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Abstract

This paper considers the problem of autonomous agents that need to pick one
of several options, all plausible however differ in their value, which is a priori
uncertain and can be revealed for a cost. The agents thus need to weigh the benefits
of revealing further values against the associated costs. The paper addresses the
problem in its multi-agent joint form, such that not a single but rather a group of
agents may benefit from the fruits of the search. The paper formally introduces
and analyzes the joint search problem, when carried out fully distributedly, and
determines the strategies to be used by the agents both when fully cooperative
and when self-interested. The analysis is used to demonstrate that elements that
can easily be proved to be beneficial with fully cooperative agents’ search (e.g.,
extension of the search horizon, increase in the number of cooperating agents)
can actually degrade individual and overall expected utility in the self-interested
case. The analysis contributes both to the advancement of joint search theories,
and offers important insights for system designers, enabling them to determine the
mechanisms that should be included in the markets and systems they design.

Keywords: Multi-Agent Economic Search, Cooperation, Self-Interested Agents

1. Introduction

Consider the problem of a CS graduate student named Jill, whose paper was
accepted to one of the top conferences in the field and now needs to search for
a way of travelling to the conference. While Jill knows there are many op-
tions to travel to the conference venue (e.g., different flights of diverse airlines

IPreliminary results of this work appeared in Proceedings of the 2012 IEEE/WIC/ACM Inter-
national Conference on Intelligent Agent Technology.
∗Corresponding author.

Preprint submitted to AIJ May 22, 2014



to nearby airports and different means of transportation from each airport) she
does not know a priori their feasibility of getting her to the conference on time,
and more importantly, the cost of each option. Checking an alternative poten-
tially involves several activities (e.g., checking locations on the map and checking
the companies’ web-sites for routes, timetables, fares and availability) thus incurs
some “opportunity cost”. Therefore Jill will not necessarily seek the cheapest al-
ternative that can be found, but rather at any time throughout the process she will
weigh the benefits of additional search against its costs. The optimal search strat-
egy dictates continued search only insofar as its expected utility is greater than its
associated cost.

The above setting is the archetypal setting of costly search [12, 70, 51, 30, 34,
13, 26] (which essence is “optimal stopping”). In general, the setting considers
a decision maker (a “searcher”) that needs to choose one of several available op-
portunities, any of which is associated with some value to her. The value of each
opportunity, e.g., the price, but more generally: expense, reward, utility, is a priori
unknown to the searcher however can be obtained for a cost, denoted “search cost”
(either monetary or in terms of resources that need to be consumed). The value
and search costs are assumed to be measured on the same scale and the searcher
can obtain the value of as many opportunities requested, incurring the search cost
of each of them. The goal of the searcher is to maximize her overall expected
utility, defined as the value of the opportunity eventually picked minus the accu-
mulated search costs. A strategy for this problem is a mapping from prior findings
to the next action - which can be either terminate the search, or continue by check-
ing another specific opportunity.1 The problem as formulated above applies to a
variety of real-world situations, including: job search, buying and selling goods,
house search, technology R&D, making decisions on a bank to deposit funds, a
vacation, where to drill an oil well, or a path to route packets, and many more
[47, 70, 41, 64].

At times, not a single but rather a group of agents may benefit from the fruits of
the search. In our example, Jill’s advisor can ask another student from her research
group, Jack, who will be attending the same conference, to join Jill in checking
different alternatives for travelling to its location, i.e., execute the search jointly.
Numerous other examples of joint search can be found in other domains. For ex-
ample, a drilling company may send multiple agents to explore possible drilling

1Notice that the concept of “search” in our context is different from state-space search that is
common in AI. The latter is an active process in which an agent finds a sequence of actions that
will bring it from the initial state to a goal state [22]. In our case all opportunities are plausible goal
states, however differ in their value to the searcher, and the goal function takes into consideration
both the opportunity value and the search costs.
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sites, and the best site of all those found by all agents will be chosen. Similarly
when looking to fill-in a position, HR managers can interview candidates in par-
allel and recruit the best candidate found. The benefits of the multi-agent joint
search is twofold. First, since each search result can benefit many agents, the rel-
ative cost of search is reduced, and the overall welfare increases. Secondly, the
search space can be divided according to the expertise of the different agents, if
such expertise exists.2

While multi-agent search has been considered in the past, it has been limited
to the case of a single agent (e.g., “a representative agent”) searching on behalf of
the group [25, 63, 11, 43, 10, 62]. More important, most previous work assumes
that the agents are fully cooperative, and that their shared goal is to maximize
the joint utility. While this may be the case in some situations, it is not so in a
growing number of others. Rather, agents are frequently self-interested, i.e., may
represent different entities, and attempt to maximize their individual utility rather
than the joint utility [58, 16, 42, 37]. A selfish agent will engage in search only if
it is individually beneficial. Moreover, if other agents search, it will prefer to take
advantage of their search, rather than do the work itself. For example, Jill may
find it more beneficial to spend her time working on her research or resting and
rely on Jack’s findings. The analysis of such settings calls for a strategic, incentive
driven approach, seeking stable, equilibrium solutions.

In this paper we supply a comprehensive analysis of a model of joint search,
both for the case of fully cooperative and self-interested agents. For the fully-
cooperative case the optimal strategy is proved to be based on the reservation-
value (threshold). For the self-interested-agents case we prove a specific structure
of the strategies used in equilibrium, wherein each agent first determines whether
it will engage in search at all, and if so it inevitably uses a reservation-value-based
search strategy. The analysis for this case considers Bayesian Nash equilibria,
introducing the sets of equations that need to be solved to extract agents’ strate-
gies and the conditions that need to be checked for validating the stability of these
solutions. The analysis for both settings is extended for the case where commu-
nication is enabled throughout the search process such that findings are shared
continuously rather than only at the end of the process.

The analysis facilitates demonstrating that methods and instruments (termed
“enhancers”) that are easily proved to be beneficial in the fully cooperative case,
can actually have a negative impact, both on individual and overall performance,
in the self-interested case. The explanation for the phenomena is that when the

2In case of buyers’ cooperation, the agents can also benefit from a volume discount through
their cooperation, however this property holds only for that specific domain.
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agents are self-interested they might prefer to limit their individual search efforts
while counting on potential findings of others. In this case, many potential solu-
tions, in the form of search strategies that are beneficial from the individual and
overall expected utility point of view, become unstable, and the resulting stable
solutions are such that the agents find it beneficial to search to a lesser extent.

One key aspect of joint search that the paper emphasizes is communication
between the agents along the search process. Communication is known to be a
critical enhancer of joint search with fully cooperative agents [56, 54] and of co-
ordination between agents in general [57]. Alas, as demonstrated in later sections,
the use of communication by the self-interested agents in joint search often re-
sults in substantial performance degradation (both individually and in total). This
stems from a somewhat unique characteristic of the value an individual finds in
communication in the model considered — a self-interested agent finds the com-
munication to be beneficial only when it receives a report of a favorable finding
from another agent. When the agent is the one to report, the report may lead to a
reduction in the extent of search carried out by all other agents, and consequently
to an expected loss for the agent.

The study of the effect of different joint search “enhancers”, and in particu-
lar communication throughout the process, which often turns out to be counter-
intuitive, provides market designers and platform owners with a better understand-
ing of the benefit and usefulness of enabling such search “enhancers” in their sys-
tems. In the context of the Jack and Jill example the implication for the student’s
advisor can potentially be that it is better to divide all students in the group who
need to attend the conference into sub-groups, each executing the joint search sep-
arately or ask them to execute the joint search with no communication between
them (e.g., have them work on computers located at different offices so they can-
not see each other’s findings).

In the following section we formally present the model of joint search. In
section 3 we detail the model analysis and provide the formal proof of the benefit
of the enhancers discussed above when the agents are fully cooperative. In section
4 we illustrate the equilibrium dynamics and resulting performance under different
settings, giving evidence to the potential reverse effect of the enhancers analyzed
in the paper. Related work is surveyed in Section 5. Finally, we conclude and
discuss directions for future research in Section 6.

2. The Model

We first formally present the model and then give the appropriate justifications
for the assumptions made.
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2.1. Model Assumptions
The model considers a set K = {A1, ..., Ak} of fully-rational agents, all in-

terested in individually achieving a similar goal.3 In order to achieve its goal, any
agent Ai needs to pick one of several opportunities available to it, which differ
in their value for the agent (where the value represents either an expense or util-
ity). The value of each opportunity is a priori unknown to the agent — only the
probability distribution function from which the values of the different opportuni-
ties are drawn, denoted fi(x), is known. The process of revealing the value of an
opportunity (denoted “exploring”) incurs a cost, denoted ci. The cost ci and the
distribution fi(x) are defined in the agent’s level to support settings where differ-
ent agents have different skills and capabilities. The agent thus needs to “search”,
i.e., explore the value of some of the opportunities and eventually pick one of the
values revealed (i.e., recall is permitted). It is assumed that costs and opportunity
values are additive and each agent is interested in maximizing its expected util-
ity, defined as the value from the opportunity eventually picked minus the costs
accumulated along the search process. The model assumes that the agents are
constrained by a common search horizon of n time periods and that in each period
each agent can explore at most one opportunity (while incurring the appropriate
cost).

The model assumes that each opportunity which value was obtained by an
agent is applicable to all the other agents. Furthermore, it is assumed there is no
limit on the number of agents that can benefit from a single opportunity, and that
the utility from an opportunity is the same for all agents that choose to use it,
regardless of their number or the search strategy they use.

