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Abstract

Creating agents that proficiently interact with people is critical for many applications. Towards

creating these agents, models are needed that effectively predict people’s decisions in a variety of

problems. To date, two approaches have been suggested to generally describe people’s decision

behavior. One approach creates a-priori predictions about people’s behavior, either based on

theoretical rational behavior or based on psychological models, including bounded rationality. A

second type of approach focuses on creating models based exclusively on observations of people’s

behavior. At the forefront of these types of methods are various machine learning algorithms.

This paper explores how these two approaches can be compared and combined in different types

of domains. In relatively simple domains, both psychological models and machine learning yield

clear prediction models with nearly identical results. In more complex domains, the exact action

predicted by psychological models is not even clear, and machine learning models are even less

accurate. Nonetheless, we present a novel approach of creating hybrid methods that incorporate

features from psychological models in conjunction with machine learning in order to create

significantly improved models for predicting people’s decisions. To demonstrate these claims, we

present an overview of previous and new results, taken from representative domains ranging from

a relatively simple optimization problem and complex domains such as negotiation and

coordination without communication.
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Combining Psychological Models with Machine Learning to Better

Predict People’s Decisions

Introduction

The challenge of predicting people’s decisions is of utmost importance for many economists,

psychologists and artificial intelligence researchers (Chalamish, Sarne, & Kraus, 2008; Gigerenzer

& Goldstein, 1996; Manisterski, Lin, & Kraus, 2008). Within the field of economics and

psychology, validly encapsulating human decision-making is critical for predicting the short and

long term effects of a given policy (Neumann & Morgenstern, 1944; Selten, 1998; Kahneman &

Tversky, 1979). To computer scientists, accurately predicting people’s actions is critical for mixed

human-computer systems such as entertainment domains (Maes, 1995), Interactive Tutoring

Systems (Murakami, Sugimoto, & Ishida, 2005), adversarial interactions (Cheng, Zuckerman,

Nau, & Golbeck, 2011) and mixed human-agent trading environments (Manisterski et al., 2008).

Within these and similar domains, creating agents that effectively understand and/or simulate

people’s logic is particularly important (Chalamish et al., 2008).

To date, two approaches have been proposed for predicting people’s decisions by social and

behavioral scientists. One classic approach, often advocated by economists, has modeled people’s

behavior based on classic decision theory. This direction, originally proposed by Von Neumann

and Morgenstern (Neumann & Morgenstern, 1944), assumes that people’s decisions can be

modeled mathematically and rationally based on expected utility. Even when people are faced

with uncertainty, these models assume that people will adhere to strict mathematical formulas

based on the probability that each event will occur. Game theory follows this approach, and

equilibrium strategies such as the Nash equilibrium (Nash, 1951) apply an expected utility to

situations where two or more people interact in order to predict their decisions. These solution

concepts have proven effective in some applications (Neumann & Morgenstern, 1944; Russell &

Norvig, 2003). However, research into people’s decisions has shown that people do not necessarily
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always adhere to these rigid models (Gigerenzer & Goldstein, 1996; Selten, 1998; Kahneman &

Tversky, 1979).

A second class of approaches, often advocated by psychologists and experimental

economists, builds cognitive models based on people’s subjective perception of a problem. These

approaches posit that theoretical outcomes are less important, and models must instead be

constructed based on modeling people’s observed behavior. Examples of this direction include

Kahneman and Tversky’s Prospect Theory (Kahneman & Tversky, 1979), which models how

people deviate from expected utility when faced with risk, and Gigerenzer and Goldstein’s fast

and frugal heuristics (Gigerenzer & Goldstein, 1996), which assume that people use simplistic

heuristics to guide their decisions. Models of bounded rationality lie within this group, as they

posit that people search for non-optimal alternatives to fulfill their goals. Simon coined the term

“satisfies” to capture that bounded decision makers seek solutions that are “good enough” and

not optimal ones (Simon, 1957). We considered one such theory, Selten’s Aspiration Adaptation

Theory (Selten, 1998), whereby people make decisions by attempting to satisfy only one goal

variable at a time, called their “aspiration”.

In contrast to these cognitive models, computer scientists often model peoples’ decisions

through machine learning techniques (Mitchell, 1997). These models are based on statistical

methods such as Bayes’ Rule, Neural Networks or Decision Tree algorithms, and are exclusively

built on observed decisions instead of general predictions about peoples’ behavior. As a result,

these models do not make any claims for their general applicability as they were created

exclusively based on observations in a specific setting.

