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Abstract

This paper investigates agent-search for the agent with the best value in a
multi-agent system, according to some value assignment. In the type of set-
ting considered, agent values are independent of one another. Under this
condition, classic state-space search methods are not very suitable solutions
since they must probe the values of all agents in order to determine who
the best-valued agent is. The method considered in this paper refines the
number of agents that need to be probed by iteratively publishing thresh-
olds on acceptable agent values. This kind of agent-search is applicable to
various domains, including auctions, first responders, and sensor networks.
In the model considered, there is a fixed cost for publishing the thresholds
and a variable cost for obtaining agent values that increases with the num-
ber of values obtained. By transforming the threshold-based sequence to a
probability-based one, the sequence with minimum expected cost is proven
to consist of either a single search round or an infinite sequence of increas-
ing thresholds. This leads to a simplified characterization of the optimal
thresholds sequence from which the sequence can be derived. The analysis is
extended to the case of search for multiple agents. One important implication
of this method is that it improves the performance of legacy economic-search
methods that are commonly used in “search theory”. Within this context,
we show how a threshold based search can be used to augment existing
economic search techniques or as an economic search technique itself. The
effectiveness of the methods for both best-value search and economic-search
is demonstrated numerically using a synthetic environment.
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1. Introduction

In many multi-agent systems (MAS), it is often necessary to find the
agent associated with the best value (lowest or highest, depending on the
application) amongst a set of agents, each associated with some value to the
searcher. If there are no predefined relationships between the agents’ values,
state-based search methods like BFS, IDDFA, and A* must probe all agents
for their values in order to determine which agent is associated with the best
value. The number of agents that need to be probed can be reduced only by
using some mechanism that distinguishes the set of agents that comply with
some condition. One such mechanism is the publication of a request to all
agents to communicate their values to the searcher if they comply with some
threshold (i.e., whose values are below/above it). An intuitive search method
based on this mechanism, denoted increasing threshold search, publishes a
higher (or lower) threshold each time a request fails to yield any replies. A
search strategy in this case defines the sequence of thresholds to use until the
best-valued agent is found.

We illustrate the above by considering a government agency searching
for the cheapest contractor to provide a service. The agency can issue a
call for bids to all potential contractors, who then prepare and submit their
bids to the agency, after which it selects the lowest bid amongst all those
it received. While this protocol guarantees finding the lowest bidder, it is
not necessarily the most cost-efficient one. For example, consider the case in
which there is a cost to the contractors for preparing and submitting their
bids and to the agency for processing them. Since the agency only needs to
learn the value of the lowest bid and the corresponding bidder, the costs of
preparing, submitting, and processing all bids are extraneous. However, it is
still necessary to include all potential bidders in the search process in order
to guarantee finding the lowest bidder.

If the agency is interested in minimizing the expected overall costs to all
parties involved, from the social-welfare perspective, or merely in minimizing
its own costs, it can apply increasing threshold search instead. The agency
publishes a threshold on allowable bids (e.g., a reservation price), request-
ing that contractors submit their bids only if they are below this threshold.
Assuming the contractors can and do estimate what the value of their bids
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will be once they prepare them, only those whose estimates are below the
threshold actually prepare and submit their bids. If the agency does not
receive any bids, then it publishes a higher threshold with a similar request.
It repeats this process until it obtains a non-empty set of bids, which neces-
sarily includes the lowest bid, and selects the lowest bid from that set. This
potentially reduces the number of bids made and the associated costs while
ensuring that all bidders are included in the search process. However, if there
is a cost to the agency for publishing a call for bids, then additional costs are
incurred each time a threshold is published. Despite these additional costs,
the right sequence of thresholds can result in lower costs than the original
protocol, thereby minimizing search costs to the agency and improving social
welfare.

Many multi-agent systems can benefit from increasing threshold search.
It is applicable in environments in which: (a) each agent is associated with a
single value, which it knows, and which may be an intrinsic value associated
with the agent or a mapping from a combination of values associated with
the agent; and (b) the searcher can publish a request to all other agents. For
example, a volunteer ambulance corps dispatcher needs to find the closest
volunteer to an emergency. She must page the volunteers and request that
they call back to learn their locations. Instead of requesting that all volun-
teers call back, she can request that only volunteers within a certain distance
of the emergency call back, and repeat the request with greater distances
until at least one volunteer calls. Similarly, in sensor networks, only extreme
values may be of interest [38, 39]. Requesting that all sensors send their
data significantly depletes the sensors’ power supply. Rather, the user can
request only readings above a certain threshold and iteratively decrease the
threshold until at least one reply is received.

This paper thoroughly analyzes the problem of deriving the optimal
threshold-based search sequence in settings similar to those above. It is
assumed that all agent values are associated with a common distribution,
which is known to the searching agent and remains constant over time [1, 2,
7, 29, 30, 31]. Learning the actual value of an agent incurs some cost to the
searcher, the searched agent, or both (e.g., consuming some of the agents’s
resources for communicating with each other, querying for relevant informa-
tion, and processing the information received). Such costs are commonly
incurred in multi-agent systems in the absence of a central source that can
supply full, immediate, and reliable information on the environment and the
state of the other agents that can be found [2, 12, 23]. Additionally, there
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are possible publishing costs, which remain constant throughout the search
process.

Although the problem of optimizing search sequences has been extensively
analyzed in other contexts [3, 7, 8, 10], the results are not applicable to the
problem analyzed here, as discussed in Section 4. One important result in this
paper is that the thresholds in the optimal search sequence are characterized
by a common probabilistic property. This is the because of the way in which
the costs of potentially terminating a search are balanced with the expected
costs of continuing the search. This result is important because it enables
the extraction of a distribution-independent solution. This way, one generic
solution can be used to extract the optimal strategy for a large set of problems
that only differ in the distribution with which the agent values are associated.
In addition, distribution-independent observations of the properties of the
optimal sequence can be made, such as expected costs and expected number
of rounds. In particular, it is proven that the optimal sequence of thresholds
contains a single or an infinite number of thresholds. This is significant,
since these types of properties are often analyzed for only a few cases in
other problems.

In the next two sections, we formally introduce and analyze the optimal
increasing threshold search for the class of environments described above. In
Section 4, we illustrate the properties of the optimal strategy with different
values of the problem parameters. The benefits of using the optimal strategy
are illustrated by comparing it to adaptations of three well studied expanding
ring strategies [3, 9, 19] to the problem considered in this paper. In Section
5, we extend the analysis to the case where a group of the best-valued agents
needs to be found. This, too, has many real-life applications; for example,
extending the applications discussed above, a government agency may need
to choose a few of the least costly contractors for a project (if it is too big
for any single contractor), or an emergency event may require the arrival of
several volunteers to a specific location. We show that a similar method of
analysis can be applied to this case.

In Section 6, we show how increasing threshold search is useful for more
than just finding the best-valued agent. It is also applicable to economic
search [2, 27, 30], in which the searcher is not necessarily constrained to find-
ing the best-valued agent, but rather attempts to optimize a function that in-
tegrates both search costs and the value of the agent ultimately found. Search
theory is an important research domain, flourishing in many disciplines, and
best known perhaps for its applications to labor markets, marriage markets,
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monetary economics, and information theory [26, 33, 44]. By finding the
lowest valued agent with a minimal search cost, increasing threshold search
potentially achieves this goal, and in many settings can lead to a better over-
all performance than traditional economic search methods from the economic
search point of view. We also show how economic search strategies can be
combined with threshold-based searches to further reduce overall costs. We
conclude the paper with a review of the relevant literature in Section 7 and
a discussion of the results in Section 8. Throughout the paper, we illustrate
the properties of the various search techniques using data from a synthetic
environment.

2. Model Formulation

This section formally defines the environment in which an increasing
threshold search is conducted, the process of conducting an increasing thresh-
old search, and the parameters that define its cost. A summary of the com-
plete set of notations presented in this and all other sections can be found in
the appendix.

We consider an agent searching in an environment where N other agents,
applicable to its search, can be found. Each of the N agents is characterized
by its value to the searcher. Each agent knows its value from the beginning
of the search and does not need to consume resources in order to calculate it.
As in most search-related models, the values are assumed to be associated
with a common continuous distribution described by a PDF f(x) and a
CDF F (x), defined over the interval [xmin, xmax] [1, 2, 7, 11, 29, 30, 31, 40].
The searcher agent is assumed to be ignorant of the value associated with
each of the N agents, but acquainted with the overall distribution of values.
The searcher is interested in finding the agent associated with the best value,
which, depending on the application, is either the minimum or the maximum
value. Without loss of generality, we assume that the best-valued agent is
the one associated with the minimum value.