Given the above model formulation, the agents have an incentive to cooperate
in the sense of exchanging information regarding their search findings. The in-
formation sharing process is assumed to be reliable and costless (or incurs a fixed
global cost).4 The agents are assumed to be truthful, when searching jointly, in the
sense that they always report the true values they obtain and never conceal find-
ings. Furthermore, it is assumed that the overall number of opportunities available
to the agents is greater than the maximum number of opportunities the agents can
potentially explore jointly, k · n, and that the agents can distinguish between the
different opportunities and ensure that none of the opportunities is explored by
more than one agent (i.e., no overlap). Finally, it is assumed that when engaging
in a joint search all agents are a priori acquainted with the probability distribution

3See Appendix B for a summary of all the notations used in this paper.
4The idea is to show that even when there is no cost for sharing the information throughout the

search process, the agents may find communication to be non-beneficial in some settings. Still, as
shown in the analysis section, adding to the model a (per-transmission) cost is straightforward.
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functions and search costs of all agents, i.e., the only possible difference in the
information available to the different agents throughout the joint search is their
own findings and the findings of others.

We distinguish between four model variants of joint search, differing only by
the nature of the agents (“fully cooperative” versus “self-interested”) and the way
communication is applied (no communication throughout search versus contin-
uous communication throughout search). In the self-interested case, each agent
attempts to maximize its individual expected utility as defined above. In the fully
cooperative case, the agents are interested in the sum of the individual expected
utilities, hence the optimal joint search strategy is the overall-expected-utility-
maximizing strategy. The way communication is applied reflects the way findings
are shared. With no communication throughout the search findings are shared
only when all individual searches are completed. In the case of continuous com-
munication, each finding of each agent is immediately (reliably) broadcast to all
other agents. Meaning that the agents must broadcast their finding upon exploring
an opportunity and it is not up to them to decide whether to do so or not. It is
assumed that when the agents communicate only at the end of the search they can
learn about whether or not others have engaged in search to some extent only at
the end of the process. For the case with continuous communication the agent
can realize at the end of each period which of the other agents engaged in search
during that period and their findings. Finally, we assume that findings are not
discounted over time, thus all agents will necessarily prefer waiting for the other
agents to terminate their search before accepting an opportunity.

The main question in the fully cooperative case is how to execute the groups’
joint search optimally, i.e., such that the overall expected utility is maximized. In
the self-interested case, the main question is which search strategies will be used
by the individual agents in equilibrium.

2.2. Assumptions’ Justification
The characterization of the individual agent’s search model given above is

standard and has been widely used in prior work [34, 30, 12, 49, 79, 59]. Tak-
ing the Jack and Jill example from the introduction, each agent represents a stu-
dent, interested in purchasing the same well-defined, however complex, service
(transportation to the conference venue). Opportunities represent alternative com-
binations of different segments, each possibly executed with a different means
of transportation, departing originally from the university and arriving eventually
to the specified destination. Opportunities differ in their overall cost (i.e., repre-
sent an expense). In order to find the applicability and the cost of an opportunity,
the student needs to spend time searching online, visiting different web-sites and
checking various related details, as described in the introduction. The search is
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thus costly in the sense of passing up the next best alternative use of that time
(termed “opportunity costs” in economics). The students are assumed to be ac-
quainted with the price distribution that characterizes opportunities [76, 78, 32],
primarily based on past experience or market characteristics.5 Each student, there-
fore, attempts to minimize her total expense, defined as the sum of the cost at
which the trip is eventually executed and the costs incurred along the process of
checking alternatives. The number of alternatives that can potentially be evaluated
in this case can be constrained either by the total number of alternatives that can
be found online or by a deadline set by the students’ advisor for finishing their
search (e.g., the trip needs to be approved by some office which closes at 5pm).
Similar mapping to the above costly search problem can be made for any of the
applications discussed in the previous section.

Continuing with the above example, cooperation between the students can be
either imposed by their advisor or initiated by the students themselves. Obvi-
ously each alternative can be applicable for all students (discarding opportunities
in which the number of available tickets remaining for a specific segment is less
than the number of students who need to travel). Communication in this case is
trivially implemented and necessarily reliable, e.g., the students could be sitting
in the same office showing one another their results, or they can search from com-
puters located in different offices and meet at the end of the day. The students will
unquestionably obey the rules of disclosing the information they find, reliably and
upon obtaining it, due to severe reputation loss if their advisor or colleagues would
find out that they had deviated from the rules.

The students can either be self-interested (e.g., where each pays for her trip
from her own allowance and considering her own opportunity cost) or fully coop-
erative (e.g., where the costs are paid from the same allowance, or by their advisor,
and they have a deadline for a paper they both co-author hence any time saving
for either of them will benefit both).

3. Analysis

We first introduce the optimal search strategy for a single agent, i.e., when
the agent benefits only from opportunities it explored by itself (Section 3.1). The
single agent’s strategy is then augmented to consider joint search for both the
fully cooperative and self-interested cases with no-communication throughout the
search (Sections 3.2 and 3.3, respectively). For the fully cooperative case, we
prove that some elements (enhancers) are always beneficial (social-wise). Finally,

5The existence of such a distribution is supported by empirical research in well-established
online and offline retail [6, 7, 9, 14].
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we extend the analysis for the case where communication between the agents is
continuous throughout the individual searches (Section 3.4).

For exposition purposes, the supporting illustrations and numerical examples
consider homogeneous agents (i.e., associated with the same search cost and their
opportunity values are drawn from the uniform distribution function over (0, 1)).
We emphasize that the use of this synthetic environment is only for illustrative pur-
poses, and the formal analysis supplies the theoretical proof for all claims made,
for any kind of environment.

3.1. A Single Agent’s Optimal Strategy
The individual search problem when findings are not shared whatsoever can

be mapped to the standard sequential economic search model found in literature
and the optimal search strategy in this case is reservation-value (threshold) based
[47, 26, 35, 79]. According to this strategy, each agent Ai calculates a reservation-
value ri, and resumes its search as long as the best value found so far is below ri.
The opportunities are evaluated sequentially in a random order, as they are all
a priori alike. The optimal ri value is extracted from:

ci =

∫ ∞
y=ri

(y − ri)fi(y)dy (1)

Intuitively, ri is the value where the agent is precisely indifferent: the expected
marginal utility from obtaining the value of the opportunity exactly equals the cost
of obtaining that additional value. It is notable that the decision rule is myopic,
i.e., the value of ri does not depend on the number of opportunities that can still
be potentially explored [79]. The proof for the stationarity of ri (based on [79],
however substantially shortened based on the fact the opportunities available to
the agent are associated with common probability distribution function and search
cost) is given in Appendix A.1. A further quite intuitive observation that can be
made based on Equation 1 is that the value of ri decreases as ci increases.

The expected utility of agent Ai, when using the reservation value ri, denoted
EBi, is given by:

EBi = −ci
1− Fi(ri)

n

1− Fi(ri)
+

∫ ∞
y=−∞

yf return
i (y)dy (2)

where the first term is the expected cost incurred throughout the search carried
out by Ai, calculated as: ci

∑n
j=1(Fi(ri))

j−1 = ci
1−Fi(ri)

n

1−Fi(ri)
, as the number of op-

portunities explored is a geometric random variable bounded by n, with a suc-
cess probability 1 − Fi(ri). The second term is the expected “best” (i.e., maxi-
mum) opportunity-value found by the agent along its search. The calculation of
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this latter value relies on the probability distribution function of the maximum
value obtained along agent Ai’s search, denoted f return

i (y). In order to formulate
f return
i (y), we make use of the probability that the maximum value obtained along

the search process of agent Ai, when using the reservation value ri, is less than x,
denoted F return

i (x), calculated according to:

F return
i (x) =

{
Fi(x)n x < ri
Fi(ri)

n + 1−Fi(ri)
n

1−Fi(ri)
(Fi(x)−Fi(ri)) x ≥ ri

(3)

When x < ri all n explored opportunities must result in a value below x. When
x ≥ ri there are two possible scenarios. The first is where all n explored op-
portunities result in a value below the reservation value ri, i.e., with probability
Fi(ri)

n. The second, is where the search terminates right after j periods, upon
revealing a value y such that ri < y < x (otherwise, if y < ri the search should
resume) and all the former j − 1 opportunities queried returned a value smaller
than ri (otherwise the jth opportunity is not reached). The probability of the latter
case occurring (summing over all values of j ≤ n) can be calculated using the
geometric series

∑n
j=1(Fi(x)− Fi(ri))Fi(ri)

j−1.
The probability function f return

i (x) is, by definition, the first derivative of
F return
i (x):

f return
i (x) =

d(F return
i (x))

dx
(4)

While the number of opportunities available to the agent, n, does not affect ri
as explained above, it does affect the agent’s expected utility in such a way that
an increase in the number of opportunities results in an increase in the expected
utility. This is due to the fact that with the increased number of opportunities it
is less likely to run into situations where it is optimal to resume search however
there are no additional opportunities available.

3.2. Joint Search with Fully Cooperative Agents
The optimal strategy for the fully cooperative case may dictate that some of

the agents should not engage in search at all. For example, consider the case of k
fully cooperative agents where each agent may explore only a single opportunity
(i.e., n = 1). In this case, the individual (stand-alone) optimal strategy is to
explore one opportunity if c < 0.5 (since values are drawn from the uniform
distribution). Each agent’s expected utility is thus 0.5− c and the overall expected
utility is k · (0.5 − c). In joint search, where k′ agents explore their opportunity
(1 ≤ k′ ≤ k), the search cost is k′ · c and the expected utility is the maximum of
a k′-size sample taken from a uniform distribution, which equals k′/(k′ + 1) (see
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[71]). The expected overall net utility is thus k · ( k′

k′+1
)−k′ · c which is maximized

for different k′ values, depending on the value of c. In this example, if initially
there are k = 5 agents then indeed for a cost of c = 0.1 it is optimal to have all
agents search, however for a cost of c = 0.3 it is optimal that only two agents
search.

Therefore, the analysis first develops the optimal strategy for the case where
subset K ′ = {A′1, ..., A′k′} ∈ K of agents engage in search, while the remaining
k − k′ agents do not search. In this manner the subset that maximizes the overall
expected utility can be chosen.

