
To Teach or not to Teach?
Decision Making Under Uncertainty in Ad Hoc Teams

Peter Stone
Department of Computer Science
The University of Texas at Austin

Austin, TX, 78712-0233 USA
pstone@cs.utexas.edu

Sarit Kraus
Department of CS Inst. for Advanced CS
Bar-Ilan University University of Maryland

Ramat Gan, 52900 Israel College Park, MD 20742
sarit@cs.biu.ac.il

ABSTRACT
In typical multiagent teamwork settings, the teammates are
either programmed together, or are otherwise provided with
standard communication languages and coordination proto-
cols. In contrast, this paper presents an ad hoc team set-
ting in which the teammates are not pre-coordinated, yet
still must work together in order to achieve their common
goal(s). We represent a specific instance of this scenario,
in which a teammate has limited action capabilities and a
fixed and known behavior, as a finite-horizon, cooperative k-
armed bandit. In addition to motivating and studying this
novel ad hoc teamwork scenario, the paper contributes to
the k-armed bandits literature by characterizing the condi-
tions under which certain actions are potentially optimal,
and by presenting a polynomial dynamic programming al-
gorithm that solves for the optimal action when the arm
payoffs come from a discrete distribution.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Coherence and coordination, Multiagent systems

General Terms
Algorithms, Performance, Theory

Keywords
Autonomous agents, multiagent systems, coordination

1. INTRODUCTION
The year is 2009 and a robot is built to collect discarded

aluminum cans from an ocean beach for recycling. There are
two beaches in its neighborhood and when it is low tide, the
robot can work at one of the two beaches. After collecting
the cans, it returns to its base where it deposits the cans into
a machine that reports back the number that were collected,
and the robot recharges its batteries. The distance to the
base and recharge time is such that it needs to skip the next
tide cycle. Thus it is able to go to a beach roughly once a
day. Meanwhile, the cans on the beach that it does not go

Cite as: To Teach or not to Teach? Decision Making Under Uncertainty
in Ad Hoc Teams, Peter Stone and Sarit Kraus, Proc. of 9th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2010), van der Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May,
10–14, 2010, Toronto, Canada, pp. XXX-XXX.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

to (and on both beaches when it is recharging) are either
swept out by the high tide or collected by scavengers: the
yield from each trip does not depend on which beach was
most recently visited.

Because the robot developers do not know ahead of time
how popular the beaches will be in any given month, they
program the robot to be adaptive. Under the assumption
that popularity changes on roughly a month-to-month basis,
but holds constant (with some noise) within the month, they
use the following algorithm:
• The robot starts each month by trying each beach once.
• Thereafter, it goes to the beach that has yielded the most

cans per trip on average that month.
This strategy is not optimal: getting a low return from a
beach the first time could lead to that beach never being
tried again that month. But it is reasonable, and works well
enough given that the beaches tend to be roughly equal in
popularity and the value of cans is relatively low. That is,
the cost of being slightly suboptimal is low.

Fast forward now to the year 2015. The robot described
above has been doing its job consistently and robustly for six
years. The ability to reprogram the robot has long been lost
either due to changes in programming languages (think of
the legacy cobol programs at the time of the y2k bug) or a
malfunctioning connector on the robot. But the robot is use-
ful and nobody would think of discarding it. In fact, the cost
of aluminum has gone up significantly, and the community
is no longer willing to let a whole tide cycle go by without
collecting cans from one of the beaches. Furthermore, they
are now more interested in having optimal decisions made
so that every possible piece of aluminum is collected.

You are therefore hired to build a new robot (call it Robot
B) to help out the existing one (Robot A). So that they can
share the recharging station, Robot B will collect cans while
Robot A is recharging and will recharge while Robot A is
collecting. Each robot can observe which beach the other
went to and how many cans it collected. However, since
Robot A was built without any knowledge that there would
be a Robot B, they cannot communicate beyond that.

Furthermore, the world has changed in two additional
ways. First, there is now a third beach in the area that
is more popular than the original two. Robot B is able to go
to any of the three beaches, however Robot A is not aware of
the new one (or is unable to navigate the more rugged ter-
rain to get there). Second, there is now a municipal website
that predicts the average popularity of the three beaches for
a given month. You can equip Robot B with the ability to



check this website, thus informing it as to which beaches are
likely to yield the most cans. However, as already indicated,
you cannot reprogram Robot A to use this website.

If Robot B were acting alone, you could program it always
to go to the beach that the website reports will be busiest (in
this case the new beach). However it could instead provide
more data to Robot A by going to one of the other beaches so
that Robot A can observe how many cans it brings back. As
will be shown below, doing so will sometimes be Robot B ’s
optimal action: it will be better off teaching Robot A rather
than exploiting its knowledge of the most popular beach.

The above fictional setting can be formalized as a finite-
horizon (because the problem resets every month) coopera-
tive k-armed bandit [15] in a way that, to the best of our
knowledge, has never been considered before in the liter-
ature. The formalism can be applied to any multiagent
decision-making setting that shares the essential character-
istics of the scenario described above, and can also be gen-
eralized to a much broader class of scenarios which we refer
to as ad hoc teamwork settings.

In this paper, we characterize the conditions under which
certain actions are potentially optimal in such a finite-horizon,
cooperative k-armed bandit, and we present a dynamic pro-
gramming algorithm that solves for the optimal action when
the payoffs come from a discrete distribution. For Gaussian
distributions we present some theoretical and experimental
results and identify an open problem. While k-armed ban-
dits are often used to study the exploration versus exploita-
tion challenge, nobody has previously considered a multia-
gent cooperative setting in which the agents have different
knowledge states and action capabilities. Thus our formal-
ization is simultaneously a practical method for multiagent
team decision-making, and a novel contribution to the liter-
ature on k-armed bandits.

