcomes. The assumptions we rely on are standard in the
two-sided search literature, and in particular our noisy signal model extends the work of Burdett and
Wright [6] and of Chade and Ventura [7], integrating uncertain observations.

While there has been some work on noisy signals in two-sided search, this has typically involved the
assumption that agents can get better signals through repeated interactions (e.g., dating, cohabitation,
or interviews [10, 37, 24]). Mediators in two-sided search models have typically taken the form of
matchmakers rather than information brokers [5]. Instead we follow the work of Chhabra et al. [9] in
focusing on how the presence of self-interested knowledge brokers affects the market.
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It has been observed often in the literature that a parameter shift or policy intervention may have neg-
ative payoff consequences in a search equilibrium even if it benefits individual searchers when holding
others’ behavior fixed. For example, Duffie et al. [12] find that providing additional (public) information
to individual searchers may lower equilibrium payoffs. Their model differs significantly from ours, as
they do not consider two-sided search for the purpose of matching, but rather for information sharing
in a large population; agents can control the intensity of meeting other agents, and hence the amount
of information shared, though the process of meeting others is costly. Albrecht et al. [1] consider the
problem of sequential search when the decision to stop is made by a committee, showing that committee
members are less picky and more conservative than the single agent. Here again, there are no two-sided
search considerations. Instead, committee members that see a different value in each opportunity need to
vote on whether to stop or resume search. Shimer and Smith [41] make use of Pigouvian taxes in a two-
sided model where agents are characterized by types that determine the utilities of others from matching
with them. They use a tax on search activity for the least productive agents, and a subsidy for the most
productive ones. This has two effects: Agents who receive a subsidy increase their search intensity; and
they are more reluctant to accept matches, since search is less costly. A search tax creates the opposite
incentive, possibly leading some low-productivity agents to forgo search altogether. In addition to the
specific differences in models, we note that none of these papers consider the effects introduced by the
existence of an external, self-interested information provider.

Some work has considered the role of the platform in two-sided markets. Most of this work focuses
on the payments made by either of the sides, justifying different fee-charging schemes (e.g., charging
only one side in two-sided markets while the other group is allowed onto the platform for free, as in the
case of yellow pages directories [3]), or paying one of the sides to use the platform (e.g., in the case
of credit cards, where rewards programs such as contributions to frequent flyer plans are offered [36]).
While these works seem to resemble ours in the context of mediated two-sided search, the expert in our
model is very different from the platform analyzed in these other works. The expert, in our model, does
not have to be used and its sole purpose is to offer a more accurate signal (rather than supplying the
matching technology itself).

Partnership formation has also been studied in the context of MAS coalition formation (e.g., by
Shehory and Kraus [40]). The work in this paper differs from classical coalition formation in several
ways. First, in this work partnership or team formation is gradual and iterative: at each stage only a
single partnership is formed (resembling some ideas in early work by Ketchpel [22]); second, values of
teams are not known in advance and their revelation is costly (somewhat like elements from the work of
Kraus et al. [23]); third, each team is formed in isolation, disregarding externalities and other formations;
fourth, the market is large and possibly infinite, unlike typical coalition formation work.

Recent literature presents many advances in applying search theory in order to investigate search
dynamics in markets, particularly in cases where comparison-shopping principles are applied [43, 18].
Most of these works assume that the interests of the information provider (e.g., comparison shopping
agent) and user are identical (the provider’s sole purpose is to serve the user’s needs) [32]. Naturally, in
such cases, the existence of an information provider favors the user (e.g., buyers, in comparison shopping
applications) [16, 31]. Those few works that do assume that the information providers are self-interested
autonomous entities [20, 21] focus on the use of the information provider for obtaining the signal itself
in settings where signals are noiseless (e.g., price quotes) rather than for supplying complementary in-
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formation [44]. Another significant difference between that stream of literature and our work is that we
are examining two-sided search with nontransferable utility, whereas the papers mentioned above focus
on two-sided markets where buyers and sellers interact through a pricing mechanism.

In spirit, our work follows previous results in other settings, in which it has been shown that so-called
“market inefficiencies” can increase market performance, under certain circumstances. For example,
Masters [26] shows that an increase in the minimum wage, which is often considered by economics as
inefficiency, can have positive employment effects. In transportation economics (e.g. congestion games),
equilibrium is frequently not the social optimum. In such cases, it has been shown that taxation can
change the equilibrium to a more desirable one [34, 33, 14]. Similarly, taxes can facilitate more desirable
equilibria in Boolean games [13]. Here we show that a similar phenomenon also occurs in the context
of search (and market inefficiency is in the sense of noisy observations), though the model and analysis
are, of course, methodologically completely different from the above.

1.2 Roadmap
In the next section, we present the basic model of two-sided search within which we work. In Section
3, without going into solution details, we show an example of a realization of the search model where
the entire population is better off in expectation with less precise signals, and discuss the strategies and
tradeoffs in this motivating example. After that, in Section 4 we provide details on how to solve for the
equilibrium of the search in the presence of an expert who operates on a fee-for-service basis, and show
how to extend our analysis to heterogeneous populations (where the two sides of the market are different)
as well as to multi-sided search (for example, for team formation rather than pair formation). Section 5
illustrates some of the major phenomenological implications of the model for a particular instantiation of
the distribution of signals and the distribution of true values conditional on signals, and also considers a
different, second distribution of these as a robustness check. Section 6 analyzes the variant of the model
where the expert operates on a commission basis, and Section 7 concludes.

2 Model
The model is based on a standard two-sided distributed search model [6, 7, 38], augmented to include
uncertain signals.1 The model assumes fully rational self-interested agents, searching for appropriate
partners to form mutually acceptable pair-wise partnerships.2

The number of agents may be either infinite or finite and all agents are ex ante identical, in that there
are no individuals who are “naturally” better than others or easier to please than others. The search
proceeds in discrete time periods. At period t, the matching technology arranges a meeting between
two agents, say i and j, each of whom pays a search cost cs and receives a different, i.i.d. noisy signal,
denoted sijt, which indicates the estimated value of the match to it. sijt is a noisy signal of the true value
of the match vijt to i (also i.i.d.), and, in general, sijt 6= sjit. We assume that agents are acquainted with
the distribution of signals fs(s) and the conditional probability density of values given signals, fv(v|s)

1See Appendix B for a summary of all the notations used in this paper.
2 For simplicity of presentation, and in line with the literature, we focus on partnerships of size two. The extension to

teams of any size k is straightforward, as described in Section 4.3.
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(and their corresponding cumulative distribution function (cdf) Fs(x) and Fv(y|s)), which are identical
for all agents.3 Notationally, throughout this paper we suppress dependence on i, j, t where it is clear
from context.

These modeling assumptions are equivalent to each agent receiving some idiosyncratic utility from
the particular qualities of that partnership (each agent’s utility is drawn independently). This utility is
drawn anew each time a partnership with the same agent is evaluated in later stages of the search. As the
number of agents in the population grows large, it becomes increasingly unlikely that any pair will be
evaluated a second time, since potential partnerships are drawn at random from the population; however,
even with a relatively small number of agents, we still get a valid model for cases where the utility of a
partnership is dependent on the circumstances in which it is formed.

Upon receiving signal sijt, agent i can either accept the partnership (receiving utility vijt), decline it
(continuing search), or pay a cost ce to consult an expert who then reveals the (noiseless) true value of the
partnership vijt to agent i. The expert herself incurs a cost of de in order to report vijt to the agent. If the
agent does consult the expert, it must decide whether to accept or decline the partnership once it receives
the true value (which the expert reports honestly, as described below). If both agents decide to accept the
partnership, a match takes place and the agents leave the market and are replaced with identical agents
(thus the market is time invariant). If either one of the agents declines the partnership, the agents go back
into the searching population and continue their search by sampling another partnering opportunity at
search cost cs, and so on.

Since the agents are fully rational and self-interested, their goal is to maximize their expected utility,
defined as the value they receive from the partnership they eventually form minus the accumulated costs
of querying the expert and interacting with other agents along the search path. In addition, the expert is
a rational, self-interested monopolist with a truthfulness constraint. For the purposes of this paper, we
assume that she has the ability to determine the true value and must report it truthfully. Especially given
that the expert is a monopolist, this constraint is reasonable – the expert may be regulated or have to
consider her reputation, and would not want to lose out on future revenue associated with her privileged
position by lying. Keeping in mind this constraint, the expert’s goal is to maximize her own expected
utility; if she is queried n times, this is n(ce − de).

3 A Motivating Example
Within the model described above, consider a specific distribution of signals and true values (we return to
these distributions, and show how we solve for the example below in detail, in Section 5). First consider
the case of noisy signals. Let signals s be distributed uniformly on [0, 1], and let the conditional density
of true values be a particular monotonically increasing function in the interval [0, s]: fv(y|s) = 3

√
y

2
√
s3

(see
Figure 1 for an example when s = 0.8). Thus, the signal is optimistic, serving as an upper bound on the
true value (e.g., people tend to get a good first impression of others).

In the case of perfect signals, instead of seeing the signal s defined above, the searcher gets to actually
observe v, but the underlying distribution generating v is exactly the same: it first draws s uniformly from

3Alternatively, one can assume that searchers are acquainted with the distribution of values from which a partnership’s
values are drawn, fv(v), and the conditional distribution of signals given the values, fs(s|v). These are interchangeable by
Bayes’ rule.
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Figure 1: The function fv(y|s) and its cumulative distribution function, Fv(y|s), when s = 0.8 (for
fv(y|s) = 3

√
y

2
√
s3

).