Theorem 1. Consider the case where a subset K ′ ⊆ K of the agents engage
in search, with no communication between the agents, and the remaining agents
(i.e., K − K ′) completely refrain from searching. The strategy of agent Ai ∈
K ′ that maximizes the group’s expected benefit, given the set of (not necessarily
reservation-value based) strategies used by all other searching agents K ′/Ai, is
to follow reservation value ri, which satisfies:

ci =k

∫ ∞
y=ri

fi(y)

∫ ∞
x=−∞

(
max(y, x)−max(ri, x)

)
f̄i(x)dxdy (5)

where f̄i(x) denotes the probability distribution function of the maximum value
obtained by all agents except agent Ai, throughout their search. Agent Ai should
always choose to obtain the value of an additional opportunity (if one is available)
if the highest value it obtained so far is below ri and otherwise terminate the
search.

Proof. See appendix A.2.

Equation 5 also has the intuitive interpretation as in the single agent’s stand-
alone search, in the form of indifference between the expected marginal utility
from obtaining the value of the opportunity (represented by the right-hand term
of the equation), this time, however, calculated for all group members (hence
multiplied by k) and taking into consideration the findings of others.

Theorem 1 proves that the group-expected-benefit-maximizing strategy for
any agent is reservation-value based, regardless of the search strategies used for
the other agents. Therefore, the optimal group’s search strategy is a set {rj|Aj ∈
K ′}. This enables formulating f̄i(x). The probability function f̄i(x) is the deriva-
tive of F̄i(x), the probability that the maximum value obtained by all the searching
agents except for Ai is smaller than or equal to x. The value of F̄i(x) is given by:

F̄i(x) =
∏

Aj∈K′∧j 6=i

F return
j (x) (6)
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where F return
j (x) is the probability that the maximum value obtained along the

search process of an agent Aj that uses a reservation value rj is lesser than x, as
given in (3). Therefore:

f̄i(x) =
d(F̄i(x))

dx
=

d
(∏

Aj∈K′∧j 6=i F
return
j (x)

)
dx

(7)

Given the subset of agents K ′ = {A′1, ..., A′k′} ∈ K that engage in search, the
optimal set of reservation values can be derived by solving the set of k′ equations
based on (5) and (7) for each Ai ∈ K ′.6 Based on the set of reservation values
obtained, the overall expected utility can be calculated. The computation is sepa-
rated into the expected value the agents attain and the expected accumulated cost
along the agents’ search. The probability distribution function of the best value
obtained throughout all agents’ search, denoted f̄(x), can be formulated using a
modification of (7):

f̄(x) =
d
(∏

Ai∈K′ F return
i (x)

)
dx

(8)

The expected value the agents end up with, denoted EV , is thus given by:

EV =

∫ ∞
x=−∞

xf̄(x)dx =

∫ ∞
x=−∞

(
x ·

d(
∏

Ai∈K′ F return
i (x))

dx

)
dx (9)

The expected accumulated cost of any agent Ai ∈ K ′ is given by ci
1−Fi(ri)

n

1−Fi(ri)
(see

(2)), thus the overall expected utility is:

EB = −
∑

Ai∈K′

ci
1− Fi(ri)

n

1− Fi(ri)
+ kEV (10)

The optimal strategy can thus be obtained by checking the overall expected
utility of each subset K ′ ⊆ K according to Theorem 1 and Equation 10 and
selecting the subset of reservation values associated with the highest value.7 The

6If the set of equations yields more than a single solution then the overall expected utility needs
to be calculated for each, as formulated below, and the solution associated with the maximum
overall expected utility should be selected.

7Notice that Equation 10 does not take into account the cost of sharing findings at the end
of the individual searches. In many settings this activity is indeed costless (e.g., when the two
searchers are physically sitting in the same room and searching online, each with her own laptop).
Still, the integration of such a cost requires merely adding a fixed component cshare(k) to (10),
where cshare(k) is the cost incurred for this matter. This, however, does not change the optimal
search strategy for any subset of agents K ′ as well as the way the optimal strategy for the group is
extracted.
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Figure 1: Individual expected utility of fully cooperative agents, for different number of searching
agents, |K ′| (the number in the circle represents the number of searching agents), as a function of:
(a) the search cost c in a setting of k = 5 and n = 3; (b) the number of opportunities n (i.e., the
search horizon) in a setting of k = 5 and c = 0.01.

computational complexity of evaluating all subsets is combinatorial in the number
of agents. Although the focus of the paper is not on the computational aspects
but rather on analyzing the structure of the optimal and equilibrium cooperative
strategies, we note that in most joint search settings the computational complexity
becomes a non-issue since the number of agents taking part in the joint search is
relatively small.

The fact that the agents use a reservation-value-based strategy requires further
discussion regarding the need to check all combinations of K ′ ⊆ K. Seemingly,
one could expect the solution for the set of k equations of type (5) to result in a
reservation value ri = −∞ for each agent that does not need to engage in search
according to the optimal strategy, consequently eliminating the need to evaluate
each subset separately. Using such reservation values, would have precluded any
search on behalf of the agent. Yet, Equation 5 is valid only if it is beneficial for
the agent to conduct the search, as it captures the indifference between the cost of
search and the gain obtained from it. The equality represented by (5) cannot hold
for agents that should not engage in search according to the optimal joint search
strategy, even if ri = −∞ is used.

Figure 1 depicts the effect of agent’s search cost (left) and the number of op-
portunities (right) available for search on the agents’ individual expected utility for
different number of agents taking part in the search. The left graph, which relates
to the search cost as the independent variable, uses a setting with five agents and
three search periods (i.e., k = 5, n = 3). As expected, the individual expected
utility decreases as the search cost c increases. This is due to the fact that the
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greater the search cost, the lower the reservation values and the resulting expected
utility, since search becomes less favorable. The dashed lines in the graph mark
the costs for which the optimal number of agents that need to engage in search
changes (i.e., the points of alternation in the identity of the most upper curve). As
observed from the graph, the optimal number of searching agents decreases as the
search cost increases. This is because when the search cost is relatively small, it is
best that all agents engage in search, in order to fully exploit the k ·n opportunities
that can be explored in parallel. As the search cost increases, the relative utility
from further search decreases, thus it becomes more effective to have less agents
engage in search, while taking advantage of the permitted search horizon to its full
extent. Thus, the same expected number of opportunities can be explored, except
the process is executed with less parallelism. The preference of a sequential over
parallel search is straightforward, as in the absence of any discounting of gains the
parallel process can be decomposed to a sequential one that yields at least as much
expected utility (as it offers the utility of terminating the search once a favorable
value is obtained, potentially incurring only part of the search costs).

The right graph of Figure 1, which relates to the search horizon as the inde-
pendent variable, uses a setting with five agents as well and a search cost of 0.01
(i.e., k = 5, c = 0.01). As expected, the overall expected utility increases as the
number of opportunities that each agent can potentially explore increases. This
property, while intuitive, is proved later (see Proposition 1). As observed from the
graph, the optimal number of agents to engage in search decreases as the search
horizon increases. This is because of the tradeoff between parallel and sequential
search. Ideally, if the agents were not limited by the search horizon, they would
have preferred the search process to be executed with one agent searching at a
time. However, as the search horizon decreases, the agents will need to rely more
on parallel searches as a means of extending the overall amount of opportunities
that theoretically can be explored.

For the fully cooperative case, in Proposition 1 we define four joint-search
enhancers that necessarily benefit the agents that use them. Nonetheless, in the
following section we will demonstrated that they are potentially devastating for
joint-search with self-interested agents.

Proposition 1. In fully cooperative joint search:

(a) If the sharing of findings at the end of the individual searches is costless, then
increasing the size of the group of agents taking part in the search can only
improve and never worsen the per agent average expected utility.

(b) Extending the search horizon necessarily increases the overall expected util-
ity.
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(c) A decrease in the search cost of some of the agents that engage in search
according to the optimal strategy necessarily increases the overall expected
utility.

(d) Starting the joint search with some pre-known value (i.e., a fallback value
available for the group) necessarily increases the overall expected utility.

The proof of these is trivial in most cases hence it is formally presented in Ap-
pendix A.3.

3.3. Joint Search with Self-Interested Agents
The analysis of the self-interested case follows the equilibrium concept. Specif-

ically, since findings of agents are a priori uncertain, we use Bayesian Nash Equi-
libria.8 A solution in this case is a set of search strategies, where each agent’s
strategy maximizes its own individual expected utility given the search strategies
used by the other agents. The set of strategies available for each agent potentially
includes engaging in search to some extent or completely avoiding search. Since
it is possible that in the end none of the agents will actually engage in the search,
in equilibrium, we define the agents’ utilities for such cases as v0.

Theorem 2. An equilibrium solution to the problem with self-interested agents
is a set of strategies {(p1, r1), ..., (pk, rk)}, where pi is the probability that agent
Ai will engage in search (0 ≤ pi ≤ 1), and ri is the reservation value it will
be using if engaged in search, such that: (a) for every agent Ai for which pi =
0, EBi(search) ≤ EBi(¬search); (b) for every agent Ai for which pi = 1,
EBi(search) ≥ EBi(¬search); and (c) for every agent Ai for which 0 < pi < 1,
EBi(search) = EBi(¬search), where:

ci =

∫ ∞
y=ri

fi(y)

∫ ∞
x=−∞

(max(y, x)−max(ri, x))f̄i(x)dxdy (11)

f̄i(x) =
d(
∏

Aj∈K∧j 6=i(pjF
return
j (x) + (1− pj)))

dx
(12)

EBi(search) = −ci
1− Fi(ri)

n

1− Fi(ri)
+

∫ ∞
y=−∞

f return
i (y)

∫ ∞
x=−∞

max(y, x)f̄i(x)dxdy (13)

EBi(¬search) =

∫ ∞
x=−∞

xf̄i(x)dx (14)

8Since each agent knows nothing about anyone’s actual values, except for the probability dis-
tributions of values, we refer to the ex-ante Bayesian Nash equilibrium.
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Proof. We first prove that regardless of the strategies used by the other agents
the best-response search strategy for agent Ai, if it chooses to actively engage
in search, is a reservation value ri, where ri is the solution to (11).9 The proof
is similar to the one given for Theorem 1, with the difference being only that
the agent does not multiply the improvement in the expected value the agents
attain by k, as it is only interested in its own expected utility. A solution will be
considered stable (i.e., in equilibrium), if none of the agents will find it beneficial
to deviate from it individually. A Bayesian Nash equilibrium in pure strategies for
the problem would require pi ∈ {0, 1} ∀i. Any other solution is a mixed strategy
Bayesian-Nash equilibrium.