Additionally, this paper takes an initial step towards the
long-term goal of creating a fully robust ad hoc team player.
We define an ad hoc team setting as one in which multiple
agents with different knowledge and capabilities find them-
selves in a situation such that their goals and utilities are
perfectly aligned, yet they have had no prior opportunity
to coordinate. In addition to the can-collecting example
above, ad hoc teams may arise in disaster rescue settings
where people bring different robots together and they need
to coordinate quickly, or indeed among any robots or soft-
ware agents that have been programmed by different groups
and/or at different times. An agent that is to succeed in
an ad hoc team setting must be prepared to cooperate with
many types of teammates: those that are more mobile and
those that are less mobile; those with better sensing capa-
bilities and those with more limited capabilities; those with
known behaviors and those without. In the long-run, a good
team player will need strategies for dealing with all these
teammate types. In this paper, we use our novel version
of the k-armed bandit formalism to focus on the ability to
cooperate with a class of teammates that are less capable,
have less knowledge, and have fixed and known behavior.

The remainder of the paper is organized as follows. First,
in Section 2, we formalize the situation of study as an in-
stance of a 3-armed bandit problem and specify all of our
assumptions. Then, in Sections 3–5, we present our detailed
analysis, algorithms, and results. Section 6 considers a gen-
eralization to more than 3 arms, Section 7 presents related
work and Section 8 concludes.

2. FORMALISM
The k-armed bandit problem [15] is a much-studied prob-

lem in sequential decision making. The basic setting is as
follows. At each time step, a learning agent selects one of
the k arms to pull. The arm returns a payoff according to a
fixed, but generally unknown, distribution. The agent’s goal
is to maximize the sum of the payoffs it receives over time.
The k-armed bandit is a classic setting for studying the ex-
ploration vs. exploitation problem: at any given time, the
agent could greedily select the arm that has paid off the best
so far, or it could select a different arm in order to gather
more information about its distribution. It is also the basis
for reinforcement learning theory, representing the stateless
action selection problem [19].

In order to study the ad hoc team problem laid out in
Section 1, we extend the standard setting to include two
distinct agents, known as the teacher (Robot B) and the
learner (Robot A), who select arms (choose beaches) alter-
nately, starting with the teacher. We initially consider a
bandit with just three arms such that the teacher is able to
select from any of the three arms, while the learner is only
able to select from among the two arms with the lower ex-
pected payoffs. We consider the fully cooperative case such
that the teacher’s goal is to maximize the expected sum of
the payoffs received by the two agents over time (the teacher
is risk neutral). Specifically, we make the following assump-
tions, all of which align with our can-collecting example:
• The payoff distributions of all arms are fully known to the

teacher, but unknown to the learner.
• The learner can only select from among the two arms with

the lower expected payoffs.
• The results of all actions are fully observable (to both

agents).
• The number of rounds (actions per agent) remaining is

finite and known to the teacher.
• The learner’s behavior is fixed and known: it acts greedily,

always selecting the arm with the highest observed sample
average so far. Any arm that has never been pulled is
assumed to have a sample average of ∞. Thus, the learner
always prefers selecting an arm that has not been selected
previously. If there is more than one such arm, it selects
randomly from among them. This assumption reflects
optimism in the face of uncertainty on the part of the
learner. (optimistic initialization).

The teacher must then decide whether to do what is best
in the short term, namely pull the arm with the highest ex-
pected payoff; or whether to increase the information avail-
able to its teammate, the learner, by pulling a different arm.
Note that if the teacher were acting alone, trivially its op-
timal action would be to always pull the arm with highest
expected payoff.

By these assumptions, the learner is both less capable
and less knowledgeable than the teacher, and it does not
understand direct communication from the teacher. It is
tempting to think that we should begin by improving the
learner. But in the ad hoc team setting, that is not an
option. The learner “is what it is” either because it is a
legacy agent, or because it has been programmed by others.
Our task is to determine the teacher’s best actions given
such learner behavior.

We use the following notation for the three arms. The
learner selects between Arm1 and Arm2, while the teacher
can additionally choose Arm∗. While we consider two dif-



ferent forms of distributions for the payoffs, throughout the
paper we use the following notation:
• µi is the expected payoff of Armi (i ∈ {1, 2, ∗}).
• ni is the number of times Armi has been pulled (observed)

in the past.
• mi is the cumulative payoff from all the past pulls of Armi.
• x̄i = mi

ni
is the observed sample average so far.

• r is the number of rounds left.
Throughout the paper we assume that µ∗ > µ1 > µ2. If
µ∗ is not the largest, then the teacher’s choice is trivially to
always select the arm with the largest expected payoff. The
ordering of Arm1 and Arm2 is without loss of generality. In
this setting, the question we ask is, which arm should the
teacher pull, as a function of r and all the ni, x̄i, and Armi

payoff distributions (including µi)?

3. ARBITRARY DISTRIBUTION ARMS
In this section, we present theoretical results that apply

regardless of the forms of the distributions of the payoffs
from the three arms.

3.1 The teacher should consider pulling Arm1

First, to understand that the problem specified in Sec-
tion 2 is not trivial, we show that there are situations in
which the teacher should not greedily optimize its short-
term payoff by pulling Arm∗, but rather should increase the
amount of information available to the learner by pulling
Arm1.

In fact, even with just one round remaining (r = 1), it is
not difficult to construct such a case. For example, suppose
that µ∗ = 10, µ1 = 9, µ2 = 5, x̄1 = 6, x̄2 = 7, n1 = n2 = 1.
Suppose further that the distribution of payoffs from Arm1

is such that the probability of obtaining a value greater than
8 is η > 1

2
. Thus with probability η, after an agent selects

Arm1, its sample average will be greater than x̄2.
Should the teacher select Arm∗, then the learner will select

Arm2 (because x̄1 < x̄2), yielding an expected total payoff
during the round of µ∗+µ2 = 15. On the other hand, should
the teacher select Arm1, there is a greater than 50% chance
that the learner will select Arm1 as well. The expected
payoff is then µ1 + ηµ1 + (1− η)µ2 > 9 + 9

2
+ 5

2
= 16.