In order for the searcher to refine the population of agents whose values
it obtains, it can publish a maximum threshold r on the agents’ values, de-
noted a reservation value, requesting to communicate only with agents that
comply with that threshold. If at least one agent complies with r and com-
municates its value to the searcher, the search process terminates. Otherwise,
the searcher sets a new reservation value r′ > r and repeats the process. This
continues until at least one agent replies, after which the agent associated
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Application Reservation values Fixed cost (α) Variable cost (β(j))
Contract
bidding

Bidding scale values Cost of issuing a
call for bids

Resources to prepare, place,
and evaluate each bid

Emergency
response

Distance from event Disruption to vol-
unteers and wait
time for responses

Time to answer each call

Sensor
network

dB scale values Energy to broad-
cast the request

Energy to transmit and pro-
cess all responses

Table 1: Mapping of sample applications to the increasing threshold search model

with the minimum value is chosen. No constraints are placed on the number
of rounds. Accordingly, a strategy S is either a finite sequence [r1, . . . , rM ]
(xmin < ri < ri+1 < rM = xmax,∀i < M) or an infinite sequence [r1, r2, . . .]
(xmin < ri < ri+1 < xmax, ∀i), where ri denotes the reservation value to be
used in the ith search round. Note that rM = rmax in all finite sequences
in order to guarantee search completeness, since it necessarily results in the
retrieval of all agent values.

The process of initiating a search round and publishing the next reserva-
tion value is associated with a cost α whose value is fixed (e.g., the cost of
issuing a new call for bids or the cost of broadcasting a message). Note that
this cost may actually be a function of N , but since N remains constant dur-
ing the search, we can also consider this cost to be constant. Obtaining the
actual value of an agent also incurs some cost. In its most general form, the
cost of simultaneously obtaining the values of j other agents is β(j) (where
β(0) = 0 and β(j) is strictly increasing in j) [4, 15, 32]. The overall cost of
a search round i is thus α+ β(j), where j is the number of agents that com-
ply with ri. The expected accumulated cost of finding the best-valued agent
when using strategy S is denoted V (S). The searcher’s goal is therefore to
derive a strategy S∗ that minimizes V (S).

Table 1 maps the problems described in the introduction to the general
model introduced in this section.

3. Analysis

In this section, we formulate the expected cost of using a finite search
sequence; show how to derive the optimal sequence when the thresholds can
only be selected from a finite set of values; prove that the optimal sequence
is an infinite sequence of values with a common probabilistic property when
the thresholds can be selected from a continuous range of values; show how
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to derive such an infinite sequence; and prove some basic properties about
the optimal solution.

Consider a searcher agent using a strategy S = [r1, . . . , rM = xmax].
If the agent has to start the ith search round, then there is necessarily no
agent whose value is below ri−1. The a priori probability of such a scenario is
(1−F (ri−1))

N . Furthermore, upon reaching the ith round, the searcher agent
can update its beliefs concerning the PDF and CDF of the values of the N
agents, as it knows that these are necessarily in the interval (ri−1,xmax]. The
PDF of the agents’ values after publishing ri−1, denoted f(x|ri−1) (0 < i ≤
M), can thus be calculated as (xmin ≤ x ≤ xmax):

f(x|ri−1) =


f(x) i = 1

f(x)
1−F (ri−1)

i > 1 ∧ x > ri−1

0 i > 1 ∧ x ≤ ri−1

(1)

Similarly, the CDF of any of the agents’ values after publishing ri−1, denoted
F (x|ri−1) (0 < i ≤M), can be calculated as (xmin ≤ x ≤ xmax):

F (x|ri−1) =


F (x) i = 1
F (x)−F (ri−1)
1−F (ri−1)

i > 1 ∧ x > ri−1

0 i > 1 ∧ x ≤ ri−1

(2)

See Figure 1 for an example PDF and CDF. The expected cost of the ith
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round is thus:

α +
N∑
j=1

β(j)

(
N

j

)
F (ri|ri−1)j(1− F (ri|ri−1))N−j (3)

as it takes into account the cost of initiating the new search round and the
expected cost of obtaining any possible number of agent values j (0 < j ≤ N)
in round i. This latter cost is the sum, for all j, of the cost β(j) of obtaining
j agent values multiplied by all

(
N
j

)
combinations of j agents whose values

can be obtained, multiplied by the probability F (ri|ri−1)j(1−F (ri|ri−1))N−j
of obtaining exactly j agent values in round i if none were found in previous
rounds.

The probability of starting round i is (1− F (ri−1))
N , which is the prob-

ability that no agent values are below the previous reservation value ri−1.
The expected cost of using strategy S is thus the sum of the expected cost
of each of the M search rounds weighted by the probability of reaching that
round:

V (S) =
M∑
i=1

(
α+

N∑
j=1

β(j)

(
N

j

)
F (ri|ri−1)j(1− F (ri|ri−1))N−j

)
(1−F (ri−1))

N

(4)
The probability of starting the ith search round can alternatively be formu-
lated as the probability that no values were obtained in each of the i − 1
previous rounds, expressed as

∏i−1
j=1(1 − F (rj|rj−1))N . Therefore, (4) trans-

forms into:

V (S) =
M∑
i=1

(
α +

N∑
j=1

β(j)

(
N

j

)
F (ri|ri−1)j(1− F (ri|ri−1))N−j

)

·
i−1∏
j=1

(1− F (rj|rj−1))N
(5)

Note that the probability that the search terminates in round i can be
calculated as the probability that all agent values are greater than ri−1, (1−
F (ri−1))

N , minus the probability that all agent values are greater than ri,
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(1− F (ri))
N . Thus, the expected number of search rounds is

M∑
i=1

i((1− F (ri−1))
N − (1− F (ri))

N)

=
M∑
i=1

(1− F (ri−1))
N −M(1− F (rM))N =

M∑
i=1

(1− F (ri−1))
N

(6)

in which F (r0) = 0 and, by definition, F (rM) = F (rmax) = 1. Accordingly,
(4) can be understood differently by factoring the term (1 − F (ri−1))

N into
the remainder of the expression, resulting in the equation

V (S) = α
M∑
i=1

(1− F (ri−1))
N

+
N∑
j=1

β(j)

(
N

j

) M∑
i=1

(F (ri)− F (ri−1))
j(1− F (ri))

N−j

(7)

Here, the first term is the expected contribution of the fixed cost of publishing
the threshold to the total search cost, which is α times the expected number
of rounds. The second term is the expected cost of obtaining the values of
all agents that comply with the last published reservation value. This is
calculated by summing the cost of obtaining j values, over 1 ≤ j ≤ N , times
the probability that j and only j agents comply with the reservation value
published in the last search round.

For the specific case in which the reservation values are chosen from a
finite set of L values {x1, . . . , xL}, xmin < xi < xi+1 < xL = xmax for all i,
the optimal strategy can be derived with the following dynamic programming
formulation in O(L2N) time:

C(L) = 0

C(l) = min
l+1≤i≤L

{
α +

N∑
j=1

β(j)

(
N

j

)
F (xi|xl)j(1− F (xi|xl))N−j

+C(i)(1− F (xi|xl))N
}

∀0 ≤ l < L (8)

Here, C(l) is the cost of continuing the search if a search using reservation
value xl failed to obtain any applicable agent values. C(l) is solved for
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using backwards induction, each time determining what would be the best
reservation value larger than xl to use if xl is part of the search sequence.
The optimal sequence and its expected cost is determined by C(0).

For the general case in which the interval [xmin, xmax] is continuous, the
optimal search strategy must be derived using a different methodology since,
as we prove in Theorem 1, the optimal search sequence is either a single
search round in which the values of all agents are obtained or an infinite
sequence of reservation values.

Theorem 1. The sequence of reservation values that minimizes the expected
cost of an iterative threshold search is either [r1 = xmax] or an infinite se-
quence [r1, r2, . . .], ri < ri+1 < xmax, ∀i ≥ 1.

Proof. Assume that the finite sequence S1 = [r1, . . . , rM ] is the sequence
that minimizes the expected cost. We will show that the assumption V (S1) <
V ([xmax]) leads to a contradiction, implying that the sequence that minimizes
the expected cost is either [xmax] or infinite in length. We use Si = [ri, . . . , rM ]
to denote the optimal strategy to be used from round i (1 < i ≤M) onwards
if no agent is found in round i − 1 and denote its expected cost from that
point on by V (ri−1)(Si). Using Si, we construct an alternative strategy S ′i =
[r′i, . . . , r

′
M ] to be applied from the first round, where F (r′j) = F (rj|ri−1) = P ′j ,

∀i ≤ j ≤ M and for some P ′j (Figure 2(a)). The expected cost of the new
strategy S ′i is denoted V (S ′i). Note that

F (r′j|r′j−1) =
F (rj|ri−1)− F (rj−1|ri−1)

1− F (rj−1|ri−1)
=

F (rj)−F (ri−1)

1−F (ri−1)
− F (rj−1)−F (ri−1)

1−F (ri−1)

1−F (rj−1)

1−F (ri−1)

=
F (rj)− F (rj−1)

1− F (rj−1)
= F (rj|rj−1) (9)

By substituting F (ri|ri−1) with F (r′i|r′i−1) in (5), we obtain V (S ′i) = V (ri−1)(Si).
Since S1 is the optimal strategy, V (S1) ≤ V (S ′i).