[0, 1] and then v from the density fv(y|s) defined above (which can also be seen as the case where the
true value can be obtained from the expert for free). It seems intuitive that everyone should do better
with no noise, when the values of opportunities are perfectly revealed. However, this is not the case. For
the moment, consider two different search costs:

With Noise Without Noise
cs Util Thresh # Searches Cost MatchVal Util # Searches Cost MatchVal
0.01 0.41 0.68 9.65 0.10 0.50 0.46 17.33 0.17 0.64
0.1 0.18 0.31 2.08 0.21 0.39 0.17 2.59 0.26 0.43

In the table above, we show the agents’ search characteristics in equilibrium and the resulting indi-
vidual expected utility. The equilibrium search pattern is, as proved in the next section, reservation-value
based — the agents set a threshold above which they accept other agents and otherwise resume their
search. The table specifies the expected utilities (“Util”), reservation values (“Thresh”), the expected
number of searches (i.e., the number of opportunities evaluated before an agent accepts a match), the ex-
pected cost of these searches, and the expected value obtained from the partnership the agent eventually
ends up with (in the case without noise, the expected utility is the same as the threshold, since an agent
will only accept an offer if it offers more utility than resuming search). cs is the cost paid by the searcher
to sample another opportunity. If we focus on the expected utility, we see that, while searchers do better
with perfect information when cs = 0.01, they are actually better off with noisy signals when cs = 0.1.
The reason for this is that they tend to search more when they have more information. This typically
leads to them finding a better match in the end, but also to paying higher search costs along the way. If it
were just a single agent searching more due to the better information, then the overall utility would have
to increase. However, since all agents become more “picky,” the search becomes even longer, and the
additional cost is no longer outweighed by the benefit of getting a better match in the end.

The importance of this observation is that it depends on the behavior of others. Without noise,
everyone becomes too picky. Given that others are being more picky, it does not benefit you to be less
picky. Further, although it is true that if everyone were less picky then everyone would be better off,
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any individual would still be better off being more picky, so it is not an equilibrium for everyone to be
less picky. To illustrate further, consider what happens when the search cost is 0.1 and there is no noise.
Suppose everyone were to agree to use threshold 0. Then no one would ever decline an offer, and the
expected utility for everyone would just be the expectation of the value distribution (0.3), minus the cost
of seeing a single opportunity, which is 0.1, yielding 0.2, which is higher than the equilibrium outcome
values both with and without noise (see Section 5 for details on the distribution and the expected value).
However, for any individual, if everyone else were using a threshold of 0, it would make sense to have a
higher threshold (and, in fact, the threshold would be higher than 0.2, and would be exactly equal to that
agent’s expected utility).

4 Analysis
In this section we derive the agents’ and expert’s strategies. We first derive the individual agent’s utility-
maximizing strategy given the strategies used by the other agents and the fee set by the expert. From that
we derive the equilibrium strategy of the agents given the expert’s fee, and finally the utility-maximizing
strategy for a monopolist expert. We then consider the effect of the two-sided nature of the search on
searchers’ strategy. The analysis is augmented to the general partnership-size case as well as for cases
where agents discount future utility and where agents come from different populations, in a straightfor-
ward way, as shown towards the end of this section. For exposition purposes, this section includes only
sketch of proofs. The detailed proofs are given in Appendix A.

4.1 Preliminaries
As described in Section 2, we consider a specific model of noisy search in which searchers encounter
opportunities (partnerships) sequentially, and receive noisy signals of the true value of each opportunity.
Similar noisy signal models have been considered in the one-sided search literature [45] and perfect
information models have been considered in the two-sided search literature [7, 38]. Our analysis builds
upon this line of work. In this subsection we briefly summarize existing definitions and results. For the
one-sided search results with experts, we follow Chhabra et al. [9], and for two-sided search with perfect
signals we follow Burdett and Wright [6].

One-sided search The optimal strategy in many models of search is a reservation value (i.e., threshold-
based) strategy, where the searcher accepts any opportunity that is higher than a particular reservation
value.4 Intuitively, the reservation value is the expected utility of rejecting an opportunity and continuing
search. When agents receive noisy signals instead of perfect information about the value of an oppor-
tunity, the optimal strategy need not be a reservation value strategy, because the correlation structure
between signals and true values may be peculiar. However, assuming a simple stochastic dominance as-
sumption on the signal structure [46, 29], it can be shown that the optimal strategy is, in fact, a reservation
value strategy in the one-sided case. We restate the assumption and a useful corollary:

4Meaning that the searcher keeps on reviewing new opportunities as long as the highest-valued opportunity encountered
so far is below the reservation value.
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Definition 1 Higher signals are good news (HSGN) assumption: If s1 > s2, then, ∀y, Fv(y|s1) ≤
Fv(y|s2).

Corollary 1 [9] For noisy environments satisfying the HSGN assumption, if s1 > s2, then, E[v|s1] ≥
E[v|s2].

The introduction of an expert, who can provide for a fee a perfect signal of the true value of an
opportunity, extends the number of decision alternatives available to the agent performing the search
based on the noisy signal. This agent can now (1) reject the opportunity without querying the expert,
paying search cost cs to reveal the signal for the next potential opportunity; (2) query the expert to obtain
the true value v, paying a cost ce, and then decide whether to resume search or not; or (3) accept the
current opportunity without querying the expert, receiving the (unknown) true value of the opportunity.
Under the HSGN assumption, Chhabra et al show that the optimal strategy for a searcher is characterized
by a tuple (tl, tu, V ) such that the searcher rejects the opportunity for all signals below tl, accepts the
opportunity without querying the expert for all signals above tu, and queries the expert for all signals
between tl and tu, accepting if and only if the revealed value v satisfies v > V .

Equilibrium in two-sided search For the one-sided results described above, it is assumed that oppor-
tunities arise exogenously, and the searcher is free to take an opportunity once it arises. In the case of
partnership or team formation, however, the process of matching is dependent on both parties (assuming
pairwise partnerships) agreeing to the match. Therefore, even if an opportunity is acceptable to an agent,
the match may not form, since the agent may not be acceptable to the proposed partner.

Under reasonable assumptions, it can be shown that, in equilibrium, the optimal strategy for agents
engaging in distributed two-sided matching with perfect signals is a reservation value strategy [38, 6].
Opportunities arise sequentially, in random order; each agent reviews these and terminates the search
once a value greater than a reservation value x is revealed. If agents are homogeneous in the sense
that they all share the same search cost cs and their values from a partnership derive from the same
distribution function fv(v) (and corresponding cumulative distribution function (cdf) Fv(v)), then they
all use the same reservation value in equilibrium. The equilibrium reservation value is the value which
maximizes utility when all other agents are using that value. If all other agents are using a reservation
value x∗others, then the reservation value which maximizes utility for any individual agent, x∗, satisfies [6]:

cs =
(
1− Fv(x∗others)

) ∫ ∞
y=x∗

(y − x∗)fv(y)dy (1)

Equation 1 can be interpreted as comparing the cost of any additional search round with the expected
marginal utility from obtaining an additional value. The reservation property of the optimal strategy
derives from the stationarity of the problem – since the searcher is not limited by the number of oppor-
tunities it can explore, resuming search places her at the same position as at the beginning of the search
[28]. Consequently, a searcher who follows a reservation value strategy will never decide to accept an
opportunity she has once rejected, and the optimal search strategy is the same whether or not recall is
permitted. The expected utility from the search when using x∗, denoted V (x∗)5, satisfies V (x∗) = x∗,

5 In general, in two-sided search, the value function V will also be dependent on the strategies being used by others.
Where it is clear from context we suppress such dependence.
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because the reservation value x∗ is the value where the searcher is indifferent between accepting the
current value x∗ and resuming the search process (yielding expected utility V (x∗)). This can formally be
proven by solving Equation 1 using integration by parts.

Due to symmetry, all the agents use the same reservation value in equilibrium and therefore x∗ =
x∗others, resulting in:

cs =
(
1− Fv(x∗)

) ∫ ∞
y=x∗

(y − x∗)fv(y)dy (2)

The expected number of search iterations is simply the inverse of the success probability, 1/ (1− Fv(x∗))2,
since this becomes a Bernoulli sampling process, as opportunities arise independently at each iteration.

4.2 Two-Sided Search with Noisy Signals
We can incorporate noisy signals into the two-sided search model above by first characterizing the utility-
maximizing strategy of each individual searcher and then finding the resulting equilibrium. As in the
one-sided case discussed above, when the searcher receives a noisy signal rather than a perfect one,
there is no guarantee that the optimal strategy is reservation-value based. The problem is still stationary
though, and an opportunity that has been rejected will never be recalled. In the absence of restrictions
over fs(s|v), the optimal strategy is based on a set S of signal-value intervals for which the searcher
terminates the search. The expected utility of search, denoted V (S, S∗), can then be written as (S∗ is the
signal-value intervals for which the other agents terminate search):

V (S, S∗) = −cs +
(
1− Pr(s ∈ S) Pr(s∗ ∈ S∗)

)
V (S, S∗) + Pr(s∗ ∈ S∗) Pr(s ∈ S)E[v|s ∈ S]

= −cs + V (S, S∗)

(
1−

(∫
s∈S
fs(s) ds

)(∫
s∗∈S∗
fs(s

∗) ds∗
))

+

(∫
s∗∈S∗

fs(s
∗) ds∗

)∫
s∈S

fs(s)E[v|s] ds (3)

Here, the value of V (S, S∗) is derived recursively from performing one additional search iteration. The
first element on the right is the cost of the search iteration (−cs). The second element,

(
1 − Pr(s ∈

S) Pr(s∗ ∈ S∗)
)
V (S, S∗), applies to the case where search continues, and is composed of the proba-

bility that at least one of the sides rejects the match, multiplied by the expected value of the continued
search, which is again, due to the optimality principle and the stationarity of the problem, V (S, S∗). The
third element, Pr(s∗ ∈ S∗) Pr(s ∈ S)E[v|s ∈ S], applies to the case where search terminates, and is
composed of the probability of being accepted by the other side, multiplied by the expected value of
accepting the match.
Assuming that higher signals are good news enables us to prove that the equilibrium strategy is a reser-
vation rule.

