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ABSTRACT
Online platforms which assist people in finding a suitable partner
or match, such as online dating and job recruiting environments,
have become increasingly popular in the last decade. Many of these
platforms include recommender systems which aim at helping users
discover other people who will also be interested in them. These
recommender systems benefit from contemplating the interest of
both sides of the recommended match, however the question of
how to optimally balance the interest and the response of both sides
remains open. In this study we present a novel recommendation
method for recommending people to people. For each user receiv-
ing a recommendation, our method finds the optimal balance of
two criteria: a) the likelihood of the user accepting the recommen-
dation; and b) the likelihood of the recommended user positively
responding. We extensively evaluate our recommendation method
in a group of active users of an operational online dating site. We
find that our method is significantly more effective in increasing the
number of successful interactions compared to a state-of-the-art
recommendation method.
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1 INTRODUCTION
Reciprocal recommender systems (RRS) recommend people to peo-
ple [19], as opposed to traditional recommender systems which
recommend items to people. There are many potential applica-
tions for RRSs, such as online-dating platforms and automated job
recruiting services.
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RRSs are inherently different than traditional recommender sys-
tems. In “item-to-people” recommendations, the success of the
recommendation is determined by the acceptance of the recom-
mendation by the receiver (also termed service user). In contrast, in
RRSs, a successful recommendation is one that leads to a successful
interaction, meaning that: 1) the service user accepts the recom-
mendation and initiates an interaction with the recommended user;
and 2) the recommended user replies positively [19]. Therefore, a
beneficial recommendation in a RRS should account for both the
service user’s interest and the recommended user’s interest, which
makes recommendation generation more complex than in the case
of a regular non-reciprocal recommender.

Several algorithms aimed at recommending people to people.
have been proposed in the past. These algorithms have demon-
strated that considering both the potential interest of the service
user in the recommended user as well as the potential interest of
the recommended user in the service user will bring about bet-
ter results than merely considering the interest of one side (e.g.
[18, 23]). However, we argue that these algorithms are limited in
two major ways: first, existing algorithms give equal importance to
the perceived interests of both sides when in fact users may vary
in how they act upon their interests. For example, research focused
on online-dating has demonstrated that users differ in the extent
to which they consider the likelihood that the contacted partner
will reply before sending a message [9, 23]. Secondly, to the best
of our knowledge, prior RRS methods were only evaluated offline
by using historical data, and were not integrated into an opera-
tional system in order to provide recommendations and investigate
their real world effect on users’ behavior. Recently there has been
a growing recognition in the recommender systems community
that conclusions from laboratory-based evaluations may not be
confirmed in live-user studies [16, 22].

Therefore, in order to overcome these limitations, in this work
we present a novel method for RRSs which optimally balances the
interests of both sides in order to bring about successful interactions
(i.e., positive replies of the recommended users to the service users
who contacted them). We call our method Reciprocal Weighted
Score (RWS). RWS relies on the the separate calculation of two
scores: 1) the service user’s presumed interest in the recommended
user, which is estimated using a collaborative filtering method; and
2) the likelihood that the recommended user will reply positively
to a message from the service user, which is estimated using a
machine learning model built specifically for this purpose. Then,
RWS balances these two scores into a single score which is a proxy
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to the probability of forming a successful interaction. This optimal
balance is tailored individually for each service user according to
her interaction history, and thus RWS is personalized.

In order to demonstrate the importance of individual optimal
balance, consider the following scenario: say Alice and Bob are users
in an online-dating environment. Bob sends messages to a wide
range of users without considering whether or not his messages
will be accepted. In addition, Bob is unpopular (i.e., rarely receives
messages) and the rate of positively replied messages to Bob is
low. Therefore, in order to maximize successful interactions, an
optimal RRS should generate recommendations for Bob that mainly
focus on the chances for a reply. Alice, on the other hand, is very
cautious about sending messages and only sends to a narrow range
of users. In addition, she has a high rate of positive message replies.
Therefore, in contrast to Bob, for Alice an RRS should generate
recommendations that give more importance to the chances she
will find a potential partner appealing.