The above establishes the fact that all agents will be using a reservation value
strategy whenever actively engaging in search, thus we can formulate F return

j (x),
the probability that the maximum value obtained along the search process of an
agent Aj (that chooses to engage in search and uses rj), is less than x, as in
(3). This facilitates the extraction of the probability distribution function of the
maximum value obtained throughout agent Aj’s search, f return

j (x), using the same
principle as in (4). Thus, we can now formulate the probability that the maximum
value that will be found by all the agents except Ai will be smaller than or equal
to x, denoted F̄i(x):

F̄i(x) =
∏

Aj∈K∧j 6=i

(pjF
return
j (x) + (1− pj)) (15)

and finally the probability distribution function of that value, f̄i(x), is the deriva-
tive of F̄i(x).

These enable us to calculate the expected utility of agent Ai when any other
agents Aj uses a strategy (pj, rj). If agent Ai chooses to engage in search then its
expected utility, denoted EBi(search), is given by (13).10 The first term on the
right of (13) is the cost incurred for the search carried out by Ai, as in (2). The
second term is the expected maximum between the best value found by the agent
itself (i.e., associated with a distribution f return

i (y)) and the best value returned by
the other agents (associated with a distribution f̄i(x)). When the agent opts not to
search at all, its expected utility, denoted EBi(¬search), is simply the expected
value of the maximum value returned by the other agents, as given by (14).

The three stability conditions specified in the theorem, thus guarantee that the
agent is indifferent between actively engaging in search and not engaging in search

9If none of the other agents chooses to engage in search, then the optimal strategy is the single
agent’s strategy according to 3.1.

10Once again, if none of the other agents engage in search (i.e., pj = 0 for all Aj 6= Ai) then
the expected benefit EBi(search) is calculated according to (2) and EBi(¬search) = v0.
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at all whenever a mixed strategy is used (0 < pi < 1) and that for pure strategies
(i.e., when pi ∈ {0, 1}) the strategy used is indeed the dominating one.

Therefore, in order to find the equilibrium, one needs to check the stability of
3k possible solutions of the type {(p1, r1), ..., (pk, rk)} differing in the value each
pi obtains (pi = 0, pi = 1 and 0 < pi < 1). For every combination, the reservation
values of the agents that do not use p = 0 and the probability p of each agent that
uses a non-pure mixed strategy (i.e., with 0 < p < 1) should be calculated by
solving a set of equations of type (11), for every agent that engages in search and
of type EBi(search) = EBi(¬search), according to Equations 13 and 14, for
every agent Ai for which 0 < pi < 1. Once the appropriate reservation values
and probabilities are obtained for a given set, the stability conditions need to be
validated.

We note that it is possible to have more than a single equilibrium solution
(i.e., multi-equilibria, see for example Figure 4 in the following section). In the
latter case, if there is an equilibrium that dominates the others in terms of the
individual expected utility each and every agent obtains then it will likely be the
one used. Otherwise, there is no way of deciding which of the equilibria is the
one that will be used.11 The totally-mixed-strategy-based equilibrium (i.e., one
where all players assign a strictly positive probability to every pure strategy), if
one exists, is a natural choice in this case as typically it guarantees that all agents
“contribute” to the joint search. With pure-strategies equilibria, it is very common
to find one agent engaging in search while all others are essentially free-riders.
In particular, when the agents are relatively homogeneous in terms of their search
competence, as in many real-life settings, the mixed-strategies case will result in
a balanced solution in terms of individual expected utilities, whereas the pure-
strategies case will be highly inequitable. Still, a totally-mixed-strategy-based
equilibrium does not necessarily exist, e.g., when search costs are substantially
low (hence the equilibrium is based on having all agents search) or substantially
high (hence the equilibrium is based on having none of the agents search). This is
also demonstrated in the following section for various settings, e.g., in Figure 4.

3.4. The Effect of Continuous Communication Throughout Search
So far we have assumed that the agents share their findings only at the end

of the individual search processes. We now analyze the settings in which the
agents can also communicate throughout the search process. In this case, values

11The research on multiple non-dominating equilibrium strategies in game and agents theory is
quite rich [29], and thus we do not include this question within the scope of the current paper.
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are shared in real-time, thus the agents’ search decisions should take into con-
sideration other agents’ findings (rather than merely the distribution of the best
value that will be returned by others at the end of the process). Unlike the non-
continuous communication case, here the agents’ joint search strategies are proved
to be non-reservation-value based.

3.4.1. The Fully Cooperative Case
With continuous communication the agents’ strategy is based on more com-

plete information, hence the agents’ expected utility is likely to improve compared
to the case of non-continuous communication.

Proposition 2. In fully cooperative joint search where n > 1 and more than
a single agent engages in search according to the optimal joint search strategy,
enabling continuous communication throughout the process results in an increase
in the overall expected utility.

Proof. The agents can use the optimal strategy for the fully-cooperative case with
no communication, however, instead of having each agent use its own findings
for terminating the search, based on its reservation value, it will consider the best
finding obtained so far by any of the agents.

If all agents are characterized by a common probability distribution of values,
i.e., f1(x) = f2(x) = ... = fk(x) = f(x), then the problem can be mapped to
Morgan’s optimal sequential sampling problem [44] (even if the search costs of
the different agents vary). In this problem, a single agent can explore one or more
opportunities in any period, where the cost of exploring k′ opportunities is given
by some monotonically increasing function C(k′). The solution in this case is
based on extracting the optimal number of opportunities to explore at each period
given the best value obtained so far and the optimal strategy onwards.12

In our case, however, different agents may be assigned with different probabil-
ity distribution functions, precluding the use of Morgan’s solution. Our solution
is based on dynamic programming, using the joint distribution of the maximum
value obtained in any given turn. We use K ′j(v) (K ′j(v) ⊆ K) to denote the sub-
set of agents that need to search during the coming search period, according to
the optimal search strategy, when there are only j remaining search opportunities
and the best value found till this point is v. The resulting distribution of the best

12While [44] allows any number of opportunities to be explored in parallel, the transition to a
finite number of opportunities that can be explored in a given time (resulting from the number of
agents searching jointly in our case) is straightforward using the solution concept given there.
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value among the values obtained by the agents in K ′j(v) in a single search pe-

riod, denoted f̄K′
j(v)(x), is given by f̄K′

j(v)(x) = d(F̄
K′

j(v)(x))
dx

, where F̄K′
j(v)(x) is

the probability that the maximum value found by the searching agents in a single
search period is smaller or equal to x, given by:

F̄K′
j(v)(x) =

∏
Ai∈K′

j(v)

Fi(x) (16)

Proposition 3. If the optimal joint fully-cooperative search strategy with j search
periods remaining (j > 1) is to have none of the agents search (K ′j(v) = ∅) then
the same strategy is optimal when less than j periods are left.

The proof for the proposition is given in Appendix A.4 and its main implica-
tion is that once the agents choose not to explore an additional opportunity, their
search necessarily terminates.

We use EBj(v) to denote the overall expected utility of the agents when j
search periods remain, if the optimal fully cooperative search strategy is used,
given that the best value obtained so far by any of the agents is v. The value of
EBj(v) can be calculated recursively, based on the overall expected utility of the
subsequent search period:

EBj(v)=

{
−
∑

Ai∈K′
j(v) ci+

∫∞
y=−∞EBj−1(max(v, y))f̄K′

j(v)(y)dy K ′j(v) 6= ∅
k · v K ′j(v) = ∅

(17)

where for the case where there is only one remaining search period:

EB1(v) = −
∑

Ai∈K′
1(v)

ci+k

∫ ∞
y=−∞

max(v, y)f̄K′
1(v)(y)dy (18)

The first element in (17) represents the sum of the search costs of the agents that
engage in search during the coming search period. The second term is the ex-
pected utility in the subsequent period, based on the different options of the “best”
value with which to continue, which is the maximum among the best values found
so far and the results of the searches that take place during the current search pe-
riod. The determination of K ′j(v) should thus be based on extracting the set of
all subsets Kj ⊆ K and evaluating them using (17), selecting the one associated
with the maximum expected utility. The case of K ′j(v) = ∅ derives from Proposi-
tion 3. For the last period (Equation 18), no further search can take place beyond
the current period, hence the actual values are taken into account (rather than the
expected value EBj−1(max(v, y))).
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The expected utility of the entire search process, denoted EB, can be calcu-
lated using a recursive equation similar to (18) and (17):

EB = EBn(−∞) (19)

We note that if the communication is costly the only change required in (17)-(19)
is in the costs part. For example, if the communication costs are global (e.g.,
do not depend on the amount of communication carried out) then the costs should
only be subtracted from EB calculated in (19). Otherwise, if each communication
session or each transmission incurs a cost, then the said cost simply can be added
to the cost ci in (17) and (18).

The best value that has been obtained so far along all agents’ search, v, sub-
stantially influences the optimal number of agents that will engage in search in
the coming search periods. The number of agents in K ′j(v) decreases as v in-
creases, because the expected improvement due to further search decreases, for
the increased v value, whereas the cost of such further search does not change.
This makes any additional parallel search efforts less beneficial and consequently
the optimal number of agents that need to engage in search decreases. As for the
expected utility, this increases as v increases, as a better “fallback” is enabled. If
v is initially low, its increase results in a minor increase in the expected utility
because the chance that despite all the searches performed by the agents no better
value will be obtained is insignificant. Similarly, when v is initially high, the op-
timal strategy is to have none of the agents search hence any increase in v results
in an identical increase in the individual expected utility.

