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Abstract. This paper provides a study of human and computational
strategies in voting systems. Despite committees and elections being
widespread in our daily lives, the design of agents that can operate in
such settings has received far less attention than the theoretical analysis
of voting strategies in such settings. We address this gap by comparing
people’s behavior in voting systems with that of computer agents play-
ing various strategies. In our setting participants vote by simultaneously
submitting a ranking over the set of candidates and the election system
uses a plurality rule to select a ranking that minimizes disagreements
with participants’ votes. We ran an extensive study in which hundreds
of people participated in repeated voting rounds with other people as
well as computer agents that differed in the extent to which they employ
strategic reasoning in their behavior. Our results show that over time,
people learned to deviate from truthful voting strategies, and use more
sophisticated voting strategies. However, these strategies do not improve
people’s performance because of the erratic nature of their behavior. In
particular, a computer agent using a best response voting strategy to
people’s actions in the previous round was able to outperform people in
the game as well as an agent using truthful voting strategies. This result
has implication for agent designers, highlighting the types of strategies
that facilitate voting behavior in committees comprising both human
and computer participants.

1 Introduction

Voting systems have been used by people for centuries as tools for group deci-
sion making, in settings as diverse as politics [1–3], and entertainment [4]. As
computers become ubiquitous in people’s lives, heterogeneous group activities of
computer systems and people are becoming more prevalent. As a result, oppor-
tunities arise for computer agents to participate in voting systems, whether as
autonomous agents or proxies for individual people.

Past work of human-computer decision-making has focused on the design
of computer agents for interacting with people in negotiation and coordination



settings [5]. However, there is no work on modeling people’s voting behavior in
heterogeneous systems comprising human and computer participants. This paper
addresses this gap by comparing people’s voting behavior to that of computer
agents using classic voting strategies from the literature. In our voting system
all participants declare their true preferred ranking over a set of candidates
prior to commencing a series of voting rounds. At each round all participants
vote by simultaneously submitting a ranking over the set of candidates. The
election system uses a plurality rule to choose a ranking that minimizes the sum
of conflicts with the votes that were submitted by the participants. The utility
of participants is proportional to the extent to which the chosen ranking agrees
with their preferences. Such settings are analogous to real-world voting scenarios
such as rating grant proposals and ranking applicants for positions in academia,
industry or competitions.

We designed a three-player game that implemented the voting system de-
scribed above using a budget allocation analogy. The preferences of participants
over the various sectors was chosen such that players could potentially improve
their score in the game if they deviated from their truthful vote. We formalized
several voting strategies for this game that differ in the extent to which they
reason strategically about other’s voting behavior. We conducted an extensive
empirical study in which hundreds of human subjects played this game repeat-
edly with other people as well as computer agents that varied in the extent to
which they voted strategically. We hypothesized that over time, people would
vote less truthfully, and that computer agents using various levels of strategic
voting would be able to outperform people.

Our results show that people deviate more from their truthful voting strate-
gies in later rounds than in earlier rounds, but that this deviation does not neces-
sarily result in an improvement in performance. In some cases, voting truthfully
can outperform people. In addition, we identified several heuristics people use
to guide their play. A computer agent using a best-response strategy to people’s
voting actions in the previous round was able to outperform people. This work
has significance for agent designers in demonstrating that best-response strate-
gies are sufficient for agents to outperform other people in voting systems that
output a complete ranking. This is the first work to compare the performance
of computational voting strategies with people’s voting behavior.

2 Related Work

Voting systems have been studied extensively in computer science and economics
(see for example [6] and [7]). The most widely used voting rule is the plural-
ity rule, in which each voter has one vote and the winner is determined as the
candidate that receives the highest number of votes. Other popular voting rules,
such as the Borda rule, allow voters to order the candidates, and the winner is
determined by the candidate that receives the most points (relative to its posi-
tions in all of the voters’ rankings). Both of these voting rules are susceptible
to manipulation, that is, self-interested players have an incentive to vote strate-



gically against their true preferences in certain situations. Thus, many studies
in behavioral economics which have examined the effect of these voting rules
on people’s voting strategies. Specifically, Forsythe et al. [8] studied the effect of
different voting rules on people’s voting strategies in three-candidate elections in
which a single candidate is elected and there was full information about voters’
preferences. They showed that people generally diverge from truthful voting,
and that over time, they learn to cast votes that are consistent with a single
equilibrium. In a follow-up study, Bassi [9] showed that people invoked different
voting strategies depending on the voting rule implemented by the system. In
particular, incorporating a simple plurality voting rule led people to adopt more
strategic voting than when incorporating the Borda rule which was based on
ranking the candidates.