Theorem 1 If the conditional distribution of values given signals, fv(v|s), satisfies the HSGN assump-
tion, then:
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(a) The equilibrium search strategy of any individual agent is a reservation-value rule, where the reser-
vation value, t∗, satisfies:

cs = (1− Fs(t∗))
∫ ∞
s=t∗

(
E[v|s]− E[v|t∗]

)
fs(s) ds (4)

where Fs(t) is the cumulative distribution function (cdf) of signals.
(b) The equilibrium expected utility to an agent of using the optimal search strategy satisfies: V (t∗) =
E[v|t∗].
Sketch of Proof: The proof is based on showing that, if according to the optimal search strategy the
searcher should resume her search given a signal s, then she must necessarily also do so given any other
signal s′ < s. Let V denote the expected benefit to the searcher if resuming the search when signal s is
obtained. Since the optimal strategy given signal s is to resume search, we know V > E[v|s]. Given the
HSGN assumption, E[v|s] ≥ E[v|s′] holds for s′ < s. Therefore, V > E[v|s′], proving that the optimal
strategy is reservation-value. Then, the expected value of the searcher when using reservation signal t
can be explicitly stated. Setting the first derivative according to t of the new equation to zero we obtain:
V (t∗) = E[v|t∗] (and verifying that t∗ is global maximum by calculating the second derivative). Finally
substituting V (t∗) = E[v|t∗] in the expected value of the searcher equation obtains Equation 4. �

Note that the condition V (t∗) = E[v|t∗] implies that the reservation value t∗ is the signal for which
the searcher’s utility of resuming search is equal to the expected value of the opportunity associated with
that signal. The expected number of search iterations in this case is 1/ (1− Fv(t∗))2, since this is again
a Bernoulli sampling process.

4.3 Two-Sided Search With an Expert
Suppose that any searcher can query an expert at cost ce to find out the true value (to her) of a potential
partner. Now, as in the one-sided case above, the searcher has 3 alternatives. She can (1) reject the
current potential partnership without querying the expert, paying search cost cs to reveal the signal for
the next potential partnership; (2) query the expert to obtain the true value v, paying a cost ce, and then
decide whether to accept the partnership with the other searcher; or (3) accept the current partnership
without querying the expert. If both potential partners accept then the search terminates. Case (2)
termination provides the searcher with the true value v. Case (3) termination provides the searcher with
the (unknown) true value of the partnership. With no mutual acceptance, the search resumes.

As in the no-expert case, a solution for a general density function fv(v|s) dictates an optimal strategy
with a complex structure of the form of (S ′, S ′′, V ()), where: (a) S ′ is a set of signal intervals for which
the searcher should resume her search without querying the expert; (b) S ′′ is a set of signal intervals
for which the searcher should accept the partnership without querying the expert; and (c) for any signal
that is not in S ′ or S ′′ the searcher should query the expert, and accept the partnership if the value
obtained is above a threshold computed by the function V (), and resume otherwise. At optimality,
following the Bellman optimality principle, the function V () gives the expected utility from resuming
the search and is given by the following modification of Equation 3, given that the other agents use
strategy (S ′others, S

′′
others, Vothers()):

V (S ′, S ′′) = −cs − ce
∫
s 6∈{S′,S′′}

fs(s) ds+ (1− A ·B) · V (S ′, S ′′) +B · C (5)
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where A is the probability that the searcher accepts the partnership eventually (either directly or after
querying the expert), B is the probability that the potential partner accepts the match, and C is the
searcher’s expected utility if both sides accept the partnership; these are given by:

A =

∫
s∈S′′

fs(s) ds+

∫
s/∈{S′,S′′}

fs(s)
(
1− Fv(V (S ′, S ′′)|s)

)
ds

B =

∫
s∈S′′others

fs(s) ds+

∫
s/∈{S′others,S

′′
others}
fs(s)

(
1− Fv(Vothers(S

′
others, S

′′
others)|s)

)
ds

C =

∫
s∈S′′
fs(s)E[v|s] ds+

∫
s 6∈{S′,S′′}

(
fs(s)

∫ ∞
y=V (S′,S′′)

yfv(y|s) dy
)
ds

The value of V (S ′, S ′′) in Equation 5 is derived recursively, considering the next search iteration. The
searcher pays cs for receiving the noisy signal. The next element is the expected expert query cost,
incurred whenever receiving a signal s /∈ {S ′, S ′′}. The third element applies to the case of resuming
search, when at least one of the sides rejects the partnership, in which case the searcher continues with
an expected utility V (S ′, S ′′). The last element applies to the case where the search is terminated, since
both sides accepted the opportunity. Similarly, the first element in A and B applies to a case where
the searcher accepted the match without querying the expert and the second applies to a case where the
searcher accepted the match after querying the expert. The first element in C applies to a case where the
searcher accepted the match without querying the expert, in which case the expected revenue is E[v|s].
The second element applies to the case where the searcher accepted the match after querying the expert.

Based on the above, we can prove that, similar to the one-sided case, under the HSGN assumption,
each of the sets S ′ and S ′′ actually contains a single interval of signals.

Theorem 2 For fv(y|s) satisfying the HSGN assumption (Definition 1), given the search cost cs and the
fee ce set by the expert, the Bayes Nash Equilibrium for all agents can be described by the tuple (tl, tu, V ),
where: (a) tl is a signal threshold below which the search should be resumed; (b) tu is a signal threshold
above which the partnership should be accepted; and (c) the expert should be queried given any signal
tl < s < tu and the partnership should be accepted if the value obtained from the expert is above the
expected value of resuming the search, V , otherwise search should resume. The equilibrium values tl, tu
and V can be calculated from solving the set of Equations 6-11:

V =
−cs − ce

(
Fs(tu)− Fs(tl)

)
+B · C

A ·B
(6)

ce =B

∫ ∞
y=V

(y − V )fv(y|tl) dy (7)

ce =B

∫ V

y=−∞
(V − y)fv(y|tu) dy (8)

A =1− Fs(tl)−
∫ tu

s=tl

fs(s)Fv(V |s)ds (9)

B =A (10)

C =

∫ ∞
s=tu

fs(s)E[v|s]ds+
∫ tu

s=tl

(
fs(s)

∫ ∞
y=V

yfv(y|s)dy
)
ds (11)
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Sketch of Proof: The proof extends the methodology used for proving Theorem 1. We first show that
if, according to the optimal search strategy the searcher should resume her search given a signal s, then
she must also do so given any other signal s′ < s. Then, we show that if, according to the optimal search
strategy the searcher should terminate her search given a signal s, then she must also necessarily do so
given any other signal s′′ > s. Equations 6, 9, and 11 are obtained after replacing the intervals S, S ′

with the thresholds tl, tu. Equation 10 represents the fact that the system is symmetric in the way that
ultimately all agents choose the same tuple (tl, tu, V ), and so the probability of being accepted is equal
to the probability of accepting the match. Finally, the correctness of Equations 7 and 8 is proved by
taking the derivative of Equation 6 w.r.t. tl and tu, equating to zero, obtaining tl and tu which maximize
the expected benefit. �

This results in a set of six equations (6 - 11) with six variables. We can solve these simultaneously to
calculate V , tl, and tu.

The intuitive interpretation of each of the above equations is as follows. Equation 6 captures the
expected utility of searchers if resuming their search with strategy (tl, tu, V ). Equation 7 captures the
indifference of the searcher between querying the expert and resuming the search when receiving a signal
tl — if the searcher resumes search it receives V ; however, if the searcher queries the expert it receives
either the value obtained from the expert if it is above V (with probability B, since this is the probability
that the other side accepts the match), or otherwise V :

V = −ce + V
(
1−B

(
1− Fv(V |tl)

))
+B

∫ ∞
y=V

yfv(y|tl) dy

which transforms into Equation 7.
Similarly, Equation 8 captures the searcher’s indifference, given a signal tu, between querying the

expert and accepting the partnership without querying the expert. Here, if accepting the partnership
without querying the expert the searcher obtains E[v|tu] with probability B and V otherwise:

B · E[v|tu] + (1−B)V = −ce + V
(
1−B

(
1− Fv(V |tu)

))
+B

∫ ∞
y=V

yfv(y|tu) dy

which transforms into Equation 8.

There is also a degenerate but plausible case where tl = tu(= t). This happens when the cost of
querying is so high that it never makes sense to engage the expert’s services. In this case, a direct
indifference constraint exists at the threshold t, where accepting the partnership yields the same expected
value as continuing search, so V = E[v|t]. This can be solved in combination with Equation 4, since
there are now only two relevant variables.

Based on the proof for Theorem 2, it is notable that in order to guarantee the double-threshold strategy
structure it is enough to require that if s2 > s1 then the following three conditions hold (of which the
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HSGN requirement is a specific case):

E[v|s2] > E[v|s1] (12)∫ ∞
y=V

[Fv(y|s1)− Fv(y|s2)]dy > 0∫ V

y=−∞
[Fv(y|s1)− Fv(y|s2)]dy > 0

It is straightforward to extend the above analysis in order to encompass additional model assumptions
and variations. We demonstrate how this is done for the following cases: (a) the teams formed are of a
general size; (b) agents discount future utility; and (c) agents come from different populations, differing
in search costs and/or the distribution of valuations of partnerships.

Extension to k-sided search Assume that instead of getting acquainted with one other agent at a
particular time instant, the agent meets k− 1 other agents at a time, interested in forming a group of size
k (e.g., instead of pairs, students need to divide into groups of four). Assuming the group will be formed
only if all agents accept it, then the only required change in the equations is to Equation 10 which turns
into B = Ak−1.6

Further, even if the size of the coalition encountered at each stage of the search varies (e.g., en-
trepreneurs meet each other at each time period to consider a new start-up) and can be captured by the
probability function Psize(i), then the equilibrium can be calculated using a simple modification of the

above, by changing Equation 10 to B =
∞∑
i=1

Psize(i)A
i−1.

For i = 1 we recover the equations of expert-mediated one-sided search [9], confirming that the latter
is a specific case of our model where the searcher is always accepted.