As for the effect of the agents’ search costs, the greater the search cost the
lower K ′j(v) becomes. The intuition is the same as the one given for the effect
of the increase in v, with the only change being that while the increase in v has a
positive effect on the group’s starting point the increase in c has a negative effect.

3.4.2. The Self-Interested Case
From the individual agent’s point of view, when being self-interested, disclos-

ing a “good” value that was obtained along the search is not beneficial, as this
will likely discourage the other agents from resuming their search. Therefore,
the exchange of information in this case is mandatory and does not depend on the
agents’ desire, due to the justifications given in Section 2. In this case, as we prove
in the following paragraphs, the agent’s strategy needs to take into consideration
not only the best value obtained so far, as in the “no communication” case, but also
the remaining number of potential search periods. Agent Ai’s strategy can thus be
represented as the mapping S(v, j) → pji (v), where pji (v) is the probability that
Ai will choose to explore an additional opportunity when the number of remaining
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allowed searches is j and the best value obtained so far by all agents is v. We use
EBj

i (v) to denote the expected utility of agent Ai if it follows the optimal search
strategy, given the strategies used by the other agents, with j search opportunities
remaining, and the best value obtained through all the agents’ searches so far is v.

Similar to the use of F̄i(x) in 3.3, we use F̄ j
i (x) to denote the probability

that the maximum value that will be found by all the agents, except for agent Ai,
during the next search period (if carried out), when there are only j remaining
opportunities, will be smaller than or equal to x. The function f̄ j

i (x) is F̄ j
i (x)’s

corresponding probability distribution function (the equivalent to f̄i(x)). Both
F̄ j
i (x) and f̄ j

i (x) can be calculated using the following modifications of Equations
15 and 12:

F̄ j
i (x) =

∏
Aw∈K∧w 6=i

(pjw(v)Fw(x) + (1− pjw(v))) (20)

f̄ j
i (x) =

d(F̄ j
i (x))

dx
(21)

These enable us to calculate the expected utility of agent Ai when there are
j search periods remaining, given the best value v obtained so far by any of the
agents and the search strategies of the other agents {pjw(v)|w 6= i}. If agent
Ai chooses to explore an additional opportunity then its expected utility, denoted
EBj

i (search, v) is given by:

EBj
i (search, v) = −ci +

∫ ∞
y=−∞

fi(y)

∫ ∞
x=−∞

EBj−1
i (max(v, y, x)f̄ j

i (x)dxdy (22)

where EB0
i (v) = v, as when no further search is allowed (i.e., when the al-

lowed search horizon n has been reached) the process inevitably terminates and
the agents receive the best value found so far. If the agent opts to not search during
the next search period, its expected utility, denoted EBj

i (¬search, v), is:

EBj
i (¬search, v) =

∫ ∞
x=−∞

EBj−1
i (max(v, x))f̄ j

i (x)dx (23)

Equation 22 includes the search cost of agent Ai in the coming search period. The
second term is the expected utility from reaching the next search period when the
best value known is the maximum between the value found by the agent itself in
the current search period, the best value returned by the other agents in the current
search period (associated with a distribution f̄ j

i (x)), and the best value obtained
by all the agents in former n − j periods. The term on the right-hand-side of
Equation 23 is simply the expected utility of the agent given the maximum value
found so far and the best value obtained in the coming search period j.
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Agent Ai’s decision when in state (v, j) is thus to use pji (v) = 1 if EBj
i (search, v) >

EBj
i (¬search, v), pji (v) = 0 if EBj

i (search, v) < EBj
i (¬search, v), and any

value 0 ≤ pji (v) ≤ 1 in case EBj
i (search, v) = EBj

i (¬search, v). Consequently,
the value of EBj

i (v) is calculated as:

EBj
i (v) = max

(
EBj

i (search, v), EBj
i (¬search, v)

)
The expected utility of agent Ai in the joint search is thus given by EBn

i (−∞).
Using the above, the equilibrium strategy can be unfolded using linear pro-

gramming principles — for each number of remaining search opportunities, j, the
equilibrium set of probabilities {pj1(v), ..., pjk(v)} can be obtained, for any value v,
by solving the set of equations of types (22) and (23) where the value of EBj

i (v) is
calculated based on the equilibrium set of probabilities attained for j − 1 periods
for all the potential different values that the “best” value parameter may obtain
after the current search step.

The equilibrium stability conditions in this case should now be specified in the
search period level — a set of strategies {pj1(v), ..., pjk(v)} will be in equilibrium
only if the following conditions hold: (a) for every agent Ai for which pji (v) = 0,
EBj

i (search, v) ≤ EBj
i (¬search, v); (b) for every agent Ai for which pji (v) =

1, EBj
i (search, v) ≥ EBj

i (¬search, v); and (c) for every agent Ai for which
0 < pji (v) < 1, EBj

i (search, v) = EBj
i (¬search, v). Therefore, as in the case

with no communication, in order to find the equilibrium one needs to check the
stability of 3k possible solutions of the type {pn1 (v), ..., pnk(v)} differing in the
value that each pni (v) obtains (pni (v) = 0, pni (v) = 1 and 0 < pni (v) < 1). This
time however, such an equilibrium needs to be found for any possible best value
obtained, v, and for each possible number of remaining search periods, j ≤ n.
The expected utility of agent Ai according to this solution is given by:

EBi = En
i (−∞) (24)

Once again, we note that it is possible that several equilibria will be found for
a specific state (v, j). In this case, however, the determination of which will hold
becomes more critical as the determination of the equilibrium strategies in states
(v′, j′ < j) depends on it. This multi-equilibria problem is beyond the scope of
the current paper, and we focus our illustrations on settings where only a single
equilibrium exists, or where the choice of the equilibrium the agents will use is
straightforward (e.g., with homogeneous agents).

As with the case of fully cooperative agents we note that when the commu-
nication is costly the only change required in (22)-(24) is in the costs part: If
communication costs are global then the costs should only be subtracted from
EBi calculated in (24) for each agent Ai, and if each transmission incurs a cost
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Figure 2: The agents’ individual ex-
pected utility as a function of the num-
ber of agents, k, when the agents are
self-interested, for the setting: c = 0.1,
n = 3.

then this can be simply added to the cost ci in (22) or subtracted directly from
(23).

4. The Failure of Cooperation Enhancers with Self-Interested Agents

In this section, we illustrate that applying the cooperation enhancers given in
Proposition 1, may actually hinder beneficial cooperation rather than nurture it
when the agents are self-interested. For each of the enhancers we first provide
an example where it is indeed beneficial (in terms of the resulting change in the
agents’ expected utility), even when the agents are self-interested, as in the fully
cooperative case. Then, we provide an example where the enhancer’s actual effect
is negative, due to the agents’ self-interestedness. Unless specifically stated other-
wise, all illustrations used in this section rely on the same synthetic environment
as in the previous section (i.e., a uniform distribution of values and homogeneous
agents that share the same search cost). The illustrations primarily consider the
totally-mixed-strategies-based equilibrium, for the reasons given in the previous
section. Still, for some cases, where the number of pure-strategies-based equilib-
ria is relatively small, we also include them in the figures.

4.1. Adding an Additional Agent
Figure 2 depicts the individual expected utility of the agents, in equilibrium,

in a self-interested-agents setting, as a function of the number of agents k. The
setting used for this example considers a search horizon of three search periods
(n = 3) and the search cost is c = 0.1. From Figure 2 we observe that the indi-
vidual expected utility of the agents increases as the number of agents increases.
This means that the improvement achieved by the addition of agents (in terms of
the number of opportunities that can now be explored in parallel and overall) is
greater than the decrease in the search extent resulting from the reliance of each
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Figure 3: The agents’ individual expected utility as a function of the search horizon n in a two-
agent joint search setting (k = 2), when the agents are self-interested, for the mixed and pure
equilibrium strategies, and the search cost is: (a) c = 0.16; and (b) c = 0.2.

of the agents on the others. While the above improvement in the individual ex-
pected utility due to the increase in the group’s size is correlated with the case of
fully cooperative agents, we now present an opposite example that is unique to
the case of self-interested agents. Consider a setting where three self-interested
agents search jointly, when the search cost is c = 0.2 and the search horizon is
n = 10. In this case, the individual expected utility according to the mixed equi-
librium is EB = 0.464. We now add a fourth agent to the joint search setting,
with a search cost of 0.45, while keeping the search horizon unchanged. In this
case, the expected utility of the additional agent in equilibrium is 0.075, how-
ever the expected per-agent utility of the original three agents decreases to 0.453
(compared to 0.464 when it was only the original three agents). Furthermore, in
the four-agents setting, even the average expected utility decreased and it is now
EB = 0.358 (compared to 0.464 in the three-agents setting).

4.2. Increasing the Number of Opportunities Available (Search Horizon)
Figure 3 depicts the individual expected utility of the agents, in a self-interested-

agents setting, as a function of the search horizon n. The setting used for this ex-
ample considers two homogeneous agents (k = 2), each associated with the same
search cost (0.16 for graph (a) and 0.2 for graph (b)). In this case, two different
equilibria hold. The first is pure equilibria, where only one of the agents actually
executes search (represented by the upper and lower curves, depending on whether
the agent is the one doing the search or not). The second equilibrium is a mixed
one (0 < p < 1). As observed from the figure, the increase in the search horizon
can have either a positive effect (as in the case of fully-cooperative agents) or a
negative one on the individual expected utility. This phenomenon is explained by
the interplay between the positive effect of the increase in the number of search
periods each agent can potentially utilize, if deciding to engage in search, and the
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negative effect the extension of the search horizon has on the probability an agent
will indeed engage in search (p). As the search cost increases from 0.16 to 0.2,
each agent finds it more beneficial to rely on the other, resulting in a substantially
greater decrease in the value of p.