The key contribution of this paper is an exploration of how one can combine the cognitive

decision making approaches proposed by social scientists with machine learning

approaches. At times, and as we demonstrate in this paper, sufficient data exists to confirm

various behavior models. In these types of cases, decision tree models can be constructed to

demonstrate the typical decision model of people within a given domain. This result is

particularly significant if several behavior models are theoretically possible– allowing us to



Combining Psychological Models with Machine Learning 5

confirm without bias which behavior model is best.

Other times, multiple cognitive models are available, but insufficient data exists to allow

machine learning to form a complete cognitive model on its own. However, in these types of

domains, sufficient data does exist to help fine-tune parameters within a relevant cognitive model.

Often this process can be completely automated with recognized mathematical packages or

through accepted machine learning algorithms (Azaria, Rabinovich, Kraus, Goldman, &

Tsimhoni, 2012; Ratcliff & Smith, 2004; Nilsson, Rieskamp, & Wagenmakers, 2011). For example,

within computer science Azaria et. al used machine learning to fit parameters within a path

selection model. Within psychology and behaviorial economics, Ratcliff and Smith used the

Simplex algorithm to fit parameters within a 2-choice decision model (Ratcliff & Smith, 2004) and

Nilsson et. al contrasted how Bayesian and maximum likelihood approaches could be used to set

parameters within prospect theory (Nilsson et al., 2011).

However, these approaches (Azaria et al., 2012; Ratcliff & Smith, 2004; Nilsson et al., 2011)

are not appropriate for domains that are simply too complex to understand which behavior model

should be applied or how parameters within a given model can be tuned. These domains suffer

from a phenomenon often known as the “curse of dimensionality” (Evangelista, Embrechts, &

Szymanski, 2006; Bengio, Delalleau, & Roux, 2005). The curse of dimensionality is, unfortunately,

particularly evident in many real-world situations, as people can potentially act within a very

large set of actions (a high dimension of possible actions), and they often do not consistently

choose the same actions. Even with sophisticated mathematical algorithms or through using

accepted machine learning procedures, people’s behavior within these domains cannot be easily

quantified because the possible range of actions that a person might take is too large and the data

given to learn a person’s behavior is insufficient given this level of complexity. Particularly in

these types of domains, novel approaches are necessary to accurate predict people’s behavior.

To address this challenge, and a key contribution of this paper, is an exploration of the idea

that one can combine the cognitive decision-making approaches proposed by social scientists

with classic machine learning approaches, as a way of creating improved prediction models of
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people’s behavior. Specifically, we demonstrate that there are cases in which hybrid models

that combine machine learning with a cognitive theory can be more successful than any of its

individual parts. Moreover, we found that the advantage of using a hybrid model increases with

the complexity of the underlying prediction task.

To demonstrate the results, we present an overview of previous and new results considering

two different psychological models: Aspiration Adaptation Theory (Selten, 1998) and Focal Points

Theory (Schelling, 1963). Specifically, in the second section we show that the Aspiration

Adaptation Theory proved to be the best predictor in a relatively simple optimization problem,

and that machine learning methods demonstrated without bias that the AAT model was most

appropriate, even though alternate cognitive models were possible. We also demonstrate that

adding AAT features into a machine learning model significantly increased the prediction

accuracy of people’s bids within a complex negotiation domain. In the third section we present

the Focal Points Theory that describes a low-level cognitive ability to pick prominent solutions in

the absence of communication. We found that adding information from this model significantly

increased the accuracy of a machine learning based prediction model in problems where people

had to coordinate without communication.

Aspiration Adaptation Theory

Aspiration Adaptation Theory (AAT) was proposed by Selten as a general economic model

that describes how people make certain economic decisions without any need for expected utility

(Selten, 1998). AAT was originally formulated to model how people make decisions where utility

functions cannot be constructed. For example, assume you need to relocate and choose a new

house in which to live. There are many factors that you need to consider, such as the price of

each possible house, the distance from your work, the neighborhood and neighbors and the

schools in the area. How do you decide which house to buy? While in theory utility based models

could be used, many of us do not create rigid formulas involving numerical values to weigh

trade-offs between each of these search parameters.