Our research extends these studies in two ways. First, we consider more com-
plex settings in which the voting system outputs a ranking over the candidates,
rather than a single winning candidate. Such settings occur frequently in the real
world, but people’s behavior in these voting systems has not been studied. We
hypothesized that people’s behavior will significantly diverge from equilibrium,
and in order to succeed, computer agents will need to adopt other types of voting
strategies. Second, we provide a first study that compares the performance of
computational strategies with people’s voting behavior.

3 The Setting

In this section we provide a formal description of our voting system. Let C
denotes a set of candidates. For example, consider a committee that needs to
prioritize categories for the next budget. The candidate categories in C are:
Defense (d), education (e), health (h) and transportation (t). For any candidate
pair a, b ∈ C, we use notation a � b to mean that a is preferred over b. A
ranking is a relation that defines a total order over C. One such ranking in our
committee example is d � e � h � t. Given a set of agents N , we denote the
preferred ranking of agent i over C as Fi. For example, suppose that there are
three agents in the committee. The preference F1 of agent 1 is e � d � h � t;
the preference F2 of agent 2 is e � t � d � h; and the preference F3 of agent 3
is h � t � d � e.

Agents vote by submitting a rank over the sets of candidates C. Thus a
vote can be any relation in C × C. For example, the vote of agent i may be
e � d � h � t. Note that the vote of an agent does not need to match its
preferred ranking. Let V denote a set of votes {V1, . . . , Vn} for all agents. Now
how do we combine the different votes of the agents in the committee to form
a “social result”? A natural method is to choose the ranking that agrees with
the majority of agents’ votes. Formally, we say that candidates a, b in vote Vi

are consistent with rank R if a � b in Vi and a � b in R. Let I(Vi, R | a, b) be
an indicator function that equals 1 if a, b in vote Vi are consistent with R. We
make the following definition.



Definition 1 Given agents’ votes V = {V1, . . . , Vn}, we say that relation R is
a Pairwise Plurality relation over C if for any a, b ∈ C, it is the case that a � b
in Vi if and only if

∑
Vi∈V I(Vi, R | a, b) ≥ n

2 .

For example, suppose that V1 is e � d � h � t; V2 is e � t � d � h; V3 is
h � t � d � e. The chosen relation R will satisfy the following condition:

R = {e � d, d � h, e � h, e � t, t � d, h � t} (1)

To see this, consider that for both votes V1 and V2, it holds that

e � d, d � h, e � h, e � t

This is because both agents 1 and 2 prefer education to defense, defense to
health, education to health, and education to transportation. Similarly, for both
V2 and V3, it holds that t � d, and for both V1 and V3 it holds that h � t.

We have shown how to combine the votes of the committee members into a
single relation R. For R to form a valid ranking, it has to define a total ordering
over C. However, using pairwise plurality to produce a chosen ranking may not
result in a total ordering. In fact, Arrow [10] has shown that there does not
exist a reasonable voting rule that generates a ranking over candidates and is
guaranteed to produce a unique order. To see this, consider that a relation defines
a total order if it is transitive, anti-symmetric and total. In our example, it is
easy to see that the R is anti-symmetric (it is not the case that a � b and
b � a) and total (all candidate pairs are either accepted or not accepted by R).
However, R is not transitive. For example, we have that d � h and h � t, but it
is not the case that d � t.

To be able to generate a total order over C while using the pairwise plurality
rule, we need to transform R to a transitive relation over the candidates C. To
this end, we make the following definition: A pair reversal of a � b in R modifies
R such that b � a holds, but not a � b. We make the following Lemma.

Lemma 1 Any pairwise plurality consistent relation R can be transformed to a
total ordering over C by a process of pair reversals.