4.3. Improving an Agent’s Competence
Figure 4 depicts the individual expected utility of two homogeneous agents

A1 and A2, associated with an equal search cost c1 = c2 = 0.2, when a third
agent with a search cost c (given as the horizontal axis) is added. The search
horizon is limited to a single opportunity, i.e., n = 1. In this case there is a
totally mixed equilibrium only for the interval 0.1 ≤ c ≤ 0.5. Two additional
pure equilibria also hold for some c values, both consisting of only one of the
three agents engaging in search. In the first, depicted in (a), the searching agent
is one of the two homogeneous agents. This equilibrium holds only for c values
in the (0.17, 0.5) interval. It is notable that in this case the expected utility of the
different agents do not depend on the cost c (which is relevant only to the third
agent) since the agent engaged in search is one of the two homogeneous agents.
The expected utility of the two homogeneous agents and the third (joining) agent,
when the mixed equilibrium is used, are distinguished by the labels “Mixed (M)”
and “Mixed (T)”, respectively. In the second pure equilibrium, depicted in (b),
the searching agent is the third agent. This equilibrium holds for any c ≤ 0.5
and hence is the only equilibrium (and essentially the one used) when c < 0.1.
With this equilibrium the cost of the searching agent, which is the third agent,
decreases as its cost of search c increases (since neither of the other two agents
search). As with the former examples, the two pure equilibria are associated with
an expected utility smaller than with the mixed equilibrium for the agent engaged
in search and vice-versa for the agent that does not search, motivating once again
the adoption of the totally mixed equilibrium as the solution to the problem.

As observed in the figure, as the cost of search of the third partner increases,
the expected utility of the two homogeneous agents (i.e., the “Mixed (M)” curve)
increases, however from a certain c value, any further increase in the search cost
of the joining agent results in a decrease in the two agents’ expected utility. This
result means that the agents sometimes should prefer that the less competent agent
(i.e., the one associated with a smaller search cost compared to other potential
candidates) join their joint search process. In this example the agents would prefer
that an agent associated with a search cost of c = 0.15 join the search over a more
competent agent (e.g., one associated with a search cost of c = 0.1).

Figure 4(c) presents the overall expected utility with the three equilibria and
when the agents are fully cooperative. From this figure we can see that in this
example, while the individual utility of the first two agents may increase as c
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Figure 4: The agents’ expected utility in a setting with two homogeneous agents (c1 = c2 = 0.2)
to which a third agent joins, as a function of the third agent’s search cost, c. The graphs differ by
the pure equilibrium used: (a) the case where the only agent engaged in search is one of the two
homogeneous agents; (b) the case of pure equilibrium where the only agent engaged in search is the
third agent (with a search cost different from the others). The mixed equilibrium (distinguishing
between the expected utility of the different agents) is presented in both graphs. Graph (c) depicts
the overall expected utility with the three equilibria and when the agents are fully cooperative.

increases, the overall utility (when including the expected utility of the added
agent) indeed decreases. Nevertheless, the overall expected utility in the self-
interested case can also decrease due to an improvement in an agent’s competence.
We illustrate this by means of a simplistic example. Consider the case of two-
agents with a search horizon of n = 1. Agent A1 can explore an opportunity that
yields either 10 or 1 with an equal probability and is associated with a search cost
c1 = 2. Agent A2 can explore an opportunity that yields either 1 or 1.1 with an
equal probability and is associated with a search cost c1 = 3. In this case, the only
equilibrium that holds is a pure one. The expected utility of agent A1 according to
the equilibrium is EB1 = 3.5 and the expected utility of agent A2 is EB2 = 5.5,
resulting in an overall expected utility of 9. Now assume the search competence of
A2 is improved, such that c2 = 1. Now, the expected utilities are EB1 = 3.8 and
EB2 = 4.8, resulting in a decrease in the overall expected utility to 8.6, despite
the improvement in A2’s search competence.

4.4. An Improvement in the Available Fallback Value
This enhancer relates to the case where the agents are already familiar with a

value they can use (i.e., a fallback value) before starting the joint search, or, when
continuous communication is used, the agents learn about a better value based on
which they should decide on their next search decisions.

Figure 5 depicts the effect of the best value that has been found so far (v) and
the number of remaining search periods on the probability of engaging in search
(graph (a)) and the individual expected utility (graph (b)) in the self-interested
setting with continuous communication. The setting uses three agents and the
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Figure 5: The effect of the best value obtained so far, v, in joint search with self-interested agents
and continuous communication, for different number of remaining search periods. The setting
considers the mixed equilibrium with three searching agents (k = 3) and the search cost is c = 0.1:
(a) the probability an agent will engage in search; (b) the individual expected utility.

search cost is 0.1 (i.e., k = 3 and c = 0.1). The figure considers the totally
mixed equilibrium applicable for that setting. The decrease observed in the value
of p as v increases is explained by the decrease in the attractiveness of further
search whenever a better value is available a priori. Similar to the case of fully
cooperative agents, here the increase in the number of remaining search periods
results in a reduced individual search probability (which is equivalent to a decrease
in the number of searching agents in the fully cooperative case). The influence of
the best value found thus far and the number of remaining opportunities over the
expected utility, however, is strikingly opposite to the one that holds in the fully
cooperative case; here an increase in these two parameters results in a decrease in
the expected utility. Therefore, despite being at an initially superior starting point
(i.e., with a greater search horizon and/or with a better known value) the agents
end up with an inferior expected utility. We note that for v > 0.554, the search
probability becomes zero, i.e., the agents are happy with the fallback value they
already have, and further individual search is not justified. Therefore, in this case,
the agents do not incur any search costs, and the increase in v (i.e., starting with a
greater fallback value) fully translates into an identical increase in the individual
utility.

4.5. Enabling Continuous Communication
Finally, we get to the use of continuous communication as a means of im-

proving a joint search. There are many examples of individual and overall per-
formance improvement due to the use of communication throughout the search
process when the agents are self-interested. For example, consider a two-agent
case with a search horizon of n = 2, a search cost of c = 0.01 and a discrete dis-
tribution of values, applicable to both agents’ searches, where the value obtained is
1 with a probability of 0.5 and otherwise 0. When communication is continuous,
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Figure 6: Individual expected utility of self-interested agents (Graphs (a)-(c)) and fully cooperative
agents (Graphs (d)-(f)) as a function of: the search cost in a setting k = 3 and n = 3 (Graphs (a)
and (d)); the search horizon (periods) in a setting: k = 3 and c = 0.1 (Graphs (b) and (e)); and the
number of agents in a setting: c = 0.1 and n = 3 (Graphs (c) and (f)).

the totally mixed equilibrium in this case results in an individual expected util-
ity of 0.925. If communication is prohibited throughout the process, the agents’
individual expected utility, according to the totally mixed equilibrium, is 0.922.
In other words, the agents’ expected utility increases by enabling communication
between them throughout the search process.

However, an improvement due to enabling continuous communication cannot
be generally guaranteed in the case of self-interested agents. Figure 6 depicts the
expected utility of three homogeneous agents as a function of the different model
parameters when communication is used along the process and when it is not.
The figure shows that the phenomenon according to which the communication ac-
tually hinders individual performance in the self-interested case is common, and
occurs in a wide range of settings, differing in their search horizon, the number of
searching agents and search cost. The explanation of the phenomenon, as briefly
discussed in the preceding section, is that while each agent finds the communica-
tion to be beneficial when on the receiving end, i.e., being informed that a lower
price was found, it actually loses from such communication when on the reporting
end since the report can potentially encourage the other agents to terminate their
individual search.

27



5. Related Work

The model analyzed in this paper is based on two important concepts that are
extensively researched in literature on multi-agent systems. The first is coopera-
tion between agents and the second is costly search.

In general, cooperation is a key concept that drives multi-agent systems. By
joining efforts and acting in coordination/cooperation agents can better achieve
their goals [72, 73] or improve their performance measures [36, 68, 18, 77], es-
pecially when there are differences in their capabilities, knowledge and resources
and/or when an agent is incapable of completing a task by itself [8, 39]. In a more
broader range, group based cooperative behavior can be found in various domains,
such as solving complex optimization problems [75, 17, 77, 81, 82, 69, 60], mili-
tary and rescue domains [17, 15], cognitive radio networks [60, 1, 80], e-business
applications [77, 81], and many more. The introduction of ad-hoc and advanced
mobile networks suggests a big boost for cooperative behavior in applications
where agents’ adaptation to changing resources, environments, user context, etc.
is vital. The study of cooperation mechanisms for multi-agent cooperation is also
highly common in robotics, e.g., for the purpose of cooperative patrolling [19, 20].

The recognition of the advantages encapsulated in teamwork and cooperative
behaviors, is the main driving force of many coalition formation models in the area
of cooperative game theory and MAS [40, 68, 33, 27]. While coalition formation
and coordination models can be widely found in the electronic market domain,
most work in this domain emphasizes mechanisms for forming cooperation for
the purpose of aggregating demands in order to obtain volume discounts [77, 81].
Additional coalition formation models for the electronic marketplace consider ex-
tensions of transaction-oriented coalitions to long-term ones [8], and for large-
scale electronic markets [39]. Overall, the majority of cooperation and coalition
formation MAS-related research tends to focus on the way coalitions are formed
and consequently concerns issues such as the optimal division of agents into dis-
joint exhaustive coalitions [61, 81], division of coalition payoffs [81] and enforce-
ment methods for interaction protocols [48]. Very few authors have considered the
problem of determining the strategy of a group once formed [31, 62, 43, 63]; how-
ever, for the most part their focus was on fully-cooperative agents. None of these
works considered the cooperation problem of a group of self-interested agents in
costly search settings where findings can benefit all agents.

