Artificial Intelligence 196 (2013) 26-52

Contents lists available at SciVerse ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Physical search problems with probabilistic knowledge * @CwssMark

Noam Hazon®*1, Yonatan Aumann P, Sarit KrausP®, David Sarne P

4 Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
b pepartment of Computer Science, Bar-llan University, Ramat Gan, Israel

ARTICLE INFO ABSTRACT
Article history: This paper considers the problem of an agent or a team of agents searching for a resource
Received 31 August 2011 or tangible good in a physical environment, where the resource or good may possibly

Received in revised form 30 September
2012

Accepted 24 December 2012

Available online 3 January 2013

be obtained at one of several locations. The cost of acquiring the resource or good at
a given location is uncertain (a priori), and the agents can observe the true cost only
when physically arriving at this location. Sample applications include agents in exploration
and patrol missions (e.g., an agent seeking to find the best location to deploy sensing

Keywords: equipment along its path). The uniqueness of these settings is in that the cost of observing
Graph search a new location is determined by distance from the current one, impacting the consideration
Economic search for the optimal search order. Although this model captures many real world scenarios, it

has not been investigated so far.
We analyze three variants of the problem, differing in their objective: minimizing the total
expected cost, maximizing the success probability given an initial budget, and minimizing
the budget necessary to obtain a given success probability. For each variant, we first
introduce and analyze the problem with a single agent, either providing a polynomial
solution to the problem or proving it is NP-complete. We also introduce a fully polynomial
time approximation scheme algorithm for the minimum budget variant. In the multi-agent
case, we analyze two models for managing resources, shared and private budget models.
We present polynomial algorithms that work for any fixed number of agents, in the shared
or private budget model. For non-communicating agents in the private budget model, we
present a polynomial algorithm that is suitable for any number of agents. We also analyze
the difference between homogeneous and heterogeneous agents, both with respect to their
allotted resources and with respect to their capabilities. Finally, we define our problem in
an environment with self-interested agents. We show how to find a Nash equilibrium in
polynomial time, and prove that the bound on the performance of our algorithms, with
respect to the social welfare, is tight.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Frequently, in order to successfully complete its task, an agent may need to explore (i.e., search) its environment and
choose among different available options. For example, an agent seeking to purchase a product over the Internet needs to
query several electronic merchants in order to learn their posted prices; a robot searching for a resource or a tangible good
needs to travel to possible locations where the resource is available and learn the configuration in which it is available, as

* This paper extends two earlier conference papers (Aumann et al., 2008 [6]; Hazon et al., 2009 [31]).
* Corresponding author.

E-mail addresses: noamh@cs.cmu.edu (N. Hazon), aumann@cs.biu.ac.il (Y. Aumann), sarit@cs.biu.ac.il (S. Kraus), sarned@cs.biu.ac.il (D. Sarne).
1 This work was done while the author was at Bar-Ilan University.

0004-3702/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.artint.2012.12.003

http://dx.doi.org/10.1016/j.artint.2012.12.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:noamh@cs.cmu.edu
mailto:aumann@cs.biu.ac.il
mailto:sarit@cs.biu.ac.il
mailto:sarned@cs.biu.ac.il
http://dx.doi.org/10.1016/j.artint.2012.12.003
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.artint.2012.12.003&domain=pdf

N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52 27

well as the difficulty of obtaining it there. In these environments, the benefit associated with an opportunity is revealed
only upon observing it. The only knowledge available to the agent prior to observing the opportunity is the probability
associated with each possible value of each prospect.

While in virtual environments the exploration can sometimes be considered costless, in physical environments traveling
and observing typically entails a cost. Furthermore, traveling to a new location may increase or decrease the distance to
other locations, so the cost associated with exploring other unexplored locations changes. For example, consider a Rover
robot with the goal of mining a certain mineral. Potential mining locations may be identified based on satellite imaging,
each location associated with some uncertainty regarding the difficulty of mining there. In order to assess the amount of
battery power required for mining at a specific location, the robot needs to physically visit there. The robot’s battery is
thus used not only for mining the mineral but also for traveling from one potential location to another. Consequently, an
agent’s strategy in an environment associated with search costs should maximize the overall benefit resulting from the
search process, defined as the value of the option eventually used, minus the costs accumulated along the process, rather
than merely finding the best valued option.

In physical environments, it is common to use a team of agents rather than a single agent. Extending the single agent
solution to multi-agent strategy may require subdividing the search space among the different agents. However, if agents
have means of communication, then they may not wish to become too distant, as they can call upon each other for assis-
tance. For example, even if a Rover does not have sufficient battery power for mining at a given location, it may be useful
for it to travel to the site in order to determine the exact mining cost, and call for other robots that do have the necessary
battery power. In this case, the scheduling of the robots’ travel times is key, and must be carefully planned. If the agents are
not fully cooperative, a selfish behavior should also be considered. Each one of the agents will try to minimize its traveling
costs while still achieving the group’s goal.

Finally, agents may be of different types, or with different amounts of resources. For example, Rover robots may be
entering the mission with differing initial battery charges. They may also differ in their capabilities, like a team of Rovers in
which some were specifically designed for mining missions, and thus require less battery power for the same mining task.

This paper aims at taking the first steps in understanding the characteristics of such physical search environments, both
for the single and multi agent cases, and developing efficient exploration strategies for the like. Our main focus is on the case
where the opportunities are aligned along a path, as in the case of perimeter patrol [60,19,2,3]. We note that many single
and multi-agent coverage algorithms convert their complex environment into a simple long path [52,25,32]. Furthermore,
we show that the problem in more general metric spaces is NP-complete, even for a tree graphs. For exposition purposes,
in the remainder of the paper we use the classical procurement application where the goal of the search is purchasing a
product and the value of each observed opportunity represents a price. Of course, this is only one example of the general
setting of exploration in a physical environment, and the discussion and results of this paper are relevant to any such
setting, provided that exploration and fulfilling the task consume the same type of resource.

We consider three variants of the problem, differing in their objective. The first (Min-Expected-Cost) is the problem of
an agent that aims to minimize the expected total cost of completing its task. The second (Max-Probability) considers an
agent that is given a budget for the task (which it cannot exceed) and aims to maximize the probability it will complete
the task (e.g., reach at least one opportunity with a budget large enough to successfully buy the product). In the last variant
(Min-Budget) the agent is required to guarantee a pre-defined probability of completing the task, and aims to minimize the
overall budget that will be required to achieve the said success probability. We also consider the multi-agent extensions
of these variants. While the first variant fits mostly product procurement applications, the two latter variants fit well into
applications of robots engaged in remote exploration, operating with a limited amount of battery power (i.e., a budget).

1.1. Summary of results

We first consider the single agent case. We prove that in general metric spaces all three problem variants are NP-hard.
Thus, as mentioned, we focus on the setting where all locations are located along a path. For this setting we provide poly-
nomial algorithms for the Min-Expected-Cost problem. We show the other two problems (Min-Budget and Max-Probability)
to be NP-complete even for the path. Thus, we consider further restrictions and also provide an approximation scheme. We
show that both problems are polynomial if the number of possible prices is constant. Even with this restriction, we show
that these problems are NP-complete on a tree graph. For the Min-Budget problem, we provide an FPTAS (fully-polynomial-
time-approximation-scheme), that provides a (1 + €) approximation for any € > 0, in time O (poly(ne~')), where n is the
size of the input.

For the multi-agent case, we first analyze a shared budget model, where all the resources and costs are shared among
all the agents. We show that if the number of agents is fixed, then all of the single-agent algorithms extend to k-agents,
with the time bounds growing exponentially in k. Therefore the computation of the agents’ strategies can be performed
whenever the number of agents is relatively moderate, a common scenario in many physical environments where several
agents cooperate in exploration and search. If the number of agents is part of the input then the multi-agent versions of
Min-Budget and Max-Probability are NP-complete even on the path and even with a single price.

We then investigate a model of private budgets, where each agent has its own initial budget. We again assume that
the number of possible prices is bounded. In this case, we separately consider the setting where agents can communicate
and the setting where they cannot. For non-communicating agents we show a polynomial algorithm for the Max-Probability

28 N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52

Table 1

Summary of results: n is the input size, m - the number of points (store locations), d - the number of different possible prices, w.p. (with phone) - the
version of Min-Expected-Cost with the ability to purchase by phone (see Section 1.3), d =d+1, k - the number of agents, n/a - the problem was not defined
in that case or there is no need for a solution, f - the polynomial function which is defined in Lemma 22.

(a) Single agent

Min-Expected-Cost Max-Probability Min-Budget

General metric spaces NP-hard NP-complete NP-complete
Trees NP-complete NP-complete
Path

Single price n/a 0 (m) 0 (m)

d prices 0(d®m*) (0(d*m?) w.p.) 0 (m24(&m)24) 0 (m24(55)%)

General case 0(d>m*) (0(d*m?) w.p.) NP-complete NP-complete

(1+ €) approximation n/a 0(ne—%)

(b) Multi-agent, shared budget, on the path
Min-Expected-Cost Max-Probability Min-Budget

k agents O(d2k+12k(%)4k) (O(dzzk(%)Zk) w.p.) O(mzkd(%)zkd) O(mzkd(%)zkd)
General case NP-complete NP-complete
(1 + ke) approximation n/a 0 (ne k)

(c) Multi-agent, private budget, on the path

Max-Probability Min-Budgetidentical Min-Budgetdistinct
No-communication
k fixed 0 (m3k?) 0 (m3k2n) 0 (m2kd(g)2kd)
k parameter 0(m3k?) 0 (m3k%n) NP-complete
With-communication _
k fixed F(m24 () k. k) e P

k parameter

problem that is suitable for any number of agents. For the Min-Budget problem with non-communicating agents, we present
a polynomial algorithm for the case that all agents must be allotted identical resources, but show that the problem is NP-
hard for the general case (unless the number of agents is fixed). Next we consider agents that can communicate, and can
call upon each other for assistance. As noted above, in this case the scheduling of the different agents’ moves must also to
be carefully planned. We present polynomial algorithms for both the Max-Probability problem and the Min-Budget problem
that work for any constant number of agents (but become non-polynomial when the number of agents is not constant).

We then move to the self-interested agents setting, where the agents seek to obtain an item but each one of them tries to
minimize the use of its own private budget for traveling. We define two games, a sequential game, Min-Expected-Cost-Game,
and simultaneous game, Min-Budget-Game. We show that when the number of possible prices is bounded and the number
of agents is fixed, the strategy that maximizes the social welfare can be found in polynomial time. We also show that in
Min-Budget-Game this strategy is a Nash equilibrium, but this is not always the case in Min-Expected-Cost-Game. We thus
present a polynomial algorithm that guarantees finding a strategy which is a Nash equilibrium. Furthermore, we show an
upper bound on the algorithm’s performance, and prove that it is tight.

Finally, we extend our results to the case of heterogeneous agents with different capabilities, and discuss the assumptions
that we made throughout the paper. Table 1 presents a summary of the results. Empty entries represent open problems.

1.2. Related work

Models of a single agent search process with prior probabilistic knowledge have attracted the attention of many re-
searchers in various areas, mainly in economics and operational research, prompting several reviews over the years [40,42].
These search models have developed to a point where their total contribution is referred to as search theory. Probably the
most famous problem within this field is the “secretary problem”, which has a remarkably long list of articles that have
been dedicated to its variations (see [22] for an extensive bibliography).> Nevertheless, these economic-based search mod-
els, as well as their extensions over the years into multi-agent environments [35,46,36,48], assume that the cost associated
with observing a given opportunity is stationary (i.e., does not change along the search process). While this permissive
assumption facilitates the analysis of search models, it frequently does not capture the real situation in the physical world,
as illustrated in Fig. 1. Therefore, in this paper, we assume that the cost associated with observing a given opportunity may
change along the search process. The use of changing search costs suggests an optimal search strategy structure different
from the one used in traditional economic search models; other than merely deciding when to terminate its search, the
agent also needs to integrate exploration sequence considerations into its decision process.

2 While the “secretary problem” is a classical optimal-stopping online problem, it does not involve search costs and the goal is to maximize the probability
of finding the best candidate rather than minimizing the expected overall cost in our case.

N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52 29

Fig. 1. An example of how the cost associated with observing a given opportunity may change along the search process. When the agent is located at us,
the cost of observing the prices at u; and us are 5 and 9, respectively. When the agent moves to u4, the cost of observing the prices at u; and us become
10 and 5, respectively.

Search with changing search costs has been previously considered in the computer science domain in the contexts of
prize-collecting traveling salesman problems [9], the orienteering problem [55] and the graph searching problem [39].

In Prize-Collecting Traveling Salesman Problems (PC-TSP) we are given a graph with non-negative “prize” values associ-
ated with each node, and a salesman needs to pick a subset of the nodes to visit in order to minimize the total distance
traveled while maximizing the total prize collected. Since there is a tradeoff between the cost of a tour and how much
prize it spans, several variants have been developed. All the variants of PC-TSP are NP-hard, as they are generalizations of
the famous Traveling Salesman Problem (TSP). One variant of PC-TSP is the k-TSP, where every node has a prize of one and
the goal is to minimize the total distance traveled, while visiting at least k nodes. Over the years, several constant-factor
approximations have been developed for the k-TSP [5,28,16,8,29]. The Orienteering Problem (OP) is another well-studied
variant of PC-TSP, where the goal is to maximize the total prize collected, while keeping the distance traveled below a cer-
tain threshold. Several stochastic variants of the OP have been considered. Campbell et al. [17] investigated the Orienteering
Problem with Stochastic Travel and Service times (OPSTS). Another stochastic variant of OP is the Orienteering Problem with
Stochastic Profits (OPSP) [34].

These variants of the TSP and OP, while related, fundamentally differ from our model in that the traveling budget and
the prizes in these models are distinct, with different “currencies”. Thus, using up travel budget does not, and cannot affect
the prize collected at a node. In our work, in contrast, traveling and buying use the same resource (e.g. battery power).
This fundamental difference is perhaps best exemplified when considering the situation on a path. On the path, solving the
TSP, PC-TSP, OP and OPSP is trivial, while, as we show, two of the problems we consider remain NP (and none seems totally
trivial). As such, also the methods developed for solving PC-TSP and OP variants, which focus on more general metric spaces,
are less relevant to our problem, which focuses on the path metric.