Discounting future utility Adding time discounting to the model is straightforward and does not qual-
itatively change the results. Assume that gains from the partnerships formed are discounted according to
a discount factor δ (and so are future costs paid). In keeping with the sequential search literature [28], we
assume that gains are received at the end of a search round whereas search costs are paid at the beginning
of a search round. In this case, we can prove that agents will use double-reservation strategies, based
on the tuple (tl, tu, V ) however with different values. While the discounting does not explicitly affect
Equations 9 and 10 it does affect Equations 6 and 11 which become:

V =
−cs − ce

(
Fs(tu)− Fs(tl)

)
+B · C

1− δ(1− A ·B)
(13)

C =δ

(∫ ∞
s=tu

fs(s)E[v|s]ds+
∫ tu

s=tl

(
fs(s)

∫ ∞
y=V

yfv(y|s)dy
)
ds

)
(14)

6We note that there are situations where some subset of the k might form a team, but we study the case where exactly k
agents are needed (e.g., in the case where each agent has a certain capability necessary for a task).
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Equating the first derivative of (13), according to tl and tu (separately) to zero, obtains the following
modifications of Equations 7-8

ce =δB

∫ ∞
y=V

(y − V )fv(y|tl) dy (15)

ce =δB

∫ V

y=−∞
(V − y)fv(y|tu) dy (16)

The intuitive interpretation of Equations 15-16 remains similar to the interpretation above for Equa-
tions 7-8.

Extension to different agent populations Assume that partnerships are formed between agents of
different populations (e.g., men and women, employers and employees) [6], differing in the distribution
of values and the costs of search and costs of querying the expert. We use cis, c

i
e, f

i
s(s) and f iv(v|s)

to denote the search cost, the expert querying cost, the signal probability distribution and the value
distribution given a signal of searchers of population i (for i = 1, 2), respectively. In this case, for the
same considerations used above (when all agents are of the same population) we can prove that agents
from population i will be using the double-reservation strategy, based on the tuple (til, t

i
u, V

i). The
equilibrium set of strategies {(t1l , t1u, V 1), (t2l , t

2
u, V

2)} will be obtained by solving the augmented set of
equations:

V i =
−cis − cie

(
F i
s(t

i
u)− F i

s(t
i
l)
)
+Bi · Ci

Ai ·Bi
(17)

cie =B
i

∫ ∞
y=V i

(y − V i)f iv(y|til) dy (18)

cie =B
i

∫ V i

y=−∞
(V i − y)f iv(y|tiu) dy (19)

Ai =1− F i
s(t

i
l)−

∫ tiu

s=til

f is(s)F
i
v(V

i|s)ds (20)

Bi =A3−i {note that 3− i here is an index rather than power} (21)

Ci =

∫ ∞
s=tiu

f is(s)E
i(v|s)ds+

∫ tiu

s=til

(
f is(s)

∫ ∞
y=V i

yf iv(y|s)dy
)
ds (22)

for i = 1, 2 i.e., a total of 12 equations.

4.4 Expert’s Profit Maximization
We can view the search process as a Stackelberg game, where a monopolist expert moves first by setting
her query cost ce. Searchers respond by following their equilibrium strategies described above. There-
fore, the expert can solve for searcher behavior, given knowledge of the search cost cs and the signal
and value distributions. The expert should set her fee to maximize profit, defined as the product of the
expected number of times her services are used by the searchers, and the profit she makes per query.
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Expected number of queries The search strategy (tl, tu, V ) defines the number of times the expert’s
services are used. For an agent’s search to end, both sides need to accept the match. The probability of
that happening is A · B, using the notation above. Since this is a geometric distribution, the expected
number of search iterations an agent performs is 1

A·B . In each search iteration, the probability of a
searcher querying the expert is Fs(tu)− Fs(tl), and so the expected number of expert queries a searcher
performs, denoted ηce is

ηce =
Fs(tu)− Fs(tl)

A ·B
(23)

Expected profit of the expert The expected profit of the expert is: πe = E(Profit) = (ce−de)ηce . The
expert can maximize the above expression with respect to ce using numeric methods in order to find the
profit maximizing price to charge searchers (note that the expert only needs to perform the computation
for a single searcher).

4.5 Market Design: Subsidization and Taxation
One possible use of the theory described above is to improve the design of markets in which such two-
sided search takes place. Consider a platform which allows searchers and experts to interact – for ex-
ample, an online dating website, or one which brings together developers looking to invest in a housing
project. The platform has a privileged position and can either act as the expert itself, or outsource the ex-
pertise function, but use its position to negotiate the conditions under which expert services are provided
and used.

Chhabra et al. [9] consider the possible impact of subsidizing the expert in one-sided search markets.
In their framework, a platform or market designer can pay the expert to decrease her query cost with the
goal of increasing social utility. This makes sense because in one-sided search the presence of an expert
is necessarily beneficial, because a searcher can simply ignore the option of consulting the expert if it is
not beneficial. However, in two (or more)-sided search, game theoretic considerations come into play,
and we must consider the possibility that the presence of an expert may not be helpful (the possibility
for which is shown in Section 3, and discussed further in Section 5). In such cases the market designer
may want to subsidize the monopolist expert to increase her price.

We will analyze such subsidies in the following framework. Suppose a monopolist provider of expert
services maximizes her profits by setting the query cost to c∗e, yielding an expected profit πe = (c∗e −
de)ηc∗e . The market designer can effectively change the fee paid by the searcher from c∗e to a value
c′e, resulting in expected profit π′e to the expert. Presumably the market designer is doing this for the
overall benefit of searchers, but she may have to compensate the expert. In an extreme case where the
designer has no explicit power over or relationship with the expert, she can still offer a payment β to the
expert, which fully compensates the expert for the decreased revenue (πe − π′e), leaving her total profit
unchanged. The compensation for a requested change in the searcher’s payment from c∗e to c′e is thus
β = (c∗e − de)ηc∗e − (c

′
e− de)ηc′e . The overall welfare per agent in this case increases by Vc′e − Vc∗e , where

Vc′e and Vc∗e are the expected value of searchers according to Equations 6-11, when the expert fees are c′e
and c∗e respectively, at a cost β to the market designer.
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The social welfare is given by the sum of utilities of all parties involved. Thus far, we have just
considered two: the searcher and the expert (this generalizes to multiple searchers as well):

W = Vc∗e + πe (24)

When the market designer subsidizes expert queries, the social welfare must also take into account the
subsidy. If the expert is fully compensated for her loss due to the decrease or increase in her fee, the
change in the overall social welfare is Vc′e − Vc∗e − β. Under the new pricing scheme c′e, and given the
subsidy β, the social welfare is given by W ′

= Vc′e + πe − β = Vc′e + π′e (note that β cancels because it
is included as a positive term in πe).

We note that an alternative market design “lever” in this case would be in a situation where the
designer has regulatory authority and can impose a tax. In this case the market designer would want to
impose a per-unit tax t, levied on the expert, so that

argmaxc∗e(c
∗
e − de − t)ηc∗e = c

′

e

where c′e is the price that maximizes social welfare.

5 Illustrative Evaluation
In this section we illustrate the properties of our model by numerically examining and depicting its
behavior in different settings. Some of the results are quite surprising, and may enable more efficient
market designs, beneficial to searchers, experts, and the interaction platform as a whole.

For the numerical study, we use a synthetic environment, where agents form pairwise partnerships (or
k-wise teams, in some settings described in detail where they occur). For our main experimental analysis,
we work with a distribution where the signal is an upper bound on the true value (e.g., people tend to get
a good first impression of others).7 Specifically, we assume signals s are uniformly distributed on [0, 1]
(fs(s) = 1 if 0 < s < 1 and zero otherwise) and the conditional density of true values is a monotonic
increasing function in the interval [0, s]: fv(y|s) = 3

√
y

2
√
s3

. The marginal density fv(y) is given by:

fv(y) =
dFv(y)

dy
=
d
(∫∞

s=−∞ fs(s)Fv(y|s)ds
)

dy
(25)

where:

Fv(y|s) =
∫ y

z=−∞
fv(z|s)dz =


√
y3√
s3

0 < y ≤ s

0 y ≤ 0

1 y > s

(26)

Substituting from Equation 26 into Equation 25 yields: fv(y) = 3− 3
√
y.

7It can be assumed that results in this section use this distribution unless otherwise noted.
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As part of a robustness analysis, demonstrating that our results generalize, we also consider a second
distribution for parts of our analysis, where the generative model is very different: true values (y) come
from a Gaussian distribution with mean µ and standard deviation σv, and signals for an opportunity are
drawn from a Gaussian distribution with mean equal to the true value v and standard deviation σs. This
reflects another very common noise model [8], and the true value is no longer constrained to be less than
the signal. In this case, we can derive the marginal distribution of signals fs(s) as Gaussian with mean
µ and standard deviation

√
σ2
v + σ2

s while the distribution of true values conditional on signals fv(y|s)
is Gaussian with mean (σ2

sµ + σ2
vs)/(σ

2
v + σ2

s) and standard deviation (σvσs)/
√
σ2
v + σ2

s . In numerical
experiments, we use µ = 50, σv = 1, σs = 1. We only show a few, selected results for this distribution,
to demonstrate that our results are robust with respect to the underlying distributions of values and noise;
qualitatively, we also find similar results in the cases that we do not show results for both. For the
remainder of this section, we assume the expert’s expense de to be zero.

5.1 Noisy Signals vs. True Values
First, we demonstrate that having more information is not necessarily beneficial in two-sided markets.
Figure 2 depicts the equilibrium expected utility of the agents with perfect signals and with noisy signals
as a function of the search cost cs. The graph on the left shows the searcher’s expected utility in the two
settings, i.e., the value of V (x∗) (marked “perfect signals”) and V (t∗) = E[v|t∗] (marked “noisy signals”)
for different cs values (the values of x∗ and t∗ were calculated using Equations 2 and 4, respectively).
The graph on the right shows the difference V (x∗)− V (t∗). Figure 2 demonstrates that agents are better
off with perfect signals for some cs values (for cs ≤ 0.06) and with imperfect signals for others (for
cs > 0.06).
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Figure 2: Searcher’s utility with perfect and noisy signals. As search cost increases, expected utility
decreases in both model variants. For cs ≤ 0.06, agents are better off with perfect signals whereas for
cs > 0.06 agents actually benefit (in equilibrium) when signals are noisy.