The evaluation of RWS was conducted on an operational online-
dating platform. We have compared this method to a previous
RRS approach which was proven to be very effective [23]. In an
experiment involving 398 subjects, we found that RWS significantly
increases the number of successful interactions in comparison to
the previous approach. On the other hand, as one would expect,
RWS decreases the number of accepted recommendations. This
is not surprising since our method prioritizes the probability of a
reply rather than the probability that the service user will accept a
recommendation.

This paper’s contributions are threefold: 1) we present RWS, a
novel recommendation method for RRSs which leverages an adap-
tive boosting (AdaBoost) machine learningmodel [7] and traditional
collaborative filtering; 2) we construct a method for optimizing the
successful interactions by optimally balancing the importance of
the model’s components that predict the service user’s and the rec-
ommended user’s behaviors; 3) we evaluate our methods online in
an active dating application and find that our method significantly
improves the number of successful interactions.

2 BACKGROUND AND RELATEDWORK
2.1 Reciprocal Recommender Systems
Applications that require RRSs have unique characteristics, which
present opportunities and challenges for providing successful rec-
ommendations [19]. Perhaps the most significant difference be-
tween RRSs and traditional item-to-people recommender systems
is that RRS’s recommendations must satisfy both parties, the ser-
vice user and the recommended user. Another important issue that
should be addressed in RRSs is avoiding recommendations of “pop-
ular” users, meaning users who receive a lot of messages, regardless
of the recommendations [15].

In the past decade, many researchers have investigated the field
of RRSs and specifically the domain of online-dating. In typical
online-dating environments, users can create a profile, browse other
users’ profiles and interact with users by sending messages. Some
online-dating environments include an option for explicitly rating
profiles or pictures. Brozovsky and Petricek [4] show that in such
environments, collaborative filtering algorithms, which leverage

similarity between users assessed from their explicit ratings, are sig-
nificantly more effective in comparison to other algorithms which
were commonly used in on-line dating sites. However, online-dating
sites do not generally include explicit ratings. Therefore, the rec-
ommendation methods for online-dating environments commonly
elicit the users’ interests from their interaction history. Krzywicki
et al. [14] show that a collaborative filtering method, which derives
the similarities between users from their interactions, is applicable
and effective in the domain of online-dating.

Later, Pizzato et al. [19] show the importance of taking into
account the reciprocity of recommendations in online-dating en-
vironments. Namely, in order to generate successful recommen-
dations, the recommender system must measure both the interest
of the service user in the recommended user and the interest of
the recommended user in the service user. In their study, the au-
thors present a content-based algorithm (named RECON) which,
for a potential match, calculates the compatibility of each side’s
attributes to the other side’s presumed interest. Pizzato et al. also
define a new evaluation metric to evaluate the performance of the
recommender system in providing recommendations which lead to
successful interactions. We use this evaluation metric in our evalu-
ation process (Section 4). Xia et al. [23] show that a collaborative
filtering method, which contemplates the interests of both sides
of the match, outperforms the content-based algorithm described
above. We will present this method in detail in Section 2.3 and we
will use it as a baseline to benchmark our novel approach.

In [15], Krzywicki et al. present a different approach for recom-
mendations in reciprocal environments. In their work, they present
a two-staged recommendation algorithm which first generates rec-
ommendations using collaborative filtering and later re-ranks the
recommendation with a decision tree “critic”. They compare the al-
gorithm with a baseline profile matching algorithm, which matches
users according to common attributes and shows that their algo-
rithm is superior. However, this method was not compared to the
previous algorithms described above.

Another popular domain of RRSs is recommender systems for
job recruitment sites. Similar to online-dating, a successful match
requires mutual interests of both the employee and the employer.
Hong et al. [10] introduce several algorithms for recommendations
of jobs to employees. They conclude that a job recommender system
should apply different recommendation approaches for different
users according to their characteristics. The 2016 ACM Recom-
mender Systems Challenge [1] focused on the problem of job rec-
ommendations. The participant teams were given a large dataset
from XING1, a career-oriented social network, that consisted of
anonymized user profiles, job postings, and interactions between
them. The goal of the teams was to predict job postings with which
a user will interact. This problem is somewhat similar to the prob-
lem of predicting a user’s reply to a message on an online-dating
site, which we address in this work.