In the Graph Searching Problem (GSP), an agent seeks a single item that resides at some node of a graph, and a distri-
bution is defined over the probabilities of finding the item at each node of the graph. The goal is to minimize the expected
cost, as in our Min-Expected-Cost problem. The GSP was shown to be strictly related to a classic well-studied problem, the
Minimum Latency Problem (MLP) [47], also called the traveling repairman problem [1], the school-bus driver problem [59],
and the delivery man problem [23,43]. In this problem an agent is supposed to visit the nodes of a graph in a way that
minimizes the sum of the latencies to the nodes, where the latency of a node is the distance traveled by the agent before
visiting the node. The minimum latency problem was shown to be NP-complete even when the metric space is induced by
a tree [51], but can be solved in linear time when the underlying graph is a path [1,27]. In the operations research commu-
nity, there are several exact exponential time algorithms for the MLP, e.g. [61,23,50,14,41]. Researchers have also evaluated
various heuristic approaches [58,56]. In the computer science community, there is a large branch of research dealing with
approximate solutions to the MLP. For general metrics, Blum et al. [15] gave the first constant factor approximation. This
was improved by Goemans and Kleinberg [30], and later by Chaudhuri et al. [18]. Koutsoupias et al. [39] provided a con-
stant factor approximation for the unweighted case (i.e. for a shortest path metric on an unweighted graph), and Arora
and Karakostas [4] gave a quasi-polynomial O (n°U%¢™) time approximation scheme for weighted trees and points in RY.
The MLP was also generalized to multi-agent settings (with k repairmen) by Fakcharoenphol et al. [20,21]. Koutsoupias et
al. [39] and later Ausiello et al. [7] showed how to extend results obtained for the MLP to the GSP. For example, in some
cases, approximation developed for the MLP can be applied to the GSP. Extensions of the GSP to scenarios where the item
is mobile are of the same character [26,38]. The GSP models fundamentally differ from our model in that in GSP there is a
single item located somewhere in the graph, which needs to be found, and thus a single binary probability at each node. In
our model, the item may be simultaneously available at many nodes, but at different prices, and the for each node there is
a distribution over the multiple prices (as in economic search theory). Additionally, in our model traveling and purchasing
consume the same resource, an element lacking from the GSP model.

This paper thus tries to bridge the gap between classical economic search theory (which is mainly suitable for virtual
or non-dimensional worlds) and the changing search cost constraint imposed by operating in physical multi-agent environ-
ments.

From a broad perspective, our search problems lay within the field of planning under uncertainty. Some of the important
and relevant models in this field are Markov Decision Process (MDP) [12,45], Decentralized Markov Decision Process (DEC-

30 N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52

MDP) [13] and Stochastic Games [49]. In all of these models (Stochastic Games being the most general, MDP is the most
restricted) the goal is to maximize expected cumulative reward over a finite or infinite number of steps. This is the objective
with the Min-Expected-Cost problem, and we indeed use an MDP formulation to solve the Min-Expected-Cost problem on the
path (see Section 2.1.2). The other two problems we consider are not concerned with expected rewards, and hence the MDP
formulations, and variants, are inapplicable.

There are also other fields in Al (and in general) that consider problems which are closely related to our problems. One
such field is the work in path planning when there is uncertain knowledge about the environment. In these settings the
agent reveals the traversability of the edges only upon reaching them. The Focused Dynamic A* (D*) algorithm [53] is the
most popular heuristic search method that repeatedly determines a shortest path from the agent’s current position to the
goal, and is able to replan quickly as the knowledge of the terrain changes. Consequent alternatives to D* are D* lite [37]
and DSA* [54], which are also able to handle the case where the goal changes over time in addition to the traversability of
edges. Unlike our model, in this line of work there are neither uncertainties regarding values nor costs at the possible goal
locations that need to be considered. Therefore, D* lite and DSA* algorithms cannot be used to solve our problem.

Another related line of work is scheduling, and in particular scheduling under uncertainty, which considers similar
types of objectives [10,11,24]. Much research has been carried out in this field (see [33] for a survey), considering the
problem of optimal allocation of resources to activities over time, where some of the parameters are uncertain. Our problems
can also be seen as a scheduling problem, as we assign the agents to visit different stores over time. However, in the
scheduling domain the chosen plan does not affect the way that the uncertain parameters (i.e., the processing time or
the job length) are determined. In our case, the cost of visiting each store (i.e., the processing time) and the probability
of buying there (i.e., the probability distribution over the job length) depends on the selected plan. Moreover, in many
scheduling under uncertainty problem formulations the underlying deterministic problem is itself NP-hard, and research
focus is on developing heuristics to cope with the probabilistic version of the problem. In our case there is no underlying
deterministic problem - if all the prices are known, Min-Budget and Max-Probability are not defined and Min-Expected-Cost
has a trivial solution. In addition, we concentrate in analyzing the cases where there is an exact polynomial solution or at
least a proven approximation (with guarantees on the distance from the optimal solution).

1.3. Terminology and definitions

We are provided with a set of m points - S = {uq,..., uy}, which represent the locations where the item may be
available, which we call stores, together with a distance function dis : S x S — R™, which determines the travel costs between
any two locations.> We are also provided with the agents’ initial locations, which are assumed WLOG (without loss of
generality) to be at one of the stores (the product’s price at this store may be co). With a single agent, there is one initial
location, us; with k agents we are provided with a vector of initial locations (u§1), ey ugk)). In addition, we are provided
with a cost probability function pi(c) - stating the probability that the cost of obtaining the item at store i is c. Let D be
the set of distinct prices with non-zero probability, and d = |D|. We assume that the actual price at a store is only revealed
once an agent reaches the store. Given these inputs, the goal is roughly to obtain the product at the minimal total cost,
including both travel costs and purchase price. Since we are dealing with probabilities, this rough goal can be interpreted
in three different concrete formulations:

1. Min-Expected-Cost: minimize the expected cost of obtaining the product.

2. Min-Budget: given a success probability psycc minimize the budget necessary to guarantee obtaining the product with
probability at least psycc.

3. Max-Probability: given a total budget B, maximize the probability of obtaining the product.

In all the above problems, the optimization problem entails determining the strategy (order) in which to visit the different
stores, and when to terminate the search. In Min-Budget and Max-Probability, the search is always terminated when the
product is available for a price no greater than the remaining budget, and the agent is located at the store where the
product is purchased. In Min-Expected-Cost the budget is not allocated in advance and therefore the agent may decide to
buy the product at one store even when currently located at a different store. In this case, the agent will have to return to
the specific store, thus paying the “return” costs. This model (which includes returning costs) is the basic Min-Expected-Cost
model we consider. In addition, following standard assumption in economic search literature, we also consider a model
in which there are no returning costs. In a physical environment this can be justified if the product can be purchased
by phone (following the first physical visit at the store). We analyze both variants of the problem, and refer to them as
Min-Expected-Cost and Min-Expected-CostP"®" problems, respectively.

Technically, it is sometimes easier to work with the failure probability instead of the success probability. In order to
compute the failure probability there is a need to only multiply the failure probabilities in each node that has been visited.
For the success probability, one needs to use addition and multiplication. Therefore, instead of maximizing pg,. we may
phrase our objective as minimizing the failure probability.

3 We therefore have a metric space.

N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52 31

2. Single agent

We start by analyzing the single agent case, for general distance functions (e.g. the stores are located in a general
metric space). Unfortunately, in these settings, all three of the above mentioned problems are NP-hard; Min-Budget and
Max-Probability remain hard even if the metric space is a tree. Thus, we focus on the case that the stores are all located
on a single path. We would like to emphasize that even in a general metric spaces the stores are along some path that
can be traced through them. However, the agent can freely move from every store to every other store directly (with an
associated travel cost). When we say that the stores are located on a path we mean that the agent’s movement is more
restricted - if the agent is located in a store it can move directly only to the two adjacent neighbors of its current location.
We denote these problems Min-Budget (path), Max-Probability (path), and Min-Expected-Cost (path), respectively. In this
case we can assume that, WLOG all points are on the line, and do away with the distance function dis. Rather, the distance
between u; and u; is simply |u; —uj|. Furthermore, WLOG we may assume that the stores are ordered from left-to-right, i.e.
Uy < U <--- < Up. For exposition purposes, the analysis throughout the paper includes only sketch of proofs for hardness.
The detailed proofs are given in Appendices A and B.

2.1. Minimize-Expected-Cost

We prove that the Min-Expected-Cost variant is hard for general metric spaces. To prove this we first convert the problem
into its decision version. In Min-Expected-Cost-Decide we are given a set of points S, a distance function dis: S x S — Rt,
an agent’s initial location ug, a price-probability function p'(-), and a maximum expected cost M. The problem is to decide
whether there is a policy to obtain the product with an expected cost of at most M.

2.1.1. Hardness in general metric spaces
Theorem 1. For general metric spaces Min-Expected-Cost-Decide is NP-hard.

The reduction used is from HAMILTONIAN PATH, and we build the instance in such a way that the agent needs to visit all
the stores, but only once, to obtain the product with the target expected cost.

We note that in the proof the number of possible prices, d, does not depend on the input. Thus, for general metric
spaces Min-Expected-Cost-Decide is hard even if d is bounded. Furthermore, even if we assume that an agent can purchase
the product by phone after leaving the store, Min-Expected-Cost-Decide is still hard (the proof is essentially identical, except
that we remove the returning cost of 2n from M).

Before continuing with the analysis, we point out that if the cost of arriving to a location is fixed (e.g., in a vir-
tual environment, such as e-commerce, where the cost of visiting each store does not depend on the last visited store),
Min-Expected-Cost can be solved in polynomial time. The optimal search strategy in this case, as proved by Weitzman [57],
is based on setting a reservation value (i.e., a threshold) to each store according to the distribution characterizing its value
and the cost of revealing that value. The searcher should continue the search as long as the best value obtained so far
is above the lowest reservation value among those associated with stores that have not been explored yet. Formally, the
reservation value R; of a store associated with a fixed cost Fc; and a distribution p'(c) can be extracted from the following
equation:

Fei=Y (Ri—0)p'(0) (1)

c<R;

Intuitively, R; is the value where the searcher is precisely indifferent: the expected marginal benefit from revealing the
actual value of a store (right-hand side) exactly equals the cost of doing so (left-hand side). The use of variable exploration
costs due to physical constraints that need to be factored in thus dramatically increases the complexity of determining the
agents’ optimal strategies, precluding simple solutions such as the above.

2.1.2. Solution for the path

When all stores are located on a path, Min-Expected-Cost and Min-Expected-CostP"" problems can be modeled as a
finite-horizon Markov Decision Process (MDP), as follows. For exposition purposes, we start with Min-Expected-CostPhone,
Note that on the path, at any point in time the points/stores visited by the agent constitute a contiguous interval, which
we call the visited interval. Clearly, the algorithm need only make decisions at store locations. Furthermore, decisions can be
limited to times when the agent is at one of the two stores at the edges of the visited interval. At each such location, the
agent has only three possible actions: “go right” - extending the visited-interval one store to the right, “go left” - extending
the visited-interval one store to the left, or “stop” - stopping the search and buying the product by phone at the best price
so far. Also note that after the agent has already visited the interval [ug, u;], how exactly it covered this interval does not
matter for any future decision; the costs have already been incurred. Accordingly, the states of the MDP are quadruplets
[¢,r,e,c], such that £ <s<r, ee{{r}, and c € D, representing the situation that the agents visited stores u, through ur,
it is currently at location u,, and the best price encountered so far is c. The terminal states are Buy(c) and all states of the

32 N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52

form [1,m, e, c], and the terminal cost is c. For all other states there are two or three possible actions - “go right” (provided
that r <m), “go left” (provided that 1 < ¢), or “stop”. The cost of “go right” on the state [¢,r,e,c] is (ur41 — Ue), While
the cost of “go left” is (ue — ug—1). The cost of “stop” is always 0. Given the state [£,r, e, c] and move “go right”, there is
probability p"*1(c’) to transition to state [£,r + 1,7+ 1,c’], for ¢’ < c. With the remaining probability, the transition is to
state [¢,r 4+ 1,r + 1, c]. Transition to all other states has zero probability. Transitions for the “go left” action are analogous.
Given the state [¢,r1,e,c] and the action “stop”, there is probability 1 to transition to state Buy(c). This fully defines the
MDP. The optimal strategy for finite-horizon MDPs can be determined using dynamic programming (see [45, Ch. 4]). In our
case, the number of entries in the dynamic programming table is at most m-m -2 - d (since this is an upper bound on
the number of possible states) and it takes at most O(d) steps to compute each entry. Therefore, the complexity of solving
Min-Expected-CostPho"¢ is 0 (d2m?) steps (using O (dm?) space).

For Min-Expected-Cost (no phone) we will need a larger MDP, but the basic structure is similar. First note that if an
interval [ug, u;] has been visited, and the item not yet purchased, then any future purchase within the interval (if there
should be such a purchase) will be with the agent coming from outside the interval into the interval, and moving directly
to a store for purchasing. In addition, there is a unique store uy,, such that any searcher coming from anywhere to the right
of ur and purchasing within [ug, u,] purchases at uy,, and similarly a unique store uy,, for purchases coming from the left of
uy. The reason is that the cost of purchasing at a store is the sum of price and distance. So, any fixed additional distance does
not change the minimum. Thus, if the price at uy, is lowest for someone coming from u;, it is also the minimum for anyone
coming from u, to the right of u,. Therefore, the states of the MDP for Min-Expected-Cost are septuplets [¢,r,e, c¢, X¢, Cr, Xr],
representing the situation that the agent visited stores u, through u,, it is currently at location u,, e € {¢,r}, and the best
price encountered so far for someone coming from the left (respectively right) is c,(c;), which can be found at store uy, (uy,).
The terminal states are Buy(c,e,x) with a terminal cost of ¢ + |ue — uy|, and all states of the form [1,m,e,c¢, X¢, Cr, Xr]
with a terminal cost of ¢, + |uy, —u1] if e=1 and ¢, + |um — uy,| if e =m. The actions are the same as in the MDP for
Min-Expected-CostPhO“e, but the transition probabilities are different. Given the state [¢, 1, e, c¢, X¢, Cr, Xr] and move “go right”,
there is probability p™+!(c’) to transition to state [¢,r+1,7+1,c¢, X, ¢, r+1], for ¢’ < (c;+ |ur41 — Uy, |). With the remaining
probability, the transition is to state [¢,r+1,r+1, c¢, X¢, Cr, Xr]. Transition to all other states has zero probability. Transitions
for the “go left” action are analogous. Given the state [¢,1,e, c¢, X¢, Cr, X-] and the action “stop”, there is probability 1 to
transition to state Buy(cg, e, x;) if e = ¢ and Buy(c;, e, x;) if e =r. This fully defines the MDP. Using the same analysis as
before, we get that the complexity of solving Min-Expected-Cost is O (d*m?) steps (using O (d?m*) space).