AAT provides an alternative to utility theory for how decisions can be made in this and
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other problems. First, m goal variables are sorted in order of priority, or their urgency.

Accordingly, the order of G1, . . . , Gm refers to goal urgency, or the priority by which a solution

for the goal variables is attempted. Each of the goal variables has a desired value, or its aspiration

level, that the agent sets for the current period. This desired value is not necessarily the optimal

one, and the agent may consider the variable “solved” even if it finds a sub-optimal yet sufficiently

desired value. The agent’s search starts with an initial aspiration level and is governed by its local

procedural preferences. The local procedural preferences prescribe which aspiration level is most

urgently adapted upward if possible, the second most desired aspiration, etc. and which partial

aspiration level is retreated from or adapted downward if the current aspiration level is not

feasible. Here, all variables except for the goal variable being addressed are assigned values based

on ceteris paribus (given all other goals being equal, a better value is preferred to a worse one).

We studied what decision models, AAT or others, were used to solve two types of problems

– a relatively simple optimization problem and a complex negotiation problem. In the first

optimization problem, we consider a problem where a person must minimize the price in buying a

commodity (a television) given the following constraints: Assume a person must personally visit

stores in order to observe the posted price of the commodity. However, some cost exists from

visiting additional stores. For any given discrete time period, the person must decide if she wishes

to terminate the search without incurring an additional cost. Full details of our implementation

can be found in our previously published work (Rosenfeld & Kraus, 2009, 2011).

In addition to AAT, other strategies, bounded and strictly rational, were possible here. A

clear optimal strategy existed within the implementation of the commodity search domain. In the

settings with which we experimented, the specific strategy was to buy the commodity if the price

in the current store is less than 789. Thus, classical expected utility theory would predict that

people would similarly buy the commodity at this price. We also recognize that AAT is not the

only possible option of a bounded model within this domain. Following Gigerenzer and

Goldstein’s fast and frugal heuristics (Gigerenzer & Goldstein, 1996), we would expect people to

formulate simple strategies involving only one variable (e.g. search until price < X, or visit Y
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stores and buy in the cheapest store). However, using an AAT-based model for prediction would

assume that some type of combination strategy exists where one variable is first searched for but

then retreated from, assuming that value could not be satisfied. For example, a person might

initially search for a price less than 650, but will settle on an even a higher price (e.g. the lowest

found so far) after unsuccessfully finding this price after searching 5 stores. In fact, our previous

work did find that people typically used these AAT strategies instead of optimal or fast and

frugal heuristics (Rosenfeld & Kraus, 2009).

We also analyzed a previously presented negotiation domain (Lin, Kraus, Wilkenfeld, &

Barry, 2008). We consider a negotiation session that takes place after a successful job interview

between an employer and a job candidate. In this session both sides wish to formalize the hiring

terms and conditions of the applicant: her Salary, Job Description, Car Benefits, Pension

benefits and Working hours. In the problem setting considered, each side could pick from a

list of possible values for each of the parameters. For example, the employee might ask for a

salary of 20,000 per month, with the job title of Project Manager, with a car, pension benefits

and an 8-hour work day, while the employer might counter with the same offer, but a salary of

only 12,000 per month and without the pension benefits. The goal of this study is to accurately

predict what each side would offer. Here again, equilibrium strategies were possible based on

strictly rational behavior. Following Gigerenzer and Goldstein’s model of fast and frugal

heuristics, we would have expected that simple compromise heuristics could be used. Possibilities

of such heuristics include always countering the middle position between the previous offer of

both sides or offering the middle position between all previous offers of both sides. Nonetheless,

our overall finding was that people create aspiration-based strategies where they negotiate for

specific issues in a specific order. For example, we found that negotiations first focused on the

salary parameter and only then moved on to other parameters such as pension or car benefits. We

found that adding these aspirations explicitly as a parameter for the machine learning models to

consider helped to significantly improve the accuracy in predicting people’s offers.
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Focal Points Theory

Focal Points were introduced by Schelling (Schelling, 1963) as a prominent subset of

solutions for tacit coordination games, which are coordination games where communication is not

possible. In such games (also known as matching games in game theory terminology) the players

only have to agree on a possible solution, regardless of the solution itself. In other words, they

receive a reward for selecting the same solution, regardless of the solution. When their solutions

differ, both players lose and do not get any reward. A solution is said to be “focal” (also

“salient”, or “prominent”) when, despite similarity among many solutions, the players somehow

converge to this solution.