Therefore there are situations in which it is better for the
teacher to pull Arm1 than Arm∗. This paper is devoted to
characterizing exactly what those situations are.

3.2 The teacher should never pull Arm2

Second, we argue that the teacher should only consider
pulling Arm∗ or Arm1. On the surface, this result appears
obvious: why should the teacher pull Arm2 just to prevent
the learner from doing the same? In fact, there is a relatively
straightforward proof that applies when x̄1 < x̄2 (similar to
our proof of Theorem 3.2 below). However the proof of the
fully general result that includes the seemingly simpler case
that x̄1 > x̄2 is surprisingly subtle. Due to space constraints,
we only sketch the proof below. The full proof is available
in an online appendix.1

Theorem 3.1. It is never optimal for the teacher to pull
Arm2.

Proof sketch. The proof uses induction on r.

1See http://www.cs.utexas.edu/~pstone/Papers/
bib2html/b2hd-AAMAS2010-adhoc.html

Base case: r = 1. If the teacher starts by pulling Arm2, the
best expected value the team can achieve is µ2 + µ1. Mean-
while, if it starts with Arm∗, the worst the team expects is
µ∗ + µ2. This expectation is higher since µ∗ > µ1.
Inductive step: Assume that the teacher should never pull
Arm2 with r− 1 rounds left. Let π∗ be the optimal teacher
action policy that maps the states of the arms (their µi,
ni, and x̄i) and the number of rounds left to the optimal ac-
tion: the policy that leads to the highest long-term expected
value. Consider the sequence, S, that begins with Arm2 and
subsequently results from the teacher following π∗. To show:
there exists a teacher action policy π′ starting with Arm∗
(or Arm1) that leads to a sequence T with expected value
greater than that of S. That is, the initial pull of Arm2 in
S does not follow π∗.

The underlying idea is that the sequence T should start
with the teacher pulling Arm∗ repeatedly, and tracking the
values obtained by the learner to see if it can ever discern
what the sequence S would have looked like after some num-
ber of rounds (it simulates sequence S). This may not be
possible, for example if sequence S begins with a pull of
Arm1, whereas after the initial pull of Arm2 in T , the values
are such that Arm1 is never pulled.

If the teacher ever does get to the point that all of the
learner’s pulls of Arm1 and Arm2 in T can be used in sim-
ulating S, then the teacher can mimic S from that point
until it runs out of rounds (we can prove that the simula-
tion necessarily ends with fewer rounds executed in S than
in T ). Then nothing that would have happened after the
mimicking ended (that is that will happen in S) could have
higher expected value than all the extra pulls of Arm∗ that
came before the mimicking started in T .

If, on there other hand, there is never a point that all the
pulls of Arm1 and Arm2 can be used in the simulation, then
sequence T must have more pulls of Arm∗ and fewer pulls
of Arm2 than sequence S (which itself requires some care to
prove rigorously).

Either way, the sequence T has higher expected value than
sequence S, so the initial pull of Arm2 in S was subopti-
mal.

Thus, when the teacher decides to teach the learner, it
does so by pulling Arm1. Pulling Arm∗ can be thought of as
exploiting, or maximizing short-term payoff. In the remain-
der of this paper, we sometimes refer to the teacher pulling
Arm1 as “teaching,” and pulling Arm∗ as “not teaching.”

3.3 Never teach when x̄1 > x̄2

Third, we show that the teacher’s choice is clear whenever
x̄1 > x̄2. That is, if the current sample average of Arm1 is
greater than that of Arm2 such that the learner will choose
Arm1 next, then the teacher should always choose Arm∗: it
should not teach.

Theorem 3.2. When x̄1 > x̄2, it is always optimal for
the teacher not to teach (to pull Arm∗).

Proof sketch. The proof can be seen as a much simplified
version of the proof of Theorem 3.1 in which simulating se-
quence S is always possible after two rounds. Specifically,
if the teacher selects Arm1 first, let the learner response
(which depends on the result from Arm1) be a. On the other
hand, if the teacher begins by selecting Arm∗ twice, then the
learner will pull Arm1 and a on its first two turns. Follow-
ing that, the teacher could mimic the optimal sequence as
if there were one additional round remaining (pretend r is



r+1). Nothing that could happen in the omitted last round
has higher expected value than the additional two pulls of
Arm∗ at the beginning.

3.4 Do not teach when n1 = 0 and/or n2 = 0

When starting a new task such that the learner has no ex-
perience with any of its arms, the teacher should pull Arm∗:
it should not teach. The proof proceeds similarly to the
proof of Theorem 3.2. In fact, the proof generalizes to the
statement that the teacher should never do what the student
is about to do anyway.

4. DISCRETE DISTRIBUTION ARMS
In Section 3, we presented theoretical results that do not

depend in any way on the form of the distributions governing
the payoffs from the various arms: the teacher should never
pull Arm2, and it should only consider Arm1 when x̄1 < x̄2.
In this section and the next, we analyze when exactly the
teacher should select Arm1, which depends on the exact dis-
tributions of the payoffs. We first restrict our attention to
binary distributions such that each Armi returns a 1 with
probability pi, and a 0 otherwise. Thus µi = pi, and mi

is the number of times the arm has yielded a payoff of 1
thus far. In this setting we can solve for the optimal teacher
action using finite horizon dynamic programming. The algo-
rithm generalizes to any discrete distribution. Note that in
our can-collecting example from Section 1, the distribution
is necessarily discrete since the number of cans collected is
always a finite integer.