We can now make the following definition:

Definition 2 Let R be the pairwise plurality ranking over C. Let the chosen
ranking R∗(V ) be the ranking that transforms R to a total ordering using the
minimal number of pair reversals.

For example, by performing a single pair reversal in the relation from d � h to
h � d to achieve the following total ranking of the candidates given participants’
votes:

R∗(V ) = {e � h � t � d} (2)

This process aligns with the Kemeny Young method [11] commonly used in
economics.



We now specify a scoring function which will be used to measure the distance
between the chosen ranking and each of the individual preferences. An agent i
receives one point for each candidate pair in its preferences that is consistent with
the chosen ranking. Formally, the score of i, denoted sci is defined as follows:

sc(Fi, V ) =
∑

a,b∈C

I(Fi, R
∗(V ) | a, b) (3)

Suppose that the preferred ranking Fi of agent i is e � d � h � t and the
chosen ranking R∗ is e � h � t � d. There are four candidate pairs in Vi that
are consistent with R∗, namely e � d; e � h; e � t;h � t. Thus, the score of
agent i is 4 points.

3.1 Voting Strategies

Given that the chosen ranking combines agents’ votes, and their scores depend
on the extent to which the chosen ranking reflects their preference, how should
agents vote in order to maximize their scores? The most obvious way to vote is
is according to each agent’s preferences.

A vote Vi is said to be truthful if Vi = Fi. In this case the agent votes
according to its preferences. In our example, if all members vote truthfully, then
V = (V1, V2, V3) and the chosen ranking R∗(V ) will be e � h � t � d. In this
case, agent 1 will incur a score of 4, agent 2 will incur a score of 4, and agent
3 will incur a score of 3. However, agents may be able to do better when they
vote strategically. For example, if V1 is d � e � h � t, and both agents 2 and
3 vote truthfully (V2 = F2, V3 = F3) then the chosen ranking R∗(V ) will be
d � e � h � t which will give agent 1 a score of 5. This score is higher than its
score for voting truthfully given that agents 2 and 3 vote truthfully. The following
definitions formalize this intuition by describing strategic voting patterns.

Let p(Vi) denote the probability that agent i submits vote Vi. Let V−i denote a
voting profile of all agents other than i. Assuming agents’ votes are independent,
let p(V ) = p(V1) · p(V2) · · · p(Vn) denote the joint probability that agents submits
the voting profile V . The best response vote of agent i, denoted BRi, is defined
as the vote that maximizes the score of i given a probability distribution p(V−i)
over the votes of the other agents. Formally, we write

BRi ∈ argmaxVi⊂C×C
∑
V−i

p(V−i) · sc(Fi, V ) (4)

where V = (V−i, Vi).
The Level-0 vote of i, denoted L0i, is defined to be the best response of i

given that all other agents are believed to vote truthfully, that is, for any agent
j 6= i, we have that p(Vj) = 1 if Vj = Fj ; otherwise, p(Vj) = 0. For example, the
level-0 vote of agent 1, given that it believes that agent 2 and 3 vote truthfully, is
d � e � h � t, as stated above. The level-0 vote of agent 2 is t � e � d � h. The
Level-1 vote of i, denoted L1i, is defined to be the best response of i given that



all other agents are believed to be level 0 voters, that is, p(Vj) = 1 if Vj = L0j .
For example, the level-1 vote for agent 3, given that it believes that agents 1 and
2 submit level-0 votes, is h � d � t � e.

A profile of rankings V is Nash equilibrium if the following holds for every
agent i

∀V ′i ⊂ C × C it holds that sc(Fi, V ) ≥ sc(Fi, (V−i, V
′
i )) (5)

In our example, the profile by which agent 1 submits a truthful vote (e � d �
h � t), agent 2 submits a level-0 vote (t � e � d � h), and agent 3 submits a
truthful vote (h � t � d � e) is Nash equilibrium in which the chosen ranking
R∗(V ) is t � e � d � h. This profile incurs a score of three points for agent 1,
five points for agent 2 and two points for agent 3.