A classic example of Focal Points coordination is the solution most people choose when

asked to divide $100 into two piles, of any size; they should attempt only to match the unseen

player’s choice. More than 75% of the subjects in Schelling’s experiments created two piles of $50

each; that solution is what Schelling dubbed a Focal Point. Here again, other behavioral models

are possible – using equilibrium strategies would result in a random selection among the 101

possible divisions, as the probability distribution is uniform.

Several attempts have been made to formalize Focal Points from a game theoretic, human

interaction point of view ((Janssen, 1998) provides a good overview). However, that research does

not provide the practical tools necessary for predicting people’s actions. In a meta-analysis of

previous Focal Points experiments we developed some general properties that “focalize” an

answer: (1) Centrality, (2) Extremeness, (3) Firstness and (4) Singularity. For further details and

examples of these rules, we encourage the reader to refer to our previous work (Zuckerman,

Kraus, & Rosenschein, 2011).

The task of learning which of these properties will be used by people is far from trivial due

to the large number of possibilities, resulting in the “curse of dimensionality”. To overcome this

difficulty, we present a Focal Points Learning approach which combines this psychological

approach and machine learning. This approach is created by preprocessing raw domain data and

then placing it into a new representation space based on the Focal Points properties. Specifically,
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we take every game instance of the domain encoded in the most naive raw encoding (called the

original feature space) and we apply a transformation to a new feature space that includes Focal

Points information.

We designed a simple and intuitive tacit coordination game that represents a simplified

version of a domain where an agent and a human partner need to agree on a possible meeting

place. The game, coined “Pick the Pile” is played on a 5-by-5 square grid. Each square of the grid

can either be empty or can contain either a pile of money or the game agents. Each square on the

game board is white, yellow or red. The players were instructed to pick the pile of money from

the three identical piles which most other players, playing exactly the same game, would pick.

Experimental Results

In this section we present an overview of previous and new results that demonstrate when

and how machine learning techniques can benefit from behavioral theories. In general, we found

that in the relatively simple optimization problem, strictly rational, AAT models and machine

learning converged on nearly identical results. In the more complicated negotiation domain,

adding information about people’s aspirations increased the predictive accuracy of models built

based upon machine learning. Strictly rational models performed far worse. In an even more

complex coordination without communication domain, Focal Points information again improved

the accuracy of a model based upon machine learning models. Strictly rational models and

models built upon Focal Points without machine learning performed far worse.

Results from an Optimization Problem

In the first task, a relatively simple optimization problem, we wished to predict if a person

would stop their commodity search in any given store. In this domain an optimal search strategy

exists, namely that in the specific settings that we considered, the person should stop the search

in the first store with a price less than 789. Note that this solution can be mathematically

calculated and does not require any input from observed behavior. At the other extreme, we can

create a prediction model based exclusively on machine learning techniques. Previously we used
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decision trees to create this model. The advantage to specifically using this type of model lies in

the output – we can check if the decision tree’s decision model is consistent with the optimal

solution or with other bounded models. We considered two such bounded models: simple

heuristics and AAT. Based on the fast and frugal approach, we would expect people to use a

simple decision-making process. Specifically, we assume that they would stop their search based

on only one parameter, such as the number of stores visited to date, or the price of the

commodity in any given store. This could be considered a classic example of the fast and frugal

take-the-best heuristic (Gigerenzer & Goldstein, 1996). According to AAT we would expect to see

more complicated strategies with multiple parameters and some type of ordering and retreat

between them. Our previous work (Rosenfeld & Kraus, 2011) did in fact find that the decision

trees’ output was consistent with AAT strategies as people would typically immediately buy the

commodity if its price was below a certain threshold, but would settle on a higher price after

visiting a certain number of stores.

In this paper, we focus on when and how we can combine various decision theories in order

to better predict people’s decisions. In this domain, this included comparing the following models:

1. An optimal model based on expected utility – e.g. people buy only if the price is less than 789.

2. A machine learning model based on observed decisions. 3. A combination model. In this

problem, the combination model involved adding information about the average price where

people stopped their search, and the average number of stores after which they were willing to

settle on a more expensive commodity. Note that here, as well as in all of the domains we

consider, this hybrid approach assumes that we have some general information about a given

population.