Now consider a new strategy S ′′i = [r′′1 , . . . , r
′′
M ] to be applied from round i

onwards when ri−1 was applied in round i−1, where F (r′′j |ri−1) = F (rj) = P ′′j ,
∀1 ≤ j ≤ M (Figure 2(b)). According to this, r′′j is the reservation value
to be used in round i + j − 1 when ri−1 was used in round i − 1. We
denote the expected cost of S ′′i from round i onwards V (ri−1)(S ′′i ). Note
that F (r′′j |r′′j−1) = F (rj|rj−1) = P ′′j , as above. According to (5), we obtain
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Figure 2: Alternative strategies when j = 2 in Theorem 1

V (ri−1)(S ′′i ) = V (S1). Since Si is the optimal strategy from round i on-
wards, V (ri−1)(Si) ≤ V (ri−1)(S ′′i ), resulting in V (S1) ≤ V (S ′i) = V (ri−1)(Si) ≤
V (ri−1)(S ′′i ) = V (S1), which can hold only if V (ri−1)(Si) = V (S1).

This logic applies to all search rounds 2 ≤ i ≤ M . In particular, this
implies that V (S1) = V (rM−1)(SM). However, we necessarily find all agents in
the last (M th) round, since rM = xmax; thus, V (SM) = α+β(N). Therefore,
we obtain V (S1) = α+β(N) = V ([xmax]), which contradicts the assumption
that S1 minimizes the expected cost, unless S1 = [xmax].

The argument that V (rj−1)(Sj) = V (S1) holds even for infinite sequences,
establishing the following corollary.

Corollary 1. When the sequence of reservation values that minimizes the
expected cost of an iterative threshold search is an infinite sequence, the cost
of continuing the search from any round onwards is a constant value.

By the same argument, it is clear that the reservation values can be set
such that F (ri|ri−1) = P , ∀i > 1 and some value P . The next theorem
establishes this is necessarily the case.

Theorem 2. When the optimal sequence of reservation values is the infinite
sequence [r1, r2, . . .], xmin < ri < xmax,∀i > 0, the values of ri are necessarily
set such that F (ri+1|ri) = F (r1) = P , for some 0 < P < 1 and ∀i > 0.

Proof. First note that we can formulate the expected cost from any round i
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onwards as follows:

V (Pi) = α +
N∑
j=1

β(j)

(
N

j

)
P j
i (1− Pi)N−j + (1− Pi)NV ∗

where V ∗ is the expected cost of continuing the search, which is constant
according to Corollary 1. We prove that only one value of Pi minimizes this
formula by showing that the first derivative with respect to Pi is monotoni-
cally increasing, and that this value is the same for all i.

Taking the first derivative, we have:

N∑
j=1

β(j)

(
N

j

)[
jP j−1

i (1− Pi)N−j − (N − j)P j
i (1− Pi)N−j−1

]
−N(1− Pi)N−1V ∗ =

N∑
j=1

β(j)

(
N

j

)
jP j−1

i (1− Pi)N−j

−
N∑
j=1

β(j)

(
N

j

)
(N − j)P j

i (1− Pi)N−j−1 −N(1− Pi)N−1V ∗

=
N∑
j=2

Nβ(j)
(N − 1)!

(j − 1)!(N − j)!
P j−1
i (1− Pi)N−j

−
N−1∑
j=1

Nβ(j)
(N − 1)!

j!(N − 1− j)!
P j
i (1− Pi)N−j−1 −N(1− Pi)N−1(V ∗ − β(1))

=
N−1∑
k=1

Nβ(k + 1)
(N − 1)!

k!(N − 1− k)!
P k
i (1− Pi)N−k−1

−
N−1∑
j=1

Nβ(j)
(N − 1)!

j!(N − 1− j)!
P j
i (1− Pi)N−j−1 −N(1− Pi)N−1(V ∗ − β(1))

=
N−1∑
j=1

N(β(j + 1)− β(j))

(
N − 1

j

)
P j
i (1− Pi)N−j−1 −N(1− Pi)N−1(V ∗ − β(1))

= N(1− Pi)N−1
[
N−1∑
j=1

N(β(j + 1)− β(j))

(
N − 1

j

)(
Pi

1− Pi

)j
− (V ∗ − β(1))

]
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The transition from the third line to the fourth line is made by setting
k = i − 1. The first term in the big square brackets of the last line is
a polynomial in s = Pi

1−Pi
of degree N − 1, with vanishing constant term

and other coefficients positive. Thus as Pi increases from 0 to 1, causing
s = Pi

1−Pi
to increase monotonically from 0 to ∞, this first term increases

monotonically from 0 to ∞. Thus for small Pi, the derivative is less than 0;
there is a unique value of Pi, P

∗
i , at which the derivative equals 0; and for

Pi > P ∗i , the derivative is greater than 0. Since all other terms are the same
for all values of i, P ∗i is also the same for all values of i.

With these two theorems, it is now possible to show how to derive the
optimal strategy. A unique result of the above analysis is that the optimal
increasing threshold search strategy can be expressed as a single value 0 <
P ≤ 1, denoted the reservation probability. Based on this observation, the
optimal search strategy can be derived by calculating P and then setting
each reservation value ri such that F (r1) = F (ri|ri−1) = P , ∀i > 1. First
we show how to derive the reservation probability P , and then we show how
to calculate each ri. Since the optimal sequence is infinite and the expected
cost from each round onwards is stationary, the expected cost of using P can
be expressed with the following equation:

V (P ) = α +
N∑
j=1

β(j)

(
N

j

)
P j(1− P )N−j + (1− P )NV (P ) (10)

Here, the first term is the fixed cost per round, the second term is the ex-
pected cost of obtaining any values, and the last term is the expected cost
of continuing the search if necessary. Consequently:

V (P ) =
α +

∑N
j=1 β(j)

(
N
j

)
P j(1− P )N−j

1− (1− P )N
(11)

The value P = P ∗ that minimizes V (P ) in (11) is the optimal reservation
probability. If P ∗ cannot be solved for directly, then it can be solved for by
numerical approximation. Based on (2), each ri corresponding to P ∗ can be

calculated by solving for ri in the equation P ∗ = F (ri)−F (ri−1)
1−F (ri−1)

, which yields

the equation
ri = F−1(P ∗(1− F (ri−1)) + F (ri−1)) (12)
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Just as in (7), (11) can be decomposed into two parts: α
1−(1−P )N

and∑N
j=1 β(j)(

N
j )P j(1−P )N−j

1−(1−P )N
, respectively representing the expected contribution of

the fixed cost to the total search cost and the expected cost of obtaining
the agent values. The expected number of search rounds is 1

1−(1−P )N
. The

probability of obtaining j agent values is
(N

j )P j(1−P )N−j

1−(1−P )N
, since this becomes a

Bernoulli sampling process with a success probability of 1− (1− P )N .
An important result of the above analysis is that P is distribution inde-

pendent. This means that the searcher only needs to solve for P once for
fixed values of N , α, and β(j). This also means that certain properties of
the optimal strategy, such as the expected cost and the expected number
of rounds, do not depend on the probability distribution. P is distribution
independent because of the infinite nature of the optimal sequence. P takes
the place of the cumulative conditional probability distribution in (5). It is
set to a value that balances the cost obtaining several agent values with the
expected cost of continuing a search. Since the optimal strategy is an infinite
sequence, the searcher is faced with the same problem each round and there-
fore attempts to make the same tradeoff each round. The infinite nature of
the optimal sequence is due to the existence of unlimited opportunities to
effect this tradeoff and not incur the full cost of obtaining all agent values.

We now analyze several properties of the optimal solution. Proposition 1
establishes when the optimal strategy is to set r1 = xmax; specifically, when
β(i) = 0.

Proposition 1. The optimal strategy is [xmax] if and only if β(i) = 0.

Proof. First we prove that [xmax] is the optimal strategy if β(i) = 0. Substi-
tuting 0 for β(j) in (11) obtains V (P ) = α

1−(1−P )N
. Setting P = 1 minimizes

this expression, which is equivalent to using xmax in the first search round.
Next we prove that it is necessarily the case that β(i) = 0 if the optimal

strategy is [xmax]. We show that there always exists a value P for which the
expected cost of using the infinite sequence is less than the expected cost of
using a single search when β(j) > 0. Formally, using (11), we need to show
the following inequality holds for some value of 0 < P < 1:

α +
∑N

j=1 β(j)
(
N
j

)
P j(1− P )N−j

1− (1− P )N
< α + β(N)
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We multiply both sides by 1− (1− P )N , yielding:

α(1− P )N < β(N)(1− (1− P )N)−
N∑
j=1

β(j)

(
N

j

)
P j(1− P )N−j

Notice that β(N) can be written as β(N)(1 − P + P )N = β(N)(1 − P )N +∑N
j=1 β(N)

(
N
j

)
P j(1− P )N−j. Therefore:

α(1− P )N <
N∑
j=1

β(N)

(
N

j

)
P j(1− P )N−j −

N∑
j=1

β(j)

(
N

j

)
P j(1− P )N−j

= N(β(N)− β(1))P (1− P )N−1 +
N∑
j=2

(β(N)− β(i))

(
N

j

)
P j(1− P )N−j

Notice that both terms on the right hand side are positive for any P . There-
fore, if we prove that there exists a value P for which α(1−P )N = N(β(N)−
β(1))P (1 − P )N−1 then the inequality holds. If α(1 − P )N = N(β(N) −
β(1))P (1− P )N−1, we have:

α(1− P ) = N(β(N)− β(1))P

α

N(β(N)− β(1))
=

P

1− P

The left hand side is positive and finite. P
1−P = 0 when P = 0 and approaches

infinity when P → 1. Therefore, there must exist such a P .