4.1 x̄1 < x̄2, r = 1

To develop intuition, we begin by considering what the
teacher should do when r = 1 (one action remaining for
each agent). As shown in Section 3, the teacher should never
teach when x̄1 > x̄2.

When x̄1 < x̄2 (i.e., m1
n1

< m2
n2

), there are two conditions
that must hold for it to be worthwhile for the teacher to
teach. First, it must be the case that pulling Arm1 could
change the learner’s action from Arm2 to Arm1; and second,
it must be the case that the expected cost of teaching is less
than the expected benefit of teaching. Specifically, we need
the following to hold:

1. m1+1
n1+1

> m2
n2

2. p∗ − p1 < p1(p1 − p2)
The right hand side of the second inequality is the probabil-
ity that Arm1 will yield a 1 multiplied by the difference in
expected values between Arm1 and Arm2.

Note that we can also explicitly calculate the expected
values of both not teaching (EVnt) and teaching (EVt).
EVnt = p∗ + p2 and EVt = p1 + p2

1 + (1− p1)p2.

4.2 Algorithm and analysis
Building on the intuition from Section 4.1, this section

sketches our fully-implemented polynomial memory and time
dynamic programming algorithm for determining the teacher’s
optimal action with any number of rounds left. The full al-
gorithm is available in the online appendix.1 It takes as input
initial values for m1, n1, m2, n2, and r, which we denote as
M1, N1, M2, N2, and R respectively, and it outputs whether
the teacher’s expected value is higher if it teaches by pulling
Arm1 or if it exploits by pulling Arm∗.

The dynamic programming algorithm works backwards
from smaller to bigger values of r, computing the expected

value of the optimal action from any possible values of m1, n1, m2,
and n2 that could be reached from the initial values.

First, consider the values that m1, n1, m2, and n2 can take
on when there are r rounds left.
• Because both agents can pull Arm1 any number of times,

with r rounds left (after R − r rounds have passed), n1

can range from N1 (if Arm1 was never selected) to N1 +
2(R− r).

• Any number of the n1 −N1 times that Arm1 was pulled,
m1 could have increased by 1. Thus m1 can range from
M1 to M1 + (n1 −N1).

• Because only the learner pulls Arm2, it will be pulled at
most once per round. But the range of n2 depends on the
value n1, because the learner only pulls Arm2 when it does
not pull Arm1. Thus n2 can range from N2 + max(0, R−
r− (n1−N1)) to N2 +(R−r)−max(0, n1−N1− (R−r)).

• Similarly to m1, m2 can range from M2 to M2+(n2−N2).
The algorithm is structured as nested for loops using

these ranges. For each reachable combination of values, the
algorithm computes the teacher’s optimal action (Arm1 or
Arm∗), and the expected long-term value of taking that ac-
tion: the expected sum of payoffs for the optimal action and
all future actions by both the teacher and the learner.

Both the memory and runtime complexities of this al-
gorithm for computing the optimal teacher action with R
rounds remaining for any starting values of the other vari-
ables are O(R5).

Although the algorithm runs iteratively, in principle we
can convert the stored data structure into closed form com-
putations of both teaching and not teaching. This conver-
sion is based on the probabilities of the various possible out-
comes of the pulls of the arms. However the closed form
equations will be dependent upon m1, n1, m2, and n2.

4.3 Other Discrete Distributions
The algorithm and analysis to this point in this section

all deal with the binary case in which each arm returns ei-
ther 1 or 0 on each pull: 1 for a success and 0 for a failure.
However, the algorithm and analysis extend trivially to dis-
tributions in which the success and failure payoffs from each
arm differ from 1 and 0 and differ across the arms. The
key property is that each arm has a success payoff that is
realized with probability pi and a (lower) failure payoff that
is realized otherwise. Either or both of the payoffs can even
be negative, representing an action penalty.

The results can also be generalized from binary distribu-
tions to any discrete distribution. In this case the algorithm
includes extra nested for loops for each possible outcome of
pulling an arm (not just two per arm). The exponent of the
space and runtime complexities of the algorithm is increased
accordingly, but the algorithm remains polynomial.

4.4 Numerical Results and Experiments
With the aid of the algorithm presented in Section 4.2, we

tested several conjectures experimentally. In this section we
consider the following questions:

1. Are there any patterns in the optimal action as a
function of r when all other parameters are held con-
stant?
2. How sensitive is the expected value computation to
the relationship between m1, n1, m2, n2, p1, p2, and p∗?
3. When the algorithm is run, how many of the states
tend to have Arm1 (teaching) as the optimal action?



First, consider the effect of increasing the number of rounds
remaining to be played, r. Intuitively, as r increases, the
more time there is to benefit from teaching. However, there
are even cases such that increasing r from 1 to 2 leads to
a change in optimal action from teaching to not teaching.
This situation arises when, with just one round remaining,
there is a small enough cost to teaching that the teacher
ought to try to get the learner to forgo Arm2 even though
the chances of succeeding are small; but with two rounds
remaining, the learner’s initial selection of Arm2 will almost
surely be sufficient for it to “teach itself” that it should se-
lect Arm1 on the next round. This scenario is exemplified
by the following parameters: p∗ = .076075, p1 = .076, p2 =
.075, m1 = 3020, n1 = 40000, m2 = 910, n2 = 12052.2 In
this case, both constraints from Section 4.1 are satisfied,
thus the optimal action when r = 1 is Arm1 (teach). How-
ever when r = 2, EVt = .302228 < EVnt = .303075: the
optimal teacher action is Arm∗.

Second, note that the optimal action is very sensitive to
the exact values of all the parameters. For example, when
p∗ = .5, p1 = .4, p2 = .16, r = 4, m2 = 2, and n2 = 5, the
teacher’s optimal action can differ even for identical values
of x̄1. When m1 = 1 and n1 = 3, the optimal action is
not to teach (Arm∗), but when m1 = 2 and n1 = 6, the
optimal action is to teach (Arm1) — even though x̄1 is 1

3
in both cases. Similarly small changes in any of the other
parameter values can change the teacher’s optimal action.