2.2. Min-Budget and Max-Probability

2.2.1. NP completeness

Unlike the Min-Expected-Cost problem, the other two problems are NP-complete even on a path. To prove this we
again convert the problems into their decision versions. In the Min-Budget-Decide problem, we are given a set of points
S, a distance function dis: S x S — R™T, an agent’s initial location us, a price-probability function p'(-), a minimum success
probability ps,cc and maximum budget B. We have to decide whether a success probability of at least pg, can be obtained
with a budget of at most B. The exact same formulation also constitutes the decision version of the Max-Probability problem.

Theorem 2. The Min-Budget-Decide problem is NP-complete even on a path.

The reduction is from 0-1 KNAPsAck. We build the instance such that the agent needs to go back and forth along the
line in a zigzag movement. Before any direction switch the agent needs to decide weather to keep moving to a close store,
to “collect” some more probabilities, or to keep its budget and head to the other direction. Each such decision corresponds
to the decision of whether to spend some space and insert an item to the knapsack, or save it to the next item.

Thus, we either need to consider restricted instances or consider approximations. We do both.

2.2.2. Restricted case: Bounded number of prices

We consider the restricted case when the number of possible prices, d, is bounded. For brevity, we focus on the
Min-Budget (path) problem. The same algorithm and similar analysis work also for the Max-Probability (path) problem.
Consider first the case where there is only one possible price co. At any store i, either the product is available at this price,
with probability p; = p'(co), or not available at any price. In this setting we show that the problem can be solved in 0 (m)
steps. This is based on the following lemma, stating that in this case, at most one direction change is necessary.

Lemma 3. Consider a price co and suppose that in the optimal strategy starting at point us the area covered while the remaining
budget is at least cq is the interval [ug, u,]. Then, WLOG we may assume that the optimal strategy is either (us — u, — uy) or
(Uus — g — uy).

Proof. Any other route would yield a higher cost to cover the same interval. O

Using this observation, we immediately obtain an O (m?) algorithm for the single price case: for each interval [ug, u,],
consider both possible options and for each compute the total cost and the resulting probability. Choose the option which

N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52 33

Algorithm 1 OptimalPolicyForSinglePrice(Success probability ps,c, single price cp).

. ur < leftmost point on right of ug s.t. 1 —]_[,(:5(1 — Di) 2 Psucc
<5
 BRL o Jur —
: while £ >0and r > s do
B <« 2|ur — ug| + |us — ug|
if B < BRL then
BRL B

r<r—1

9: while ¢ >0and 1—[]/_,1— pi < Psucc do
10: L<—t—-1
11: uy < rightmost point to left of us s.t. 1—]_[fzg 1—Di 2 Psuce
12: r<s
13: BRR o Jus —uy
14: while r <m and ¢ < s do
15: B <« 2|us — ug| + |uy — us|
16: if B<BR then

17: B B
18: <« t¢+1
19: while r <mand 1—[]_, 1 — pi < Psucc do
20: r<r+1

. in(BRL BIR
21: return min{B_ . . B~ }+ o

BN DU RWN 2

requires the lowest budget but still has a success probability of at least pg,c.. With a little more care, the complexity can be
reduced to O (m). First note that since there is only a single price cy, we can add c¢ to the budget at the end, and assume
that the product will be provided at stores for free, provided that it is available. Now, consider the strategy of first moving
right and then switching to the left. In this case, we need only consider the minimal intervals that provide the desired
success probability, and for each compute the necessary budget. This can be performed incrementally, in a total of O (m)
operations for all such minimal intervals, since at most one point can be added and one deleted at any given time. Similarly
for the strategy of first moving left and then switching to the right. The details are provided in Algorithm 1.

Next, consider the case that there may be several different available prices, but their number, d, is fixed. We provide a
polynomial algorithm for this case (though exponential in d). First note that in the Min-Budget problem, we seek to minimize
the initial budget B necessary so as to guarantee a success probability of at least pgy given this initial budget. Once the
budget has been allocated, however, there is no requirement to minimize the actual expenditure. Thus, at any store, if the
product is available for a price no greater than the remaining budget, it is purchased immediately and the search is over.
If the product has a price beyond the current available budget, the product will not be purchased at this store under any
circumstances. Denote D = {c1,¢3,...,Cq}, With ¢; > c3 > --- > c4. For each ¢; there is an interval I; = [ug, u,] of points
covered while the remaining budget was at least c;. By definition, for all i, I; C I;+1. Thus, consider the incremental area
covered with remaining budget ¢;, A; = I; — I;_1 (with Ay = I7). Each A; is a union of an interval at left of us; and an
interval at the right of ug (both possibly empty). The next lemma, which is the multi-price analogue of Lemma 3, states that
there are only two possible optimal strategies to cover each Aj:

Lemma 4. Consider the optimal strategy and the incremental areas A; (i =1, ...,d) defined by this strategy. For c; € D, let uy, be
the leftmost point in A; and uy, the rightmost point. Suppose that in the optimal strategy the covering of A; starts at point us;. Then,
WLOG we may assume that the optimal strategy is either (us; — uy, — uy;) or (us; — Uyg; — Uy,). Furthermore, the starting point for
covering A;1 is the ending point of covering A;.

Proof. The areas A; fully determine the success probability of the strategy. Any strategy other than the ones specified in
the lemma would require more travel budget, without enlarging any A;. O

Thus, the optimal strategy is fully determined by the leftmost and rightmost points of each A;, together with the choice
for the ending points of covering each area. We can thus consider all possible cases and choose the one with the lowest

. . L 2d . .
budget which provides the necessary success probability. There are (sz)! < %)2‘1 ways for choosing the external points of

the A;’s, and there are a total of 2¢ options to consider for the covering of each. For each option, computing the budget
and probability takes O(m) steps. Thus, the total time is O(mZd(%)Zd). Similar algorithms can also be applied for the
Max-Probability (path) problem. In all, we obtain:

Theorem 5. Min-Budget (path) and Max-Probability (path) can be solved in O (m) steps for a single price and O (m2d(%)2d) ford
prices.

In summary, the effect of bounding the number of prices was indeed surprising. Indeed, as we showed in Lemma 4,
the number of prices determines incremental intervals for covering by the agent. Each price induces only one interval and

34 N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52

there are only two optimal ways to cover each interval. Therefore, if the number of prices is fixed, even if we increase the
number of stores we can still enumerate and check all the possible ways to cover the intervals optimally. Unfortunately,
moving beyond the path, Min-Budget-Decide turns hard, even with a bounded number of possible prices, and even on a tree.

Theorem 6. The Min-Budget-Decide problem is NP-complete on a tree, even with a bounded number of prices.

The reduction is from 0-1 KNAPSACK. In the proof we build a star tree, where the agent is located at the root and all
the other stores around him. We use only two possible prices, 0 and inf, so the only difference between stores is their
distance from the root (which corresponds to the knapsack items size) and the probability of purchasing the product (which
corresponds to the knapsack item value).

2.2.3. Min-Budget approximation

Next, we provide an FPTAS (fully-polynomial-time-approximation-scheme) for the Min-Budget (path) problem. The idea
is to force the agent to move in quantum steps of some fixed size §. In this case the tour taken by the agent can be divided
into segments, each of size §. Furthermore, the agent’s decision points are restricted to the ends of these segments, except
for the case where along the way the agent has sufficient budget to purchase the product at a store, in which case it does so
and stops. We call such a movement of the agent a §-resolution tour. Note that the larger § the less decision points there are,
and the complexity of the problem decreases. Given 0 < € < 1, we show that with a proper choice of § we can guarantee a
(14 €) approximation to the optimum, while maintaining a complexity of O (npoly(1/€)), where n is the size of the input.

Our algorithm is based on computing for (essentially) each initial possible budget B, the maximal achievable success
probability, and then pick the minimum budget with probability at least pg,. Note that once the interval [£,r] has been
covered without purchasing the product, the only information that matters for any future decision is (i) the remaining
budget, and (ii) the current location. The exact (fruitless) way in which this interval was covered is, at this point, immaterial.
This, “memoryless” nature calls, again, for a dynamic programming approach. We now provide a dynamic programming
algorithm to compute the optimal §-resolution tour. WLOG assume that ug = 0 (the initial location is at the origin). For
integral i, let w; =i§. The points w;, which we call the resolution points, are the only decision points for the algorithm.
Set L and R to be such that w; is the rightmost w; to the left of all the stores and wpg the leftmost w; to the right
of all stores. We define two tables, fail[-,-,-,-] and act[-, -, -, -], such that for all £,r, L <€ <0<r<R,ec{lr} (one
of the end points), and budget B, fail[¢,r, e, B] is the minimal failure probability achievable for purchasing at the stores
outside [wg, w,], assuming a remaining budget of B, and starting at location we. Similarly, act[¢,r, e, B] is the best act
to perform in this situation (“left”, “right”, or “stop”). Given an initial budget B, the best achievable success probability is
(1 —fail[0, 0, 0, B]) and the first move is act[0, 0, 0, B]. It remains to show how to compute the tables. The computation of
the tables is performed from the outside in, by induction on the number of remaining points. For £ =L and r = R, there are
no more stores to search and fail[L, R, e, B] =1 for any e and B. Assume that the values are known for i remaining points,
we show how to compute for i + 1 remaining points. Consider cost[¢,r, e, B] with i + 1 remaining points. Then, the least
failure probability obtainable by a decision to move right (to wy41) is:

Fr= (1 - > pr+1(c)>fail[2,r+ 1,r+1,B—6]
c<B-$

Similarly, the least failure probability obtainable by a decision to move left (to wy_1) is:

FL= (1 - > p“(c))fail[z —1,r,4—1,B—6]

c<B-3$

Thus, we can choose the act providing the least failure probability, determining both act[¢,r,e, B] and fail[¢,r,e, B]. In
practice, we compute the table only for B’s in integral multiples of §. This can add at most § to the optimum. Also, we may
place a bound BJ ., on the maximal B we consider in the table. In this case, we start filling the table with w; = —B3 ., /8
and wg = B ,, /8, the furthest point reachable with budget B? ...

Next, we show how to choose § and prove the approximation ratio. Set A = €/9. Let o« = min{|us — Us4+1], [us — Us—1]}
- the minimum budget necessary to move away from the starting point, and 8 = m?|uy — u1| + max{c: 3, p'(c) > 0}
- an upper bound on the total usable budget. We start by setting § = A2« and double it until § > A%8, performing the
computation for all such values of §. For each such value of §, we fill the tables (from scratch) for all values of B’s in
integral multiples of § up to B‘fnax =2).725. We now prove that for at least one of the choices of § we obtain a (1 + €)
approximation.

Consider a success probability ps,c and suppose that optimally this success probability can be obtained with budget
Bope using the tour Top. By tour we mean a list of actions (“right”, “left” or “stop”) at each decision point (which, in this

case, are all store locations). We convert T,y to a §-resolution tour, Tgpt, as follows. For any i > 0, when T,,; moves for the
first time to the right of w; then Tgpt moves all the way to w;,1. Similarly, for i <0, when T, moves for the first time to
the left of w; then T?

opr moves all the way to wj_j.

N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52 35

Note that Tgp[requires additional travel costs only when it “overshoots”, i.e. when it goes all the way to the resolution
point while Top: would not. This can either happen (i) in the last step, or (ii) when T,,; makes a direction change. Type (i)
can happen only once and costs at most §. Type (ii) can happen at most once for each resolution point, and costs at most
25. Suppose that Top[makes t turns (i.e. t direction changes). Then, the total additional travel cost of the tour Top[over
Tope is at most (2t 4 1)8. Furthermore, if we use Top with budget By and Topt with budget Bopr + (2t 4 1)§ then at any
store, the available budget under Topt is at least that available with Top. Thus, Top[is a §-resolution tour that with budget
at most Bopr + (2t 4+ 1)8 succeeds with probability > psucc. Hence, our dynamic algorithm, which finds the optimal such
§-resolution tour will find a tour with budget ngt < Bopt + (2t + 2)8 obtaining at least the same success probability. Note
that we include one additional 8, for the integral multiples of & in the tables.

Since Tgpt has t-turns, Topr must also have t-turns, with targets at t distinct resolution segments. For any i, the i-th such
turn (of Topt) necessarily means that T,pr moves to a point at least (i — 1) segments away, i.e. a distance of at least (i —1)3.
Thus, for Bep, which is at least the travel cost of Top, we have?:

1
Bopt > Z(z—l)a_ﬁ 43)

On the other hand, since we consider all options for § in multiples of 2, there must be a § such that:

22 PR
2770 > Bopt 2 —-0 3)

Combining (2) and (3) we get that t <2A~!. Thus, the approximation ratio is:
Bope _ Bop+2+1)5 _ 2+ 13

Bopt Bope =)»_28/2
<1+ (8 +422) <1+e (5)

(4)

Also, combining (3) and (5) we get that
Bopt Bopi(1+€) <2028 =85

Hence, the tables with resolution § consider this budget, and Bom will be found.

It remains to analyze the complexity of the algorithm. For any given § there are B‘Enax /8 =212 budgets we consider and
at most this number of resolution points at each side of ug, for each, there are two entries in the table. Thus, the size of
the table is < 8178 = 0(e~®). The computation of each entry takes O (1) steps (see the discussion above). We consider § in
powers of 2 up to 8 < 2", where n is the size of the input. Thus, the total computation time is O (ne ~%). We obtain:

Theorem 7. For any € > 0, the Min-Budget (path) problem can be approximated with a (1 + €) factor in O (ne ~®) steps.

3. Multi-agent, shared budget

Since even the single agent case is hard for general metric spaces, with the multi-agent case we focus solely on situations
in which all the stores are on a single path. We assume k agents operating in the same underlying physical setting as in
the single agent case, i.e. a set of stores S and a price probability function for each store. We assume that the goal is not
individualized; the agents seek to obtain only one item and having multiple goods is not beneficial. Furthermore, since the
agents are fully collaborative, they do not care which agent will obtain the item.

We begin by analyzing the shared budget multi-agent model, where all the resources and costs are shared among all the
agents. In theory, agents may move in parallel, but since minimizing time is not an objective, we may assume WLOG that
at any given time only one agent moves. When an agent reaches a store and finds the price at this location, the optimal
strategy should tell whether to purchase the product (and where) and if not what agent should move next and to where.
Therefore, in the k-Shared-Min-Expected-Cost problem the agents try to minimize the expected total cost, which includes
the travel costs of all agents plus the final purchase price (which is one of the prices that the agents have sampled). In
k-Shared-Min-Budget and k-Shared-Max-Probability, the initial budget is for the use of all the agents, and the success probabil-
ity is for any of the agents to purchase, at any location. Since all the agents use the same budget in this model, inter alia, for
traveling costs, we assume the agents can communicate with each other to coordinate their moves. In k-Shared-Min-Budget
and k-Shared-Max-Probability the agents only need to announce to the other agents when they reach a specific store. In
k-Shared-Min-Expected-Cost the agents also need to communicate the price they find at the location they have reached.