5.2 Expert Costs and Social Welfare
We first examine the utility of searchers as a function of the search cost cs. Figure 3 (left) shows the
expected searcher utility in a few different cases: with a self-interested expert who charges a profit-
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maximizing amount, with an expert who provides her services for free, and with no expert present. The
right-hand graph of the figure depicts the difference in the searcher’s utility between any two settings.
For any pair of settings, whenever the difference is above zero, having an expert of the first type is
better than having an expert of the second type (and vice-versa). Unsurprisingly, the searchers’ utility
decreases as the cost of search increases (this effect is obviously true for all expert costs we examined).
More surprisingly, once cs > 0.06, searchers are better off in a market with no expert than even a market
with an expert who provides services for free!

Figure 3: (Left): Expected utility for a searcher decreases as search cost increases. (Right): The differ-
ences in expected utilities for a searcher between several different scenarios: (a) where the expert is free
(ce = 0); (b) with no expert present; and (c) where the expert is a utility maximizing monopolist.

For these settings, our results imply that (1) for cs > 0.06, the presence of an expert in the market
decreases the searcher’s utility, and, (2) for cs > 0.11 it is better for searchers to have a self-interested
expert who charges her utility-maximizing fee than an expert that offers her services for free. Qualita-
tively, these results are robust, and appear even when agents use discounting, and for the case of normally
distributed values and signals (see Figure 4). The results seem counter-intuitive: why should the pres-
ence of an expert, in particular one who provides her services for free, lead to a decrease in utility for
searchers? Indeed, such behavior would never occur in one-sided search, but it turns out that equilib-
rium behavior when many different agents are making decisions complicates the matter significantly. An
agent’s decision on whether or not to consult an expert could be significantly affected by what it expects
others to do: in fact, the very fact that others can consult the expert makes it optimal for an agent to also
consult the expert in many cases, even though everyone would be better off if the expert were not present.
The source of the higher costs is that the presence of the expert induces everyone to stay in the market
searching for longer, incurring higher search costs, without achieving a sufficient compensatory benefit
in the value of the final match received. This effect initially becomes more pronounced as the search cost
increases, since the expected future search cost factors into the decision, with the free expert hurting all
the agents beyond some point. The difference in expected utility between the “no expert” case and the
“free expert” case peaks and then declines as search cost increases further, because at some point the
agents begin to avoid searching more and more. The intuition is the same as that developed in Section 3.
In this case the presence of a self-interested expert can make searchers even worse off, because they may
be willing to pay to receive the extra information given that others are also doing so, whereas in Section
3 the extra information is “free” and still hurts the searchers.

Interestingly, the negative effects of the presence of the expert get worse as the sizes of the teams
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Figure 4: Expected utility for a searcher as a function of search cost (left) and differences in expected
utility for different scenarios (right) when values and signals are normally distributed. The results are
qualitatively similar to those in Figure 3.

being formed increase. Figure 5 shows the ratio of the expected utility received by a searcher when there
is a profit-maximizing monopolist expert present in the market versus when there is no expert present in
the market. The search cost is taken to be cs = 0.02. We can see that the ratio declines as the number
of agents forming a team increases (the k sides in the search). For k = 1 the expert is beneficial, but for
k ≥ 2 the presence of the expert becomes harmful because the equilibrium outcome is that agents search
longer, paying more in search costs than the extra benefit they gain from receiving a higher value at the
end of the search.
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Figure 5: Ratio of the expected utility of a searcher with a self-interested expert in the market versus
with no expert in the market as a function of k, the number of agents that have to all agree to form a
team. The presence of the expert becomes more damaging as the team size increases.

A market designer can change the effective query cost paid by searchers by either subsidizing the
expert to reduce her price, or by instituting a tax on transactions. This could enhance social welfare; the
market designer may have regulatory power over the market, but even if she does not, there are situations
where she may be able to completely compensate the expert for the loss she suffers from the change in
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query price, while still improving the social welfare of searchers enough to make it practical. For the
rest of this section, we assume that the market designer makes side payments to the expert, through the
subsidization framework introduced in the previous section.

The process is illustrated in Figure 6, which depicts the searcher’s and expert’s expected utility (and
their sum, which is the social welfare) as a function of the fee charged by the expert ce. The search cost is
taken to be cs = 0.1. In order to maximize expected profit, the expert computes her optimal cost ce given
that the individual agents are playing their optimal search strategies subject to cs and ce. In this example,
the optimal expert query cost (the value where the lower curve, which demonstrates the expert’s profit as
a function of query cost, peaks) is ce = 0.0052 (with an expected utility for the expert of 0.00632).

In this case, social welfare is maximized when the effective query price paid is 0.019 (seen at the
upper curve in the figure). The expert’s utility with ce = 0.019, however, is 0.00236, thus she needs to
be compensated in the amount of the difference, 0.00632 − 0.00236 = 0.00396. This compensation is
still less than the gain in the searcher’s expected utility (an increase from 0.173 to 0.182).

In the example depicted in Figure 6, the expert is compensated for charging more for her services.
This result is surprising, since intuitively, one would expect that a reduction rather than an increase in
expert query price should increase searcher’s utility and social welfare. This is demonstrated in Figure 7,
where the social welfare is maximized when the effective query price paid is zero, i.e., when the expert
offers her services for free and thus is used by any searcher throughout her entire search (the search cost
in this example is taken to be cs = 0). Yet, in many sensible market settings the contrary holds, such
as in Figure 6. Figure 8 (in which cs = 0.15) illustrates a more extreme setting, where the expert is in
fact being compensated for increasing her fee to a level for which none of the searchers uses her services
(i.e., the expert is actually pushed out of the market). Figure 9 illustrates a setting in which social welfare
is maximized (approximately) when the expert charges her expected-utility maximizing fee, and hence
there is no need for external interference in the form of subsidy or taxation (cs = 0.04).

The above results hold also for the case where agents’ expected utility is discounted. Figure 10
illustrates such a scenario where searchers have a discount factor of 0.9. The figure depicts the searcher’s
expected utility with a self-interested expert who charges a profit-maximizing amount, with an expert
who provides her services for free, and with a self-interested expert who is compensated for charging
the social-welfare-maximizing amount. The figure shows once again, that market design, in the form
of changing the effective query price and compensating the expert accordingly, improves social welfare,
and for a large portion of the cs interval even improves the social welfare to a value greater than the
resulting social welfare when the expert does not charge at all for her services.

5.3 Characteristics of Optimal Searcher Behavior
As discussed in Section 4, the searcher’s strategy is characterized by two thresholds, tl and tu. We can
study the effect of search cost on these thresholds. Figure 11 (left) shows results for ce = 0.01 in the
case of the uniform distribution of signals, and Figure 12 (left) shows the thresholds when values and
signals are normally distributed, with ce = 2.0 (variations in the results are minor across several expert
query costs). For the uniform distribution, as the cost of search increases, the thresholds get closer to
one another, and eventually merge when cs > 0.22. At search costs higher than that the searchers do not
query the expert. This is likely because of the finite support of signals – as tl and tu are both decreasing
as a function of cs, they eventually merge. In the case of normally distributed values and noise, the
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Figure 6: Using subsidy: by increasing the effective query price from 0.0052 to 0.019, a market designer
can maximize social welfare. In this example cs = 0.1.

thresholds can both decrease without being constrained by the signal support, and the expert still gets
queried in a narrow band (Figure 12 (left)).

We can also examine the effect of expert query cost on the thresholds. Figures 11 and 12 both show
similar behavior for the thresholds as a function of expert query costs, with the thresholds merging as
query cost increases. In these cases the expert is not queried because it is simply too expensive.

6 A Commission-based Service
As an alternative to imposing a per-query cost, the expert may be able to operate on the basis of charging
a commission when the use of her services leads to a successful match being made. This is similar to
schemes used by realtors, who typically only get paid when a house is actually bought or sold. The
most significant difference when the expert operates on the basis of a commission, that is only charged
when a match is successful, is that there is no cost to a searcher to employ the expert’s services when the
revealed true value ends up being too low; therefore, it is natural that the optimal strategy for a searcher
is to always use the expert when the signal is below a certain level. We prove the optimality of this single
reservation value strategy below.
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Figure 7: By decreasing the effective query price to 0, a market designer can maximize social welfare.
In this example cs = 0.

It seems that this scheme would not be beneficial to experts, because searchers can choose not to use
the expert when the signal is high enough, but always use the expert when the signal is low. However,
we show that there are situations where the expert can nevertheless benefit from this kind of pricing.

We now turn to specifying the model for commission-based pricing. Upon receiving a signal, an
agent can either accept the partnership, decline it, or consult an expert who then reveals the (noiseless)
true value of the partnership to that agent. If the agent does consult the expert, it must decide whether to
accept or decline the partnership once it receives the true value. In the latter case, if both agents accept
the partnership then the agent will need to pay the expert a commission γev, where v is the realized value
from the evaluated partnership.8 We assume that agents truthfully report when a match is made.

We first prove the optimality of a strategy of the form (S, V ) where: (a) S is a set of signal intervals
for which the searcher should accept the partnership without querying the expert; and (b) for any signal
that is not in S the searcher should query the expert, and accept the partnership if the value obtained is
above a threshold V/(1 − γe), and resume otherwise. Note that, in contrast to the fee-per-query model,
there is no longer a set of signals where the agent should resume search without querying the expert.