Much work has been dedicated to developing mechanisms for collaboration
between self-interested agents that act in a group in the planning domain [28,
74]. Nonetheless, these works considered the collaboration to be based on pre-
defined protocols and behaviors the agents should have followed, dictated by the
system designer, rather than pure selfishness considerations. For example, in [28]
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agents use threshold-criteria for deciding when to cooperate and often engage
in activities that are not necessarily beneficial when considering only their own
utility. The incentive for cooperation is the mutual belief that if everyone follows
the pre-specified protocol then the overall gain will increase. In [74], the agents’
cooperation derives from their need to maintain their “reputation”, as other agents
will become reluctant to cooperate with an agent that acts selfishly.

Group-based cooperation of self-interested agents can also be found in social
good allocation games (e.g., in the centipede game [3, 50, 46]). Common to these
games is that according to their equilibrium each agent individually should opt
out as soon as possible or invest the minimum allowed. Therefore the research of
cooperation in this domain is mainly limited to repeated games [66] or to the case
of bounded-rational participants (e.g., people) for which cooperation is commonly
shown to some extent. Much effort has been placed on developing reciprocity-
based mechanisms, e.g., tit-for-tat [4] that facilitate cooperation even when agents
find it momentarily beneficial to act selfishly. This way, long-term considerations
override short-term greedy behavior. Many have extended the basic mechanism to
support various variants of the model, such as asymmetric costs, heterogeneously
repeating instances and other factors [67]. The main difference between social
good allocation games and our work is thus the complexity of the settings used.
In our settings there is much room for individual search, to some extent, even if all
others are “free riders”. Moreover, with the simplistic settings used in social good
allocation games, issues such as communication between the players, size of the
group that act cooperatively, changes in the competence of individual players and
issues of homogeneity and heterogeneity of the agents become irrelevant (when
considering self-interested agents).

The second concept upon which this paper relies, costly search, is an important
inherent feature of MAS, in particular when there is no central source that can
supply full immediate reliable information on the environment and the state of the
other agents that can be found. The introduction of search costs into MAS models
leads to a more realistic description of these environments. This is because agents
are typically required to invest/consume some of their resources in order to obtain
information concerning opportunities available in their environment [5, 65, 34].

Optimal search strategies for settings where individuals need to search for an
applicable opportunity while incurring a search cost have been widely studied,
prompting several literature reviews [70, 47, 49]. These models have been devel-
oped to the point where their total contribution is referred to as “search theory”.
Over the years, many search model variants have been considered, focusing on
different aspects of the model, such as the decision horizon (finite versus infinite)
[41], the presence of the recall option [47], the distribution of values and the ex-
tent to which findings remain valid along the process [38]. Nevertheless, search
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theory literature mainly investigates the extraction of an optimal stopping rule
for the individual searching agent, and most often does not consider joint search.
Few studies have attempted to extend the search to a multi-agent (or a multi-goal)
search model, e.g., attempting to purchase several commodities while facing im-
perfect information concerning prices or operating several robots in order to eval-
uate opportunities in different locations [30, 63, 25, 10, 24, 11]. However, these
works consider fully cooperative agents that attempt to maximize the overall util-
ity. More importantly, the search considered in these models relies solely on a
“representative agent” that explores on behalf of the group, rather than utilizing
the fact that several agents can execute individual sequential searches in parallel.
Since the search horizon in our model is finite (as in most real-life settings), the
joint search strategy we provide for the fully cooperative case is more effective in
terms of the resulting overall expected utility.

Some prior works of ours have considered a multi-agent search model in which
all agents take an active part in the search process [55, 56]. These works, however,
assume that one agent’s search process is constrained by the findings of the other
agents, rather than augmented/improved by such findings as in our case. Conse-
quently, the nature of the equilibrium set of search strategies used is substantially
different. For example, since these models take the minimum among the values
obtained, all agents must engage in search to some extent, and they cannot fully
opt out pf searching. Furthermore, in [55] the agents are constrained to searching
sequentially, with no coordination whatsoever. In [56], the agents are fully co-
operative, and they all need to commit eventually to the same opportunity hence:
(a) the model becomes inapplicable in the absence of continuous communication;
and (b) all agents must follow the same search sequence and the same opportunity
each time.

Finally, we note that the non-intuitive findings according to which methods
that are easily proved to be beneficial in the fully cooperative case, can actually
have a negative impact in the self-interested case follows, in spirit, previous re-
sults in other settings. In particular, ones in which it has been shown that so-called
“inefficiencies” can increase market performance, under certain circumstances.
For example, Masters [45] shows that an increase in the minimum wage, which
is often considered by economics as inefficiency, can have positive employment
effects. In transportation economics (e.g. congestion games), equilibrium is fre-
quently not the overall optimum. In such cases, it has been shown that taxation
can change the equilibrium to a more desirable one [53, 52, 23]. Similarly, taxes
can facilitate more desirable equilibria in Boolean games [21] and in centralized
matching schemes [2]. In this work we show that a somehow similar phenomena
also occur in the context of costly search, though the model and analysis are, of
course, totally different from the above mentioned.
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6. Discussion and Conclusions

The uniqueness of the analysis given in the paper is two-fold. First, the joint
search model it uses does not rely on the notion of a “representative agent” that
searches on behalf of the group, as in prior work, but rather utilizes the fact that
several agents can execute individual search in parallel. This use of parallel search
improves the group’s performance whenever the search horizon is finite, which is
the case in most real-life settings. Second, it allows agents to be self-interested,
which makes the model more applicable (than the fully cooperative one used
in prior work) whenever the agents represent different individuals with different
goals or that cannot be forced to obey some external solution which is “socially
beneficial”.

The model is, of course, applicable to any multi-agent search application in
which findings can benefit all agents, information can be shared (either throughout
or at the end of the process) and costs and benefits are additive. From the practical
aspect, the research of joint search has gained increasing importance with the rapid
growth of ad-hoc cooperation and group formation over the Internet. Many new
web-sites are now allowing users to achieve their goals by sharing their knowl-
edge and information. The results reported in this paper are important inputs for
such markets and system designers by enabling them to predict the strategies that
will be used and the resulting system’s performance. These primarily facilitate
the proper design of the system and the determination of what elements should
and should not be included in such systems in order to achieve specific goals and
promote certain behavior. In particular, the introduction of some seemingly bene-
ficial elements may actually be counterproductive. The paper illustrates the failure
of several such “enhancers” when used with self-interested agents. The failure of
these enhancers is explained by the stability requirement. That is, while better so-
lutions that improve both individual and overall expected utilities by making use
of these enhancers can be extracted, these solutions cannot hold as some of the
agents have an incentive to individually deviate from them. The solutions that are
stable in the latter case are based on an overall search to a lesser extent, resulting
in degradation of overall and individual performance. The implication of these
somehow non-intuitive results is that cooperation-enhancers should not be taken
for granted and used as a default whenever some of the agents are self-interested.
The idea of sub-optimal behavior resulting from self-interestedness is not new in
itself and has been demonstrated in other various domains as discussed earlier in
this paper. Nonetheless, the model and analysis given in this paper are totally dif-
ferent from the above mentioned and reveal the effect of unique properties of the
costly search problem in such context.

There are numerous extensions to the basic joint search model presented in this
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paper that are worth pursuing. For example, each individual agent may be inter-
ested in more than a single item. Similarly, the communication between the agents
does not necessarily have to be reliable, and in some cases the agents may incur
costs due to such communication. For some standard cost structures, the changes
are straightforward, as discussed in the relevant analysis sections. For others, and
for the case of noisy communication, substantial changes may be required. In fact,
the introduction of noisy and/or costly communication can actually turn out to be
beneficial, based on the examples given for the disadvantages of communication
in these settings.

Similarly, for the case where the agents are heterogeneous in terms of their
goals, the amount of changes required in the analysis depends on the specific
model variant used. For example, consider the case where each agent values dif-
ferently the different opportunities and the agents may use any of the findings of
others. In the fully cooperative joint search, the optimal joint-search strategy is no
longer reservation-value based, but now relies on a reservation frontier [10]. This
is because the state of the agents along their search, as a group, depends on the
different values assigned to the attributes upon which the valuation functions are
defined. As for the case of joint search with self-interested agents, here the change
is simpler and mainly applies to the way the distribution of values obtained by
others are calculated. The individual strategies remain reservation-value-based.
In other cases, e.g., when using continuous communication or when all agents
are constrained to eventually pick the same opportunity, among those searched,
the changes are substantial, and many additional aspects need to be clarified first
(e.g., how the agents decide on the opportunity that will be eventually selected in
settings with conflicting preferences).