4 Assuming that t > 1. If t =0, 1 the additional cost is small by (3).

36 N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52

In general, the algorithms for the single-agent case (for the path) can be extended to the multi-agent case, with the
additional complexity of coordinating between the agents. The proofs are relegated to Appendix B, as they are very similar
to the single agent case. We obtain:

Theorem 8. With k agents, k-Shared-Min-Expected-CostP"°" can be solved in O(d22’<(%)2k), and k-Shared-Min-Expected-Cost
can be solved in O (d?k+12k (1)4k),

Theorem 9. With k agents, k-Shared-Min-Budget and k-Shared-Max-Probability with d possible prices can be solved in

0 (mzkd(%)de)'

Theorem 10. With k agents, for any € > 0, k-Shared-Min-Budget can be approximated to within a factor of (1 + ke) in O (ne %)
steps (for an arbitrary number of prices).

While the complexity in the multi-agent case grows exponentially in the number of agents, in most physical environ-
ments where several agents cooperate in exploration and search, the number of agents is relatively moderate. In these cases
the computation of the agents’ strategies is efficiently facilitated by the principles of the algorithmic approach presented in
this paper.

If the number of agents is not fixed (i.e. part of the input) then, the complexity of all three variants grows exponentially.
Most striking perhaps is that k-Shared-Min-Budget and k-Shared-Max-Probability are NP-complete even on the path with a
single price. This is in contrast to the single agent case where the single price case can be solved in O(n) steps. To prove
this we again formulate the problems into a decision version - k-Shared-Min-Budget-Decide - given a set of points S on the
path, initial locations for all agents (uﬁl),...,ug‘)), a price-probability function p'(-), a minimum success probability pgycc
and a maximum budget B, decide if success probability of at least pg, can be achieved with a maximum budget B.

Theorem 11. k-Shared-Min-Budget-Decide is NP-complete even on the path with a single price.

The reduction is (again) from 0-1 KNAPSAcK. We build the instance such that the number of agents corresponds to the
number of possible knapsack items. Each agent can only visit one store, since we set the distances to the other stores above
the (shared) budget. As before, the probabilities at the stores correspond to the knapsack items values, and the distances
correspond to the knapsack items sizes. The problem is to decide which agents will move given the initial budget, which
corresponds to the decision which items to insert to the knapsack given its size.

4. Multi-agent, private budget

We now investigate a model of private budgets, wherein each agent j has its own initial budget B (unlike the previous
shared budget model). If the objective is to minimize the total expected cost, the private budgets model is equal to the
shared budget model since the agents are cooperative. Therefore in this case we have two concrete problem formulations:

1. k-Private-Max-Probability: given initial budgets Bj, for each agent j, maximize the probability of obtaining the item.
2. k-Private-Min-Budget: given a target success probability ps,c, minimize the agents’ initial budgets necessary to guarantee
acquisition of the item with a probability of at least pgycc.

Since the corresponding single-agent problems are hard even for the path, we again assume that the number of possible
prices, d, is bounded. In the k-Private-Min-Budget problem it is also important to distinguish between two different agent
models:

e Identical budgets: the initial budgets of all the agents must be the same. The problem is to minimize this initial budget,
and we denote the problem as k-Private-Min-Budgetidentical,

e Distinct: the agents’ initial budgets may be different. In this case the problem is to minimize the average initial budget,
and we denote the problem as k-Private-Min-Budgetdistinct,

4.1. Non-communicating agents

We first consider the case where agents cannot communicate with each other. In this case agents cannot assist each
other. Hence a solution is a strategy comprised of a set of ordered lists, one for each agent, determining the sequence of
stores this agent must visit.

The success probability of a strategy is the probability that at least one of the agents will succeed in its task. Technically,
in this case, it is easier to calculate the complementary failure probability: the probability that all the agents will not
succeed in their tasks. For example, suppose that the stores and agents are located as illustrated in Fig. 2, and consider the
depicted strategy. This strategy fails if for both agents and each of the stores they visit the cost of the item is higher than

N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52 37

/\/\
(D

Plc P [c P
0.5 | 90 0.25 | 80 05
0.5 | 60 0.75 | 20 0525 0.2]10

Fig. 2. A possible input with a suggested strategy. The numbers on the edges represent traveling costs. The table at each store u; represents the cost
probability function p;(c). The strategy of each agent is illustrated by the arrows.

their remaining budget. This will happen with probability (2 411 (% %) 20 Hence, the success probability of this strategy

19
is 20°
We begin by considering the k-Private-Max-Probability problem. We prove:

Theorem 12. In the no communication case if the number of possible costs is constant then k-Private-Max-Probability can be solved
in polynomial time for any number of agents.

The proof is based on the following definitions and lemmata. The key idea is that in most cases the stores will be visited
by only one agent in the optimal strategy. However, there are some cases where the same store will be visited by more
than one agent. We identify these cases and show that there are only a fixed number of them. We are thus able to provide
a dynamic programming algorithm to find the optimal strategy.

Note that multiple strategies may result in the same success probability. In this case we say that the strategies are
equivalent. In particular there may be more than one optimal strategy.

Definition 13. Let S be a strategy. Agents i and i are said to be separated by S if each store that is reached by i is not
reached by i.

Lemma 14. If agents i and i are not separated by any optimal strategy, then in at least one optimal strategy at least one of these agents
must pass the initial location of the other.

Proof. WLOG assume that i is on the right side of i. Consider an optimal strategy S. Let r be the rightmost store that is
reached by i and I the leftmost store that is reached by i. Assume by contradiction that none of the agents passes the
initial location of the other in S. Thus, there is at least one store between their initial locations that is reached by both
agents. WLOG assume that i reaches at least one store with a higher budget than i's remaining budget when reaching it,
and denote by r* the rightmost such store. Consider the following modified strategy: i goes according to S till the stage it
has to reach 7*. If i did not reach r yet then instead of reaching 7* it goes all the way straight to r. Otherwise, it stops _]LlSt
before reaching 7*. i goes according to S till the stage it has to reach 7*. If i i did not reach I yet then after reaching r*
goes all the way stralght to . Otherwise, it stops after reaching 7*. Agents i and i are separated by this strategy and it has
at least the same success probability as S, in contradiction. O

Based on this lemma, we now show that if two agents are not separated by any optimal policy, their movement has a
specific structure.

Lemma 15. Suppose that agents i and i are not separated by any optimal strategy. Let S be an optimal strategy. Suppose that in S
agent i passes the initial location of agent i and agent i does not stay in its initial location. Then, there is an optimal strategy such that
one of the following holds:

e imoves only in one direction which is opposite to the final movement’s direction of i. Furthermore, if the final movement’s direction
of i is right (left) then i passes the leftmost (rightmost) store that is reached by i.
e Eitheri ori does not move.

Proof. WLOG assume that i is on the right side of i. Let [I, r] be the interval of stores covered by i. Since i passes the initial

location of i, I is located on the left of u(l) and r is located on the right of u(').

First we show that we may assume that i reaches at least one store outside the _interval [I, r]. If it does not, consider
the following two cases. If i's remaining budget at each store is always as high as i’s remaining budget then i does not
have to move and the theorem holds. Otherwise, let ™ be the rightmost store where i's remaining budget is higher than

38 N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52

D R R YY)

D R T R T R R RIS

uo--oooooo.of
..---..-..o-.o.o..-

0

o'

A R R R R W WAy

(b)

P L LT T T T X T T P P S

®eecccsces
.
o..o‘o.loo.lcoonoloo.a-oo..oo-.
XYY

Fig. 3. The only three cases where a pair of agents may not be separated.

i’s remaining budget. If 7 is on the left side of i’s initial location, then as in the proof of Lemma 14, the agents can be
separated. If 7* is on the right side of i’s initial location and it equals r, there is no need for i to reach r since at each store
in [ug’), r], i has at least the same budget as i. Thus, there is an optimal strategy where either i does not move or it moves
only to the left, so i passes the rightmost store that is reached by i. If 7 is on the right side of i but on the left side of r
then there is no need for i to go beyond 7*. Since it has more budget than i at this location, i can move to | while i moves
to r. Thus, again, there is an optimal strategy where either i does not move or it moves only to the right, so i passes the
leftmost store that is reached by i. Thus, we may assume that i reaches at least one store outside the interval [I, r].

WLOG assume that i’s final movement’s direction is left and suppose that i reaches at least one store outside the interval
[I,r] to the left of I. If i’s budget at I is higher than i's remaining budget there, then it is also higher at ug'), and again the
agents can be separated. If i’s budget at [is not higher than i’s remaining budget, then i does not have to move since i can
reach the same stores to the left of L.)

Now suppose that i moves to the right (which is the opposite direction of i’s final movement) and passes ugl), but it
also changes its direction. The only reason for i to change directions is to reach a store on the left side of its initial location,
with a higher budget than i has at this store, or to reach a store that i does not reach at all. In both cases i must reach each
store in [I, ug')] with at least the same budget as i has at the same location, so either S is not optimal, or we can modify S
by letting only i to move while i does not move at all. O

Using these lemmata we observe that for any two agents, there is only a constant number of possible cases where the
agents are not separated by the optimal strategies. Fig. 3 illustrates the three core cases (the others are symmetrical). Here,
agents 1 and 3 are non-separated agents. Note that every agent between them, like agent 2, does not have to move at all
in the optimal strategy.

Therefore we can use a dynamic programming approach to find an optimal strategy whereby all the agents are separated,
but we also check the non-separated strategies individually.

N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52 39

Recall that in our problem the objective is to maximize the success probability, given the initial budgets. Technically, it
is easy to work with the failure probability instead of the success probability.

Definition 16. fail[u;, j] is the minimal failure probability if the only reachable stores are in the interval [uq, u;], and only
agents 1,..., j are allowed to move. act[u;, j] is the optimal strategy achieving fail[u;, j], under the same conditions.’

Note that where u; < ug”, faillu;, j] is not defined. Given act[u;, j], faillu;, j] can be easily computed in O(m) steps.
For technical reasons we add another agent, 0, with a budget of zero and set its initial location to the leftmost store, i.e.
u§°) =u4. faillu;, 0] =1 for all i, and this agent doesn’t affect the failure probability of any policy.

We are now ready to prove Theorem 12, by showing a polynomial time algorithm for k-Private-Max-Probability.

Proof of Theorem 12. We use dynamic programming to calculate fail[u,,, k] and act[un,, k]. For fail[u;, 1] and act[u;, 1], which
is the single agent case, we employ the polynomial algorithm obtained from Theorem 5.

Given any agent_]’ we first consider the case where u; = ugj). In this case in the optimal strategy j moves only to the left,
or not at all. Let ul(]) be the leftmost store visited by j with the optimal strategy for the given interval, and agent I be the
one such that ug) < ul(j) (I may equal 0). Each agent t such that | <t < j does not move in the optimal strategy. Otherwise,

agents t and j are not separated and according to Lemma 15 agent t must pass the rightmost store ugj), which is not

possible. The same argument shows that each agent t such that t <! does not reach u,(j). Therefore act[u;, j] is composed

of act[ul(i)l,l], which are already known, together with the movement of agent j to ul(j) . Thus, computing ul(j) takes O (m)
steps.

Next, consider the case where u; > ugj). In this case, in the optimal strategy j may move in both directions, or not move
at all. Let ul“) be the leftmost store visited by j with the optimal strategy for this interval, and agent [is the one such that

ug) < ul(j). First note that each agent t, t <1, and j are separated by the optimal policy, or j does not move. Otherwise,

according to Lemma 14 ¢ must pass the initial location of j but according to Lemma 15 j must reach a store outside the

interval [ug), ugj)] which does not occur. Since j passes the initial locations of every agent t, | <t < j, if one of them moves

it goes only in the opposite direction of the final movement direction of j according to Lemma 15, and as illustrated in
Fig. 3. Since they all must move in the same direction, according to the same lemma at most one of them moves in the
optimal policy. Therefore, to compute act[us, j] we check only the following options, and choose the best one:

1. j does not move, and act[u;, j] = act[u;, j — 1].
2. Each agent t, | <t < j, does not move. Thus, act[us, j1 is composed of act[ul(i')p I], with the optimal movement of agent

j in the interval [u,(j), uil.
The previous two options assume that j and every other agent are separated. Otherwise:

3. One agent t, [<t < j, moves. Let u,@ be the leftmost store visited by either agent t or j, with the optimal strategy,
G]

11+ 11, with the optimal movement of the two

and agent [is the one such that ugl) < ul(t). actfu;, j] is composed of act[u
agents j and ¢ in the interval [ul(t), u;].

There are at most m possible options for u,(j). In each option we check for at most k agents m possible options for ul(”.

Therefore for each agent j and store u; act[u;, j] can be found in O(mZ2k) steps, and act[um, k] can be found in O (m3k?)
time steps using O (mk) space. O

We can use the algorithm for the k-Private-Max-Probability problem to obtain a polynomial time algorithm for the
k-Private-Min-Budget'dentical problem:

Theorem 17. In the no communication setting, if the number of costs is constant, k-Private-Min-Budgeti®entica! can pe solved in
polynomial time for any number of agents.

Proof. By Theorem 12, given a budget B, we can calculate the maximum achievable success probability. Thus we can run
a binary search over the possible values of B to find the minimal one that still guarantees a success probability pgycc.

5 There may be more than one strategy with the same failure probability, act[u;, j] is one of them.

40 N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52

100

0.7 | 80 0.8 | 50

Fig. 4. A possible input with suggested moves. The numbers on the edges represent traveling costs. The table at each store u; represents the cost probability
function p;(c). The moves are illustrated by the arrows.

The maximum required budget is 2 - |u; — up| + max D, which is part of the input. Thus the binary search will require a
polynomial number of steps. O

Surprisingly, the results for k-Private-Min-Budgetdstinct are different. We note that in the k-Private-Min-Budgetdisinct prop-
lem the objective is to minimize the average budget, which is the same as minimizing the total budget. Therefore, if the
number of agents is fixed, we can use the same polynomial time algorithm that is used in the proof of Theorem 9 (ex-
cept that the visited intervals of the agents are not disjoint). If the number of agents is a parameter, the hardness of
k-Private-Min-Budgetdistinct follows from that of the k-Shared-Min-Budget problem. We obtain:

Theorem 18. If the number of agents is fixed, k-Private-Min-Budgetstin® with no communication can be solved in O (m2"d(%)2"d).

If the number of agents is a parameter, k-Private-Min-Budgetsti"t with no communication is NP-complete even for a single possible
cost.