V , the expected value of resuming search, is given by the following modification of Equation 5, given

8γe denotes the commission, as a fraction of the value of the transaction to the agent, that the agent needs to pay the expert.
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Figure 8: An example where the expert is in fact being compensated for setting a fee for which none of
the searchers uses her services (i.e., actually pushed from the market). In this example cs = 0.15.

that the other agents use strategy (Sothers, Vothers):

V (S, V ) = −cs + (1− A ·B) · V (S, V ) +B · C (27)

where A,B, and C are given by:

A =

∫
s∈S

fs(s) ds+

∫
s/∈S
fs(s)

(
1− Fv(V/(1− γe)|s)

)
ds

B =

∫
s∈Sothers

fs(s) ds+

∫
s/∈Sothers

fs(s)
(
1− Fv(Vothers/(1− γe)|s)

)
ds

C =

∫
s∈S
fs(s)E[v|s] ds+

∫
s 6∈S

(
fs(s)

∫ ∞
y=V/(1−γe)

(1− γe)yfv(y|s) dy
)
ds

The value of V (S, V ) in Equation 27 is once again derived recursively, considering the next search
iteration. The searcher pays cs for receiving the noisy signal. Unlike in Equation 5, here there is no need
to consider γe, as the commission is already subtracted from the value obtained in C. The other two
elements are similar to those used in Equation 5. Similarly, the calculations of A, B and C are similar to
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Figure 9: A setting in which the social welfare is maximized when the expert charges her expected-
utility-maximizing fee, hence no need for external interference in the form of subsidy or taxation. In this
example cs = 0.04.

those used in Equation 5, except that the searcher accepts the match after querying the expert only if the
value obtained is greater than V/(1− γe).

Based on the above, we can prove that under the HSGN assumption, the set S actually contains a
single interval of signals.

Theorem 3 For fv(y|s) satisfying the HSGN assumption (Definition 1), given the search cost cs and the
commission γe set by the expert, the Bayes Nash Equilibrium for all agents can be described by the tuple
(t, V ), where: (a) t is a signal threshold above which the partnership should be accepted; and (b) the
expert should be queried given any signal s < t and the partnership should be accepted if the value
obtained from the expert is above V/(1 − γe), where V is the expected value of resuming the search;
otherwise search should resume. The equilibrium values t and V can be calculated from solving the set
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Figure 10: Searcher’s utility as a function of search cost, when searchers use a discount factor of 0.9
(left), for the case: (a) where the expert is free to use (ce = 0); (b) when the expert is self-interested
and charges its utility-maximizing fee; and (c) when the expert is self-interested however market design
is applied (using subsidy). The right-hand graph depicts the differences between any two pairs. Similar
to the case without discounting, with the use of subsidy social welfare can be improved, even to a point
where it is better than the social welfare when the expert does not charge for her services at all.

of Equations 28-32:

V =
−cs +BC

AB
(28)

V/(1−γe)∫
y=−∞

(V − y)fv(y|t)dy = γe

∞∫
y=V/(1−γe)

yfv(y|t)dy (29)

A = 1−
t∫

s=−∞

fs(s)Fv(V/(1− γe)|s)ds (30)

B = A (31)

C =

∞∫
s=t

fs(s)E[v|s]ds+
t∫

s=−∞

fs(s)

∞∫
y=V/(1−γe)

(1− γe)yfv(y|s)dyds (32)

Sketch of Proof: The proof resembles that of Theorem 2. We first show that if, according to the optimal
search strategy the searcher should terminate her search given a signal s, then she must also necessarily
do so given any other signal s′ > s. Equations 28, 30, and 32 are obtained after replacing the set of
intervals S with the threshold t. Equation 31 represents the fact that the system is symmetric in the sense
that ultimately all agents choose the same tuple (t, V ), and so the probability of being accepted is equal
to the probability of accepting the match. Finally, we prove the correctness of Equation 29 by taking the
derivative of Equation 28 w.r.t. t, equating to zero, and showing that there is a t which maximizes the
expected benefit. �

We now have 5 equations (28 - 32) in 5 variables. We can solve these simultaneously to calculate the
values of V and t.
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Figure 11: Left: Thresholds decrease and get closer to one another as the cost of search increases with
uniformly distributed signals. The thresholds eventually merge, indicating that searchers do not query
the expert for cs > 0.22. In this example ce = 0.01. Right: Thresholds get closer to one another and
eventually merge as expert cost increases. In this example cs = 0.01.

25

30

35

40

45

50

55

0.00 0.05 0.10 0.15 0.20 0.25 0.30

S
ig

n
a

l

Cost of querying the expert (ce)

Resume Search

Terminate Search

Query the Expert

tl

tu

45

46

47

48

49

50

51

52

53

54

0.0 0.5 1.0 1.5 2.0 2.5

S
ig

n
a

l

Search cost (cs)

Resume Search

Terminate Search

tl

tu

Figure 12: Thresholds for normally distributed values and noise as a function of search cost (left) and
expert query cost (right).

Equation 29 captures the searcher’s indifference, given a signal t, between querying the expert and
accepting the partnership without querying the expert. Here, if accepting the partnership without query-
ing the expert the searcher obtains E[v|t] with probability B and V otherwise; however, if the searcher
queries the expert it receives either the value obtained from the expert if it is above V/(1 − γe) (with
probability B, since this is the probability that the other side accepts the match), or otherwise V :

B ·E[v|t] + (1−B)V = V
(
1−B

(
1− Fv(V/(1− γe)|t)

))
+B

∫ ∞
y=V/(1−γe)

y(1− γe)fv(y|t) dy

which transforms into Equation 29.
It is worth noting that the term under the integral in the left hand side of Equation 29 is negative for

any value in the interval V ≤ y ≤ V/(1 − γe). In these cases, it is optimal for the searcher to resume
search even though she observes a true value greater than the expected benefit of resuming the search,
because the commission the searcher will need to pay if she accepts the partnership makes the transaction
non-beneficial.
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Expected number of queries Once again, the search strategy (t, V ) defines the number of times the
expert’s services are used. The probability of having both sides accept the match is A ·B, and since this
is a geometric distribution, the expected number of search iterations an agent performs is 1

A·B . In each
search iteration, the probability of a searcher querying the expert is Fs(t), and so the expected number
of expert queries a searcher performs is

ηγe =
Fs(t)

A ·B
(33)

Expected profit of the expert The expected profit is the difference between the expected payment
received and the expected expense. The expected expense is given by deηγe . The expected payment the
expert receives is

Vexpert =
∞∑
j=0

∞∫
y=V/(1−γe)

t∫
s=−∞

fs(s)fv(y|s)γeyB(1− AB)jdsdy

=

∞∫
y=V/(1−γe)

t∫
s=−∞

fs(s)fv(y|s)γeydsdy

A
(34)

Therefore: πe = E(Profit) =

∞∫
y=V/(1−γe)

t∫
s=−∞

fs(s)fv(y|s)γeydsdy

A
−deηγe . The expert can maximize the above

expression with respect to γe to find the profit maximizing price to charge searchers using the same
principles detailed in 4.5.

6.1 Illustrative Results
We again consider some actual numerical results for a particular distribution of values, focusing this time
solely on the uniform distribution of signals, where fv(y|s) = 3

√
y

2
√
s3

and de = 0. Many of the results are
qualitatively quite similar to those above: for example, agents may be better off in markets where the
expert is taxed or subsidized to increase her fees, and the market designer can solve for maximum social
welfare in manners analogous to those for the per-query fee model. Therefore, we do not present these
results in detail.

Instead, we demonstrate in Figure 13 that there are situations where the expert can make higher
profits using a commission-based strategy than she can using the per-query pricing model presented in
Sections 4 and 5. The figure shows the difference between the expert’s utility when using her utility
maximizing commission and when using her utility-maximizing fixed per-query fee, as a function of the
search cost cs, for the particular signal and value distributions we have used throughout. We see that
the expert benefits from using commission-based pricing for any search cost cs < 0.002, and from using
per-query pricing for cs > 0.002.

Although not definitive, these results are suggestive: perhaps situations with lower search costs offer
more upside to experts using commission-based pricing because searchers are less prone to “settle” and
end up with higher value items in the end. A percentage of that value is what goes to the expert (search
costs are borne entirely by the searcher), so the expert is likely to do better in such situations.
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Figure 13: The difference between the expert’s utility when using her utility maximizing commission
and when using her utility-maximizing fixed fee, as a function of the search cost cs. A positive value
suggests an advantage for the commission-based scheme and vice-versa. In this case, for a large search
cost, the expert is better off using the commission-based scheme.

7 Conclusions
This paper is the first to look at the impact of experts on two-sided search markets. We generalize some
results from the consideration of experts in one-sided search, notably that of the optimal strategy. As we
show in Section 4, the analysis can be extended in a straightforward manner to various cases (e.g., the
formation of k member teams, discounting of gains, and different population types).

Phenomenologically, we find ways in which the behavior of two-sided search markets is drastically
different from the more intuitive behavior seen in one-sided search markets with experts. First, we show
a more general result: there are situations in two- (or many-) sided search (typically environments where
search costs are high) where more information can be bad. That is, agents would all be better off having
noisier signals than having perfect signals of the values of matchings. Generalizing this result to markets
with experts, we show that the presence of experts can lead to socially suboptimal outcomes compared
to cases in which they are absent. With experts, the equilibrium behavior implies that agents should
query the expert because other agents may be doing so, even though they would all be better off if they
agreed in advance not to consult the expert (or if the expert was not present). This effect becomes worse
if we consider many-sided search: in fact, as the number of agents required to form a team increases, the
presence of the expert makes individual searchers relatively worse off compared with what they could
have expected with no expert present.

We also study the problem faced by the designer of a market platform who brings searchers and
experts together and seeks to mitigate this effect. We propose that the market designer could incentivize
monopolistic experts to increase their fees in order to make searchers query the expert less often.

Finally, we investigate, from the perspective of the expert, the differences between commission-
based pricing and a per-query pricing model. We show that the commission-based scheme, even though
it does not require searchers to pay experts unless a transaction (match or team-formation) is completed,
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can lead to greater profits for the expert in some situations. We present an example that suggests the
commission-based scheme may be better for experts when searchers have to pay low search costs.