Third, we consider how many of the states tend to have
Arm1 (teaching) as the optimal action when running the al-
gorithm. For example, when p∗ = .5, p1 = .4, p2 = .16, m1 =
n1 = m2 = n2 = 1, solving for the optimal action with 15
rounds to go (r=15) leads to 81600 optimal actions com-
puted (iterations through the for loops), 80300 of which are
not to teach (Arm∗). In general, it seems that at least 90%
of the optimal actions are Arm∗, even when the ultimate cor-
rect action is to teach, and usually significantly more than
that. This observation perhaps suggests that in the Gaus-
sian case below, when the optimal action cannot be solved
for so easily, the default heuristic should be not to teach.
We examine this hypothesis in Section 5.3

5. NORMAL DISTRIBUTION ARMS
In Section 4, we focused on arms with discrete payoff dis-

tributions. However in general ad hoc team settings, action
payoffs may come from continuous distributions. In this
section we turn to the case in which the distributions are
Gaussian. Now, in addition to the expected value µi, which
is the mean of the distribution, arms are characterized by a
standard deviation, σi.

There are two main reasons that this case is more com-
plicated than the discrete case. First, rather than a discrete
set of possible future states, there are infinitely many pos-
sible outcomes from each pull. Second, in contrast to the
constraints laid out in Section 4.1 for when it is worthwhile
to teach, in the Gaussian case the µ’s and the x̄’s (which cor-
respond to the p’s and the m’s and n’s in the binary case)
interact in the same inequality, rather than constituting in-
dependent constraints.

Both of these complications are readily illustrated even
with r = 1. We thus begin by analyzing that case in Sec-

2Note that this scenario is not particularly unlikely: m1
n1

≈
p1,

m2
n2

≈ p2.

tion 5.1. Recall that all the results from Section 3 still apply
in this case. For example, it is only worth considering teach-
ing when x̄1 < x̄2. We then consider the case when r = 2 in
Section 5.2 and present some empirical data in Section 5.3.
In contrast to the discrete case, we do not have an algo-
rithm for exactly computing the optimal action when r > 1.
In principle it can be estimated numerically, though with
increasing inefficiency as r increases.

5.1 x̄1 < x̄2, r = 1

In order to analyze this case, we make use of the cumula-
tive distribution function (CDF) of the normal distribution,
denoted as Φµ,σ(v). Exactly as in the binary case, with one
round left, the teacher should teach when the expected cost
of teaching, µ∗ − µ1, is less than the probability that teach-
ing will successfully cause the learner to switch its choice
from Arm2 to Arm1, Φµ1,σ1(y), multiplied by the benefit of
successful teaching, µ1 − µ2. Here y is the minimum return
from Arm1 that would cause the sample average of Arm1 to
surpass that of Arm2:

m1+y
n1+1

= x̄2.
Therefore, the teacher should pull Arm1 if and only if

1− Φmu1,σ1(x̄2(n1 + 1)− x̄1n1) >
µ∗ − µ1

µ1− µ2
(1)

(Recall that x̄1 = m1
n1

by definition). Otherwise, the teacher
should pull Arm∗. We can then compute the expected value
of the optimal action as:
• If x̄1 > x̄2, EVnt = µ∗ + µ1

• Else, if the optimal action is to teach,
EVt = µ1 + µ2Φmu1,σ1(x̄2(n1 + 1) − x̄1n1)) + µ1(1 −
Φmu1,σ1(x̄2(n1 + 1)− x̄1n1))

• Else EVnt = µ∗ + µ2.
Since there are readily available packages, for example in

java, for computing Φµ1,σ1(y), this result can be considered
a closed form solution for finding the optimal teacher action
and its expected value when r = 1.

5.2 x̄1 < x̄2, r ≥ 2

In contrast, when r > 1, there is no such closed form
method for finding the optimal action. Rather, integrals
over functions need to be estimated numerically. As r in-
creases, the inefficiency of this process compounds: for each
sample, and at each round, it is necessary to estimate the
values of both EVnt and EVt so that the optimal action
from that point can be determined. In a sense, the value
of a nested integral, with a total of r levels of depth, needs
to be computed. Alternatively, the continuous distribution
can be approximated with a discrete distribution and then
solved as in Section 4. To date, we have not been able to
characterize anything more formal or concrete about this
case. Instead we discuss some conjectures and heuristics in
the following section.

5.3 Numerical Results and Experiments
Even if we cannot practically determine in general what

the teacher’s optimal action is, it may be possible to find
some reasonable heuristics. To this end, in this section we
consider the following questions, the first of which is parallel
to the first question considered in Section 4.4:

1. Are there any rules or patterns in the optimal action
as a function of r?
2. How do various teacher heuristics compare to one
another in performance?



First, just as in the binary case, intuition suggests that
increasing r should make it more beneficial to teach since
there is more time for the added information to be used by
the learner. However again, we can find a counterexample
even with r = 1 and 2.

Consider the case in which (µ∗, σ∗) = (10, 0), (µ1, σ1) =
(9, 2), and (µ2, σ2) = (7, 2). Suppose that the learner has
observed Arm1 being pulled once when it got a payoff of
6.99 (x̄1 = 6.99, n1 = 1), and it observed Arm2 once for a
payoff of 8 (x̄2 = 8, n2 = 1).

With these values it is barely not worth it for the teacher
to teach with r = 1. That is, with these values, Inequal-
ity 1 is not satisfied, but if x̄1 were 7.01, then it would be
satisfied. Thus we know with certainty that the teacher’s
optimal action is Arm∗.