4.2. Communicating agents

Once communication is added agents can call upon each other for assistance and the relative scheduling of the agents’
moves must also be considered. In this case a solution is an ordered list of moves, where each move is a pair stating an
agent and its next destination.

The success probability of a solution is now calculated according to the order of moves. For example, suppose that the
stores and agents are located as illustrated in Fig. 4.

Consider the following solution: agent 2 first goes to u4 and then agent 1 goes to u;. Agent 2 is the only one which
can succeed at uyg4, with a probability of 0.8. With probability of 0.2 it will not succeed and agent 1 has a probability of
0.2 to succeed at u,. Hence, the success probability is 0.8 + 0.2 - 0.2 = 0.84. If we switch the order of the moves we get a
probability of 0.9 to succeed at u, with the first move, since agent 2 will be called for assistance if the cost required is less
than 100. If not, agent 2 will move to u4 as before. Hence, this solution success probability is 0.9 +0.1-0.8 =0.98.

When the number of agents is not fixed, k-Private-Max-Probability, k-Private-Min-Budgetidentical and k-Private-Min-
Budgetdistinct are not known to be solvable in polynomial time. However, in many physical environments where several
agents cooperate in exploration and search, the number of agents is relatively small. In this case we can show that all the
three problems can be solved in polynomial time. We show:

Theorem 19. In the setting of communicating agents, if the number of agents and the number of different costs is fixed then
k-Private-Max-Probability, k-Private-Min-Budgetidentical gnd k-Private-Min-Budget®sict can be solved in polynomial time.

For brevity, we focus on the k-Private-Max-Probability problem. The same algorithm and similar analysis work also for
the other two problems.

First note that as in Max-Probability, in k-Private-Max-Probability we need to maximize the probability of obtaining the
item given the initial budgets B;, but there is no requirement to minimize the actual resources consumed (in contrast to
k-Shared-Max-Probability). Thus, at any store, if agents can obtain the item for a cost no greater than its remaining budget,
the search is over. Furthermore, if the cost is beyond the agent’s available budget, but there is another agent with a sufficient
budget to both travel from its current location and to obtain the item, then this agent is called upon and the search is also
over. Otherwise, the item will not be obtained at this store under any circumstances. Thus, the basic strategy structure,
which determines which agent goes where, remains the same. Unless the search has to be terminated, the decision of one
agent where to go next is not affected by the knowledge gained by others. Using a similar argument as in the proof of
Theorem 9, we get the following result. For brevity, we denote d instead of d + 1.

N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52 41

0.5 | 40 0.5 | 40 0.5 (70 0.5 | 60

Fig. 5. A possible input with a suggested strategy. The numbers on the edges represent traveling costs. The table at each store u; represents the cost
probability function p;(c). The moves of each agent are illustrated by the arrows.

Proposition 20. For k agents, one needs only to consider O (mZka(%)z"a) number of options for the set of moves of the agents.

Proof. Let c1 > ¢y > --- > c4 be the set of costs. For each agent j and for each c; there is an interval Ii(j) = [ug, ur] of points
covered while the agent’s remaining budget is at least c;. Furthermore, for each j and for all i, Il.(f) - Ii(f]. Thus, consider

for each agent the incremental area covered when its remaining budget is ¢; but less than c;_1, Afj) = I,.(j) — Ifi)l (with
AY = 1), Each AE” is a union of an interval at left of u'” and an interval at the right of ul”’ (both possibly empty).
Since there is communication, an agent may continue to reach a store even if it does not have any chance of obtaining the
item there, in order to reveal the cost for the use of other agents. Thus, the optimal strategy may define also an interval

Iéj) = [ug, u;] of points covered while the remaining budget of j is greater than 0. By Lemma 31 (see Appendix B), the

moves of each agent are fully determined by the leftmost and rightmost stores of each Al(j), together with the choice for

2d 5
the ending points of covering each area. Therefore, for each j there are at most % < (%)Zd possible choices for the

external stores of the A}j)'s. and there are a total of 2¢ options to consider for the covering of each. Thus, the total number
of options for the set of moves is O(de(%)z"d), which is polynomial (in m). O

It thus remains to consider the scheduling between the moves, i.e. their order. Theoretically, with n moves there are n!
different possible orderings. We show, however, that for any given set of moves, we need only to consider a polynomial
number of possible orderings. '

Consider a given set of moves M, determining the sets AE”. Note that for each agent, M fully determines the order of
the moves of this agent. A subset M’ of M is said to be a prefix of M, if for each agent the moves in M’ are a prefix of the
moves of this agent in M. A subset M’ is a suffix of M if M — M’ is a prefix. We now inductively define the notion of a
cascading order:

1. The trivial order on moves of a single agent is cascading.
2. Let M be a set of moves, and let c;;, be the highest cost (of the product) that any agent can pay. An order S on M is
cascading if M and S can be decomposed in the form M = Mpre U Myyig U Mpost and S = Spre © Spig © Spost, such that:
e My is a prefix of M consisting only of moves of agents with budget less than c;, and Sy is a cascading order on
Mpre.
e There exists an agent j’ with budget at least c;, such that My;g consists of all the moves of j’ in AI.(;/) and Spg is
the (one possible) order on these moves.
® My are the remaining moves in M and Sjos is a cascading order on them.

To visualize this definition, consider the example in Fig. 5. Given the depicted set of moves, the highest cost that
an agent can pay is 60, by agent 2 at u4. Therefore, a possible cascading order S can decompose M such that Mpr =
{agent 3 goes to u7}, Mpig = {agent 2 goes to ug} and Mpese = {agent 1 goes to uq and to uz}. Since each group contains
only moves of a single agent, S is a cascading order on M. Another possible cascading order S’ can decompose M such that
Mpre = {agent 1 goes to u; and to us, agent 3 goes to u7}, Mmig = {agent 2 goes to us} and Mpes = {}. S’ is a cascading or-
deron M if §" =S}, 0S5 ., 0 Spos, Where S .. and Sy, are trivial, and S}, = {agent 1 goes first, agent 3 goes second}. We
now prove (by induction) that cascading orders are optimal.

Lemma 21. For any set of moves M there exists a cascading order with optimal success probability.

42 N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52

Proof. The proof is by induction on the number of agents and the number of moves in M. If there is only one agent moving
in M then the order is cascading. Otherwise, consider any other order S on M and let A;, be the set of agents with budget

at least cj,. Let j’ be the first agent in A;, to cover its A{U and let tg be the time it completes covering it. Mp includes

all the moves taken by agents not in A;, prior to to; Mpig includes all the moves of j in Agé/); and Mp,s the rest of the
moves in M. We show that we do not decrease the success probability by first making all moves of Mpy then all those
of Mpig, and finally those of M. By the inductive hypothesis Spre, Smig and Spoes are optimal for Mpre, Mpig and Mpost,
respectively and the result follows.

Before to all agents in A;, have a higher budget than any agent not in A;,. Thus, before ty agents of A;, will never call
upon those not in Aj;,. Thus, if we let the agents that are not in A;, take their moves first the success probability will not
decrease. We can thus allow all of the moves of My to be performed first.

Also, before to no agents of A;, needs to call upon each other for assistance (since they are all in the same resource
bracket). Thus, we may allow them to take their moves/independently without decreasing the success probability. In par-
ticular, we can allow j' to complete its covering of Ag) before any other member of A;;, moves. Thus, we get that first
having the moves of My, and then of My,;4 does not decrease the success probability. The moves of Mp,s are the remaining
moves. 0O

Finally we show that the number of cascading orders is polynomial:
Lemma 22. For fixed k and d and any set of moves M there are a polynomial number of cascading orders on M.

Proof. Let f(n, k,d,£) be the number of cascading orders with k agents, n moves, d costs and £ agents in A;,. We prove by
induction that f is a polynomial in n. Since ¢ <k, the result follows. Clearly, for any ¢, f(n,k,0,¢) = ¢! (all of which are
useless). Then, by the definition of cascading orders f(n,k,d, £) < en*tf(n,k—¢,d—1,k—¢)f(n,k, d, £ —1) (the nk being
for the choice of Mp). By the inductive hypothesis f(n,k—¢£,d —1,k—+¢) and f(n,k,d, ¢ —1) are polynomials in n. Thus,
sois f(n,k,d,¢). O

Together with Proposition 20 we get that the total number of options to consider is polynomial, proving the k-Private-
Max-Probability part of Theorem 19. The proof for the other two problems is similar.

5. Self-interested agents

In this section we consider the strategic behavior that may occur when the agents are self-interested. We assume k
agents, operate in the same underlying physical setting as in the previous multi-agent case with private budgets, i.e. the
stores are all on a single path, the number of possible prices, d, is bounded, and there is a fixed number of agents. However
in the self-interested agents setting, the agents seek to obtain the item but do not want to spend their individual budgets
on travel costs; we assume the purchase price is equally shared among all the agents. In this case we define two games,
a simultaneous game, Min-Budget-Game, and a sequential game, Min-Expected-Cost-Game.

5.1. Min-Budget-Game

In the Min-Budget-Game we are given a target success probability pguc, and each agent’s objective is to minimize its
initial budget necessary to guarantee that the item will be acquired with a probability of at least pgyc. To avoid the case
where each agent will set its initial budget at zero, we set the utility of not guaranteeing the success probability pg,cc so low
that it will always be worthwhile to attain it. We assume the game is a simultaneous game; the agents can only choose their
initial budgets. After this phase, the agents calculate the (collaborative) strategy that will maximize their success probability
(given their chosen budgets) and follow it. The only decision point in this game is when an agent needs to choose its
budget.

Since the number of agents and the number of different costs is fixed, the optimal solution for k-Private-Min-Budgetdistinct
can be found in polynomial time, whether the agents can or cannot communicate (Theorem 19). Let Bf’g be the initial
budget that was assigned to agent i by the algorithm from Theorem 19. This solution of k-Private-Min-Budgetdstin°t which
is optimal, can be directly translated into a strategy, denote Opt,,.: each agent i should individually choose its initial budget
to be Bf’g. Obviously, Opt,,. maximizes the social welfare and it can be computed in polynomial time. Furthermore, Opt,,.
is also a Nash equilibrium [44, p. 14]. Clearly, for each agent i, there is no incentive to deviate and to choose a budget
for itself which is larger than Bflg, since with Bflg the success probability pgcc is already guaranteed (assuming the other
agents will not deviate). On the other hand, since the algorithm of Theorem 19 is optimal, there is no incentive for each
agent i to deviate and choose a budget for itself which is smaller than Bfl‘g, as psucc Will not be achieved (recall that the
utility of not guaranteeing the success probability is very low). We obtain:

N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52 43

Theorem 23. In the Min-Budget-Game, the strategy that maximizes the social welfare, Opt,,., can be found in polynomial time and it
is also a Nash equilibrium.

5.2. Min-Expected-Cost game

In the Min-Expected-Cost-Game each agent’s objective is to minimize its total expected cost. As in the previous game, to
avoid the case where each agent will not want to make any move, we set the utility of not obtaining the item so low that
it is always worth traveling to at least one store to purchase the product. The Min-Expected-Cost-Game is a sequential game
and the rules are as follows. At each time step, only one of the agents is allowed to move to the next store, but it can also
decide not to move at all. Then there is a decision phase, where every agent is allowed to buy the product, to opt-out, or to
do nothing. If at least one agent decides to buy the product, it is purchased and then the game is over (even if other agents
decide to opt-out). No matter how many agents decide to buy the product, only the one with minimal price is purchased.
If no agent decides to buy the product and at least one agent decides to opt-out then the game is over without buying
the product. Otherwise, the decision phase ends and the game proceeds by allowing the next agent (according to a fixed,
pre-defined cyclic order) to move. The pre-defined order of movement phases well-define the game, but it has no essential
meaning; the agents have the option not to move during their turns, so actually any order of movements may occur.

In order to find the strategy that will maximize the social welfare, Opty,., we need to run the algorithm from The-
orem 8. In our setting, it will run in polynomial time. However, unlike in the Min-Budget-Game, the solution found
cannot be directly translated into a strategy. First, we need to translate the movements. At any stage, if the algorithm
for k-Shared-Min-Expected-Cost decides that a specific agent should move, for instance agent i, then the strategy for
Min-Expected-Cost-Game defines that until it is agent i’s turn to move, any other agent will not move during its move-
ment phase, and all the agents will do nothing during the decision phase. We also need to handle the case where one agent
does not move according to this strategy. For this purpose, we determine that in any case where one of the agents deviates
from its determined policy in the movement phase, the other agents purchase the product during the decision phase that
follows. If it is not possible, i.e. the product is not available where the agents are located, the other agents opt-out during
the decision phase. The translation of the algorithm'’s decision to buy is straightforward; the strategy defines that in the
corresponding decision phase all the agents decide to buy, and an agent that cannot buy opt-out. We also do not need
to handle the case where one agent deviates in a decision phase, since the game will be over in that case. In conclusion,
Opt,,, the strategy for Min-Expected-Cost-Game that maximizes the social welfare, can be found in polynomial time using
the algorithm from Theorem 8. However, Opt,,. is not always a Nash equilibrium, as will be shown in Example 24. For ease
of notation, when describing Opt,,. or any other strategy we omit the movement and decision phases when the agents do
nothing.

Example 24. Suppose that the stores and agents are located as illustrated in Fig. 6. The traveling costs between u; and us3
and between uy4 and us are so high, that the only reasonable moves are according to the illustrated arrows. Opt,,. for this
example is that agent 1 will go to u. If the price is 6 the product will be purchased. Otherwise, agent 3 will go to ug
and if the price is 6 the product will be purchased. Otherwise, agent 2 will go to u4 and the product will be purchased
at the minimal sampled price (which can be 12 or 27). The expected cost of this strategy is 14.375, but it is not a Nash
equilibrium. Clearly, if the product was not purchased after the moves of agents 1 and 3, then the minimal sampled price
will be 27. At this stage, if agent 2 deviates and decides not to move, the product will be purchased and the private cost of
agent 2 will be 9 (the purchase price is equally shared among all the agents). If agent 2 proceeds according to Opty,,, its
expected cost will be 44 0.5-4+40.5-9=10.5 > 9. Therefore, agent 2 will have an incentive to deviate from Opt,,.

If we switch the movement order of agents 2 and 3, the expected cost will be higher, 15.125, but this strategy is
a Nash equilibrium. Clearly, agent 1 will not deviate during its turn since the other agents will opt-out. Agent 2 will
not deviate during its turn since its private cost will be 10, and if it will follow the strategy its expected cost will be
44+05-4+0.5-(0.5-2+0.5-9)=8.75 < 10 (assuming the other agents will not deviate). Agent 3 will not deviate during
its turn either, since its private cost will be 10, and if it will follow the strategy its expected cost will be 4+0.5-2+0.5-9 =
9.5 < 10.