2.2 Collaborative Filtering RRS
Standard collaborative filtering utilizes similarity relations between
users or items in order to generate recommendations. As mentioned
above, the interests of a user in online-dating are commonly inferred

1https://www.xing.com
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from her interaction history [14], as we assume an initial message
from user x to user y indicates that y fits user x ’s interests. In [23],
Xia et al. present a similarity measure for users in online-dating.
The similarity between two users x and n is defined as follows:

Similarityx,n =
ReFromx ∩ ReFromn
ReFromx ∪ ReFromn

where:

ReFromx = {y : y has received a message from x}

Similarly, the group of users to whom x has sent an initial mes-
sage is defined as follows2:

SentTox = {y : y has sent a message to x }
Using this similarity measure, Xia et al. [23] introduced a recom-

mendation method for online-dating which utilizes collaborative
filtering to measure both the interest of the service user in the
recommended user and the interest of the recommended user in
the service user. As mentioned above in Section 2.1, they found that
this approach significantly outperforms RECON, a content-based
method which also contemplates the interest of both sides. Algo-
rithm 1 describes this method and Figure 1 illustrates an example
for the calculation of the mutual interest between two users3. We
call this method Reciprocal Collaborative Filtering (RCF) and we
will use it as a baseline to benchmark our novel approach.

Algorithm 1 Reciprocal Collaborative Filtering Recommendation
Input: service user x
Output: top-k recommendations
1: Recs ← ∅
2: for all y ∈ RecommendationCandidates do
3: scorex,y ← 0, scorey,x ← 0
4: for all u ∈ SentToy do ▷ calculate x ’s interest in y
5: scorex,y ← scorex,y + Similarityx,u

6: for all v ∈ SentTox do ▷ calculate y’s interest in x
7: scorey,x ← scorey,x + Similarityy,v

8: scorex,y ←
scorex,y
|SentToy | ▷ normalize scores

9: scorey,x ←
scorey,x
|SentTox |

10: if scorex,y = 0 or scorey,x = 0 then
11: reciprocalScorex,y ← 0
12: else
13: reciprocalScorex,y ← 2

score−1y,x+score−1x,y
▷ save the harmonic mean of both scores

14: Recs ← Recs + (y, reciprocalScorex,y )
15: sort Recs and return top-k

2In [23], ReFromx is denoted as Sex and SentTox is denoted as Rex .
3 This method utilizes user-to-user similarities. Another option for finding the mutual
interest is to use item-to-item similarities, meaning the attractiveness similarity of
the recommended user to the group of users who received messages from the service
user. This option was also examined in [23]. Both of these methods significantly
outperformed RECON and there was no significant difference between them. We chose
the first method because it performed slightly better than the second.

Figure 1: Reciprocal collaborative filtering visualization

2.3 The Online-dating Environment
In order to evaluate the recommendation method presented in
this work, we collaborated with the owners of an Israeli active
online-dating application, called Doovdevan. Doovdevan is a web
andmobile application for Android and iOS devices. Similar to other
online-dating applications, users of this environment can create a
profile, search for possible matches and interact with other users
by sending and receiving messages. Doovdevan currently serves
about 32,000 users and is growing rapidly. We chose to perform
our experiment in this environment because it is relatively new
and the users had not yet received recommendations from the
system prior to the experiment. This was important since previous
recommendations can affect the trust of the users in the system and
subsequently affect the acceptance of the recommendations [5, 13].

3 OPTIMALWEIGHTING APPROACH
In this section, we introduce RWS, a novel algorithm for RRSs. In
order to measure the compatibility of a recommendation of user y
to user x we initially calculate two measurements separately: we
use user-to-user similarity in order to estimate x ’s interest in y
and an AdaBoost machine learning model for predicting whether
y will respond positively to x . Moreover, in contrast to previous
methods, which assign equal importance to the interest of both
sides for all users, in RWS the relative importance of the two is
tailored for each user individually. Namely, based on each user’s
previous interactions, we optimize the relative importance of the
two scores for this specific user and tune the weights accordingly.
Figure 2 is a diagrammatic representation of our recommendation
method.