When r = 2, we can determine experimentally what the
teacher’s optimal action is by averaging the results of multi-
ple trials when the teacher starts by teaching vs. not teaching
and then acting optimally in the last round. In this case,
when averaging over 2000 samples, the teacher reliably does
better teaching (34.4 average return over the last 2 rounds)
than when not teaching (34.2). Though the numbers are
close and have high variance within a set of 2000 samples,
the result is robust across multiple sets of 2000 samples.

When doing these experiments, we can gain a deeper un-
derstanding by considering the average situation after the
teacher and learner have each taken one action, such that
there is one more round remaining. First, consider the case
in which the teacher does not teach with two rounds re-
maining. Thus it selects Arm∗ and the learner selects Arm2.
Though the teacher’s action has no impact on the relation-
ship between x̄1 and x̄2 for the final round, the learner’s
action does. In one set of 2000 samples, the status after the
first round was as follows:
• x̄1 > x̄2: 29.5%
• x̄1 < x̄2, Inequality 1 true (worth teaching): 39.2%
• x̄1 < x̄2, Inequality 1 false (not worth teaching): 31.4%
Weighting all three cases by their frequency, the total aver-
age expected value during the last round was 17.737.

On the other hand, when the teacher selects Arm1 with
two rounds remaining, we see the following breakdown after
the first round:
• x̄1 > x̄2: 64.0%
• x̄1 < x̄2, Inequality 1 true (worth teaching): 14.1%
• x̄1 < x̄2, Inequality 1 false (not worth teaching): 22.0%
Again weighting the three cases by their frequency, the total
average expected value during the last round was 18.322.

So in this case, after teaching in the second last round,
the expected value of the last round is higher than when not
teaching in the second last round. Most of this advantage
comes because it is more likely that x̄1 > x̄2 prior to the
final round. This advantage makes up for the slight cost of
teaching in the initial round.

Though perhaps typical, it is not always the case that
increasing r increases the benefit of teaching. Just as we
found in the binary case in Section 4.4, in the Gaussian
case it is also possible that increasing r from 1 to 2 and
holding all other parameters constant could cause a switch
from teaching being optimal to not teaching being optimal.

For example, consider the case in which (µ∗, σ∗) = (2.025, 0),
(µ1, σ1) = (2, 1), and (µ2, σ2) = (1, .0001). Suppose that
x̄1 = 3, n1 = 1, and x̄2 = 3.4, n2 = 1. Inequality 1 holds
because the cost of teaching, µ∗ − µ1 = .025, is less than

the potential benefit, µ1 − µ2 = 1, times the probability
that teaching will succeed, 1 − Φµ,σ(.38) = .036. Thus the
optimal action when r = 1 is Arm1.

However with two rounds remaining, the optimal action is
Arm∗. Again considering sets of 2000 samples, the expected
value of teaching is reliably 8.85 (4.025 of which comes from
the last round), while that of not teaching is 8.70 (3.750
from the last round). Intuitively in this case, teaching is
generally unlikely to help, and is also generally unnecessary:
the learner will “teach itself” that Arm1 is better than Arm2

when it selects Arm2 the first time. However with just one
round remaining, it is worth it for the teacher to take a
chance that teaching will help because even though the odds
are low, so is the cost.3

Second, in addition to being of theoretical interest, the
phenomenon that increasing r can cause teaching to be less
worthwhile also has practical import, in particular in the
context of considering possible heuristics for the teacher
when r > 1. Specifically, we tested the following three
heuristic teacher strategies under a variety of conditions:

1. Never teach;
2. Teach iff x̄1 < x̄2;
3. Teach iff it would be optimal to teach if r = 1 and
all other parameters were unchanged.

Heuristic 3 would be particularly appealing were it the case
that increasing r always made teaching more worthwhile.
As it is, we found that none of these heuristics consistently
outperforms the others.

Specifically, we compared the three heuristics under the
six possible relationships of µ1, µ2, x̄1, and x̄2 subject to the
constraint that x̄1 < x̄2 (e.g. x̄1 < x̄2 < µ1 < µ2, or
µ1 < x̄1 < µ2 < x̄2). For each comparison, we sampled µ1

and µ2 uniformly at random from [0, 10], setting the lower of
the two draws to be µ2; sampled σ1 and σ2 uniformly at ran-
dom from [0, 1]; set n1 = n2 = 1; and drew m1 and m2 from
their respective distributions until the required relationship
between µ1, µ2, x̄1, and x̄2 was satisfied. Holding all of these
values constant, we then tested all three heuristics for 9 dif-
ferent values of r ranging from 2 to 500.4 Each test con-
sisted of 10 trials, with the results being averaged. We then
repeated the entire process with new draws of µ1, µ2, x̄1, and
x̄2 five times for each of the six relationships.

An analysis of these results revealed that each heuristic
outperforms the other two under some circumstances. Find-
ing more sophisticated heuristic and/or principled teacher
strategies that perform consistently well is one of the main
open directions of future work in the context of this research.

6. MORE THAN THREE ARMS
To this point, we have assumed that the learner has only

two arms available and the teacher has only one additional
arm. In this section we generalize to the case in which there
are more than three arms total.

Observe that adding additional arms that are only avail-
able to the teacher does not change anything. Only the best
such arm (the one with the greatest expected value) should
ever be considered by the teacher. We continue to call that
arm Arm∗; the others can be ignored entirely.

Thus, we focus on the case in which there are additional
arms available to both the teacher and the learner: Arm1,

3Thanks to Daniel Stronger for this example.
42,3,4,5,10,20,50,100, and 500.