Example 24 demonstrates that Opty,. is not always a Nash equilibrium. We now show a polynomial algorithm that always
returns a strategy which is a Nash equilibrium. Furthermore, we show an upper bound on the algorithm’s performance, and
prove that it is tight.

Theorem 25. There is a polynomial algorithm for finding a Nash equilibrium for the Min-Expected-Cost-Game.

Proof. The algorithm works as follows. It divides all the buying costs by k, and then solves the finite-horizon MDP as in
the proof of Theorem 8. The solution is then translated into a strategy for the Min-Expected-Cost-Game, in the same way
we translated the optimal solution of k-Shared-Min-Expected-Cost to Opty,.. We denote this strategy by Optygg,. Since the
pre-process takes O (d) operations the algorithm for finding Optygg, is polynomial.

44 N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52

HIGH

0.5 | 30 0.5 | 60 0.5 | 27

Fig. 6. A possible input with suggested moves. The numbers on the edges represent traveling costs. The table at each store u; represents the cost probability
function p;(c). The reasonable moves are illustrated by the arrows.

Any strategy S consists of traveling costs and buying costs, denoted by {t;} and {b;}, respectively. We can then write the
expected cost of S as E[S] = Zi(pf -t + Zi(pf? -bi), where pl?, pf? are the associated probabilities. We also write t; € j if the
traveling cost t; was credited to the movement of agent j.

We now analyze the steps of Opty,g,. First note that if the product is not available to any agent, there is no incentive to
deviate since the other agents will opt-out and the game will be over. We thus assume that the product is available. The
last step of Opty,s, is a decision step, where the product is purchased. By definition, there is an incentive to purchase the
product in this step. In any other decision phase the strategy of Opty,s, is not to purchase the product. However, if agent j
deviates in a movement phase, the product will be purchased in the decision phase that follows. Therefore, we only need
to consider the movement phases. Now, consider agent j and a movement phase r, and suppose that j needs to move in r.
If j deviates (does not move), his expected cost will be c/k, the best price available now divided by the number of agents.
Since Optygs, is optimal (with respect to the modified buying costs),

i>r i>r
In addition,
do(pi-t)= > (p-t) (7)
izr i>rtiej

Combining (6) and (7) we get,
c/k> Z (ph-ti) + Z(p? -bi/k)
i>rtiej izr

where the right term is the expected cost of agent j if it follows Opty,,,. Therefore, agent j has no incentive to deviate. The
same analysis shows that j does not have an incentive to deviate if it does need to move in r. O

Optygsn 1S @ Nash equilibrium, but it does not maximize the social welfare. Furthermore, there may be another Nash
equilibrium which will yield a larger social welfare. For example, recall the settings in Example 24. In these settings, Optygsn
policy is that agent 1 will go to uj. If the price is 6 the product will be purchased. Otherwise, agent 3 will go to ug and
buy the product at the minimal price (6 or 27). This is indeed a Nash equilibrium with an expected cost of 15.25. However,
we already showed a better Nash equilibrium with an expected cost of 15.125. We now prove an upper bound on the
performance of Opty,g,; the expected cost of Opty,s, is no more than k times worse than the expected cost of Opt,,,.

Theorem 26. E[Opty,,] < k - E[Optgoc]-

Proof. Suppose that E[Optygs,] > k - E[Opty,.]. Therefore,

E[Optngsh] = Y _(P§ - ti) + Y _(p? - bi) > k- [Z(pj tj)+ Y (bbb j)] =k E[Optyc]

i J i

Then,

D _(pi-ti/k)+ D (7 -bifk) > 3 (P t5) + D (P -by)

i J

N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52 45

Since t; > tj/k and bj > b;/k then,

2(pi)+ 2 (b1 busk) = D (85 5) + 2 (8] -0,/K)

i j j

The left and right terms are the expected costs of Opty,s, and Opt,,., respectively, where all the buying costs are divided by
k. Therefore, Opty,g, is not optimal in these settings. Contradiction. O

As for the lower bound, consider the following example.

Example 27. For any € > 0, suppose that the price at u; = us is k with a probability of 1, and the price at the leftmost
store, uq is 0 with a probability of 1. The traveling cost from u; to uq is 1+ €. In all other stores the price is very high and
the traveling costs between any other store to u is also very high, for instance 2k. Opt,,. for this example is that agent 1
will go left and buy the product at uq. The cost of this strategy is 1+ €, but it is not a Nash equilibrium. Clearly, agent 1
will prefer to buy the product in its initial location, uy, since its own cost will be 1, instead of 1+ € in Opt,,.. The total cost
from this strategy will be k, and it is the only Nash equilibrium. Therefore, for any algorithm that finds a strategy S which
is a Nash equilibrium, E[S] € Q(% - E[Opty,c]1), and the bound from Theorem 26 is tight.

6. Heterogeneous agents

The analysis so far assumes that all agents are of the same type, with identical capabilities. Specifically, the cost of
obtaining the item at any given store is assumed to be the same for all agents. However, agents may be of different types
and hence with different capabilities. For example, some agents may be equipped with a drilling arm, which allows them
to consume less battery power while mining. In this section we consider situations of heterogeneous agents, and show that
the results can be extended to such settings.

While agents may have different capabilities, in many cases it is reasonable to assume that if one agent is more capable
than the other at one location, it is also more capable at all other locations (or at least not less capable). Hence the following
definition:

Definition 28. We say that agents are inconsistent if there exist budgets B, B/, agents j, j’, and locations i, i’, such that at
location i with budget B

Pr[j can obtain the item] < Pr[j’ can obtain the item]

but at location i’ with budget B’
Pr[j can obtain the item] > Pr[j’ can obtain the item]
We now show that the results of Section 4.1 can be extended to heterogeneous agents.

Theorem 29. In the private budget and no communication setting, if the number of different costs for each agent is constant, then
k-Private-Max-Probability and k-Private-Min-Budgetidentical cqn be solved in polynomial time with any number of heterogeneous
agents, provided that the agents are consistent.

The algorithm is essentially the same dynamic programming algorithm described in Section 4.1. The consistency assump-
tion is necessary for Lemmata 14 and 15 to remain true.

In any other case, we can do away with the consistency assumption. Clearly, however, we do need to assume that upon
reaching a site, agents can assess the cost for obtaining the item for all other agents. Otherwise, communication would be
meaningless. We obtain:

Theorem 30. In the setting of communicating agents, with a constant number of agents, and a constant number of different costs for
each agent, k-Shared-Min-Expected-Cost, k-Shared-Min-Expected-CostP"o"¢, k-Shared-Max-Probability, k-Shared-Min-Budget,
k-Private-Max-Probability, k-Private-Min-Budgetientical qnd k-Private-Min-Budget®stinct can be solved in polynomial time even
with inconsistent heterogeneous agents.

The algorithms and proofs remain essentially the same as those for the case of homogeneous agents.

46 N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52

7. Discussion

In this paper we mainly analyzed the case where the stores are located along a path (either closed or non-closed).
We see fair applicability of the proposed model to real-life applications. The most important/appropriate application, as
discussed in the paper, is robot patrolling (see [60,19,2,3]). The reason is that a common patrolling scheme is patrolling
along the surroundings of the area of interest, and the robot’s movement is, by the task definition, restricted to be along
a path even if there are shortcuts. However, there are additional important families of applications that the model can be
mapped to - exploration along a path. Typical applications of this kind include:

e Finding a place for camping along a path - consider an expedition or a group of campers that follows a trail or travel
along a river. When deciding on where to set their night camp, the group should consider different locations along their
trail/river, each associated with some uncertainty related to the benefit from spending the night there.

e Positioning scouts - consider a border-control squad, which needs to position itself for scouting (e.g., based on some
information that illegal infiltrators will arrive during the next few hours). Many possible locations along the border
segment can potentially be used by the squad, each offering a different visibility level and accessibility to different
point from where the infiltrators may arrive, which are a priori unknown (e.g., due to visibility conditions, terrain
conditions and human factors).

e Deciding on a restaurant - consider a group that wants to dine together in one of the numerous restaurants on Balboa
Blvd in Newport Beach. Assume that the true utility from dining in any of the restaurants can be observed only once
getting to it (e.g., after observing the menu, how crowd it is and getting an impression of the general atmosphere).

e Deciding where to place bets - consider a visitor arriving to Las Vegas Blvd, interested in gambling in one of the casinos
there. Similar to the restaurants’ example, the gambler will be able to learn about the utility from gambling (not the
expected payoff, which is likely to be similar in all places, but rather the gambling experience in terms of atmosphere,
crowd, excitement, etc.) in any given casino only upon visiting it.

e Buying souvenirs — consider a tourist visiting the pier in Key West, Florida. Walking along the pier, the tourist will find
many souvenir stores, selling practically the same items, however in different prices. In this case, the tourist should
consider the tradeoff between the potential saving in cost and the alternative cost of time when going back and forth,
visiting the different stores.

e Finding the best place to install a spying device at some place along a communication line - assume there are several
possible locations along the line that are applicable for installing the equipment, each characterized by a different
chance of being discovered or with a different chance of success.

All the above applications are characterized by a physical search along a line with potential locations that can be explored,
where there is a distribution of potential gains/utilities for each location. Indeed, numerous physical environments may only
be represented by a planar graph. Theorems 1 and 6 show that physical search problems are hard even on planar graphs
and trees, even with a single agent, but finding a heuristic is of practical interest nonetheless. It seems that the first steps
in building such a heuristic will be to utilize our results. For example, one should try to avoid repeated coverage as much as
possible and restrict the number of cases where such coverage is necessary, as we showed in Theorem 12. Another idea is
to convert the complex graph structure into a path, where each site on the path represents a region of strongly-connected
nodes on the original graph. Many graphs which represent real physical environments consist of some regions with strongly-
connected nodes, but few edges connect these regions (for example, cities, have many roads inside but are connected by
only a few highways). A heuristic algorithm for these graphs may use our algorithm to construct a strategy for the sites
along the path, and use an additional heuristic for visiting the sites inside a region.

We also considered the case where mining costs are rounded/estimated to one of a constant number of possible options.
We believe that this assumption is appropriate since the given input for our problems includes prior probabilistic knowledge.
Usually, this data comes from some sort of estimation so it is reasonable to assume that the number of options is fixed; If
there are too many possible values, an accurate estimation is hard to achieve. Nevertheless, if the number of costs will not
be a constant it can be rounded to a fixed number of costs, which yields a PTAS (polynomial-time approximation scheme)
for our problems.

We also assume that the agents seek only one item. As soon as more than one item is needed, our results do not hold,
and seemingly the problems become NP-complete.

8. Conclusions and future work

This paper considers single and multi-agent physical search problems, with prior probabilistic knowledge. This integration
of changing search cost into economic search models is important, as it improves the realism and applicability of the mod-
eled problem. At the same time, it also dramatically increases the complexity of determining the agents’ optimal strategies,
precluding simple solutions such as easily computable reservation values (see for example “Pandora’s problem” [57], that
was briefly discussed in Section 2.1.1). Indeed, we showed that our problems are hard on a metric space, sometimes even if
it is a tree. We then focused on the path case, presenting polynomial algorithms for the two variants of Min-Expected-Cost

N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52 47

problem, and proving hardness for Max-Probability and Min-Budget problems. We provided FPTAS for Min-Budget in that
case, and showed that both problems are polynomial if the number of possible prices is bounded.

For the multi-agent case, we analyzed shared and private budget models. In the case of the shared budget, we showed
how all of the single-agent algorithms extend to k-agents, with the time bounds growing exponentially in k. We proved
that this is also the case with the private budget model, if the agents can communicate. In the case of the private budget
with no communicating agents, we presented a polynomial algorithm that is suitable for any number of agents. We also
extended the analysis to heterogeneous agents.

Finally, we considered the self-interested agents setting, showing how to find a Nash equilibrium for Min-Budget-Game
and Min-Expected-Cost-Game in polynomial time. In both cases, we showed an upper bound on the ratio between this
solution to the optimal one (the one which maximizes the social welfare) and proved that it is tight.

For future work, there are still many interesting open problems. With a single agent, the complexity of Min-Expected-Cost
problem on a tree is yet to be explored. This case is interesting since it can be shown that Min-Expected-Cost
is easy for a specific tree, namely star graph, where d is bounded. In the shared budget model, the complexity of
k-Shared-Min-Expected-Cost problem where k is part of the input is still open. In the private budget model, the complexity of
all the problems with a non-constant number of communicating agents is open. In addition, there are interesting extensions
to consider. We showed that most of our results can be extended to heterogeneous agents, with different buying capabilities.
The next step is to analyze our results with heterogeneous agents with different traveling capabilities. Another direction is
to add time constraint, which will possibly result with completely different optimal strategies. Currently, we assume that
communication between the agent is free and reliable; a possible extension is to integrate communication costs to our
model, and to handle the consequences of non-reliable communication. The Min-Budget-Game can also be extended; instead
of defining the utility of achieving psucc as a step function (“high” if achieving psuc, and “low” if not), it could be defined
as a linear function of pgyc. Finally, metric spaces beyond the line remain an open challenge. As discussed in Section 7, the
techniques and results given in this paper can facilitate the development of approximations and/or heuristics for the general
metric space.

Appendix A. Proofs for Section 2
Theorem 1. For general metric spaces Min-Expected-Cost-Decide is NP-hard.

Proof. The proof is by reduction from HAMILTONIAN PATH, defined as follows. Given a graph G = (V,E) with V =
{vi,..., vy}, decide whether there is a simple path (v;,,v;,,...,vj,) in G covering all nodes of V. The reduction is as
follows. Given a graph G = (V,E) with V = {vq,..., vy}, set S (the set of stores) to be S = {us} U {u1,...,uy}, where
ug is the designated start location, and {ui,...,uy} correspond to {vi,...,Vvy}. The distances are defined as follows.
For all i,j=1,...,n, dis(us,u;) = 2n, and dis(u;, uj) is the length of the shortest path between v; and v; in G. Set
M=2n+3"_, 273(j=1)+2""(n!'4+n —1+2n). For all i, p'(0) = 0.5, and p'(M) = 0.5, and for us, pS(n!) =1.