As mentioned above, RWS measures the interest of the service
user in the recommended user using collaborative filtering. This
score is calculated identically to the way in which the service user’s
interest is calculated in the RCF method described above (lines 4-5
in Algorithm 1). We denote the score of user x ’s interest in user y
as CFx,y . The second score is calculated by an AdaBoost machine
learning prediction model (described in Section 3.2), which predicts
the chances of a positive reply from user y to user x following an
initial message from user x to user y. We denote this measure as
PRy,x .

We use two different prediction models since the prediction tasks
are inherently different. The prediction of the service user’s interest
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Figure 2: A diagrammatic representation of RWS. The "Pre-
dict Reply" component is described in Section 3.1 and the
"Weight Optimization" component is described in Section
3.3

is similar to non-reciprocal recommendation tasks and therefore
we use collaborative filtering methodology. On the other hand, the
prediction of the reply of a recommended user can be better framed
as a 2-class classification problem.

3.1 Predicting Replies of Recommended Users
Our reply prediction model was trained on 35,000 samples of mes-
sages contained in the dataset provided by Doovdevan, each includ-
ing a list of features. We used the AdaBoost classifier, which we
found to outperform other machine learning algorithms we tried
on our dataset. The samples in the dataset are classified into two
classes: 1) positive reply and 2) no reply or negative reply4. As our
goal in this work is to increase positive interactions, we do not
distinguish between a negative reply or no reply at all.

The features of a message sent to a recommended user can be
divided into two main groups: 1) features describing the sender
and 2) features describing the recipient. Each of these groups can
be divided into two subgroups: 1) attributes of the user from her
public profile, for example: age, gender, height, profession; and 2)
features describing the activity and popularity of the user, such
as the number of received messages, sent messages, views, logins.
We first consulted a domain expert, who does not co-author this
paper, in order to find potentially influential features and later
we reduced the number of the features to 54 using the backward
elimination feature-selection method [12]. In Table 1 we present
the most prominent features, ordered by their information gain [8].

We denote the vector of feature values for a specific service user
x as:

x = (x1,x2,x3...xs )
where s is the number of the sender’s features.
Similarly, we denote the vector of feature values for recommen-

dation candidate y as:
4We manually classified all the samples which included a response into two classes: 1)
positive response; and 2) negative response.

Feature

Features of re-
cipient

1) Percent of positively replied messages
before current message.
2) Log-ins to the environment in the
week before the message.
3) Number of profiles he/she viewed.

Features of
sender

4) Number of users who viewed him/her.
5) Number of messages he/she received.

Table 1: Prominent features used in the reply prediction
model, ordered by their information gain.

y = (y1,y2,y3...yr )

where r is the number of the recipient’s features.
For any given service user x and potentially recommended usery,

we denote the probability for a positive response of y to a message
from x as:

PRy,x = h (x,y)

where h is the function learned by the AdaBoost model, which
returns the probability (value between 0 and 1) for a positive reply.

In our dataset, only about 7 percent of the initial messages were
classified as positively replied, and therefore in order to improve our
model we used the random oversampling class-balancing technique
[2]. The area under the curve (AUC) of the model is 0.8335.

In the next section we describe how RWS leverages this predic-
tion model in order to generate recommendations.

3.2 Optimally Balancing Receiver and
Recommended Users’ Importance

In Algorithm 2 we give the general scheme for our recommenda-
tion algorithm, where ServiceUserFeatures (row 10) is a function
which obtains the service user x ’s feature vector x, as denoted
above, and RecommendedUserFeatures (row 11) obtains the recom-
mended user’s feature vector y. The PredictReply (row 12) function
returns the probability of a positive reply according to our predic-
tive model function h. The OptimizedWeiдht function (row 13)
retrieves a weight, optimized specifically for the service user, as
described in Section 3.3.1. Later (row 14), our method utilizes these
weights to aggregate the CF and PR scores into a single score that
resembles the reciprocal interests of the match.