The model of two-sided search used in this paper assumes agents are ex-ante identical, in that there
are no individuals who are “naturally” better than others or more easy to please than others. However,
when a potential match is formed, each agent receives some idiosyncratic utility from the particular
qualities of that match. The two agents will in general have different values for a match. While this is
useful, and parallels many of the models used in two-sided matching literature, it would be illuminating
to understand what happens when the quality of matches are quite differently determined. Some of the
analysis can be extended in some quite straightforward manner, e.g., for the case where two agents get
the same idiosyncratic utility for a match (a function of their compatibility, but the same for both) and
agents are unaware of others’ use of the expert whenever having to decide on acceptance/rejection. In
other cases, e.g., where what one agent gets from a match is only a function of the other agents’ “quality”,
this is more complex, though the analysis presented in this paper should provide a good foundation for
these extensions. Another interesting direction for future work is the analysis of a model where the expert
merely supplies another noisy (though more accurate) signal. This model, however, imposes a modelling
challenge, which is the modelling of the noise given the signal obtained and also the distribution of the
true value for any pair of signals received by the searcher and the expert.
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A Proofs

Proof of Theorem 1
The proof is based on showing that, if according to the optimal search strategy the searcher should

resume her search given a signal s, then she must necessarily also do so given any other signal s′ <
s. Let V denote the expected benefit to the searcher if resuming the search if signal s is obtained.
Since the optimal strategy given signal s is to resume search, we know V > E[v|s]. Given the HSGN
assumption, E[v|s] ≥ E[v|s′] holds for s′ < s. Therefore, V > E[v|s′], proving that the optimal strategy
is reservation-value. Then, the expected value of the searcher when using reservation signal t is given
by:

V (t) = −cs + V (t)
(
1−B

∫ ∞
s=t

fs(s) ds
)

+B

∫ ∞
s=t

E[v|s]fs(s) ds =
−cs +B

∫∞
s=t

E[v|s]fs(s) ds
B
(
1− Fs(t)

) (35)

where B is the probability of being accepted by the other searcher, and Fs(s) is the cumulative distribu-
tion function of the signal s. Setting the first derivative according to t of Equation 35 to zero we obtain:
V (t∗) = E[v|t∗] as follows:

dV (t)

dt
=
dV (t)

dt

(
1−B

∫ ∞
s=t

fs(s) ds
)

+ V (t)Bfs(t)−B · E[v|t]fs(t)

V (t∗) = E[v|t∗] fs(t
∗) 6= 0 B 6= 0

To verify that t∗ is global maximum, we calculate the second derivative.

d2V

dt2
=
(
1−B

∫ ∞
s=t

fs(s) ds
)d2V
dt2

+B · fs(t)
dV

dt

+B
d(V (t)fs(t))

dt
−Bd(E[v|t]fs(t))

dt

d2V

dt2
|t∗ = 1

B
(
1− Fs(t∗))

B

(
d((V (t)− E[v|t])fs(t))

dt
|t∗
)

= − fs(t
∗)

1− Fs(t∗)

(
dE[v|t]
dt

|t∗
)

Given the HSGN assumption, E[v|t] is an increasing function in t. Therefore dE[v|t]
dt

> 0, this implies
that the value of second derivative evaluated at t∗ is less than zero, which confirms that t∗ is indeed a
global maximum.
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Finally substituting V (t∗) = E[V |t∗] in Equation 35 we obtain Equation 4 as follows:

V (t∗) = −cs + V (t∗)
(
1−B

∫ ∞
s=t∗

fs(s) ds
)
+B

∫ ∞
s=t∗

E[v|s]fs(s) ds

E[v|t∗] = −cs + E[v|t∗]
(
1−B

∫ ∞
s=t∗

fs(s) ds
)
+B

∫ ∞
s=t∗

E[v|s]fs(s) ds

cs = B

∫ ∞
s=t∗

(E[v|s]− E[v|t∗])fs(s) ds

Since all the searchers end up using the same threshold, we get that:

B =

∫ ∞
s=t∗

fs(s) ds

Therefore, the value t∗ can be calculated using the above equation. �

Proof of Theorem 2
The proof extends the methodology used for proving Theorem 1. We first show that if, according to

the optimal search strategy the searcher should resume her search given a signal s, then she must also
do so given any other signal s′ < s. Then, we show that if, according to the optimal search strategy the
searcher should terminate her search given a signal s, then she must also necessarily do so given any
other signal s′′ > s. Again, we use V to denote the expected benefit to the searcher if resuming search.

If the optimal strategy given signal s is to resume search then the following two inequalities should
hold, describing the superiority of resuming search over terminating search (Equation 36) and querying
the expert (Equation 37):

V > E[v|s] (36)

V > V Fv(V |s) +
∫ ∞
y=V

yfv(y|s) dy − ce (37)

Given the HSGN assumption and since s′ < s, Equation 36 holds also for s′. Similarly, notice that:

V > V Fv(V |s) +
∫ ∞
y=V

yfv(y|s) dy − ce

= V +

∫ ∞
y=V

(1− Fv(y|s)) dy − ce

> V +

∫ ∞
y=V

(1− Fv(y|s′)) dy − ce

= V Fv(V |s′) +
∫ ∞
y=V

yfv(y|s′) dy − ce

and therefore Equation 37 also holds for s′ < s.
The proof for s′′ > s is exactly equivalent: the expected cost of accepting the current opportunity can

be shown to dominate both resuming the search and querying the expert. The optimal strategy can thus
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be described by the tuple (tl, tu, V ) as stated above. Equations 6, 9, 11 are obtained after replacing the
intervals S, S ′ with the thresholds tl, tu:

V =− cs − ce
∫ s=tu

s=tl

fs(s) ds+ (1− AB)V +BC

V =
−cs − ce

(
Fs(tu)− Fs(tl)

)
+BC

AB

A =

∫ ∞
s=tu

fs(s) ds+

∫ tu

s=tl

fs(s)
(
1− Fv(V |s)

)
ds

A =1− Fs(tl)−
∫ tu

s=tl

fs(s)Fv(V |s)ds

C =

∫ ∞
s=tu

fs(s)E[v|s] ds+
∫ tu

s=tl

(
fs(s)

∫ ∞
y=V

yfv(y|s) dy
)
ds

Equation 10 represents the fact that the system is symmetric in the way that ultimately all agents choose
the same tuple (tl, tu, V ), and so the probability of being accepted is equal to the probability of accepting
the match. Now we will show the correctness of Equations 7 and 8:

Taking the derivative of Equation 6 w.r.t. tl and equating to zero, we obtain a tl which maximizes the
expected benefit.

∂V

∂tl
=

(cefs(tl) +B ∂C
∂tl

)AB + (−cs − ce
(
Fs(tu)− Fs(tl)

)
+BC)∂A

∂tl
B

A2B2

=
(cefs(tl) +B ∂C

∂tl
)AB − V AB ∂A

∂tl
B

A2B2

=
cefs(tl) +B ∂C

∂tl
− V ∂A

∂tl
B

AB

=
cefs(tl) +B(∂C

∂tl
− V ∂A

∂tl
)

AB

Calculating ∂C
∂tl
− V ∂A

∂tl
separately, we get:

∂C

∂tl
= −fs(tl)

∫ ∞
y=V

yfv(y|tl) dy +
∫ tu

s=tl

fs(s)
(
− V fv(V |s)

)∂V
∂tl

ds

∂A

∂tl
= −fs(tl) + fs(tl)Fv(V |tl)−

∫ tu

s=tl

fs(s)fv(V |s)
∂V

∂tl
ds

= −fs(tl)
∫ ∞
y=V

fv(y|tl) dy −
∫ tu

s=tl

fs(s)fv(V |s)
∂V

∂tl
ds
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and so

∂C

∂tl
− V ∂A

∂tl
= −fs(tl)

∫ ∞
y=V

(y − V )fv(y|tl) dy

and so

∂V

∂tl
=
cefs(tl) +B

(
− fs(tl)

∫∞
y=V

(y − V )fv(y|tl) dy
)

AB

=
fs(tl)

(
ce −B

∫∞
y=V

(y − V )fv(y|tl) dy
)

AB

Substituting ∂V
∂tl

= 0 we get Equation 7.
To confirm that this is a maximum, we compute the second derivative:

AB
∂2V

∂tl
2
+
∂A

∂tl
B
∂V

∂tl
=
∂
(
fs(tl)

)
∂tl

(
ce −B

∫ ∞
y=V

(y − V )fv(y|tl) dy
)

− fs(tl)B
∂

(∫∞
y=V

(y − V )fv(y|tl) dy
)

∂tl

By substituting ∂V
∂tl

= 0 and ce = B
∫∞
V
(y − V )fv(y|tl) dy we get:

AB
∂2V

∂tl
2
= −fs(tl)B

∂

(∫∞
y=V

(y − V )fv(y|tl) dy
)

∂tl

Or alternatively:

∂2V

∂tl
2
=
−fs(tl)

∂

( ∫∞
y=V (y−V )fv(y|tl) dy

)
∂tl

A
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All that is left to show is that
∫∞
y=V

(y−V )fv(y|tl) dy increases with tl to complete the proof of maximum.∫ ∞
y=V

(y − V )fv(y|tl) dy = lim
b→∞

∫ b

y=V

(y − V )fv(y|tl) dy

= lim
b→∞

[(y − V )Fv(y|tl)]by=v + lim
b→∞

∫ b

y=V

Fv(y|tl) dy

= lim
b→∞

(b− V )Fv(b|tl) + lim
b→∞

∫ b

y=V

Fv(y|tl) dy

= lim
b→∞

(b− V ) + lim
b→∞

∫ b

y=V

Fv(y|tl) dy

= lim
b→∞

∫ b

y=V

(1− Fv(y|tl)) dy =

∫ ∞
y=V

(
1− Fv(y|tl)