In contrast to Proposition 1, Proposition 2 states that the optimal strat-
egy when there is no cost for initiating a new search round (α = 0) is to
increment the reservation value by the smallest amount possible, such that
the expected number of values obtained is minimized.

Proposition 2. If α = 0, the optimal strategy is to use P → 0, i.e., to
increment the reservation value by ε→ 0 each round.

Proof. Notice that limP→0
β(j)(N

j )P j(1−P )N−j

1−(1−P )N
equals β(j) for j = 1 and 0 for

j > 1, according to L’Hôpital’s rule. Substituting α = 0 in (11), we ob-
tain limP→0V (P ) = β(1). Since β(i) is increasing, according to the model
assumption, the result obtained is the minimum expected cost possible.
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Finally, Proposition 3 highlights how the tradeoff between obtaining a
certain number of agents and continuing a search is affected by P in the case
where the cost of obtaining the values of j agents is linear in j.

Proposition 3. When β(j) is linear in j, the reservation probability that
minimizes V (P ), P = P ∗, satisfies c = (1− P ∗)N−1V (P ∗).

Proof. First, we simplify (11) by substituting β(j) with cj. The expression∑N
j=1 j

(
N
j

)
P j(1−P )N−j in the numerator of (11) is the mean of a binomially

distributed random variable, which equals NP . Therefore,

V (P ) =
α + cNP

1− (1− P )N
(13)

Differentiating (13) with respect to P and setting it to zero obtains:

cN(1− (1− P )N)−N(1− P )N−1(α + cNP )

(1− (1− P )N)2
= 0 (14)

Notice that V (P )(1−(1−P )N) = α+cNP according to (13). Substituting the
latter expression into (14), we observe that the value P ∗ which satisfies the
equation is given by cN(1−(1−P )N)−N(1−P )N−1V (P )(1−(1−P )N) = 0.
Solving for c gets c = (1− P )N−1V (P ).

The explanation of Proposition 3 requires understanding the tradeoff as-
sociated with any increase in P . By increasing P , the chance of finding each
of the agents increases. Each agent found due to the increased chance will
incur a cost c. The benefit is that if the agent found due to the increase
is the only agent found in that round, then the increase actually saves the
expected cost V (P ) associated with continuing the search. The probability
that the latter case holds is (1− P )N−1 (i.e., when all other agents are char-
acterized with a value above the reservation value set using (12)). Otherwise,
the search just ends. Since the incurred cost c is fixed and the expected ben-
efit (1 − P )N−1V (P ) decreases as P increases, the optimal P value satisfies
(1 − P )N−1V (P ) = c, i.e., when the additional benefit due to the potential
saving is offset by the cost incurred by finding that agent.

4. Comparative Illustration

In this section, we illustrate the behavior and performance of the optimal
increasing threshold search strategy derived in the previous section. We

16



show the effect of N , α, and β on the optimal strategy and its associated
cost. Additionally, we demonstrate the improvement achieved by the optimal
search strategy over several base strategies. The magnitude of improvement
in some instances illustrates the importance of choosing the right strategy,
while other instances demonstrate how these base strategies can sometimes
be close to optimal. Since this problem has not been well addressed in the
literature, we adapt three well-studied expanding ring search strategies to
our problem [3, 9, 19]. Expanding ring search is used to find routes in ad hoc
networking and to locate files in peer-to-peer networking. In this method,
the searcher assigns a query a time-to-live (TTL) value, which determines
the number of hops the query is forwarded. If the search target is not met,
the searcher repeats the query with a larger TTL value. The cost structure
of expanding ring search is different than the cost structure of the problem
addressed in this paper, since the cost per round increases with the search
extent, and the search extents are typically drawn from a range of discrete
values. Still, in the absence of more suitable alternatives, expanding ring-
based strategies are a natural basis for comparison to increasing threshold
search. In the following paragraphs, we describe the three strategies and
then compare their performance in our context.

4.1. Two-step strategy

If an increasing threshold search is to improve search costs, then a two-
step strategy S = [r1, r2 = xmax] alone will provide some improvement [9].
The expected total cost when using this strategy is:

V (S) = α +
N∑
j=1

β(j)

(
N

j

)
P j(1− P )N−j + (1− P )N(α + β(N)) (15)

in which P = F (r1). The first two terms are the costs associated with the use
of the first reservation value r1, and the third term is the cost of obtaining
all agent values if no values were obtained using r1. The optimal two-step
strategy is obtained by determining the value P that minimizes (15).

4.2. Fixed increment strategy

A common design of a multi-round expanding ring search strategy is to
use a fixed increment between search extents, searching up to some cutoff
value before searching the entire search range [19]. The search sequence is
thus of the form {xmin+δ, xmin+2δ, . . . , xmin+µδ, xmax}. The expected cost
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of using such a sequence can be calculated using (4). The increment and
cutoff value pair with the lowest expected cost is selected from all possible
pairs.

4.3. California split rule strategy

Another well-studied strategy is the California split rule [3]. According to
this strategy, the search extent is doubled each round. We adapt this method
to our problem by including a cutoff value above which the reservation value
is set to xmax, similar to the fixed increment strategy. The search sequence
is thus of the form {xmin + δ, xmin + 2δ, . . . , xmin + 2µδ, xmax}. The expected
cost of using such a sequence can be calculated using (4). The increment and
cutoff value pair with the lowest expected cost is selected from all possible
pairs.

4.4. Evaluation

Since the domination of the reservation probability based strategy over
the different expanding ring based strategies is unquestionable due to its
proven optimality, the goal of this evaluation is merely to demonstrate the
effect of different parameters on performance. For this purpose, a synthetic
environment is an ideal testbed. In the environment used, the agents values
are associated with a truncated normal distribution of values [18], with µ =

0.5 and σ = 0.125, over the interval (0, 1); that is, f(x) =
8φ(x−0.5

0.125
)

φ( 1−0.5
0.125

)−φ( −0.5
0.125

)

for 0 ≤ x ≤ 1, and 0 otherwise. The cost of simultaneously obtaining the
values of j other agents is set to β = 0.01w(j), where w(j) ∈ {log(j), j, (j)2}
(denoted “log cost”, “linear cost” and “square cost”, respectively). The use
of the three different cost functions enables testing different rates of increase
in the marginal cost of obtaining the value of an additional agent. The
cost of initiating a search round and publishing the reservation value is set
to α ∈ {0.001, 0.01, 0.1, 1} in order to capture the effects of the magnitude
of the ratio α/β(j). Table 2 summarizes these parameters, and Figure 3
illustrates the truncated normal distribution function f(x) and the set of
cost functions assigned to β(j).

Note again that the optimal reservation probability and the expected
cost of the optimal strategy are distribution independent; only the actual
reservation values used are determined by the probability function. We illus-
trate how the reservation values are derived using the settings N = 20,
α = 0.01, β(j) = 0.01i, and f(x) as defined above. Substituting 0.01
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Figure 3: Truncated normal distribution function, f(x), with µ = 0.5 and σ = 0.125 over
the interval (0,1) (left) and the three variants of the cost function β(j).

Table 2: Parameter settings in the synthetic environment

parameter value

f(x)
8φ(x−0.5

0.125
)

φ( 1−0.5
0.125

)−φ( −0.5
0.125

)

α 0.001, 0.01, 0.1, 1
β(j) 0.01w(j), w(j) ∈ {log(j), j, (j)2}

for c and 20 for N in (13) and using numerical approximation, we find
that the value of P that minimizes (13) is approximately 0.058. In this
case, r1 = F−1(0.058) ≈ 0.304. Substituting 0.058 for F (r1) in (12) yields
r2 = F−1(0.058(1 − 0.058)) + 0.058)) ≈ 0.348. Then substituting 0.112 for
F (r2) into (12) yields r3 = F−1(0.058(1 − 0.112)) + 0.112) ≈ 0.377. This
continues indefinitely.

Figure 4 shows the expected cost, the expected number of search rounds,
and the 99.9th percentile of the number of search rounds required to find the
best-valued agent as a function of the number of agents N , for the different
values of α and function assignments to β(j). Note that the scale of the y-
axis in the first set of charts varies with α in order to improve visualization.
The figure also shows the reservation values to be used in each search round
when N = 20. As expected, α has a substantial effect on the search strategy
and expected cost. The reservation value increases as a function of α, since
the tradeoff associated with each reservation value accounts for a greater cost
of continuing the search if no agent is found. Although the expected number
of search rounds decreases as a consequence, the expected cost still increases,
due to the greater cost per round. For large values of α and all β(j) cost
functions, the reservation probability is set such that the expected number
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Figure 4: Increasing threshold search for the settings in Table 2: expected cost (top row);
expected number of rounds (second row); 99.9th percentile of the number of rounds (third
row); reservation values for N = 20 (bottom row)

of search rounds is close to 1 due to the substantial cost of initiating a new
search round.

Amongst the three cost functions, the expected cost is minimal for the log
cost function and maximal for the square cost function, in direct correlation
with the order of growth of the three functions. The inverse relationship
holds for the reservation values because of the higher cost of finding more
than one agent associated with the higher order functions. As a result, the
expected cost increases due to the increase in the expected number of rounds.