Notice that for a given user x , the algorithm only predicts the
probability of a reply for potentially recommended users y where
CFx,y is not null (rows 7-9). In this way we reduce the size of
possible candidates to a smaller subset of users. The importance of
this reduction will be discussed in detail in Section 5.

In the following section we will describe the method we use to
optimize these weights.

5For comparison, following are the best AUC scores received by other prediction
models which we tested: 1) random forest classifier: 0.798; 2) logistic regression: 0.795;
3) multi-layer-perceptron classifier: 0.791; 4) Gaussian naïve Bayes classifier: 0.672.
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Algorithm 2 Reciprocal Weighted Score Recommendations
Scheme
Input: service user x
Output: top-k recommendations
1: Recs ← ∅
2: for all y ∈ RecommendationCandidates do
3: CFx,y ← 0
4: for all n ∈ SentToy do ▷ calculate x ’s interest in y
5: CFx,y ← CFx,y + Similarityx,n

6: CFx,y ←
CFx,y
|SentToy | ▷ normalize score

7: if CFx,y = 0 then
8: reciprocalScorex,y ← 0
9: else
10: x← ServiceUserFeatures(x )
11: y← RecommendedUserFeatures(y)
12: PRy,x ← PredictReply(x,y)

▷ predict y’s response to x
13: α ← OptimizedWeiдht (x )
14: reciprocalScorex,y ← (α ·CFx,y + (1 − α ) · PRy,x )

▷ aggregate scores
15: Recs ← Recs + (y, reciprocalScorex,y )
16: sort Recs and return top-k

3.3 Weight Optimization
We aim at finding, for each service user x , a weight αx which
balances CFx,y and PRy,x (for each recommendation candidate y)
so that it will optimize x ’s successful interactions. We denote the
weighted score of user x for the recommended user y as RWSx,y ,
and it is calculated as follows:

RWSx,y (αx ) = αx ·CFx,y + (1 − αx ) · PRy,x
Note that for both the CF and PR scores we use the standard

score [6] rather than the original score.
In order to find a specific weight optimized for x , we observe

from the user’s interaction history the influence of each score (CF
and PR) on her successful interactions. We first define the following
sets:

SuccInterx = {y : x has sent an initial message to y
and y replied positively}

Vx = {y : x has viewed y}
In addition, we denote with RWSx,∗(αx ) the scoring function of

user x when a particular αx is employed. Moreover, we denote with
Ranky

(
RWSx,∗

(
αx )) the rank position ofy in the list of the viewed

users v ∈ Vx , sorted by decreasing value of the scoring function of
user x .

We now define our target optimization problem for a specific
user x , which we denote as IndividualOptimization:

minimize
αx

∑
v ∈Vx

1v ∈SuccInterx Ranky
(
RWSx,∗

(
αx ))

subject to 0 ≥ αx ≥ 1

Figure 3: Distribution of the alpha weight for men in the
Doovdevan environment

Figure 4: Distribution of the alpha weight for women in the
Doovdevan environment

By solving this optimization problem we find the weight αx
which will rank the users with whom x had successful interactions
higher than all other users that x has viewed. For the implemen-
tation of the optimization, we used Brent’s (numerical analysis)
method [3], which finds a local minimum in a given interval.

In Figures 3 and 4 we show the distribution of the alpha weight
for 765 male and 566 female users randomly chosen from the
Doovdevan environment. These figures demonstrate the impor-
tance of individual weighting: it is clear that in order to maximize
the successful interactions, the balance of the CF and PR scores
must vary substantially among different users. We can also observe
that for most of the women the CF score is a stronger indicator for
a successful interaction than PR, while for most of the men PR is a
better indicator.