For this domain, we found that adding general information about people’s aspirations was

useful, but only slightly. Table 1 presents the accuracy of different models in predicting when 41

people stopped their commodity search. Each of these people was presented with a simulation of

the commodity search domain and ran at least 25 trials each ending in their buying the

commodity, logging a total of nearly 5000 instances where these people either decided to buy the
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commodity or to continue their search. The first column of Table 1 presents a baseline Naive

model that classifies all decisions based on the majority class, here assuming that people will

always continue the search. In the second column, we present the predictive ability of the optimal

model. Column 3 presents the results from the machine learning method which performed

similarly to the optimal model with 82.67% accuracy. Adding information from people’s

aspirations did help, but only slightly, with 83.45% accuracy achieved through knowing the

average values of these people’s aspirations. Note that this value serves as an upper baseline, as

we collected this aspiration data from the same population being evaluated. A more realistic

aspiration model is the Sparse AAT model which used only 50 randomly selected decisions to help

model peoples’ decisions (or less than 1% of the total logged data). Nonetheless, even this model

did slightly outperform both the optimal and based machine learning methods with 83%

accuracy. This result is even more striking when you consider that machine learning models were

validated through cross-validation of 90% of the data used for training the model, while this

sparse model used less than 1% of the data. Thus, we conclude that in this relatively basic

domain, differences between the predictive abilities of the different models was not large.

Nonetheless, a slight improvement in prediction accuracy was obtained through limited

information about people’s aspirations.

AAT in a Negotiation Domain

According to AAT, one would expect people to rank the importance of each of the

negotiation parameters according to his or her individual aspiration scale. Assuming people often

have the same aspiration scales, we would also see an order where issues are addressed, e.g.

certain parameters are typically negotiated first, second, etc. Our premise is that as the

negotiation domain is more complex than the optimization problem, one should add people’s

aspiration information into traditional models such as a decision tree model to more accurately

predict what bids people will offer.

To test this hypothesis, we proceeded to study what gain, if any, did adding AAT

information have in predicting how people will negotiate. In the problem we considered, the
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parameters to be negotiated could have between 2 and 4 discrete values. In order to study this

point we considered several models for the negotiation problem (see Table 3). The goal of all of

these models was to predict the next value for each parameter. First, we considered the

Majority Rule model. Given the full log file, this rule assumes that a person would offer the

most popular value for any given parameter. For example, in the employer / employee domain,

the most popular title was “Programmer”. Second, we implemented two models based on the

equilibrium strategy. These strategies are based on previous work in these problems (Lin et

al., 2008). However, as the equilibrium strategy depends on which person is allowed to offer the

last bid, we checked both in order to know which equilibrium strategies would best predict all

parameters. Next, we created a baseline strategy that uses a decision tree (D.T.) algorithm

(C4.5) to predict the next offer for each parameter. This model used historical information about

the previous offer and the current negotiation iteration. Next, we created a D.T. with AAT

statistical information prediction model. As we previously demonstrated, each parameter had

different urgencies. Thus, we attempted to create a more accurate model by adding information

about which parameters were typically raised or lowered for any given iteration. Specifically, we

added a field with a binary flag value in order to differentiate between the iterations for which

people typically changed a given parameter’s value with a frequency of ≥ 0.5, and those which

were typically not changed and where additional information likely would not help. This was

done to avoid over-fitting the AAT statistics for any training / testing pair, and thus to retain the

generality of the results. Finally, we created a D.T. + Complete Behavior Knowledge

model. This final baseline had knowledge about what the previous offer was, and also added

perfect knowledge if the person would revise upwards, downwards, or leave unchanged their

previous offer. In cases where only two options exist, one would expect this baseline to guarantee

100% accuracy. However, when more than 3 values exist for a given parameter, even this model

cannot guarantee 100% accuracy. For example, if a previous salary offer was $7,000 per month

and we know that the next offer will be higher, we still do not know if it will be raised to $12,000

or $20,000. Nonetheless, the goal of this model was to provide an upper bound for how much
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AAT-based information could theoretically help.

Table 3 demonstrates the effectiveness of adding AAT information to boost prediction

accuracy. The first row of this table show the parameter to be negotiated and the number of

possible values. The second row presents the majority rule baseline. The third and fourth rows

present how effective the equilibrium policies were in predicting what people actually offered.