Another important observation from Figure 4 is that the expected cost
increases with the number of agents N . Although the expected number
of rounds decreases with N for all reservation probabilities, the expected
number of agents found also increases. The increase in cost associated with
N indicates that, in these settings, the reduction in the number of search
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rounds does not offset the cost of finding additional agents.
From the graphs of the expected number of search rounds (second row),

we observe that the expected number of search rounds is below five for all
combinations of parameters. This supports the applicability of the optimal
strategy: Despite the fact that it is an infinite sequence, the search time in
practice is comparable to search with competitive finite sequences. The third
row complements this observation. Each curve shows the upper bound on the
number of search rounds required 99.9% of the time for each of these settings.
We see that even when the fixed cost per round is low (α = 0.001) and the
cost function is high β(j) = 0.001j2, this number is less than thirty-one.

Figure 5 shows the expected cost of using the (optimal) reservation prob-
ability based strategy and the three expanding ring based strategies as a
function of N , for different values of α and function assignments to β(j).
The graphs illustrate the domination of the optimal strategy and the domi-
nance relationships amongst the remaining strategies. The two step strategy
never dominates the fixed increment and California split rule strategies, since
it is merely a specific instance of both. Although the fixed increment strategy
dominates the California split rule strategy in these settings, it is possible to
construct specific settings in which the latter dominates the first. It is inter-
esting that while the expected cost of the optimal strategy always increases
with the number of agents, the expected costs of the fixed increment and
California split rule strategies decrease in some settings. This is because the
increased probability of finding an agent with each reservation value some-
times reduces the inefficiency imposed by the constraints on the patterns
of increase in the reservation value. Another interesting observation is that
the expected costs of the fixed increment and California split rule strategies
converge as α increases.

The upper row of graphs in Figure 5 corresponds to the logarithmic β(j)
function. All four strategies use higher reservation values as α increases,
as the cost of finding more than one agent in a search round becomes neg-
ligible in comparison to the cost of requiring an additional search round.
Consequently, the three alternative strategies quickly converge to the same
expected cost, as their sequences in those cases contain only two reservation
values. The optimally infinite strategy, however, produces observably better
results, even for α = 0.1. This property, that the California split and fixed
increment strategies converge more quickly to the performance of the worst
strategy (two step) with respect to α than the optimal solution, occurs for
the linear cost (middle row) and the square cost (bottom row) functions as
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Figure 5: Performance comparison of the optimal strategy and the three expanding ring
based strategies

well, for larger values of α. In particular, it is interesting to see that for
the square cost function, the fixed increment strategy, which performs quite
close to the optimal strategy for small α values, becomes substantially worse
as α increases. Overall, in these settings, the improvement of the optimal
strategy over the other three methods increases as the order of growth of
β(j) is increased. Since the optimal search sequence is not constrained to
any pattern, it makes a better tradeoff between the cost of finding more than
one agent and initiating additional search rounds.

5. Multiple Agent Search

In various settings, search for multiple agents is preferable and even nec-
essary. For example, a government agency seeking bids for a project may
prefer to run a second price auction in order to encourage truthful bidding.
In such an auction, the agency awards the lowest bidder with the second
lowest bid; thus, the agency must obtain the two lowest bids rather than
the lowest bid alone. Alternatively, the agency may request a best and final
offer from a set of the top bidders after an initial call for bids. In the case of
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emergency services, several units may be required to attend to an emergency
situation. Likewise, a sink in a sensor network may require readings from
several sensors to accurately analyze conditions in the field. In all of these ex-
amples, the searcher needs to find several best agents. This section extends
the analysis of the single agent threshold search to a multiple best-valued
agents search.

We apply the analysis methodology described in Section 3 to the model
described in Section 2, except that the searcher is interested in finding the
K best agents. Without loss of generality, the K best agents are those
associated with the K lowest values. The searcher continues its search as
long as only k < K agents have been found so far. The searcher’s state at
the beginning of any round is therefore denoted by the pair (r, k), in which r
is the last reservation value the searcher used and k is the number of agents
found so far. Accordingly, the initial state is (xmin, 0).

A search strategy is defined by a function S : (r, k)→ r′, r′ > r, in which
r′ is the reservation value to use in a round with initial state (r, k). Since the
reservation value r′ depends on the number of agents found so far, a search
strategy cannot be defined a priori by a sequence of reservation values as in
the case of a single agent search. Instead, it can be defined by a decision
tree, in which each node represents a state (r, k) and has child nodes for
all possible k ≤ k′ < K total number of agents found by the end of that
round. Since many states may be repeated throughout the tree, it can be
represented more compactly as a directed graph. The searcher terminates
its search when at least K − k agents are found in a round with state (r, k)
or when S(r, k) = xmax, in which case all K agents are necessarily found.
It is realistically assumed that agents only reply the first time they comply
with a reservation value. Therefore, the searcher only searches among the
remaining N − k agents that did not comply with any reservation value less
than or equal to r. It is assumed that the publishing cost is constant (α) for
all k, as opposed to assuming that the publishing cost is a function of k. The
ensuing analysis is still valid even if these last two assumptions are not made
by substituting N for N − k and α(k) for α. Given these assumptions, the
expected cost of continuing the search from state (r, k) when using strategy
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S, denoted V (r,k)(S), is defined recursively as follows:

V (r,k)(S) = α +
N−k∑
j=0

(
β(j) + V (S(r,k),k+j)(S)

)(N − k
j

)
· F (S(r, k)|r)j(1− F (S(r, k)|r))N−k−j

(16)

in which V (r,k)(S) = 0 for all k ≥ K. The total cost of the search is
V (xmin,0)(S).

We again divide the problem into the discrete and continuous cases. In
the discrete case, the reservation values can only be selected from a finite set
of L values {x1, . . . , xL}, xmin < xi < xi+1 < xL = xmax. The optimal strat-
egy can be derived with the following dynamic programming formulation, in
which C(l, k) is the cost of continuing the search after using reservation value
xl and after a total of k agents have been found so far. The optimal cost is
determined by C(0, 0). The runtime complexity is O(L2KN).

C(L, k) = 0 ∀0 ≤ k ≤ K

C(l,K) = 0 ∀0 ≤ l ≤ L

C(l, k) =min
l+1≤i≤L

{
α +

N−k∑
j=0

(β(j) + C(i, k + j))

(
N − k
j

)
·F (xi|xl)j(1− F (xi|xl))N−k−j

}
∀0 ≤ k, l < K,L

(17)

As the following analysis shows, the increasing threshold search strategy
that minimizes the expected search costs is based on a set of reservation
probabilities S = {P0, ..., PK−1}, where Pk is the reservation probability to
be used in any state (r, k), xmin ≤ r < xmax, 0 ≤ k < K. The reservation
value r′ in state (r, k) can be calculated from the equation r′ = F−1(Pk(1−
F (r))+F (r)). As in the single agent search, we prove that this is the optimal
strategy by first establishing that the optimal strategy to apply as long as
only k < K agents have been found is an infinite sequence of reservation
values.

Theorem 3. The increasing threshold search strategy that minimizes the
expected search costs is to use the reservation value r′ in any state (r, k) such
that F (r′|r) = Pk, for some 0 < Pk ≤ 1.
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Proof. We prove that the expected cost of continuing the search from any
state (r, k) onwards is some value Vk using backwards induction on k. By as-
suming that this is true for all k′ > k, we can prove that the optimal sequence
of reservation values to use as long as no new agent values are obtained is
the infinite sequence r1, r2, . . . such that F (r1|r) = F (ri+1|ri) = Pk, for some
0 < Pk ≤ 1. This result is in turn used to prove the inductive step, since the
expected cost is independent of the actual sequence of reservation values.

In the base cases, Vk′ = 0 ∀k′ ≥ K by definition, since the search is
terminated in such cases. Consider the finite sequence S1 = [r1, . . . , rM ],
ri > r ∀1 ≤ i ≤M . The expected cost of using S1 from state (r, k) onwards
is:

V (r,k)(S1) =
M∑
i=1

(
α +

N−k∑
j=1

(β(j) + Vk+j)

(
N − k
j

)

· F (ri|ri−1)j(1− F (ri|ri−1))N−k−j
)

i−1∏
j=1

(1− F (rj|rj−1))N−k (18)

where F (r1|r0) = F (r1|r).
Using the same reasoning as in Theorem 1, we can show that the assump-

tion that any finite sequence minimizes the expected cost leads to a contra-
diction, proving that the optimal sequence is the infinite sequence r1, r2, . . ..
Likewise, we can formulate the expected costs similar to the way we did
in Theorem 2 and prove that only one value of P (that is, Pk) minimizes
the expected search costs. Finally, just as we did in Equation (11), we can
formulate the expected cost of using this reservation probability as:

V (Pk) =
α +

∑N−k
j=1 (β(j) + Vk+j)

(
N−k
j

)
Pk

j(1− Pk)N−k−j

1− (1− Pk)N−k
(19)

This expression is independent of any reservation values used during the
search, thus completing the inductive step that shows that the expected cost
of continuing the search from any state (r, k) is some constant Vk.