Notice that the optimization problem described above is only
effective for users who had at least one successful interaction. In
order to also recommend to users who did not have previous suc-
cessful interactions, we define a similar optimization problem over
all users, which we denote as GlobalOptimization:
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minimize
α

∑
u ∈U

∑
v ∈Vu

1v ∈SuccInteruRankv
(
RWSu,∗(α )

)
subject to 0 ≥ α ≥ 1

where U is the set of all users and Rankv
(
RWSu,∗(α )

)
is the

rank position of v in the ranked list of the users in U sorted by
decreasing value of the RWSu,∗(α ) score. In our environment, the
calculated value of α for this global optimization problem is 0.3978.
This result shows that, as expected, the PR score is a better predictor
of a successful interaction than the CF score, for the average user.

4 EVALUATION
4.1 Experimental Setup
Our original intention was to compare several competing meth-
ods with RWS. However, due to the constraints imposed on us by
our collaborators from the online-dating site, we were limited to
studying only two conditions. Hence, we compared RWS to RCF (de-
scribed above in Section 2.3), which has been shown to outperform
previous approaches.

Our experiment involved a group of 398 randomly selected active
users from Doovdevan, ranging in age from 18 to 70 (mean = 34.9,
s.d.= 12.9), of which 24% (n=97) were female. We randomly divided
the subjects into two conditions. Both condition groups received
recommendations. The dependent variable was the recommenda-
tion method: the first group received recommendations based on
the RCF method, and the second received recommendations based
on RWS, our proposed method.

All subjects received the top three recommendations generated
by the recommendation method of their respective condition. The
recommendations were proposed once a day for three days.

4.1.1 The Optimized Weight of the RWS Condition. Before gener-
ating the recommendations, we calculated the optimized weight
for all users in the RWS condition. About 89% of the subjects re-
ceived individual optimized weights (the remaining subjects had
no successful interactions). The average optimized weight was
0.411 and the median weight was 0.349. This indicates that to most
of the users in our proposed method condition, the method gave
higher importance to the score that measures the probability that
a recommended user reply to a service user, while RCF method
gives equal importance to the interests of the service user and the
recommended user.

4.1.2 The Service User’s Interface. The service user’s interface sup-
ports three interaction stages:

(1) The system generates a recommendation and sends it to the
service user’s inbox. In addition, the service user receives a
notification on her smartphone. The recommendation has a
unique label that distinguishes it from other incoming mes-
sages in the inbox (left snapshot in Figure 5). The recommen-
dation includes a brief description of the recommended user:
low-resolution picture, name, age, location, marital status.
The service user may decide to click on the recommendation.

(2) If the user clicks on the recommendation, she moves to a
new screen showing a higher quality picture of the recom-
mended user and a text stating that the recommendation was

Figure 5: Screen shots of the recommendation’s user inter-
face. The left image is a screen shot of the inbox of a user
who received a recommendation. In this case, the recom-
mendation appears at the top. The right image is what the
user sees after clicking on the recommendations. The pic-
tures are blurred for reasons of privacy.

made based on her personal characteristics (right snapshot
in Figure 5). The service user can then decide whether or
not to send a message to the recommended user.

(3) If the service user opts to send a message to the recom-
mended user, the recommended user can reply with a mes-
sage or ignore the chat request.

4.2 Evaluation Metrics
We have measured three important indicators of the success of a re-
ciprocal recommender system: 1) The number of recommendations
that were clicked on by the service user; 2) The number of recom-
mendations that the service user accepted, meaning that she/he
initiated a chat with the recommended user; and 3) The number of
messages sent by the service user to which the recommended user
replied positively. As our objective in this work is to increase the
amount of successful interactions, our main focus is on the third
indicator. For a given service user x we define the following four
sets of users:

(1) ROx is the set of recommended users who have been recom-
mended to x and viewed by x in her inbox6.

(2) RVx is the set of recommended users whom x has viewed
in her inbox and then clicked on in order to browse more
detailed information.