Suppose that there is a Hamiltonian path H = (v;,, vi,,..., v;,) in G. Then, the following policy achieves an expected
cost of exactly M. Starting in us; move to u;, and continue traversing according to the Hamiltonian path. If at any point u;
along the way the price is 0, purchase and stop. Otherwise continue to the next node on the path. If at all points along the
path the price is M, return to us and purchase there, where the price is n!. The expected cost of this policy is as follows.
The price of the initial step (from us to u;,) is a fixed 2n. For each j, the probability to obtain price 0 at uj but not before

is 271, The cost of reaching uj; from uj, is j — 1. The probability that no u; has a price of 0 is 27" in which case the
purchase price is n!, plus n — 1 wasted steps along the Hamiltonian path and a cost of 2n for returning to us. The total
expected cost is thus exactly M.

Conversely, suppose that there is no Hamiltonian path in G. Clearly, since the price at ug is so large, any optimal strategy
must check all nodes/stores {uq, ..., u,} before purchasing at us. Since there is no Hamiltonian path in G, any such explo-
ration would be strictly more expensive than the one with a Hamiltonian path. Thus, the expected cost would be strictly
more than M. O

Theorem 2. The Min-Budget-Decide problem is NP-complete even on a path.

Proof. Given an optimal policy it is easy to compute its total cost and success probability in O(n) steps, therefore
Min-Budget-Decide is in NP. The proof of NP-hardness is by reduction from the 0-1 KNAPSAcK problem, defined as fol-
lows. Given a knapsack of capacity C > 0 and N items, where each item has value v; € Z* and size s; € Z*, determine
whether there is a selection of items (8; =1 if selected, 0 if not) that fits into the knapsack, i.e. Z,(V:] 8isi < C, and the total
value, vazl 8ivj, is at least V.

Given an instance of 0-1 KNAPsAck we build an instance for the Min-Budget-Decide problem as follows. We assume
WLOG that all the points are on the line. Our line consists of 2N + 2 stores. N stores correspond to the knapsack items,
denoted by uy,, ..., ug,. The other N + 2 stores are denoted ug,, ug,, ..., ugy,,, Where ug; is the agent’s initial location. Let

T=2-YN,s; and maxV = N - max; v;. For each odd i, ug, is to the right of ug, and Ug,,, is to the right of ug,. For each
even i (i #0), ug, is to the left of ug, and ug,,, is to the left of ugz. We set |ug —uq| = |ug —uz| =T and for each i >0

48 N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52

T T T T
U/
Ug, Uk, Ug, Ugo=P ug: Uk Ugs Uks

S, S1 S3

Fig. 7. Reduction of 0-1 KNAPSACK to Min-Budget-Decide problem used in the proof of Theorem 2, for N =3.

also, |ug; —ug.,,|=T.If N is odd (even) uy, is on the right (left) side of ug; and it is the rightmost (leftmost) point. As for
the other uy,; points, uy, is located between ug; and ug, ,, if i is odd, and between ug, , and ug otherwise. For both cases,
|ug, — uy, | =s;. See Fig. 7 for an illustration.

We set B=T - Z;":ﬂ j+2C+1 and for each i set X' =T - le=1 ji+2- 23;11 sj. At store ug,,, either the product is
available at the price of 1 with probability 1 — 27™*V or not available at any price. On any other store ug,, either the
product is available at the price of B — X' with the same probability, or not available at all. At any store uy,, either the
product is available at the price of B — X — s;, with probability 1 — 27Vi, or not available at any price. Finally, we set
Psuce = 1— 2—muxV-(N+1) . 2—V.

Suppose there is a selection of items that fit the knapsack with a total value of at least V, and consider the following
policy: go right from ug, to ug,. Then for each i=1,2,..., N, if §; =0 (item i was not selected) change direction and go
to the other side to ug,,,. Otherwise, continue in the current direction to uy, and only then change direction to ug,,,. This
policy’s total travel cost is Z,N:] (G-T+6-25)+(N+1)-T=T- Zf\’:l] i+ 2C = B — 1, thus the agent has enough budget
to reach all ug;, and uy, with §; =1. When the agent reaches ug, i < N + 1 it has already spent on traveling cost exactly
T- le=1 j+2- le;ll 6j-sj) < X' so the agent has a probability of 1 —2 ™%V to purchase the product at this store. When
it reaches ug,_, it is on the end of its tour and since the agent's total traveling cost is B — 1, here it also has a probability

of 1 — 27 g purchase the product. When it reaches uy, it has already spent exactly T - Z'j:] j+2- le;]] (6j-sj)+si <
X' +5; so the agent has a probability of 1 — 27Vi to purchase the product in this store. In total, the success probability is
1— (meaxV-(NﬂLl) . I—LN=1 27vi-5i) >1-— (Z*H”IHXV'(N‘F]) . 27V) = Psucc as required.

Suppose there is a policy, plc with a total travel cost that is less than or equal to B, and its success probability is at
least psucc. Hence, pic’s failure probability is at most 1 — psyec = 2~V N+D . 2=V Since maxV = N - max; v;, plc must reach
all the N 41 stores ug with enough budget. Hence, plc must go right from ug, to ug, and then to each other ug, before
Ug,,,. Therefore plc goes in a zigzag movement from one side of us to the other side and so on repeatedly. plc also has to
select some uy; to reach with enough budget. Thus, plc has to reach these uy,; right after the corresponding store ug,. We
use y; =1 to indicate the event in which plc selects to reach uy, right after ug, and y; =0 to denote the complementary
event. plc's total traveling cost is less than or equal to B — 1 to be able to purchase the product also at the last store,
Ugy,q, SO T - Z?’:ﬂ i+2- Z?’:] vj-sj<T- Z?’:ﬂ j+ 2C. Thus, Z?’:] ¥j - sj < C. Also, psycc = 1 — 27 maV-(N+1) . 5=V <
1—27maxV-N+D) TV o—vivi = 2=V < TIN 27ViYi = v > YN | v; - 1. Setting &; = y; gives a selection of items that fit the
knapsack. O

Theorem 6. The Min-Budget-Decide problem is NP-complete on a tree, even with a bounded number of prices.

Proof. Membership in NP is immediate as in the proof of Theorem 2. The proof of NP-hardness is by reduction from the
0-1 KNAPSACK problem.

Given an instance of 0-1 KNAPSACK we build an instance for the Min-Budget-Decide problem as follows. We have N + 2
stores. N stores corresponds to the knapsack items, denoted by uy,, ..., uk,. The other 2 stores are ug and u., where ug is
the agent’s initial location. The stores are placed on a star, which is a tree with one internal node, ug, and N 41 leaves. The
distance to any uy, is defined according to the item size, dis(uo, uy;) = s;/2, and dis(uo, ue) = C. At any store uy,, either the
product is available at the price of 0 with probability 1 — 27"/, or not available at any price. At store ug the product is not
available, and at store u, either the product is available at the price of 0 with probability 1 — 27™®V maxV = N - max; vi,
or not available at any price. Finally, we set pguee=1—2""%V.2=Y and B=2-C.

Suppose there is a selection of items that fit the knapsack with a total value of at least V, and consider the following
policy: for each i =1,2,...,N, if §; =1 (item i was selected) go from ug to uj, and then back to ug. Finally, go from ug
to ue. This policy’s travel cost is 21’-\’:1(& -si) + C < 2-C = B. If the product is available at any store, its price is 0. Thus, the
success probability of this policy is 1 — (27 . [T, 27Vidi) > 1 — 2 MV . 2=V — po, . as required.

Suppose there is a policy, plc with a total travel cost that is less than or equal to B, and its success probability is at
least pgucc. Hence, plc’s failure probability is at most 1 — psuee = 2-™®V . 2=V Since maxV = N - max; v;, plc must reach
store ue. plc also has to select some uy, to reach, but since dis(ug, ue) =C and B =2 - C, plc must reach these uy, before
reaching u.. We use y; =1 to indicate the event in which plc selects to reach uy;, and y; =0 to denote the complementary

event. plc’s traveling cost before going to u, is less than or equal C, to be able reach u,, so ZL] yj-$j < C. Also, psycc =

N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52 49

1—27maV . o=V g —-maV TN o-vivi o 2=V < T[N, 27ViYi = v > YN v .y Setting & = y; gives a selection of
items that fit the knapsack. O

Appendix B. Proofs for Section 3

Theorem 8. With k agents, k-Shared-Min-Expected-CostP"®" can be solved in O(d22k(%)2k), and k-Shared-Min-Expected-Cost
can be solved in 0 212k ()4k),

Proof. We start with k-Shared-Min-Expected-CostPM™€_ Since the stores are on the path, at any point in time the points/stores
visited by the agents constitute a set of k disjoint contiguous intervals, which we call the visited intervals. Clearly, the
algorithm need only make decisions at store locations. Furthermore, decisions can be limited to times when the agents are
at one of the two stores edges of the visited interval. At each such location, each agent has only three possible actions:
“go right” - extending its visited-interval one store to the right, “go left” - extending its visited-interval one store to the
left, or “stop” - stopping the search and buying the product at the best price so far. Also note that after each agent i has
already visited its interval [u,a, u,o], how exactly it covered this interval does not matter for any future decision; the costs
have already been incurred. Accordingly, the states of the MDP are quadruplets [L, R, E, c], such that L = (¢, ¢@ ..., ¢®),
R=aD,r@ . r®) E=(@eD @ ... e®)and ceD. For each agent i, () <sO <r® and e® e {¢® D}, Every such
state represents the situation that each agent i visited stores u,q through u,q), it is currently at location u,, and the best
price encountered so far is c. Since the intervals are disjoint, r® < ¢+ for every i.

The terminal states are Buy(c) and all states where all the stores were visited. The terminal cost is c. For all other states
there are at most 2k + 1 possible actions - “agent i go right” (provided that r® < ¢@+D and r® < m), “agent i go left”
(provided that r=1 < ¢® and 1 < ¢?), or “stop”. The cost of “agent i go right” is (w1 — Uew), while the cost of “agent
i go left” is (u,i — Uy _q). The cost of “stop” is always 0. Given a vector V, let Vi(j) be the same vector but with value

j at index i. Given the state [L, R, E,c] and move “agent i go right”, there is probability prm+1 (c") to transition to state
[L,RirD + 1), ElrD + 1), ¢'], for ¢’ < c. With the remaining probability, the transition is to state [L, Ri¢® + 1), Ei¢r® +
1), c]. Transition to all other states has zero probability. Transitions for the “agent i go left” actions are analogous, while
with the action “stop” there is probability 1 to transition to state Buy(c). This fully defines the MDP. The optimal strategy
for finite-horizon MDPs can be determined using dynamic programming (see [45, Ch. 4]). In our case, the complexity can
be brought down to 0 (d?2¥(%})%) steps (using O (d2*(’2)?) space).

We now move to k-Shared-Min-Expected-Cost. Like in the single agent case, if an interval [u,u, u.@] has been visited by
agent i and the item not yet purchased, then any future purchase within the interval (if there should be such a purchase)
will be with an agent coming from outside the interval into the interval, and moving directly to a store for purchasing. Note
that even if the interval [u,, u.o] has been visited by agent i, the purchaser may also be one of its immediate neighbors
(i.e., agents i — 1 and i+ 1). In addition, there is a unique store u XU such any purchaser coming from anywhere to the right

of u. and purchasing within [u,q), u,o] purchases at u X0 and 51m11ar1y a unique store u (.), for purchases coming from the

left of u,w. Therefore, the states of the MDP for k- Shared Min-Expected-Cost are septuplets [L,R,E,Cy, Xy, Cr, X;], such that
L=, @ 00y, R=aD,r® . 1r®) E=EeD,e?, .. e®) Co=(con,cr, - sCom)s Xo = Xpt), X2, -+ Xp),
Cr = (¢, Cr(z), ., Cr), and Xp = (Xr<1>,xr(2>, ..., X.00). Every such state represents the situation that each agent i visited
stores U, through u,@, it is currently at location u,q), e® e (¢® r®dy and the best price encountered so far in [Upir, Upir]
when coming from the left (respectively right) is ¢, (c.t)), which can be found at store Uz,) (”xrm).

Given a state [L, R, E, Cy¢, X¢, Cr, Xr], let BuyAt(i) be the minimum cost of purchasing within the visited interval of agent
i, i.e, BuyAt(i) = min{c,o + |u,0) — Uy | Crip + [Uea+n — Upi |, Gy + [Uea-1) — uyi |}. The terminal states are Buy(i) with
a terminal cost of BuyAt(i), and all states where all the stores were visited, with a terminal cost of min;c, BuyAt(i). The
actions are the same as in the MDP for k-Shared-Min-Expected-CostPh" but the transition probabilities are different. Given
the state [L, R, E, C¢, X¢, Cr, X;] and move “agent i go right”, there is probability p"" +1(c) to transition to state [L, R (r® +
D, E'(r®D 4+ 1), Co, Xg, €L, XT D + D), for ¢ < (¢ + Uy g — Uy). With the remaining probability, the transition
is to state [L, Ri¢rD + 1), Eir® + 1), C¢, X¢, Cr, X;]. Transition to all other states has zero probability. Transitions for the
“agent i go left” action are analogous. Given the state [L, R, E, C¢, X¢, Cr, X;] and the action “stop”, there is probability 1 to
transition to state Buy(i), i = arg min;¢, BuyAt(i). This fully defines the MDP. Using the same analysis as before, we get that
the complexity of solving k-Shared-Min-Expected-Cost is O (d?**12%()4) steps (using 0 (d?2* (%)) space). O

Theorem 9. With k agents, k-Shared-Min-Budget and k-Shared-Max-Probability with d possible prices can be solved in
0 (mzkd(%)de)'

Proof. For brevity, we focus on the k—Shared-Max-Probability problem. The same algorithm and similar analysis work also
k-Shared-Min-Budget problem. Let ¢1 > ¢z > --- > ¢4 be the set of costs. For each agent j and for each ¢; there is an interval
I(j) [ug, ur] of points covered while the remaining budget is at least c;. Furthermore, for each j and for all i, If’) C Ii(i)].

Thus, consider for each agent the incremental area covered with remaining budget ¢; but less than ¢;_1, AIV) = Ii(j) - Il@l

50 N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52

Sq B+1 Sy B+1 S3
) 4
u® U u?® 3

K k, s u k U u k

2 3

Fig. 8. Reduction of the 0-1 KNAPSACK problem to the Multi-Min-Budget-Decide problem used in the proof of Theorem 11, for N = 3.
(with A(’) I(’)) Each A(’) is a union of an interval at left of u and an interval at the right of u{”’ (both possibly empty).
The next lemma, which 1s the multi-agent Max-Probability analogue of Lemma 4 states that there are only two possible
optimal strategies to cover each Af]) :

Lemma 31. Consider the optimal solution and the incremental areas for each agent j, Afj) (i=1,...,d) defined by this solution.