4 The Budget Allocation Game

To study people’s voting behavior we designed a budget allocation game in
which n agents vote to allocate a budget among C categories. Each agent is
assigned a ranking that represents its preference over the four categories and this
information is common knowledge among all agents. The game comprises a finite
number of rounds. In each round, all agents simultaneously submit a ranking
V = (V1, . . . , Vn) over the categories. The chosen ranking R∗(V ) is computed
using Definition 2, and each agent’s score is computed using Equation 3. Agents’
votes, the chosen ranking, and their scores are made visible to agents at the end
of each round. Agents’ preferences remain constant across rounds.

We implemented a version of the budget allocation game in which there are
three players and four categories: education, transportation, health and defense.
A snapshot of the main game board is shown in Figure 1 from the point of view
of Player 1. The board shows the preferences of the three players in the game, as
well as an editable ranking that player can modify and submit as its vote. The
bottom panel of the Figure shows the result of one of the rounds in the game,
specifying the votes for all players.

4.1 Rules of the Game

The budget allocation game is played repeatedly for five rounds. Participants si-
multaneously submit their preferences at each round. The default vote for each
participant in the first round is simply their true vote. The default vote for
each consecutive rounds is the ranking that the player submitted in the previous
round. The default vote is selected for a round if the participant has not submit-
ted a ranking after a three minute deadline. After all participants have submitted
their rankings, the chosen ranking and scores are computed as explained above,
and displayed to all of the participants. The assigned preferences of the partici-
pants are constant and do not change from round to round. The bottom panel
of Figure 1 shows the resulting ranking when all participants vote according to
their true preferences. As shown by the Figure, the resulting ranking R∗(V ) is
e � h � t � d. Lastly. to help people reason about their decisions in the game,



Fig. 1. Snapshots of the Budget Allocation Game: The main voting panel (top); an-
nouncement of participants’ vote, the chosen ranking, and obtained score (bottom)

we designed a decision support tool that allows people to query the scores for
different voting strategies for themselves and other players in the game.

There are several advantages to using this game to study human and com-
putational voting strategies. First, it includes the minimal number of candidates
such that players have incentive to vote strategically. (In fact, it can be shown
that voting truthfully is the optimal strategy for voters in the case that there are
three candidates.) Second, it provides an analogy to voting scenarios in the real
world such as ranking applicants for positions in academia or industry and de-
ciding on the allocation of resources in political committees. Third, the fact that
players vote repeatedly allows them to adapt their voting behavior over time,
and reflects settings such as annual budget decisions and recurring elections.

4.2 Preference Profiles

As described above, players’ scores for each round of voting depend on the extent
to which the chosen ranking agrees with their preferred ranking that is assigned
to them at the onset of the interactions. In real world voting scenarios, some
participants may be in better positions than others to affect the voting outcome.
In the budget allocation game, we can define different power conditions between
committee participants by varying their assigned preference profile. We used two
preference profiles in the study that differed in the extent to which they allowed
players to affect the voting result by deviating from their truthful vote.



In the first profile, called “symmetric”, the preferences of player 1 were e �
d � h � t; the preferences of player 2 were e � t � d � h; the preferences
of player 3 were h � t � d � e. These preferences are shown in the the main
game board in Figure 1. This profile provides a symmetric outcome for players
1 and 2. If all players vote truthfully (we call this the “naive” voting baseline),
player 3 is at a disadvantage, because the chosen ranking will be e � h � t � d,
incurring a score of 4, 4, and 3 for players 1, 2 and 3, respectively. Moreover,
the naive voting baseline is not stable, in the sense that at least one player can
improve its score by voting strategically. Specifically, player 1 can improve its
score by voting its level-0 strategy of d � e � h � t, given that other players
vote truthfully. In this case, the scores will be 5, 4 and 3 for players 1, 2 and
3, respectively. In a similar way, player 2 can improve its score over the naive
baseline by voting its level-0 strategy of t � e � d � h, given that the other
players vote truthfully. In this case, the scores will be 4, 5 and 3 for players 1,
2 and 3, respectively. In fact, this voting profile in which player 2 deviates from
its truthful vote, while player 1 and player 3 vote truthfully, is one of the Nash
Equilibrium for this preference profile.