The optimal values of Pk (0 ≤ k < K) can be calculated using backward
induction: Given the optimal Pj for all j > k, calculate Pk (0 ≤ k < K)
with (19). The actual reservation values are derived in a similar manner as
in the single agent search. The first reservation value r0 is calculated with
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Figure 6: The reservation value used by the optimal strategy (Pk) and alternative strategy
(P ) as a function of k, for different values of K and N = 20

r0 = F−1(P0). Then, the reservation value to be used in any state (r, k) is
calculated by substituting Pk for P ∗ in (12).

We illustrate the properties of the optimal search for multiple agents
under the settings in Table 2 and compare it to an alternative strategy based
on the single agent search. In the alternative strategy, the searcher searches
for one agent at a time, using the optimal P from (11) for N − k agents
when k agents have already been found. That is, the searcher begins by
searching for one agent using P from (11). Upon finding k ≥ 1 agents, the
searcher begins a new search for one agent using P from (11), modified to
reflect that only N − k agents are left to reply, and that all remaining agent
values are above the last reservation value used. This is continued until the
total number of values obtained is greater than or equal to K. Figure 6
shows the optimal values of Pk according to (19) and P according to (11)
as functions of the number of agents k already found for N = 20; different
numbers of agents K that need to be found; α = 0.1; and the different
β(j) cost functions. As can be observed from the figure, Pk decreases as k
increases for the log and linear cost functions and all values of K, at a greater
rate for the linear cost function. This can be attributed to two conflicting
effects of the increase in k on the search: On one hand, as the number
of available agents decreases, the expected number of agents found with any
reservation value decreases, possibly supporting an increase in the reservation
probability. On the other hand, the probability of finding more than K − k
agents with each reservation probability increases, supporting a decrease in
the reservation probability. Since the latter effect is more influential than
the first, the reservation probability decreases as a function of k.

The behavior of the square cost function differs from the other two. The
most obvious difference is that the reservation probability is initially small,
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increases as the number of agents found increases, then decreases. In particu-
lar, when all agents need to be found (K = 20), the reservation probability is
set to a value less than 1, even though no unnecessary agents will be found if
it is set to 1. This is because the cost function is concave; thus, there is a high
penalty of finding a large number of agents at once. A careful analysis of the
data reveals that the reservation probabilities in this case are indeed set such
that the expected number of agents found is almost the same each round.
However, as the number of remaining agents approaches 0, the reservation
probability decreases accordingly to avoid finding unnecessary agents.

As expected, the optimal reservation probability Pk for the multi agent
search is substantially greater than the optimal reservation probability for
a single agent search. In most cases, Pk increases as the total number of
agents K that need to be found increases. The square cost function is an
exception. As evident from Figure 6, the reservation probability for the case
(K = 18,k = 14) is greater than the one for the case (K = 20,k = 14).
This is attributed to the nature of the cost function, as discussed above. In
particular, the tradeoff between the expected number of rounds and agents
found differs for the case of (K = 20,k = 14), since in this case there is no
problem of finding more agents than necessary.

Figure 7 shows the percentage by which the optimal strategy reduces the
expected cost of the alternative strategy as a function of K, for different cost
functions and values of N . The cost reduction highly depends on the cost
function β(j) and can be quite substantial, up to 20% for the square cost
function and 80% for the log cost function. Furthermore, the improvement
increases as the total number of agents K that need to be found increases, as
the savings by finding several agents in one round increases. This improve-
ment is mild for the square cost function for the reasons discussed above.
It is noteworthy that N has only a minor effect on the cost reduction. An
increase in N results in a small decrease in the cost reduction, at a decreasing
rate.

6. Application to Economic Search

While the goal of increasing threshold search is to find the best-valued
agent, the goal of searchers in many applications may be to find a suitable
agent while optimizing the process as a whole [4, 20, 32]. For example,
consider a buyer agent that is interested in purchasing a product and that
obtaining posted prices from seller agents incurs a cost (e.g., communication
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Figure 7: Percentage by which the optimal strategy reduces the expected cost of the
alternative strategy as a function of K

costs). The buyer agent can purchase the product from any of the seller
agents. As the buyer increases the number of sellers with which it commu-
nicates, the price it expects to pay for the product decreases, but its overall
communication costs increase. Thus, the optimal search strategy is a trade-
off between the marginal saving of each additional price obtained and the
cost of obtaining it.

The research domain in which such problems are studied is called search
theory ([27, 30], and references therein). Within the framework of search
theory, two main clusters of search models can be found: (a) the sequential
search model and (b) the fixed sample size model. In the sequential search
model [27, 36], the searcher obtains a single agent value at a time, allowing
multiple search stages. An example of a sequential search is a buyer who
checks prices at different stores until the available options are satisfactory,
and then returns to the store with the best option. In the fixed sample size
model, the searcher obtains a large set of agent values in a single search
round [42], and then chooses the agent associated with the best value. This
is most applicable when some time constraint limits the searcher to a single
search round. For example, when applying to college, one must typically
apply to several institutions at the same time and then choose from the best
offer after all the applications have been reviewed.

While economic search strategies are inapplicable to our problem, as they
do not guarantee finding the best-valued agent, increasing threshold search
alone and the extensions to it analyzed in this section are useful contribu-
tions to economic search theory. This is because increasing threshold search,
whenever applicable, can result in an overall reduced cost, even in compari-
son to the optimal economic search strategy. In this section, we show how the
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searching agent can benefit from threshold based searches. We begin by in-
troducing the optimal sequential search and fixed sample strategies as known
from search theory. We then show how increasing threshold search can be
used as an alternative to sequential search, both on its own and in conjunc-
tion with sequential search. Finally, we show how the fixed sample search
can be augmented with a threshold-based search to improve performance.

6.1. Optimal economic search strategies

In the sequential search model [25, 27] a searcher is given N possible
opportunities B = {B1, ..., BN} (e.g., to buy a product) out of which she can
choose only one. Each opportunity Bi encapsulates a value to the searcher
(e.g., expense, reward, utility). While this value is unknown to the searcher,
she is acquainted with the probability distribution function f(x) with which
all the values are associated. The true value of any opportunity Bi can be
obtained by paying a fee, denoted c.

The searcher can continue to obtain the value of any of the opportunities
in B, paying each time the cost c. Once the searcher decides to terminate her
search (or once she has obtained the value of all opportunities), she collects
the minimum value among those revealed up until that time (assuming that
she seeks the minimum value). The goal of the searcher is therefore to find the
optimal strategy, i.e., a stopping rule that minimizes the expected expense,
defined as the value eventually obtained plus the accumulated costs incurred
throughout the process.

The optimal search strategy for this model is reservation-value based [30].
Note that the term “reservation value” has a slightly different meaning in this
context than in the context of increasing threshold search. The searcher sets
a reservation value r (i.e., a threshold) and sequentially obtains the value of
different opportunities, incurring a cost c, until revealing a value less than the
reservation value (or until the values of all opportunities are obtained). Since
all of the opportunities are associated with the same probability distribution
function f(x), the searcher can obtain the values in any order. This strategy
is preferred in particular when the cost of obtaining the value of j agents is
linear or super-linear in j, since the searcher does not benefit from obtaining
the value of more than one agent at a time. The optimal reservation value,
r, is based on the distribution of agent values and the cost of obtaining a
value, c [27, 30, 43]. It is the value by which the searcher is indifferent
between terminating the search and obtaining r, and resuming the search.
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The optimal reservation value in this case is derived from [30]:

c =

∫ xmax

xmin

(r −min(y, r))f(y) dy =

∫ r

xmin

F (y) dy (20)

Search theory focuses merely on the optimal stopping rule and does not
place much importance on the expected cost of using this rule. Therefore,
to compare increasing threshold search with sequential search, we ought to
explicitly develop the expected overall cost V of using the latter method.
When there are N agents, the expected overall cost of this process is:

V = E[X|X ≤ r]
N∑
i=1

F (r)(1− F (r))i−1 + EN [X|X > r](1− F (r))N

+ c
N∑
i=1

(1− F (r))i−1 = E[X|X ≤ r](1− (1− F (r))N)

+ EN [X|X > r](1− F (r))N + c · 1− (1− F (r))N

F (r)

(21)

where E[X|X ≤ r] is the expected value of an agent whose value is known to
be in the range [xmin, r], and EN [X|X > r] is the expected minimum value
in a sample of size N when the minimum value is in the range [r, xmax]. The
first two terms in (21) reflect the expected value of the opportunity returned
by the search and the third term is the expected cost of obtaining the values.
The first term is for when the search terminates with an agent with a value
less than r (with probability

∑N
i=1 F (r)(1−F (r))i−1), while the second term

is when all of the agent values are above r (with probability (1−F (r))N), in
which case the smallest value amongst all N agents is selected. E[X|X ≤ r]

can be calculated using f(x|x ≤ r) = f(x)
F (r)

and F (x|x ≤ r) = F (x)
F (r)

, such

that E[X|X ≤ r] =
∫ r
xmin

y f(y)
F (r)

dy = r − 1
F (r)

∫ r
xmin

F (y) dy. EN [X] can be

calculated using the PDF fN(x) and CDF FN(x) of the minimum of a N -size
sample. FN(x) is the probability that at least one agent in a sample of size N
has the value x or less, which can be expressed as FN(x) = 1− (1−F (x))N .
Thus, EN [X] can be calculated as follows, using integration by parts in the
second step:

EN [X] =

∫ xmax

xmin

yfN(y) dy = xmax −
∫ xmax

xmin

FN(y) dy

= xmin +

∫ xmax

xmin

(1− F (y))N dy

(22)
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EN [X|X > r] can be calculated by replacing F (x) with F (x|x > r) and xmin
with r in (22).