Arm2, . . . , Armz such that µ1 > µ2 > . . . > µz. In brief,
the results we presented in Sections 3–5 all extend naturally
to this more general case.We generalize the notation from
Section 2 in the obvious ways.
• It can be beneficial for the teacher to pull Arm1–Armz−1.
• The teacher should never pull Armz.
• Never teach with Armi when x̄i > x̄j ,∀j 6= i.
• Do not teach when n1 = 0, n2 = 0, . . ., and/or nz = 0.
• There are situations in which the teacher should teach

with Armj even when ∃i < j s.t. x̄i > x̄j . That is, pulling
Arm2 may be optimal, even when x̄1 > x̄2.
Together, these statements comprise everything that can

be said theoretically about which arm to pull, independent
of the distributions of the arms. The last result is perhaps
somewhat surprising. It arises when r ≥ 2 and x̄j is an
underestimate of the true value (x̄j < µj) and ∃k < j s.t. x̄k

is a large overestimate. Then it can be better to ensure that
Armj is pulled as many times as possible, to minimize the
chance that Armk is ever pulled. We have found examples
of such scenarios in both the discrete and Gaussian cases.

Additionally, the algorithm for the discrete case general-
izes naturally. Expected values and optimal actions must
now be calculated for all reachable values of m1–mz and
n1–nz. Since the teacher could teach with any arm other
than Armz, the ranges of the variables m1–mz−1 and n1–
nz−1 match those of m1 and n1 in Section 4.2. The range of
mz matches that of m2 in Section 4.2, and nz is similar to
n2, except that the two occurrences of n1 −N1 (both inside
“max” operators) need to be changed to

Pz−1
i=1 ni −Ni.

Both the memory and runtime bounds of the extended
algorithm generalize naturally to O(R2z+1). The extended
algorithm generalizes to arbitrary discrete distributions ex-
actly as in Section 4.3.

Similarly, with normal distributions and one round left,
the results from Section 5.1 generalize by considering the
expected value of any Armj , j < z, j 6= i; and as in Sec-
tion 5.2 we have no closed form solution if r > 2.

7. RELATED WORK
The broad context for this research is ad hoc teams in

which teammates need to work together without any prior
coordination. This perspective is at odds with most prior
treatments of agent teamwork, which define explicit coor-
dination protocols, languages, and/or shared assumptions
about which the agents are mutually aware [8, 17].

The concept of ad hoc human teams has arisen recently
in military and industrial settings, especially with the rise of
outsourcing. There have also been autonomous agents de-
veloped to help support human ad hoc team formation [10,
12, 7]. This work relies on an analysis of the sources of team
variability, including member characteristics, team charac-
teristics, and task characteristics [12]. Our can-collecting
example in Section 1 was inspired in part by an experimen-
tal bottle collecting task done by human ad hoc teams [7]. In
addition, software agents have been used to support the op-
eration of human teams [4], and for distributed information
gathering from distinct, otherwise independent information
sources [20]. But we are not aware of any work that enables
an autonomous agent to itself act as an ad hoc teammate
with previously unknown teammates.

The only prior work that we are aware of that takes a
perspective similar to the ad hoc team perspective is that
of Brafman and Tennenholtz [3] in which they consider a

teacher agent and a learner agent repeatedly engaging in
a joint activity. While the learner has no prior knowledge
of this activity, the teacher understands its dynamics. As
in our model, the teacher’s goal is also to lead the learner
to adopt a particular behavior. However the outcomes of
actions in their setting are deterministic, and they mainly
consider a situation in which teaching is not costly: the goal
of their teacher is to maximize the number of times that the
learner chooses the “right” action. Thus in some sense, the
teacher is not “embedded” in the environment.

Also somewhat related is the recent work of Zhang et
al. [21] on “environment design.” Here, the controlling agent
can alter aspects of the environment for a learning agent
in an MDP so as to influence its behavior towards a par-
ticular goal. Once again, the controlling agent is not itself
embedded in the environment and taking actions itself.

In the narrower context of our k-armed bandit instantia-
tion of ad hoc teams, our research is characterized by coop-
erative agents with asymmetric information and asymmetric
capabilities which are acting in an uncertain environment in
which both agents are embedded in the environment (their
actions affect the team’s payoff) but the agents cannot com-
municate directly. To the best of our knowledge, no prior
research meets all of the above characteristics. For example,
research on multiagent reinforcement learning either does
not consider the teacher as being embedded in the environ-
ment [9], considers the agents as having symmetric informa-
tion and capabilities [5] and/or consider more competitive
agents [16]. There are many other approaches for coopera-
tive multiagent learning (see surveys at [14, 18]). But to the
best of our knowledge, none covers our setting.

k-armed bandits have been extensively studied (see a sur-
vey at [1]), but also in this literature we are not familiar
with any work that considers a teacher and a student with
asymmetric capabilities and information who aim to max-
imize joint reward. Most of the works consider the case
where each player tries to maximize its own reward (e.g., [2,
6]). Situations in which the agents do not have symmetric
roles are studied in the context of the principal-agent prob-
lem [11]. This setting is much different than ours because of
the conflicting utilities of the principal and the agent.

Multi-player multi-armed bandit problems have been also
used to model the challenges facing users of collaborative
decision-making systems such as reputation systems in e-
commerce, collaborative filtering systems, and resource lo-
cation systems for peer-to-peer networks. Here the main
challenge is deciding which player to trust [13]. We assume
that the learner sees the actual outcomes of the teacher and
no issues of trust arise.

8. DISCUSSION AND CONCLUSION
This paper has presented a multiagent cooperative k-armed

bandit in which the agents have different knowledge states
and different action capabilities, as an example of ad hoc
teamwork. We have studied in detail the task of a teacher
that knows the payoff distributions of all of the arms as it in-
teracts with a learner that does not know the distributions,
and that can only pull a subset of the arms. The teacher’s
goal is to maximize the expected sum of payoffs as the two
agents alternate actions. At any point, it can either exploit
its best available action or increase the learner’s knowledge
by demonstrating one of the learner’s actions.