6Some users did not view all of the recommendations, either because they did not
log-in in the week following the recommendations or because they did not view their
inbox.
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````````Measure
Condition RCF RWS

RO 320 356
RV 174 147
RM 171 138
M 889 1945
RI 1 8
I 99 322

Table 2: The summation of the results for all users in both
conditions, evaluated a week after provision of the recom-
mendations

(3) RMx is the set of users who were recommended to x and
received a message from x during the evaluation period.

(4) RIx is the set of users recommended to x and their recommen-
dations were followed by a successful interaction, i.e., x sent
a message to the recommended user and the recommended
user replied positively.

We first measured the number of messages that were clicked on
by the user after viewing the messages in the inbox:

VPrecisionx =
|RVx |
|ROx |

This metric evaluates the performance of the methods in recom-
mending users who seem interesting enough to the service user so
that she clicks on them in order to receive more information. The
metric is only applicable for users who have viewed at least one
recommendation in their inbox.

In addition we used four metrics for evaluation of RRSs defined
in [19, 23]:

MPrecisionx =
|RMx |
|RVx |

MRecallx =
|RMx |
|Mx |

whereMx is the group of users who received messages from x
in the evaluation period. We measure the successful interactions as
follows:

RPrecisionx =
|RIx |
|RMx |

RRecallx =
|RIx |
|Ix |

where Ix is the total number of successful interactions of user x in
the evaluation period.

4.3 Online Study Results
We examined the results a week after the provision of the recom-
mendations. In Table 2, we show the summation of all of the results
for all users in each condition.

We evaluated the performance of the recommendation methods
by comparing the mean of the metrics defined above using a stan-
dard t-test. All of the results for both conditions were found to be
distributed normally according to the Anderson-Darling normality
test [20].

We first evaluated the average VPrecision. Our results show
that the RCF method obtained significantly higher results (RCF:
mean=0.57, s.d.= 0.43 vs. RWS: mean= 0.43, s.d.= 0.42), meaning
that the recommendations that were provided by the RCF method

Figure 6: VPrecision, MPrecision andMRecall Metrics. Error
bars represent the standard error

Figure 7: RRecall and RPrecision Metrics. Error bars repre-
sent the standard error

looked more interesting to the users when they were scanned in
their inbox.

Regarding theMRecall metric, we found that the RCF approach
significantly outperformed RWS (RCF: mean=0.42, s.d.= 0.38 v.s
RWS: mean=0.29, s.d. =0.35). TheMPrecision metric of both condi-
tions is similar,with no statistically significant difference (mean=0.96,
s.d.= 0.28 vs. mean= 0.92 , s.d.= 0.23). The mean and the standard
error of VRecall ,MRecall andMPrecision are presented in Figure
6.

These results indicate that the users recommended by RCF were
evaluated as more appealing compared with those recommended
by RWS. This finding was not surprising, as our method aims at
optimizing successful interactions. In addition, as described above
in Section 4.1.1, for most of the subjects our proposed method gives
relatively less importance to the service user’s interest.

Considering the RRecall and RPrecision, which measure the
effectiveness of the algorithms in providing recommendations that
lead to a successful interaction, we found that RWS significantly
outperforms RCF with respect to RPrecision (RCF: mean=0.01, s.d.=
0.05 vs. RWS: mean= 0.06, s.d.= 0.21). Also, with respect to RRecall ,
RWS gave better results, but the difference is not significant (RCF:
mean=0.02, s.d.= 0.14 vs. RWS: mean= 0.06, s.d.= 0.21). Note that
RRecall is less important for our evaluation, as our optimization is
based on precision rather than recall. The mean and the standard
error of RRecall and RPrecision are presented in Figure 7.
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In addition, we found that the average weight (α ) assigned to a
subject who had a successful interaction following a recommenda-
tion was 0.194, while the average weight of all subjects was 0.411, as
mentioned above. This means that for these users, our method gave
a substantially higher importance to the reply prediction model in
comparison to the remaining subjects.