Player 3 is at a further disadvantage because there is no level-0 strategy
that can improve its score over the baseline when other players are truthful.
However, player 3 can improve its score when other players vote strategically.
Specifically, when players 1 and 2 vote their level-0 strategy of d � e � h � t
and t � e � d � h then player 3 can improve its score over the baseline by voting
its level-1 strategy of h � d � t � e, incurring a score of 5, 4, and 4 points for
players 1, 2 and 3, respectively.

In the second profile, called “non-symmetric”, the preferences of player 1 were
e � d � t � h; the preferences of player 2 were d � h � e � t; the preferences
of player 3 were t � h � e � d. If all participants vote truthfully, the chosen
ranking will be e � d � t � h. In this case the scores will be 6, 3, and 2 for
players 1, 2 and 3 respectively, putting player 1 in a significant advantage relative
to the other participants. If player 2 votes its level-0 strategy of d � h � t � e,
given that the other players vote truthfully, then players 2 and 3 will improve
their score and player 1 will lose its advantage. In this case the chosen ranking
will be d � t � h � e, and the scores will be 3, 4 and 3 for players 1, 2 and 3
respectively. This is also one of the Nash equilibrium for this game.

5 Empirical Methodology

We recruited 335 human subjects from the U.S. using Amazon Mechanical Turk.
All participants were provided with an identical tutorial of how to play the
budget allocation game, and their participation in the study was contingent on
passing a quiz which tested their knowledge of the rules of the game. Participants
were paid in a manner that was consistent with their performance, measured by
aggregating their scores over 5 voting rounds.

The subjects were randomly divided into three different groups. The first
group consisted of people playing the budget allocation game with other people.



Another group consisted of two people playing the game with another com-
puter agent. The third group consisted of one person playing the game with
two other computer agents. Each subject played five rounds of the game. In
each group, there were between 13-17 games played, making for 65-85 rounds.
We ran separate studies for both the symmetric and non-symmetric preference
profiles described in Section 4.2.

We now describe the strategies used by two different computer agents that
played the budget allocation game with other people. Let V t

i denote the vote of
player i at round t. The truthful (TR) agent ranked the candidates according
to its preferences, that is, at each round t, agent i submits a vote V t

i such that
V t
i = Pi. The Previous Round Best Response (PRBR) agent used the best-

response vote of Equation 4 to rank the candidates, under the assumption that
all other players repeat their vote in the previous round. Formally, at each round
t, agent i submits a vote V t

i such that V t
i = BRi where for any player j 6= i, we

have that p(V t
j ) = 1 if V t

j = V t−1
j and 0 otherwise.

6 Results

We hypothesized that (1) people’s strategies will become more complex over
time (involve less truthful strategies, and more best-response strategies as de-
fined above); (2) that computational strategies using strategic reasoning (such
as the PRBR agent) would be more successful when playing against people than
computer agents that vote truthfully. All reported results in the upcoming sec-
tion are significant in the p < 0.05 range using Analysis of Variance (ANOVA)
tests.

6.1 Analysis of Human Behavior

We first present an analysis of people’s behavior in the game. People’s voting
strategies were highly erratic. Out of 80 rounds of the budget allocation game
that were played by three people, 64 rounds represented unique votes that ap-
peared only once. In general, people’s strategy significantly deviated from the
Nash equilibrium voting strategy. For example, there were only 7 out of 80 rounds
played in the 3-person group configuration in which a Nash equilibrium strategy
was played, which is not significantly different than random.

We measured the change in the number of “naive” votes (votes that are
truthful and consistent with participants’ preferences) and best-response votes
(votes that are a best-response to the votes of the other participants in the
previous round). Figure 2 shows the difference in the average number of naive
and best-response votes for each role between rounds 4-5 and rounds 1-2 for
games that included three people or two people and one computer agent.