Note that both of these policies fall well below the naive majority baseline. This again

demonstrates the ineffectiveness of using equilibrium theoretical policies to predict how people

actually behave. The fifth row presents the accuracy of the learned decision tree model. This

model represents the effectiveness of this traditional learning method in predicting each of the

parameters. We then added AAT information and reran the same decision tree algorithm, the

results of which are in the sixth row. Note that the significant improvement gained from the AAT

information is significant and only one parameter did not gain from the added aspiration

information. In this parameter, few instances existed where people had clear general aspiration

changes, preventing any accuracy boost from this approach. Finally, the last line in the table

presents the accuracy of the decision tree algorithm with complete behavior knowledge, or perfect

information about whether a person will retreat from (decrease) a given parameter value or

upwardly revise its aspiration (increase). Note that, as expected, even complete AAT information

could not yield 100% prediction accuracy for parameters with more than 2 values.

Experimental Results for Focal Points in the Pick the Pile domain

In order to evaluate the effectiveness in using Focal Points information to predict people’s

actions, we collected data using an Internet website which logged approximately 3,000 game

instances. We then compared the correct classification performance of both decision trees (again

the C4.5 algorithm) and FFBP neural network classifiers. The comparison was between a domain

data agent — an agent that was trained only on the raw domain encoding (original domain

without any explicit Focal Points information), a Focal Points agent (FP) — an untrained

agent that used only the Focal Points rules for prediction, weighted uniformly (without running

any machine learning algorithm), and a Focal Points learning agent (FPL) — an agent that
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was trained on the data following the preprocessing stage in which the Focal Points rules were

injected explicitly. “Correct classification” means that the agent made the same choice as that of

the particular human player who played the same game. Obviously the learning problem is

extremely difficult as there is no simple function that can capture the notion that for some games,

different human players can select different choices. We optimized our classifiers’ performance by

varying the network architecture and learning parameters, until we attained the best results. We

used a learning rate of 0.3, momentum rate of 0.2, 1 hidden layer, random initial weights and no

biases of any sort. Before each training procedure, the data set was randomly divided into a test

and a training set. Each instance of those sets contained the game description (either the binary

or Focal Points encoding) and the human answer to it. The classification results using the neural

network and the decision tree algorithms were very close (maximum difference of 3%).

Examining the results in Table 4, we see a significant improvement when using the Focal

Points learning approach to train classifiers, rather than the domain data agent (p < 0.01 in

two-proportion z-tests in all domains). In this domain, the domain data agent is not able to

generalize sufficiently, thus achieving classification rates that are only about 5%–10% higher than

a random guess (which is 33%). Using FPL, the classification rate improved to more than 65%

correct classification. Since even humans do not have 100% success with one another in these

games, FPL is correspondingly the more impressive. The results also show that even the classical

FP agent, which does not employ any learning algorithm, performs better than the domain data

agent, with 48% correct classification. In an additional analysis that was done on the FP agent,

we saw a tendency in which, when facing coordination problems with low focality difference, the

FP agent’s performance deteriorates to that of random guesses.

An additional advantage of using FPL is the reduction in training time (e.g., in the Pick the

Pile domain we saw a reduction from 4 hours on the original data to 3 minutes), due to the

reduction of input size. Moreover, the learning tree that was created using FPL was smaller and

can be easily converted to a rule-based system as part of the agent’s design.
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Discussion and Conclusion

Predicting people’s decisions is an important but complex task. To address this task,

researchers often propose general behavior models such as rationality theory or purely statistical

methods such as machine learning algorithms. However, there often exist specialized cognitive

models or theories that describe various tendencies or biases that are commonly used by the

majority of the people. Such theories include bounded rationality theories, various risk attitudes

and use of heuristics.

This paper addresses how one can take a potentially relevant cognitive theory and use

machine learning methods to help augment it in order to provide added value in predicting

human behavior. We showed how two cognitive theories, Aspiration Adaptation theory and the

Focal Points theory, could be used in conjunction with machine learning algorithms to create an

improved classifier. Possibly equally significant is the result that strictly rational models, and

even many specialized cognitive models, often do not accurately predict people’s decisions.