4.3.1 Popularity of the recommended users. We have also analyzed
the popularity of the users who were recommended by both meth-
ods. The popularity of the users is commonly estimated by the
number of messages received during a specific time period [15].
We measured the total number of messages received in the thirty
days before the recommendation provision. We found that the pop-
ularity of the active recommended users7 in the RCF condition was
significantly higher than the RWS condition (RCF: mean= 59.49,
s.d.= 45.14 vs. mean= 32.72, s.d.= 35.06, p < 0.01). This result indi-
cates that our method recommends less popular users. In fact, it is
very important to avoid recommending popular users, especially
in online dating applications, where popular users are typically
overwhelmed by incoming messages [17].

4.3.2 Runtime. We measured the average runtime for generating
recommendations for a single user by both methods. The average
runtime of the RCF method was 1.47 seconds, while in our pro-
posed method the average runtime was 6.97 seconds, including an
average of 2.61 seconds for the optimization calculation. However,
in practice, the runtime has no impact on the user experience since
the recommendations in our application are delivered as messages
and are not pulled by the users.

5 DISCUSSION AND FUTUREWORK
The main outcome of this work is that predicting which recom-
mended user will reply to a service user’s message and combining
this prediction with a standard CF method significantly improves
the number of successful interactions in comparison to the RCF
method. However, as we expected, it also reduces the amount of
accepted recommendations. An additional benefit of focusing the
recommendation on the prediction of the chances for a reply is that
it reduces the recommendation of popular users.

We note that in this work we have performed an online com-
parison of a baseline CF method with our novel approach called
RWS. We have preferred this type of evaluation to a simpler offline
experiment (on historical data) due to the limitations of offline eval-
uations. Specifically, in order to rely on an offline evaluation, one
must assume that behavioral data collected before the introduction
of the recommender, which are used to test the performance of the
recommender itself, are similar to what one could have observed
after the recommender was made available. Unfortunately this is
an incorrect assumption [16, 22]. Nevertheless, offline experiments
are useful for making a first screening of candidate approaches and
discarding totally inappropriate ones [22]. Therefore, we are cur-
rently implementing an offline experimental procedure to test the
application of alternative solutions in an offline setting that simu-
lates the online analysis. This will enable us to further optimize the
proposed solution and better understand the importance of various

7We only focus on the active recommended users, since non-active users receive fewer
messages regardless of their popularity and attractiveness.

components. In addition, we intend to compare our recommen-
dation method with other, previously proposed, recommendation
methods for RRS, in an offline experiment.

Although we evaluated our method in an online-dating envi-
ronment, we speculate that its general scheme would be effective
in other domains too, specifically in domains where partially con-
flicting interests arise [21]. For example, in the domain of online
job-recruiting, we would use two prediction models for generating
recommendations: 1) a prediction model for predicting job-offers
which will fit a job-seeker’s interest; and 2) a different prediction
model which will predict whether the company would accept an
application. Both components will be balanced with an optimized
weight for each individual job-seeker according to her history. We
are currently working on extending our recommendation approach
to other domains, such as recommender systems which assist users
in finding roommates and online job-recruiting platforms.

In addition to the decline in the recommendation acceptance
rate discussed above, a limitation of the proposed method is that
it requires a longer runtime for generating recommendations, as
mentioned in Section 4.3.2. Although the runtime did not influence
the user’s experience, it is possible that in a large-scale deployment
it will have an effect on the performance of the system. The latency
of our proposed method is mainly caused by the reply prediction
component and the computation of the scores’ balancing weight
optimization. Specifically, each reply prediction requires the extrac-
tion of several features, which is time consuming. For this reason,
it was important to reduce the number of recommendation candi-
dates, as described above in Section 3.3. In order to further improve
the system’s performance, we suggest calculating the optimized
scores balancing weights offline, before providing the recommen-
dation. The optimal weight can be saved and used later for several
recommendations.

Moreover, in theDoovdevan environment, userswere not charged
for sending messages. We would like to extend our work to online-
dating sites which have a different business model (e.g. pay per
message), since the acceptance of a recommendation and the suc-
cessful interaction may be influenced by that. As shown in [11],
the introduction of explicit cost can bear a significant influence
over users’ behavior in online dating environments. In addition, we
would like to assess the influence of the recommendations on the
willingness to pay for the service.
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