Forie1l,...,d, letu ej) be the leftmost store in A(]) and u(’) the rightmost store. Suppose that in the optimal strategy the covering

of A(J) starts at location uS]) Then, WLOG we may assume that the optimal strategy for each j is either (u(” ﬁlj) — ué{)) or

(u(]) — ufq 7 ri])). Furthermore, the starting point for covering Ai(ﬂr)] is the ending point of covering Af’),
Proof. Any strategy other than the ones specified in the lemma would reach all the stores covered by the optimal solution

with at most the same available budget. O

By the previous lemma, the moves of each agent are fully determined by the leftmost and rightmost stores of each AED.
together with the choice for the ending points of covering each area. For each two agents Jj1, j2, the intervals of covered
)Zd

points are disjoint, i.e. I‘(jj‘) N I((ij) = (). Therefore, for each j there are at most ((gd), (de

external stores of the A(j) 's, and there are a total of 2¢ options to consider for the covering of each. For each option,
computing the budget and probability takes O(m) steps. Thus, the total time is O(m2"d()2kd) which is polynomial
(inm). O

possible choices for the

Theorem 10. With k agents, For any € > 0, k-Shared-Min-Budget can be approximated to within a factor of (1 + ke) in O (ne k)
steps (for arbitrary number of prices).
Proof. For k agents, we extend the dynamic programming algorithm, which calculates fail[-, -, -, -] and act[-, -, -, -] tables, in

the same way we extended the single agent algorithm in the proof of Theorem 8. We now save k disjoint intervals, thus
the tables size becomes O (e ~%). The rest of the approximation algorithm remains essentially the same. We still consider
8 in powers of 2 up to B < 2", where n is the size of the input. Thus, the total computation time is O (ne~%). Since the
approximation ratio in each interval is guaranteed to be (1 + €), we get a total ratio of (1 +ke). O

Theorem 11. k-Shared-Min-Budget-Decide is NP-complete even on the path with a single price.

Proof. An optimal policy defines for each time step which agent should move and in which direction. Since there are at
most 2m time steps, it is easy to compute the success probability and the total cost in O (m) steps, therefore the problem
is in NP. The NP-hard reduction is from the 0-1 KNAPSACK problem.

We assume WLOG that all the points are on the line. We use N agents and our line consists of 2N stores. N stores
correspond to the knapsack items denoted uy,, ..., uk,. The other N points are the starting point of the agents, {us')},- 1.

We set the left most pomt to u) and the right most point to ug,. For all 1 <i <N —1 set uy, right after u(l) and ug
(1+1)
us |

(1+1)

right after uy,. Set |uS — Uy, | =s; and |uy, — = B + 1. See Fig. 8 for an 1llustrat10n.

The price at all the nodes is co =1 and pXi (1) =1—2""i. Finally, set B=C+1 and psyee=1—-2"".

For every agent i, the only possible move is to node py;, denote by y; =1 if agent i moves to py,, and 0 if not. Therefore,
there is a selection of items that fit, i.e., ZIN:] 8;isi < C, and the total value, Zf\’ﬂ 8;vi, is at least V iff there is a selection of
agents that move such that ZlNzl ¥iSi < B, and the total probability 1 —]_[lN:l y;27V, is at least psycc =1 — 27V, o

References

[1] . Afrati, S. Cosmadakis, C. Papadimitriou, G. Papageorgiou, N. Papakonstantinou, The complexity of the traveling repairman problem, Theoretical
Informatics and Applications 20 (1986) 79-87.

[2] N. Agmon, S. Kraus, G.A. Kaminka, Multi-robot perimeter patrol in adversarial settings, in: Proceedings of the 2008 IEEE International Conference on
Robotics and Automation (ICRA-2008), 2008, pp. 2339-2345.

N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52 51

[3] N. Agmon, D. Urieli, P. Stone, Multiagent patrol generalized to complex environmental conditions, in: Proceedings of the Twenty-Fifth AAAI Conference
on Artificial Intelligence (AAAI-2011), 2011, pp. 1090-1095.
[4] S. Arora, G. Karakostas, Approximation schemes for minimum latency problems, in: Proceedings of the Thirty-First Annual ACM Symposium on Theory
of Computing (STOC-1999), 1999, pp. 688-693.
[5] S. Arora, G. Karakostas, A 2 + € approximation algorithm for the k-MST problem, in: Proceedings of the Eleventh Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA-2000), 2000, pp. 754-759.
[6] Y. Aumann, N. Hazon, S. Kraus, D. Sarne, Physical search problems applying economic search models, in: Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence (AAAI-2008), 2008, pp. 9-16.
[7] G. Ausiello, S. Leonardi, A. Marchetti-Spaccamela, On salesmen, repairmen, spiders, and other traveling agents, in: Algorithms and Complexity, Springer,
Berlin/Heidelberg, 2000, pp. 1-16.
[8] B. Awerbuch, Y. Azar, A. Blum, S. Vempala, Improved approximation guarantees for minimum weight k-trees and prize-collecting salesmen, SIAM
Journal on Computing 28 (1) (1999) 254-262.
[9] E. Balas, The prize collecting traveling salesman problem, Networks 19 (1989) 621-636.
[10] J.C. Beck, N. Wilson, Job shop scheduling with probabilistic durations, in: Proceedings of the Sixteenth European Conference on Artificial Intelligence
(ECAI-2004), 2004, pp. 652-656.
[11] J.C. Beck, N. Wilson, Proactive algorithms for job shop scheduling with probabilistic durations, IEEE Transactions on Robotics 28 (1) (2007) 183-232.
[12] R. Bellman, A Markovian decision process, Indiana University Mathematics Journal 6 (4) (1957) 679-684.
[13] D. Bernstein, D. Givan, N. Immerman, S. Zilberstein, The complexity of decentralized control of Markov decision processes, Mathematics of Operations
Research 27 (4) (2002) 819-840.
[14] L. Bianco, A. Mingozzi, S. Ricciardelli, The traveling salesman problem with cumulative costs, Networks 23 (2) (1993) 81-91.
[15] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, M. Sudan, The minimum latency problem, in: Proceedings of the Twenty-Sixth
Annual ACM Symposium on the Theory of Computing (STOC-1994), 1994, pp. 163-171.
[16] A. Blum, R. Ravi, S. Vempala, A constant-factor approximation algorithm for the k-MST problem, Journal of Computer and System Sciences 58 (1)
(1999) 101-108.
[17] A.M. Campbell, M. Gendreau, B.W. Thomas, The orienteering problem with stochastic travel and service times, Annals of Operations Research 186 (1)
(2011) 61-81.
[18] K. Chaudhuri, B. Godfrey, S. Rao, K. Talwar, Paths, trees, and minimum latency tour, in: Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science (FOCS-2003), 2003, pp. 36-45.
[19] Y. Elmaliach, A. Shiloni, G.A. Kaminka, A realistic model of frequency-based multi-robot fence patrolling, in: Proceedings of the 7th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS-2008), 2008, pp. 63-70.
[20] J. Fakcharoenphol, C. Harrelson, S. Rao, The k-traveling repairman problem, in: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA-2003), 2003, pp. 655-664.
[21]]. Fakcharoenphol, C. Harrelson, S. Rao, The k-traveling repairmen problem, ACM Transactions on Algorithms 3 (4) (2007) 40.
[22] T.S. Ferguson, Who solved the secretary problem?, Statistical Science 4 (3) (1989) 282-289.
[23] M. Fischetti, G. Laporte, S. Martello, The delivery man problem and cumulative matroids, Operations Research 41 (1993) 1055-1064.
[24] N. Fu, P. Varakantham, H.C. Lau, Towards finding robust execution strategies for RCPSP/max with durational uncertainty, in: Proceedings of the Twen-
tieth International Conference on Automated Planning and Scheduling (ICAPS-2010), 2010, pp. 73-80.
[25] Y. Gabriely, E. Rimon, Spanning-tree based coverage of continuous areas by a mobile robot, Annals of Mathematics and Artificial Intelligence 31 (2001)
77-98.
[26] S. Gal, Search Games, Academic Press, 1980.
[27] A. Garcia, P. Jodrd,]. Tejel, A note on the traveling repairman problem, Networks 40 (2002) 27-31.
[28] N. Garg, A 3-approximation for the minimum tree spanning k vertices, in: Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer
Science (FOCS-1996), 1996, pp. 302-3009.
[29] N. Garg, Saving an epsilon: a 2-approximation for the k-MST problem in graphs, in: Proceedings of the Thirty-Seventh Annual ACM Symposium on
Theory of Computing (STOC-2005), 2005, pp. 396-402.
[30] M. Goemans,]. Kleinberg, An improved approximation ratio for the minimum latency problem, in: Proceedings of the Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA-1996), 1996, pp. 152-158.
[31] N. Hazon, Y. Aumann, S. Kraus, Collaborative multi agent physical search with probabilistic knowledge, in: Proceedings of the Twenty-first International
Joint Conference on Artificial Intelligence (IJCAI-2009), 2009, pp. 164-167.
[32] N. Hazon, G.A. Kaminka, Redundancy, efficiency, and robustness in multi-robot coverage, in: Proceedings of the 2005 IEEE International Conference on
Robotics and Automation (ICRA-2005), 2005, pp. 735-741.
[33] W. Herroelen, R. Leus, Project scheduling under uncertainty: Survey and research potentials, European Journal of Operational Research 165 (2) (2005)
289-306.
[34] T. ilhan, S.ML.R. Iravani, M.S. Daskin, The orienteering problem with stochastic profits, IIE Transactions 40 (4) (2008) 406-421.
[35] J. Kephart, A. Greenwald, Shopbot economics, Autonomous Agents and Multi-Agent Systems 5 (3) (2002) 255-287.
[36] J. Kephart, J. Hanson, A. Greenwald, Dynamic pricing by software agents, Computer Networks 32 (6) (2000) 731-752.
[37] S. Koenig, M. Likhachev, Fast replanning for navigation in unknown terrain, IEEE Transactions on Robotics 21 (3) (2005) 354-363.
[38] B.O. Koopman, Search and Screening: General Principles with Historical Applications, Pergamon Press, 1980.
[39] E. Koutsoupias, C.H. Papadimitriou, M. Yannakakis, Searching a fixed graph, in: Proceedings of the 23rd International Colloquium on Automata, Lan-
guages and Programming (ICALP-1996), 1996, pp. 280-289.
[40] S. Lippman, J. McCall, The economics of job search: A survey, Economic Inquiry 14 (1976) 155-189.
[41] A. Lucena, Time-dependent traveling salesman problem - the deliveryman case, Networks 20 (6) (1990) 753-763.
[42] J. McMillan, M. Rothschild, Search, in: R. Aumann, S. Amsterdam (Eds.), Handbook of Game Theory with Economic Applications, Elsevier, 1994, pp. 905-
927 (Chapter 27).
[43] E. Minieka, The delivery man problem on a tree network, Annals of Operations Research 18 (1-4) (1989) 261-266.
[44] MJ. Osborne, A. Rubinstein, A Course in Game Theory, The MIT Press, 1994.
[45] M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley-Interscience, 1994.
[46] 1. Rochlin, D. Sarne, M. Laifenfeld, Coordinated exploration with a shared goal in costly environments, in: Proceedings of the 20th European Conference
on Artificial Intelligence (ECAI-2012), 2012, pp. 690-695.
[47] S. Sahni, T. Gonzales, P-complete problems and approximate solutions, in: Proceedings of the 15th Annual Symposium on Switching and Automata
Theory (SWAT-1974), 1974, pp. 28-32.
[48] D. Sarne, S. Kraus, Managing parallel inquiries in agents’ two-sided search, Artificial Intelligence 172 (4-5) (2008) 541-569.
[49] L.S. Shapley, Stochastic games, Proceedings of the National Academy of Sciences of the USA 39 (10) (1953) 1095-1100.
[50] D. Simchi-Levi, O. Berman, Minimizing the total flow time of n jobs on a network, IIE Transactions 23 (3) (1991) 236-244.

52 N. Hazon et al. / Artificial Intelligence 196 (2013) 26-52

[51] R. Sitters, The minimum latency problem is NP-hard for weighted trees, in: Proceedings of the 9th Conference on Integer Programming and Combina-
torial Optimization (IPCO-2002), 2002, pp. 230-239.

[52] S.V. Spires, S.Y. Goldsmith, Exhaustive geographic search with mobile robots along space-filling curves, in: First International Workshop on Collective
Robotics, 1998, pp. 1-12.

[53] A. Stentz, The focussed D* algorithm for real-time replanning, in: Proceedings of the 14th International Joint Conference on Artificial Intelligence
(IJCAI-1995), 1995, pp. 1652-1659.

[54] X. Sun, W. Yeoh, S. Koenig, Dynamic fringe-saving A*, in: Proceedings of the 8th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS-2009), 2009, pp. 891-898.

[55] T. Tsiligirides, Heuristic methods applied to orienteering, Journal of the Operational Research Society 35 (9) (1984) 797-809.

[56] LR. Webb, Depth-first solutions for the deliveryman problem on tree-like networks: an evaluation using a permutation model, Transportation Sci-
ence 30 (2) (1996) 134-147.

[57] Martin L. Weitzman, Optimal search for the best alternative, Econometrica 47 (3) (May 1979) 641-654.

[58] RJ.V. Wiel, N.V. Sahinidis, Heuristic bounds and test problem generation for the time dependent traveling salesman problem, Transportation Sci-
ence 29 (2) (1995) 167-183.

[59] T. Will, Extremal results and algorithms for degree sequences of graphs, PhD thesis, University of Illinois at Urbana-Champaign, 1993.

[60] K. Williams, J. Burdick, Multi-robot boundary coverage with plan revision, in: Proceedings of the 2006 IEEE International Conference on Robotics and
Automation (ICRA-2006), 2006, pp. 1716-1723.

[61] C. Yang, A dynamic programming algorithm for the travelling repairman problem, Asia-Pacific Journal of Operations Research 6 (10) (1989) 192-206.

	Physical search problems with probabilistic knowledge
	1 Introduction
	1.1 Summary of results
	1.2 Related work
	1.3 Terminology and deﬁnitions

	2 Single agent
	2.1 Minimize-Expected-Cost
	2.1.1 Hardness in general metric spaces
	2.1.2 Solution for the path

	2.2 Min-Budget and Max-Probability
	2.2.1 NP completeness
	2.2.2 Restricted case: Bounded number of prices
	2.2.3 Min-Budget approximation

	3 Multi-agent, shared budget
	4 Multi-agent, private budget
	4.1 Non-communicating agents
	4.2 Communicating agents

	5 Self-interested agents
	5.1 Min-Budget-Game
	5.2 Min-Expected-Cost game

	6 Heterogeneous agents
	7 Discussion
	8 Conclusions and future work
	Appendix A Proofs for Section 2
	Appendix B Proofs for Section 3
	References