)
dy

and so

∂

(∫∞
y=V

(y − V )fv(y|tl) dy
)

∂tl
=

∂

(∫∞
y=V

(
1− Fv(y|tl)

)
dy

)
∂tl

= −
((

1− Fv(V |tl)
))∂V
∂tl

+

∫ ∞
y=V

∂
(
− Fv(y|tl)

)
∂tl

dy > 0

The inequality is given by substituting ∂V
∂tl

= 0 and due to HSGN assumption, which determines that

∀y :
∂
(
Fv(y|tl)

)
∂tl

< 0. The proof for Equation 8 is exactly similar to the proof for Equation 7. We have 6
equations (6 - 11) in 6 variables. We can solve these simultaneously to calculate the value of V , tl and
tu. �

Proof of Theorem 3
The proof steps resemble those used for Theorem 2. We first show that if, according to the optimal

search strategy the searcher should terminate her search (and accept the partnership) given a signal s,
then she must also necessarily do so given any other signal s′ > s. The partnership is accepted based on
signal s iff the following two conditions hold:
1. E[v|s] > V

2. E[v|s] > V Fv(V/(1− γe)|s) +
∞∫

y=V/(1−γe)
(1− γe)yfv(y|s)dy

Or equivalently:

1. E[v|s] > V

2.
V/(1−γe)∫
y=−∞

(y − V )fv(y|s)dy +
∞∫

y=V/(1−γe)
γeyfv(y|s)dy > 0

For every s′ > s, we get that E[v|s′] ≥ E[v|s] > V .
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We show that for any s′ > s:

V/(1−γe)∫
y=−∞

(y− V )fv(y|s′)dy+
∞∫

y=V/(1−γe)

γeyfv(y|s′)dy ≥
V/(1−γe)∫
y=−∞

(y− V )fv(y|s)dy+
∞∫

y=V/(1−γe)

γeyfv(y|s)dy > 0

Rearranging the above equation we obtain:

V/(1−γe)∫
y=−∞

(y − V )[fv(y|s′)− fv(y|s)]dy +
∞∫

y=V/(1−γe)

γey[fv(y|s′)− fv(y|s)]dy

=
[
(y − V )[Fv(y|s′)− Fv(y|s)]

]V/(1−γe)
y=−∞ −

V/(1−γe)∫
y=−∞

[Fv(y|s′)− Fv(y|s)]dy

+
[
γey[Fv(y|s′)− Fv(y|s)]

]∞
y=V/(1−γe)

−
∞∫

y=V/(1−γe)

γe[Fv(y|s′)− Fv(y|s)]dy

= [(V/(1− γe)− V )(Fv(V/(1− γe)|s′)− Fv(V/(1− γe)|s))− 0]−
V/(1−γe)∫
y=−∞

[Fv(y|s′)− Fv(y|s)]dy

+ [0− γeV/(1− γe)[Fv(V/(1− γe)|s′)− Fv(V/(1− γe)|s)]−
∞∫

y=V/(1−γe)

γe[Fv(y|s′)− Fv(y|s)]dy

= −
V/(1−γe)∫
y=−∞

[Fv(y|s′)− Fv(y|s)]dy −
∞∫

y=V/(1−γe)

γe[Fv(y|s′)− Fv(y|s)]dy

≥ 0 + 0 = 0

where the last inequality is obtained since Fv(y|s′) < Fv(y|s) according to the HSGN assumption.
Therefore, there is a single threshold for acceptance without querying the expert. Once this is established,
Equations 28, 30, 32 are obtained by replacing the set of intervals S with the threshold t. Equation 31
represents the fact that the system is symmetric in the way that ultimately all agents choose the same
tuple (t, V ), and so the probability of being accepted is equal to the probability of accepting the match.
Finally, the correctness of Equation 29 is proved by taking the derivative of Equation 28 w.r.t. t, equating
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to zero, obtaining t which maximize the expected benefit:

dV

dt
=
B dC

dt
AB − (−cs +BC)dA

dt
B

(AB)2

=
B dC

dt
AB − (V AB)dA

dt
B

(AB)2

=
dC
dt
− V dA

dt

A

however,

dA

dt
= −fs(t)Fv(V/(1− γe)|t)−

∞∫
s=t

fs(s)fv(V/(1− γe)|s)ds
dV

dt

dC

dt
= −fs(t)E(v|t) + fs(t)

∞∫
y=V/(1−γe)

(1− γe)yfv(y|t)dy

+

∞∫
s=t

fs(s)(−1)(1− γe)
V

(1− γe)
fv(V/(1− γe)|s)ds

dV

dt

= −fs(t)E(v|t) + fs(t)

∞∫
y=V/(1−γe)

(1− γe)yfv(y|t)dy −
∞∫

s=t

fs(s)V fv(V/(1− γe)|s)ds
dV

dt
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and so:

dV

dt
=

dC
dt
− V dA

dt

A

=

−fs(t)E(v|t) + fs(t)
∞∫

y=V/(1−γe)
(1− γe)yfv(y|t)dy + fs(t)V Fv(V/(1− γe)|t)

A

=

fs(t)

(
− E(v|t) +

∞∫
y=V/(1−γe)

(1− γe)yfv(y|t)dy + V Fv(V/(1− γe)|t)
)

A

=

fs(t)

(
−

∞∫
y=−∞

yfv(y|t)dy +
∞∫

y=V/(1−γe)
(1− γe)yfv(y|t)dy + V

V/(1−γe)∫
y=−∞

fv(y|t)dy
)

A

=

fs(t)

(
−
V/(1−γe)∫
y=−∞

yfv(y|t)dy −
∞∫

y=V/(1−γe)
yfv(y|t)dy +

∞∫
y=V/(1−γe)

(1− γe)yfv(y|t)dy + V
V/(1−γe)∫
y=−∞

fv(y|t)dy
)

A

=

fs(t)

( V/(1−γe)∫
y=−∞

(V − y)fv(y|t)dy − γe
∞∫

y=V/(1−γe)
yfv(y|t)dy

)
A

Substituting dV
dt

= 0 and assuming that fs(t) 6= 0, we obtain Equation 29
To verify maximum we compute the second derivative

A
dV

dt
= fs(t)

( V/(1−γe)∫
y=−∞

(V − y)fv(y|t)dy − γe

∞∫
y=V/(1−γe)

yfv(y|t)dy
)

A
d2V

dt2
+
dA

dt

dV

dt
=
dfs(t)

dt

( V/(1−γe)∫
y=−∞

(V − y)fv(y|t)dy − γe

∞∫
y=V/(1−γe)

yfv(y|t)dy
)

+ fs(t)

d

( V/(1−γe)∫
y=−∞

(V − y)fv(y|t)dy − γe
∞∫

y=V/(1−γe)
yfv(y|t)dy

)
dt
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Substituting dV
dt

= 0, hence
V/(1−γe)∫
y=−∞

(V − y)fv(y|t)dy = γe
∞∫

y=V/(1−γe)
yfv(y|t)dy, we obtain

d2V

dt2
=
fs(t)

d

(
V/(1−γe)∫
y=−∞

(V−y)fv(y|t)dy−γe
∞∫

y=V/(1−γe)
yfv(y|t)dy

)
dt

A

But since A, fs(t) > 0, it is enough to show that
( V/(1−γe)∫

y=−∞
(V − y)fv(y|t)dy− γe

∞∫
y=V/(1−γe)

yfv(y|t)dy
)

decreases as t increases. As part of the proof that the optimal strategy is based on reservation value, it
was shown that:

V/(1−γe)∫
y=−∞

(y − V )fv(y|t)dy + γe

∞∫
y=V/(1−γe)

yfv(y|t)dy

increases as t increases.

Hence
V/(1−γe)∫
y=−∞

(V − y)fv(y|t)dy − γe
∞∫

y=V/(1−γe)
yfv(y|t)dy decreases as t increases. �
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B Nomenclature

Notation Meaning
s The drawn signal.
v The real value of the match.
fv(y), Fv(y) The probability density function and cumulative distribution function from which the real

values of the match are drawn.
fs(s), Fs(s) The probability density function and cumulative distribution function from which the sig-

nals are drawn.
fs(s|v), Fs(s|v) The probability density function and cumulative distribution function from which the sig-

nals are drawn, given that the true value of the match is v.
fv(y|s), Fv(y|s) The probability density function and cumulative distribution function from which the real

values of the matches are drawn, given that the drawn signal is s.
E[v|s] The expected value of the match, given that the drawn signal is s.
cs The search cost. i.e., the cost of drawing another signal.
ce The cost of querying the expert.
γe The commission (in percentages) paid to the expert.
V The expected utility of an agent, using the optimal strategy. By Bellman optimality princi-

ple, this value is also the threshold for the real value revealed by the expert.
tl The lower threshold. Drawing a signal which is less than tl, the agent rejects the match

without querying the expert.
tu The upper threshold. Drawing a signal which is greater than tu, the agent accepts the match

without querying the expert.
V (S, S∗) The expected utility of an agent in a noisy two-sided search with no expert present, where

the agent accepts the match if and only if the signal she sees is in S, and the other agents
accept the match if and only if the signal they see is in S∗.

V (S′, S′′) The expected utility of an agent in a noisy two sided search with an expert present, where
the agent accepts the match if the signal she sees, denoted s, is in S′, rejects it if s ∈
S′′, queries the expert if s /∈ S′ ∪ S′′, and whenever the expert is queried, the agent
accepts if and only if the revealed value is greater or equal to V (S, S′′). This is defined
for S′ ∩ S′′ = ∅.

de The cost to the expert of producing the exact value of a match.
ηce The expected number of expert queries a searcher performs, whenever the expert charges a

fixed price ce.
ηγe The expected number of expert queries a searcher performs, whenever the expert charges a

fixed commission percentage γe.
πe The expected utility of the expert.
W The expected social welfare, defined as πe + V .
k The size of the match formed (k = 1 implies a one-sided search, k = 2 implies a two-

sided-search. etc.).
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