As shown in the Figure, there was a drop in the number of naive votes for all
players between earlier and later rounds in the game, confirming our hypothesis.
In addition, the figure also shows an increase in the number of best-response votes
between earlier and later rounds in the game. We conjecture that the reason for



Fig. 2. Difference in Naive and Best-Response votes between earlier and later rounds
in the game for symmetric (top) and non-symmetric preference profiles (bottom)

this discrepancy is that participants learned to make more sophisticated voting
strategies. However, there was no significant increase in people’s scores as rounds
progress. This aligns with past results in behavior economics studying complex
aggregation rules [9]. Interestingly, (and not shown by the Figure) there was
no increase in the number of best-response votes for people playing the role of
Player 3 in the symmetric preference profile. We attribute this to the inherent
disadvantage of this role in the game, in that it has a limited number of voting
strategies that can improve its score in the game, as we described in Section 4.2.
As shown in the bottom panel of the Figure, a similar pattern was also apparent
for the non-symmetric preference profile.

6.2 Analysis of Performance

We now compare the performance of computer agents and people in groups
comprising two other people (that is, each game included a person or a computer
agent voting with two other people). Figure 3 shows the average performance
of people and agents across all roles in the game for both preference profiles.
As shown in the figure, the PRBR agent was able to outperform the TR agent,
and both PRBR and TR agents were able to outperform people. Next, Figure 4



Fig. 3. Performance of computer agents and people in groups that include two other
people for symmetric (left) and non-symmetric (right) preferences.

shows the performance of computer agents and people in groups comprising two
other agents (that is, each game included a person or computer agent voting with
two other agents). As shown by the Figure, the PRBR agent also outperformed
people and the TR agent in this additional group configuration, demonstrating
that the best-response strategy was independent of the group structure.

The PRBR agent also outperformed people and the TR agent in groups
comprising another person and computer agent (that is, each game included a
person or a computer agent interacting with another person and a computer
agent). Figure 4 shows the average performance of people and agents across all
roles in the game for both preference profiles. This result demonstrates that the
best-response strategy was independent of the group structure. Interestingly, the
TR agent was able to outperform people in the non-symmetric profile but not
in the symmetric profile. Because of the structure of the non-symmetric profile,
people lost more points from deviating from truthful behavior in this setting, to
the benefit of the TR agent.

To compare performance for different roles, we present Table 1 which com-
pares performance for each role in groups comprising a computer or person in-
teracting with two other people for the symmetric preference profile. As shown

Type Player 1 Player 2 Player 3

People 4.56 3.69 1.28
PRBR 4.87 4.04 2.78

TR 4.33 4.18 2.82
Table 1. Performance for different player roles in the symmetric preference profile

by the Table, in the role of Player 1, the PRBR agent was significantly more suc-
cessful than the TR agent, while the TR agent was significantly more successful
than people in both Player 2 and Player 3 roles. Note that although the TR
agent scored higher than the PRBR agent in both Player 1 and Player 2 roles,



Fig. 4. Performance of computer agents and people in groups that include two other
computer agents for symmetric (top) and non-symmetric (bottom) preferences.

this difference was not significant. The results for the asymmetric preference
profile exhibited a similar pattern.

These results have implications for agent designers, suggesting that a fixed
best-response strategy is sufficient towards enabling agents to perform well in
voting systems in which participants submit full rankings. To show this, we
provide a post-hoc analysis of the benefit of using the PRBR strategy given the
observed behavior of people in the game for both preference profiles. Figure 5
shows the number of times where using the PRBR strategy would provide a
positive or negative gain to player given people’s actual behavior in the game.
As shown by the Figure, using the PRBR strategy was beneficial in the vast
majority of cases, despite the fact that people do not actually repeat their vote
from the previous round.

7 Conclusion

This paper described a first study comparing people’s voting strategies to that
of computer agents in heterogeneous human-computer committees. In our set-
ting participants vote by simultaneously submitting a ranking over the set of



Fig. 5. Measuring the benefit of Previous-Round-Best-Response (PRBR) strategy for
symmetric (top) and non-symmetric (bottom) preference

candidates and the election system uses a plurality rule to select a ranking that
minimizes disagreements with participants’ votes. Our results show that over
time, people learned to deviate from truthful voting strategies, and use more
sophisticated voting strategies. A computer agent using a best response voting
strategy to people’s actions in the previous round was able to outperform people
in the game. In future work, we intend to design computer agents that adapt to
people’s play in settings of incomplete information.
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