As opposed to the sequential search, in the fixed sample size model [42],
the searcher is limited to the selection of one sample of agents overall in a
single period of time. The searcher then selects the agent with the lowest
value from this sample. The expected cost of this strategy as a function of
the number of agents simultaneously sampled, 0 < K ≤ N , is given by:

V = EK [X] + β(K) (23)

The optimal sample size is the value of K that minimizes (23). For general
β(i), we need to check K = 1, . . . N for the value with the lowest expected
cost. If β(i) is linear in i (that is, β(i) = ci) then it is only necessary to solve
for K in the equation EK [X]− EK+1[X] = c and then choose bKc [42].

6.2. Increasing threshold-limiting sequential search

Increasing threshold search by itself may be a good alternative to eco-
nomic search. Since increasing threshold search is only applicable when
multiple search rounds are allowed, its most straightforward use is as an
alternative to sequential search [27, 36]. The expected cost of the increasing
threshold search under the economic search model is composed of the ex-
pected cost of search (from (11)) and the expected minimum value obtained
(from (22)):

V =
α +

∑N
j=1 β(j)

(
N
j

)
P j(1− P )N−j

1− (1− P )N
+ EN [X] (24)

The performance of increasing threshold search when used as an alter-
native to economic search can be improved by processing the agents found
using sequential search. According to this improvement, called “increasing
threshold-limiting sequential search” from here on, the searcher publishes
the thresholds as before until at least one agent responds. Then, instead of
processing all of the responses, the searcher processes the responses sequen-
tially as long as the revealed value so far is above some reservation value.
Since the responses are all associated with the same probability distribu-
tion function, they can be processed in any order, as explained above. In
some ways, the searcher is following the original sequential search method;
however, its sample space is more targeted, as it is limited by the last
threshold to which agents comply. The expected cost of applying a strategy
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S = [r1, . . . , rm = xmax] is thus similar to (4), except that β(j) is replaced
with the cost V (j, ri−1, ri) of conducting the optimal sequential economic
search on j items whose values are between the last two reservation values
used, ri−1 and ri. In this case, Theorem 1 and the resulting solution re-
lying on a fixed reservation probability may no longer be applicable, since
the transformation from S2 to S ′1 and like transformations may not be pos-
sible. The complexity of deriving the optimal solution is beyond the scope
of this paper. Instead, we show how to solve a discrete version of the prob-
lem, in which the reservation values are chosen from a finite set {x1, . . . , xL},
xmin < xi < xi+1 < xL = xmax, just as in Section 3. Replacing β(j) with
V (j, xi, xl) in (8) results in the following dynamic programming formulation:

C(L) = 0

C(l) = min
l+1≤i≤L

{
α +

N∑
j=1

V (j, xl, xi)

(
N

j

)
F (xi|xl)j(1− F (xi|xl))N−j

+C(xi)(1− F (xi|xl))N
}

(25)

For any pair of values xi and xl, r and V (j, xi, xl) can be calculated using

(20) and (21), respectively, replacing F (x) with F (x)−F (xi)
F (xl)−F (xi)

, xmin with xi, and
xmax with xl.

In Figure 8, we illustrate the properties and benefits of using increas-
ing threshold search and its improved form as an alternative to sequential
search. We use the synthetic environment described in Section 4 and Ta-
ble 2, except that agents values are associated with the uniform distribution
(f(x) = 1 for 0 ≤ x ≤ 1 and f(x) = 0 otherwise). Figure 8 shows the overall
cost of all three strategies (sequential, increasing threshold, and increasing
threshold-limiting sequential search) as a function of the number of agents
in the environment (horizontal axis), for different values of the ratio α/β(1),
different cost functions (linear, logarithmic, and square), and different values
of the coefficient c in β(i). As can be observed from the figure, increasing
threshold-limiting sequential search results in a lower overall cost than in-
creasing threshold search, and this improvement increases as a function of α.
While this characteristic always holds for linear and concave cost functions,
it may not hold when the cost is convex (e.g., logarithmic), since the ben-
efit of evaluating all agents found might outweigh the savings obtained by
evaluating only part of the set one by one. Overall, both forms of increasing
threshold search perform better than sequential search for low α and c val-
ues. In these cases, the improvement in value of the selected agent is greater
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Figure 8: Expected overall cost of economic and increasing threshold search

than the additional costs α incurred during the search. Whenever the ratio
between the fixed cost of each search iteration and the cost of evaluating
an agent (α/β(1)) is sufficiently low, increasing threshold search results in
a lower expected overall cost than sequential search. This is a result of the
low search costs due to the low α/β(1) ratio. As α increases, the advantages
of the threshold-based methods diminish because the sequential search does
not incur the cost α.

One interesting observation is that while the expected search cost of in-
creasing threshold search increases as a function of the available agents N
(see Figure 4), its overall cost (search cost and value obtained) decreases as
N increases. This is because the reduction in the expected minimum value
due to the additional agents outweighs the increased search costs. Likewise,
we observe that as N increases, the two increasing threshold-based searches
dominate sequential search for large α/β(1) ratios.

Finally, we note that the difference between the sequential search and
the increasing threshold-limiting sequential search does not depend on the
cost function β(j). This is because both methods process agent values se-
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quentially, incurring a cost β(1) for each agent sample. This property is
especially advantageous for these search methods if the cost function β(j) is
convex (e.g., square cost).

6.3. Combined fixed sample size and threshold search

The fixed sample size search [42] can also benefit from threshold based
searches. While the restriction to a single search round precludes the use
of an increasing threshold search to its full extent, the searcher can still im-
prove expected search costs by publishing a single reservation value r besides
sampling a fixed number of agent values, K. By publishing a reservation
value, the searcher reduces the expected minimum value found by sampling
alone, although with the additional expected cost of a one round threshold
search. Sampling is still necessary, since it is possible that no agents will
comply with the published reservation value. Because only one search round
is allowed, both the threshold-based sampling and fixed size sampling must
be conducted simultaneously. Returning to the example of contract bidding,
this is like a case in which the agency must make a decision in the length of
time it takes for contractors to prepare and submit their bids. The agency
can simultaneously post a call for all bids under some threshold while solicit-
ing bids from select contractors, and then choose the lowest of all bids. The
expected cost in this case is:

V = β(K) + α +
N−K∑
j=1

β(j)

(
N

j

)
F (r)j(1− F (r))N−K−j

+ EN [X|X ≤ r](1− (1− F (r))N) + EK [X|X > r](1− F (r))N

(26)

The first three terms in the above equation reflect the search costs, while
the last two terms reflect the expected value of the agent found. The first
term is the cost of sampling K elements; the next two terms are for the
expected cost of the performing a threshold search on the remaining N −K
elements; the fourth term is the expected value of the agent found if its value
is below the search threshold r, which will be found either by the sample or
the threshold search; and the fifth term is the expected value of the agent
if its value is above r, in which case it is necessarily one of the K agents
sampled. EN [X|X ≤ r] can be calculated using fN(x|x ≤ r) = fN (x)

FN (r)
as

follows:
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EN [X|X ≤ r] =

∫ r

y=xmin

y
fN(y)

FN(r)
dy =

xmin +
∫ r
y=xmin

(1− F (y))Ndy

1− (1− F (r))N
(27)
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Figure 9: Expected overall cost of the fixed sample size and combined fixed sample size
and threshold searches as a function of N

Figure 9 shows the overall cost of the optimal fixed sample size search and
combined fixed sample size and threshold search, using the same settings as
in the previous section, as a function of the number of agents in the environ-
ment (horizontal axis) for different values of the ratio α/β(1), different cost
functions (linear, logarithmic, and square), and different values of the coef-
ficient c in β(i). The combined search substantially improves performance
when the ratio α/β(1) or the value of c is small. In these cases, the improve-
ment from possibly finding a more targeted set of agents (that comply with
the threshold) is greater than the additional cost α incurred. As α increases,
the benefit of the combined search diminishes, and for large α values, there
is no benefit to the combined search. This is also true for large values of
c, since the expected number of samples obtained according to the optimal
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strategy is reduced, resulting in an increase in the expected value obtained.
Similar to increasing threshold-limiting sequential search, the accumulated
search cost of the combined search decreases as a function of N . In contrast,
the difference in cost between the combined search and the fixed sample size
search highly depends on the cost function used. The improvement is greater
for concave functions, such as the square cost function, because the combined
search uses a small fixed sample and sets the reservation value to minimize
the number of agents found.

7. Related Work

While relevant literature is extensively cited throughout the paper when-
ever applicable, we use this section to introduce some additional work that
may seem relevant to increasing threshold search and emphasize the differ-
ences between these works and ours.