Our results also show some positive correlation between the complexity of the problem

domain and the improvement in performance when augmenting the cognitive model. To

demonstrate this phenomenon, we present our results, which are found in Table 4. In relatively

simple domains, such as the optimization problem we considered, machine learning methods can

accurately predict people’s behavior given enough training data. In these types of problems,

cognitive models will not help improve the prediction accuracy but they can help predict people’s

behavior with less training data. Additionally, we found that using machine learning models

allowed us to confirm the accuracy of a given cognitive model without human bias, here AAT,

even though other cognitive theories were potentially applicable. In complex problems, the

number of parameters that need to be set within the cognitive model is large and cannot be

readily identified even with large training data sets. Because of the range of possible actions,

these problems suffer from the “curse of dimensionality” where even sophisticated machine

learning approaches and parameter tuning alone will not suffice (Evangelista et al., 2006; Bengio

et al., 2005). In these problems, the novel hybrid approach we present– using machine learning
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algorithms as the base of the solution, but adding features from the cognitive models – creates

significant improvements over both base approaches, often by large amounts.

We believe that the hybrid approaches presented in this paper are successful for the

following reason. At the root of the curse of dimensionality is that the space of possible actions is

too large for mathematical approaches to find an optimal value. Thus, any information that will

help reduce the range of possible values will lead to improved models if this allows the curse of

dimensionality to be removed, allowing machine learning models, or other mathematical

approaches, to produce an accurate model from the data. We believe that this also explains why

hybrid models become increasing important as the complexity of the domain rises. Increased

problem complexity contains higher dimensionality. As problem complexity rises, we found that

traditional approaches to model people’s behavior became increasing less successful in creating an

accurate model. However, once our hybrid models introduce information about how people

behave, and just as importantly, how they won’t behave, they reduce the space in which machine

learning algorithms must search for an accurate behavior model. This in terms transforms the

modeling problem into one the machine learning algorithms could solve, resulting in significantly

more accurate predictions.

As we present a generalized approach for how to combine cognitive theories with machine

learning algorithms, we expect this approach to be generally applicable to a variety of new

domains as well. We have already discovered new examples from the representative categories

within this paper. For example, we found that using a previously developed driving model

(Fancher & Bareket, 1996) was useful in predicting drivers’ preferred settings within their

adaptive cruise control (Rosenfeld et al., 2012). In this domain, sufficient data existed to learn the

drivers’ cognitive model, similarly paralleling the simple optimization problem within this study.

At the other extreme, we have also found additional examples in complex problems where hybrid

models with machine learning and cognitive models have yielded more accurate prediction models

than those based on cognitive models or machine learning alone. Specifically, we also found that a

hybrid Focal Points / machine learning model was more successful in predicting people’s
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preferences in other coordination settings including shape selection and job candidate selection

(Zuckerman et al., 2011). Other researchers have also used machine learning to infer how social

preferences affect different types of people in human-computer negotiation (Gal, Grosz, Kraus,

Pfeffer, & Shieber, 2010). Our hope is that additional researchers will also be successful in

creating many additional applications using the hybrid cognitive model / machine learning

approach described in this paper.
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Table 1

Comparing the Prediction Accuracy between Optimal, Machine Learning and AAT Based Models

Naive Optimal Learning Learning + Complete AAT Sparse AAT

78.56 82.8 82.67 83.45 83
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Table 2

Comparing the Prediction Accuracy between AAT and non-AAT Based Models in the Employer /

Employee Negotiation Domain

Salary-3 Title-4 Car-2 Pension-3 Promotion-2 Hours-3 Average

Majority Rule 60.19 67.59 57.41 70.37 62.96 62.96 63.58

Equilibrium 1 44.44 67.59 69.44 66.67 41.67 67.59 59.57

Equilibrium 2 25.93 17.59 69.44 19.44 43.51 61.11 39.51

D.T. Without AAT 61.11 68.52 68.52 67.59 83.33 69.44 69.75

D.T. with AAT 62.96 68.52 75.93 71.30 91.67 76.85 74.54

D.T. + Complete 95.37 89.81 100 96.28 100 96.30 96.30
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Table 3

Results from “Pick the Pile” domain

Random guess Raw Encoding Only Focal Points Rules Focal Points Learning

33% 40% 48% 65%
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Table 4

Results Summary

Problem Type Cognitive Model Hybrid Type Prediction Improvement

Optimization AAT Parameter Learning Slight / Sparse Improvement

Negotiation AAT Cognitive Features 5%

Pick the Pile Focal Points Cognitive Features 17%