Finally, the analysis given in the paper can be augmented for designing and
testing methods and mechanisms that will increase the overall and/or individual
welfare in joint search with self-interested agent settings. For the most part, the
goal is to induce increased cooperation and individual search in cases where such
cooperation is beneficial for the system as a whole, but strategically disadvanta-
geous for the individual self-interested agent. Among these are methods for re-
structuring the incentives to promote cooperation and increase overall utility (e.g.,
by requiring all agents to pay a fee to the agent that found the lowest price), par-
titioning the agents into separate groups - each sharing its results only within the
group - or limiting communication between agents. Other methods may include
adding enforcement mechanisms into the system, which will require the agents to
follow some prescribed behavior (e.g. search some fixed number of opportuni-
ties), achieved by allowing only the agents that agree to the enforcement to enjoy
the results of other such agents.
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Appendices
A. Proofs

A.1. Proof for the Stationarity of the Reservation Value in a Single Agent’s Search
Proof. The reservation-value nature of the strategy is trivial. Since recall is al-
lowed then if the agent prefers terminating search given the best known value
v and n′ remaining uncertain opportunities it will also prefer that choice when
the best known value is v′ > v (and n′ remaining uncertain opportunities). The
proof that the value of the reservation value does not depend on the number of
remaining uncertain opportunities is inductive, showing that if with any number
of remaining uncertain opportunities greater than n′ the optimal choice is to use
reservation value ri then so is the case with n′ remaining uncertain opportunities.
The reservation value when only one uncertain opportunity is available derives
from equating the search cost of that opportunity with the expected improvement
obtained by the additional search, i.e., the search resumes for any v for which
ci <

∫∞
y=v

(y − v)fi(y)dy, resulting in a reservation value ri according to Equa-
tion 1. Now assume that the optimal reservation value to be used with any n′′ > n′

uncertain opportunities is ri and consider the agent’s decision regarding exploring
one more opportunity, if the best value it obtained so far is x and the number of
uncertain available opportunities is n′′. If x > ri and the agent executes one addi-
tional search, then regardless of the value obtained next the agent will definitely
terminate the search after the additional search (as it already has a value greater
than ri). This is equivalent to resuming the search when the best value obtained
thus far is x and only one uncertain opportunity is available. The latter choice
however is not optimal according to the assumption that a reservation value ri is
used for any n′′ > n′ uncertain available opportunities. Similarly, if x < ri and
the agent chooses not to resume the search, then in the next time period the agent
will inevitably explore an additional opportunity according to the induction as-
sumption. In this case, searching already in the current period dominates waiting
and then resuming the search.
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A.2. Proof of Theorem 1
Proof. We first prove the reservation-value nature of the optimal strategy for agent
Ai. Then we continue with an inductive proof, showing that if the reservation
value calculated according to (5) is indeed the optimal strategy for any number
of available opportunities n′′ > n′ then this reservation value should also be used
when the number of available opportunities is n′.

In the absence of any other new information along the search process, agent
Ai’s strategy is the mapping S(~x, n′) → {terminate, resume}, where ~x is the
set of values obtained so far and n′ is the number of potential remaining search
periods. Since the agent is interested merely in the maximum opportunity value,
its strategy is affected only by the maximum value in ~x, hence the strategy can be
defined in the form S(x, n′) → {terminate, resume}, where x is the maximum
value in ~x. Obviously, if according to the optimal strategy agent Ai needs to
resume the search upon reaching state (x, n′) then the same should be true for any
state (x′, n′) where x′ < x. Similarly, if according to the optimal strategy the
search should terminate at state (x, n′) then the same should hold for any state
(x′′, n′) where x′′ > x. Therefore, for each given number of remaining search
periods n′, the optimal individual search strategy of agent Ai can be characterized
by the reservation value rn′

i such that the agent should resume the search if the best
value obtained so far is below rn

′
i and otherwise it should terminate the individual

search process.
We begin with the case of n′ = 1. If the best value obtained so far by agent

Ai is x then exploring one last opportunity will incur an individual cost ci and the
expected value the agents will attain will be:∫ ∞

y=−∞
fi(y)

∫ ∞
z=−∞

max(y, x, z)f̄i(z)dzdy

(where y is the value obtained from the explored opportunity and z is the best
value obtained from the other agents’ search). On the other hand, if the search is
terminated when n′ = 1, the overall expected utility is given by:∫ ∞

z=−∞
max(z, x)f̄i(z)dz

Therefore, agent Ai should explore one last opportunity if and only if:

k

∫ ∞
z=−∞

max(z, x)f̄i(z)dz < k

∫ ∞
y=−∞

fi(y)

∫ ∞
z=−∞

max(y, x, z)f̄i(z)dzdy − ci

which transforms to:

0 < k

∫ ∞
y=−∞

fi(y)

∫ ∞
z=−∞

(
max(y, x, z)−max(z, x)

)
f̄i(z)dzdy − ci
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Since the right-hand-side of the latter equality is a decreasing function of x,
the agent should explore one last opportunity whenever the value of x is less than
the value of ri that satisfies (5). This establishes the first part of the proof. Now
consider the agent’s decision regarding exploring one more opportunity, if the
best value it obtained so far is x, the number of opportunities that can still be
potentially explored is n′, and the optimal strategy for n′′ < n′ is to use reserva-
tion value ri according to (5). If x > ri and the agent executes one additional
search, then regardless of the value obtained next the agent will definitely termi-
nate the search after the additional search (as it already has a value greater than
ri and according to the induction assumption the optimal strategy thereafter is the
reservation value ri). Therefore the utility obtained from exploring is given by
k
∫∞
y=−∞ fi(y)

∫∞
z=−∞

(
max(y, x, z)−max(z, x)

)
f̄i(z)dzdy − ci. Alas, since the

latter term decreases as x increases, and obtains zero for x = ri (according to (5)),
then since x > ri the term obtains a negative value, hence an additional search
cannot be the preferred choice.

Similarly, if x < ri and the agent chooses not to explore one more opportu-
nity, then in the next time period the agent will inevitably explore an additional
opportunity according to the induction assumption. In this case, executing the
search already in the current period dominates waiting and then searching. This
is because searching in the current time period provides the same results if no
search takes place in the subsequent period, however at the same time also en-
ables an additional search period in case the current search yields a poor value.
Therefore, the optimal strategy for n′ is also a reservation value strategy and the
optimal reservation value is calculated, once again, according to 5.

A.3. Proof of Proposition 1
Proof. (a) With the increased group, the agents can search according to the opti-
mal strategy as if no additional agents were added (and have the additional agents
avoid any search). The expected overall cost in this case will not change however
will be divided by more agents. The expected value the agents end up with will
not change either, however will benefit more agents.
(b) The agents can search according to the optimal strategy as if no additional op-
portunities were added, and allow only agent Ai to explore one more opportunity
if it has not found a value greater than its reservation value after exploring the
original number of opportunities. Since all other agents use the same strategy as
before, the values obtained by f̄i(x) and the overall expected search costs do not
change. Similarly, for the one agent that is allowed to search more, the distribution
f return
i (x) and its overall expected search costs, before approaching the additional

opportunity, remain the same as before. Therefore, if the agent does not obtain a
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value greater than ri then it is indeed optimal to explore one additional opportu-
nity, from those that were added, resulting in an increase in the overall expected
utility.
(c) The agents can simply maintain the same optimal strategy, as if search costs
have not changed, resulting in a saving in the accumulated costs part of (10) and
no change in the value of EV .
(d) The agents can simply maintain the same optimal strategy as if they do not
know any value and use the known value as a fallback at the end of the search.

A.4. Proof of Proposition 3
Proof. Assume otherwise, i.e., according to the optimal strategy S, for some j:
K ′j(v) = ∅ and K ′j−1(v) 6= ∅. Now consider an alternative strategy S ′, which is
identical to S except that it executes no search when j − 1 search periods remain
and also instead of using K ′j(v) = ∅, it uses the search guidelines set for the
subsequent period (i.e., when j − 1 search periods remain) according to S. Since
according to both S and S ′ the agents end up with the same distribution of values
when only j − 2 search periods remain and the expected search cost is the same
(as the same agents execute search in both strategies), the expected utility from
both strategies is equal. However, it is possible that when the point with only
j − 1 remaining search periods using S ′ is reached, the best known value has not
changed despite the search that took place in the prior search period. In the latter
case the optimal way to continue is obviously that some search be performed
in the current search period (according to S which is assumed to be optimal).
Therefore, strategy S ′ is certainly not optimal, and since its performance is equal
to S, strategy S also cannot be the optimal one.
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B. Nomenclature

Notation Meaning
K = {A1, . . . , Ak} The set of k fully-rational individual agents that engage in joint search
k The number of individual agents that engage in joint search (k = |K|)
fi(x), Fi(x) The probability density function and cumulative distribution function from which the val-

ues of the opportunities agent Ai explores are drawn
ci The search cost of any opportunity available to agent Ai

n The search horizon (reflecting the number of opportunities available to any agent)
ri The reservation value that agent Ai assigns to any available opportunity
EBi The expected utility of agent Ai

freturn
i (x), F return

i (x) The probability density function and cumulative distribution function of the maximum
value obtained throughout agent Ai’s search

k′ The number of agents that engage in the joint search (i.e., k′ ≤ k)
K′ A subset K′ ⊆ K of agents that engage in the joint search while the others do not search
S(v) An agent’s strategy given that the best value obtained so far is v

f̄i(x), F̄i(x)
The probability density function and cumulative distribution function of the maximum
value obtained by all agents except agent Ai

EV The expected value the agents end up with
EB The overall expected utility of the joint search process
K′

j(v) A subset K′
j ⊆ K of agents that need to search when only j search periods remain and the

best value obtained so far is v

f̄K′
j(v)(x), F̄K′

j(v)(x) The probability density function and cumulative distribution function of the best value
among the values obtained by the agents in K′

j during period j

EBj(v) The overall expected utility of the agents when there are j search periods remaining, if the
optimal fully cooperative search strategy is used given that the best value obtained so far
by any of the agents is v

pi The probability that agent Ai will engage in search, in case the agents that need to establish
the joint search are self-interested

EBi(search) The expected utility of agent Ai if agent Ai chooses to engage in search
EBi(¬search) The expected utility of agent Ai if the agent opts to not search at all
S(v, j) An agent’s strategy given that the best value obtained so far by all agents is v
pji (v) The probability Ai will chose to explore an additional opportunity when the number of

remaining allowed searches is j, when the agents are self-interested, and the best value
obtained so far is v

EBj
i (v) The expected utility of agent Ai when j search opportunities remain, and the best value

obtained throughout all agents’ searches so far is v
f̄j
i (x), F̄ j

i (x) The probability density function and cumulative distribution function of the maximum
value found by all the agents, except for agent Ai, during the coming search period (if
carried out), when there are only j remaining search opportunities

EBj
i (search, v) The expected utility of agent Ai if it chooses to explore an additional opportunity when

the number of remaining search periods is j given that the best value obtained so far by all
agents is v

EBj
i (¬search, v) The expected utility of agent Ai if it opts not to search during the next search period when

the number of remaining search periods is j, given that the best value obtained so far by all
agents is v
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