Within the specific scenario examined in this paper, we



proved several theorems regarding situations in which we
know which actions are or cannot be optimal for the teacher.
We then narrowed our focus to two different types of proba-
bility distributions for the arms. For discrete distributions,
we presented a polynomial memory and time algorithm for
finding the teacher’s optimal action. When the arms have
Gaussian distributions, we can only find the optimal action
efficiently when there is one round left. In both cases we aug-
ment the theoretical results with some experimental analyses
using our fully-implemented algorithms.

This research opens up several exciting directions for fu-
ture research. Aside from the points mentioned throughout
the paper, many other generalizations are possible. For ex-
ample, we have verified that at least some of our results can
be extended to the discounted, infinite horizon case. One
could consider arms with additional types of distributions,
or types of distributions that differ among the arms (e.g.
some discrete and some Gaussian). Additionally, we have
considered a scenario in which the teacher knows the set
of distributions of the arms, but not which arm has which
distribution. Thus the teacher needs to itself explore, while
still trading off between exploitation and teaching. Under re-
strictive assumptions, our dynamic programming algorithm
from Section 4 extends to this case.

It is also important to note that although we assumed
throughout the paper that the learner is completely greedy,
our underlying problem remains interesting even when the
learner uses a policy that yields some exploration. For ex-
ample, suppose the learner follows an ε-greedy policy, i.e.,
it selects the arm with the highest observed sample aver-
age so far only with probability (1− ε) and with probability
ε chooses an arm randomly. If we revisit the example in
Section 3.1, it can still be beneficial for the teacher to pull
Arm1. Specifically, when ε = 0.01 and everything else is the
same as in the example, then it is still beneficial to teach:
the expected values of teaching and not teaching are still
close to 16 and 15 respectively.

In the broader context, this research is just one step to-
wards the long-term goal of creating a fully capable ad hoc
team player. In order to achieve this goal, many more stud-
ies of this magnitude will be needed that consider situations
in which, for example, there are more than two teammates,
the teammates can communicate directly, the teammates’
behaviors are not fully known, or some teammates have more
knowledge and/or capabilities than our agent. We intend to
follow up on these challenges in our future research and hope
that this research will inspire others to also work towards the
eventual creation of fully general ad hoc team players.

Acknowledgements
Thanks to Yonatan Aumann, Vincent Conitzer, Reshef Meir, Daniel

Stronger and members of the UT Austin Learning Agents Research

Group (LARG) for helpful comments and suggestions. The research

is supported in part by grants from NSF (IIS-0917122, 0705587),

ONR (N00014-09-1-0658), DARPA (FA8650-08-C-7812), U.S. Army

Lab (W911NF-08-1-0144), ISF (#1357/07), the FHWA (DTFH61-

07-H-00030), and the Fulbright and Guggenheim Foundations.

9. REFERENCES
[1] D. Bergemann and J. Valimaki. Bandit problems.

Technical report, Cowles Foundation Discussion
Paper, 2006.

[2] P. Bolton and C. Harris. Strategic experimentation.
Econometrica, 67:349–374, 1999.

[3] R. I. Brafman and M. Tennenholtz. On partially
controlled multi-agent systems. JAIR, 4:477–507, 1996.

[4] H. Chalupsky, Y. Gil, C. Knoblock, K. Lerman, J. Oh,
D. Pynadath, T. Russ, and M. Tambe. Electric elves:
Applying agent technology to support human
organizations. In IAAI, 2001.

[5] C. Claus and C. Boutilier. The dynamics of
reinforcement learning in cooperative multiagent
systems. In AAAI, pages 746–752, 1998.

[6] M. Cripps, G. Keller, and S. Rady. Strategic
experimentation with exponential bandits.
ECONOMETRICA, 73:39–68, 2005.

[7] J. A. Giampapa, K. Sycara, and G. Sukthankar.
Toward identifying process models in ad hoc and
distributed teams. In K. V. Hindriks and W.-P.
Brinkman, editors, HuCom, pages 55–62, December
2008.

[8] B. J. Grosz and S. Kraus. Collaborative plans for
complex group actions. AIJ, 86:269–358, 1996.

[9] L. ji Lin. Self-improving reactive agents based on
reinforcement learning, planning and teaching. MLJ,
8(3/4):293–321, 1992.

[10] J. Just, M. Cornwell, and M. Huhns. Agents for
establishing ad hoc cross-organizational teams. In
International Conference on Intelligent Agent
Technology, pages 526–30, September 2004.

[11] A. Kayay. When does it pay to get informed?
International Economic Review, 2009. forthcoming.

[12] R. Kildare. Ad-hoc online teams as complex systems:
agents that cater for team interaction rules. In
Proceedings of the 7th Asia-Pacific Conference on
Complex Systems, December 2004.

[13] R. D. Kleinberg. Online Decision Problems. PhD
thesis, Department of Mathematics, MIT 2005.

[14] L. Panait and S. Luke. Cooperative multi-agent
learning: The state of the art. JAAMAS, 11:387–434,
2005.

[15] H. Robbins. Some aspects of the sequential design of
experiments. Bulletin American Mathematical Society,
55:527–535, 1952.

[16] A. Schaerf, Y. Shoham, and M. Tennenholtz. Adaptive
load balancing: A study in multi-agent learning.
JAIR, 2:475–500, 1995.

[17] P. Stone and M. Veloso. Task decomposition, dynamic
role assignment, and low-bandwidth communication
for real-time strategic teamwork. AIJ, 110(2):241–273,
June 1999.

[18] P. Stone and M. Veloso. Multiagent systems: A survey
from a machine learning perspective. Autonomous
Robots, 8(3):345–383, July 2000.

[19] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, Cambridge,
MA, 1998.

[20] K. Sycara, K. Decker, A. Pannu, M. Williamson, and
D. Zeng. Distributed intelligent agents. IEEE Expert,
11(6), December 1996.

[21] H. Zhang, Y. Chen, and D. Parkes. A general approach
to environment design with one agent. In IJCAI, 2009.