Search by iterative expanding extents is used in many contexts; the dis-
tinguishing factor in determining optimal search sequences is the cost model.
Iterative deepening [24, 41] and iterative broadening [17] are used to find
goal states in artificial intelligence. Expanding ring search is used for route
discovery in mobile networks, data discovery in sensor networks, and file lo-
cation in peer-to-peer networks [3, 7, 8, 9, 10, 13, 19, 22, 28, 34, 45]. Iterative
deepening, iterative broadening, and expanding ring search share the same
cost model: The cost of each round includes the cost of revisiting all previ-
ously visited nodes as well as the cost of visiting new nodes. The cost model
differs in peer-to-peer networking, since queries are processed only once by
each node, but may be forwarded multiple times as the TTL value is in-
creased [45]. Blocking expanding ring search [35] has a similar cost model,
since nodes only forward messages once, waiting long enough to allow the
source to stop the search if the target was found.

The expected search costs were modeled for many of these techniques, but
optimal search sequences were primarily analyzed in the context of expanding
ring search. Chang and Liu [7] show how to solve the problem optimally
using dynamic programming for arbitrary cost and probability distribution
functions that are known a priori. They also prove that the optimal strategy
when the probability distribution of the minimum hop count to the target is
not known a priori is a randomized strategy, derive such a strategy, and prove
that it has a tight worst-case approximation factor of e [8]. Baryshnikov,
et al. [3], prove that the California split rule is the optimal deterministic
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strategy when the probability distribution is not known, which has a tight
worst-case approximation factor of 4. Cheng and Heinzelmann [10] design a
novel heuristic called ring splitting to optimize search sequences for multiple
targets. The peer-to-peer networking community has employed a technique
called dynamic querying in multi-target queries [22], in which the searcher
uses intermediate results to determine the next TTL value. The results of all
these studies are inapplicable to the problem addressed in this paper because,
as stated throughout, the cost models differ.

A remarkably long list of articles has been dedicated to variations of the
“secretary problem” [14], which is a classical optimal-stopping online prob-
lem. Yet, the latter does not involve search costs and the goal is to maximize
the probability of finding the best candidate rather than minimizing cost.

As discussed in Section 6 the problem of a searcher operating in a costly
environment, seeking to maximize its long-term utility, is widely addressed in
classical economic search theory ([27, 30, 36] and references therein). Many
variants of this model were considered, differing in the decision horizon (finite
versus infinite) [27], the presence of the recall option [30], and the distribution
of values. Some model variants assume findings are valid for a limited time,
and with some probability may become obsolete and irrelevant for the search
[25]. Over the years, several attempts were made to adopt search theory con-
cepts for agent-based environments associated with search costs [12, 21, 23].
A few studies attempted to extend the search problem beyond a single search
goal, e.g., attempting to purchase several commodities while facing imperfect
information concerning prices [5, 6, 16], and to physical domains where the
search cost derives from the agent’s location along the search [20]. Some even
considered multi-agent cooperative search for multiple goals [37]. Other work
considered the benefit of sequential search as an alternative or a complemen-
tary means to mechanism design [1, 29]. For example, McAfee and McMillan
[29] showed that a combination of reservation-price search and auction is,
with costly communication, the optimal procurement mechanism of a mo-
nopolist, when the potential sellers have different production costs. In this
case the monopolist sets a reservation value (reservation price) and sequen-
tially offers the firms at this reservation price. If the set of potential bidders
is exhausted without anyone accepting, then an auction is held. This idea
was extended to the case where there is discounting and several homogeneous
units are sought [1]. The main difference between economic search models
and the model presented in this paper is that economic-search strategies at-
tempt to find a suitable agent while optimizing the process as a whole, taking
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into consideration both the value of the agent found and the costs associated
along the search, and do not guarantee finding the best-valued agent; thus,
they are inapplicable to our problem. Instead, as demonstrated in Section 6,
increasing threshold search is useful to economic search theory. To the best
of our knowledge, no attempt has been made in search theory literature to
use increasing threshold search as an alternative to or as a complementary
mechanism to economic search strategies.

8. Discussion and Conclusion

As illustrated throughout the paper, increasing threshold search is highly
effective in settings in which the cost of finding the agent associated with
either the maximum or minimum value of any specific property needs to be
minimized. This problem often arises in MAS, mostly due to their distributed
nature. Despite its wide applicability, this method has not received adequate
attention in the literature. Most research of techniques utilizing expanding
search extents, as discussed in Sections 1, 4, and 7, has focused on models in
which the costs associated with the search are correlated with the extent of
search (rather than with the number of agents applicable to the extent used,
as in our case). Consequently, the strategies most studied in those domains
are very different from the optimal strategy to our problem, both in structure
and quality of the solution obtained.

The paper introduces a solution to the problem in both the discrete and
continuous domains. While the first uses a standard dynamic programming
method, the analysis of the latter domain is quite non-standard: By corre-
lating the reservation values to the respective probabilities in the proof of
Theorem 1, the essence of the optimal solution in the form of a single reser-
vation probability is revealed, enabling a solution to the problem. Further-
more, both the optimal reservation probability, from which the appropriate
thresholds can be calculated, and the corresponding expected cost of search
are distribution independent. This means that the solution to one problem
instance can be used to derive the optimal search sequence for any other
instance that only differs in its distribution of values by merely applying a
simple transformation. It also enables making distribution-independent ob-
servations given the remaining parameters, such as the expected cost of the
optimal strategy and expected number of rounds.

The same analysis methodology is replicated for the important and of-
ten necessary case of searching for multiple agents. Here, the single reser-
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vation probability property is preserved to the extent of any number of
agents already found, and all the remaining advantages of the method (e.g.,
distribution-independence) hold.

As evident in Section 6, increasing threshold search can also be useful
in economic search settings where the searcher is not constrained to finding
the best-valued agent. This result is interesting, since increasing threshold
search is by definition constrained by the need to find the best-valued agent.
In economic search settings, increasing threshold search can either be used
as an alternative to traditional economic search methods (e.g., sequential
search), possibly resulting in lower expected overall cost, or to directly aug-
ment those methods, making use of the threshold publication aspect as part
of or alongside the regular search routine. This has many implications in the
evolving research area known also as search theory [30]. The paper defines
and demonstrates the effectiveness of two such extensions to economic search,
though many more can be considered. The determination of which amongst
these search strategies will result in the lowest cost is setting dependent. Yet,
given the probability distribution function, the search cost function, and the
number of agents available, a searcher facing an economic search problem
can follow the analysis given in this paper to calculate the expected cost of
each method and choose accordingly.

Future work can consider more general assumptions regarding costs and
cooperation of the different players. This may require modification of the
analysis. In some cases, it may also impose external modeling challenges and
even require the integration of buyers’ strategic behavior. For example, the
values of the agents can change in time. This requires external modeling
of the way the distributions that characterize the agents values change over
time. We note that in such a case, one may find it more beneficial to use a
search technique that is based on increasing and decreasing thresholds. Such
a strategy may be useful in cases in which agent values may actually decrease
with time. Another example is the possibility that agents do not know their
true value and will not readily calculate their value. (The current model
assumes that agents know their values or are willing to calculate them–taxi
drivers will always know their locations, sensors will know their readings).
For example, if the threshold on a call for bids is very low, some contractors
may decide that it is not worth preparing a bid and hence will not know
their actual value. This requires modeling of the a priori value distribution
of different agents, based on which their decision is made. More important,
the strategic behavior of the agents, in terms of willingness to prepare a bid
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based on the threshold they receive, should be modeled and taken into con-
sideration. Another possible extension of this work includes the investigation
of competition and cooperation models for two or more searchers when op-
erating in settings where search is costly and one or more of them is capable
of using increasing threshold search.
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Appendix

symbol explanation
N number of agents in the system
f(x) PDF (probability density function) of agent values
F (x) CDF (cumulative distribution function) of agent values
[xmin, xmax] range of agent values
β(j) cost of obtaining j agent values
r published reservation (threshold) value
S = [r1, r2, . . .] search strategy
α fixed cost of publishing a reservation value
V (S) expected cost of using strategy S
S∗ optimal strategy
f(x|ri−1) PDF of agent values if all values are above ri−1
F (x|ri−1) CDF of agent values if all values are above ri−1
{x1, . . . , xL} discretized set of potential reservation values
C(i) expected cost of continuing a search after publishing reservation value xi
c cost of obtaining the value of one agent in the linear cost model
P reservation probability used in the optimal strategy
δ increment of reservation value in the fixed increment and California split rule

strategies
µ parameter defining the number of search rounds in the fixed increment and

California split rule strategies
K number of agents that the searcher is interested in finding in a multi agent

search; sample size in the fixed sample size economic search model
k number of agents found so far
(r, k) state at the beginning of a multi-agent search round
V (r,k)(S) expected cost of continuing a search from state (r, k) when using strategy S
Pi reservation probability to use when i agents have already been found
C(l, k) expected cost of continuing a multi-agent search after using reservation value

xl and a total of k agents have been found so far
{B1, ..., BN} possible opportunities in the sequential search model
E[X|X ≤ r] expected value of an agent whose value is known to be in the range [xmin, r]
EN [X|X > r] expected minimum value in a sample of size N when the minimum value is

in the range [r, xmax]
fN (x) PDF of the minimum of a N -size sample
FN (x) CDF of the minimum of a N -size sample
fN (x|x ≤ r) PDF of the minimum of a N -size sample when the minimum is less than r
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