
Coordinating randomized policies for increasing security
of agent systems

Praveen Paruchuri Æ Jonathan P. Pearce Æ
Janusz Marecki Æ Milind Tambe Æ Fernando Ordóñez Æ
Sarit Kraus

Published online: 24 January 2009

� Springer Science+Business Media, LLC 2009

Abstract We consider the problem of providing decision

support to a patrolling or security service in an adversarial

domain. The idea is to create patrols that can achieve a high

level of coverage or reward while taking into account the

presence of an adversary. We assume that the adversary can

learn or observe the patrolling strategy and use this to its

advantage. We follow two different approaches depending

on what is known about the adversary. If there is no

information about the adversary we use a Markov Decision

Process (MDP) to represent patrols and identify randomized

solutions that minimize the information available to the

adversary. This lead to the development of algorithms

CRLP and BRLP, for policy randomization of MDPs.

Second, when there is partial information about the

adversary we decide on efficient patrols by solving a

Bayesian–Stackelberg games. Here, the leader decides first

on a patrolling strategy and then an adversary, of possibly

many adversary types, selects its best response for the given

patrol. We provide two efficient MIP formulations named

DOBSS and ASAP to solve this NP-hard problem. Our

experimental results show the efficiency of these algorithms

and illustrate how these techniques provide optimal and

secure patrolling policies. We note that these models have

been applied in practice, with DOBSS being at the heart of

the ARMOR system that is currently deployed at the Los

Angeles International airport (LAX) for randomizing

checkpoints on the roadways entering the airport and canine

patrol routes within the airport terminals.

Keywords Multiagent systems � Decision theory �
Game theory � Security � Randomized policies

1 Introduction

Security, commonly defined as the ability to deal with

intentional threats from other agents is a major challenge for

agents deployed in adversarial environments [14]. In this

paper, we focus on adversarial domains where the agents

have limited information about the adversaries. Such

adversarial scenarios arise in a wide variety of situations

that are becoming increasingly important such as patrol

agents providing security for a group of houses or regions

[5, 15], UAVs monitoring a humanitarian mission [1, 14],

agents assisting in routine security checks at airports [18],

agents providing privacy in sensor network routing [12] or

agents maintaining anonymity in peer to peer networks [2].

This paper brings together some of our recent work on

how to plan for agents acting in uncertain environments in

P. Paruchuri

Carnegie Mellon University, Pittsburgh, PA 15232, USA

e-mail: paruchur@gmail.com

J. P. Pearce

Knight Capital Group, Jersey city NJ, USA

e-mail: jppearce@usc.edu

J. Marecki

IBM Research, York Town, NY, USA

e-mail: marecki@usc.edu

M. Tambe � F. Ordóñez (&)

University of Southern California, Los Angeles, CA 90089, USA

e-mail: fordon@usc.edu

M. Tambe

e-mail: tambe@usc.edu

S. Kraus

Bar-Ilan University, Ramat-Gan 52900, Israel

e-mail: sarit@cs.biu.ac.il

S. Kraus

University of Maryland, College Park, MD 20742, USA

123

Inf Technol Manag (2009) 10:67–79

DOI 10.1007/s10799-008-0047-9

the presence of adversaries [14, 15, 16]. This research has

introduced two very different approaches for increasing

security in agent systems and has lead to the Assistant for

Randomized Monitoring over Routes (ARMOR) system

which has been deployed for security scheduling at the LAX

airport since August 2007 [11, 16, 17]. Here we will present

the main results and algorithms proposed in these two

approaches and highlight the relationship between them.

The common assumption in these security domains is that

the agent commits to a plan or policy first while the

adversary observes the agent’s actions and hence knows its

plan/policy. The adversary can then exploit the plan or

policy the agent committed to. In addition, the agent might

have to decide on its strategy having only incomplete

information. For example, in a typical security domain such

as the patrolling agents example, agents provide security for

a group of houses or regions via patrolling. The patrol

agents commit to a plan or policy while the adversaries can

observe the patrol routes, learn the patrolling pattern and

exploit it to their advantage. Furthermore, the agents might

not know which adversaries they face or what exactly their

objectives are. To solve this problem with incomplete

information about the adversaries, we provide efficient

algorithms for improving security broadly considering two

realistic situations: Firstly, when the agents have no model

of their adversaries, our objective is to obtain strategies for a

Markov Decision Process (MDP) that balance the agent’s

reward with the amount of information gained by the

adversary about the agent. Secondly, when the agents have

partial model of their adversary we use a game theoretic

framework to obtain maximal reward strategies taking into

account the uncertainty over adversary types.

When the agents have no model of their adversaries, we

briefly present efficient algorithms, as introduced in [14],

for generating randomized plans or policies for the agents

that minimize the information that can be gained by

adversaries. Such randomized policies that attempt to

minimize the opponent’s information gain are referred to as

secure policies. However, arbitrary randomization can

violate quality constraints, such as: increasing resource

usage, frequency of patrols in key areas. To that end, we

developed algorithms for efficient policy randomization

with quality guarantees using MDPs [19]. We measure

randomization via an entropy-based metric. In particular,

we illustrate that simply maximizing entropy-based metrics

introduces a non-linear program that has non-polynomial

run-time. Hence, we introduce our Convex combination for

Randomization (CRLP) and Binary search for Randomi-

zation (BRLP) linear programming (LP) techniques that

randomize policies in polynomial time with different

tradeoffs as explained later.

When the agents have a partial model of their adversary,

we model the security domain as a Bayesian–Stackelberg

games [6, 15]. A Bayesian game is a game in which agents

may belong to one or more types; the type of an agent

determines its possible actions and payoffs. The assump-

tion made here is that the agent knows the adversary’s

actions and payoffs but does not know which adversary is

active at a given time. Usually these games are analyzed

according to the concept of Bayes–Nash equilibrium, an

extension of Nash equilibrium for Bayesian games in

which it is assumed that all the agents choose their strat-

egies simultaneously. However, the main feature of the

security games we consider is that one player must commit

first to a strategy before the other players choose their

strategies. In the patrol domain, the patrol agent commits to

a strategy first while the adversaries get to observe the

agent’s strategy and decide on their choice of action. These

scenarios are known as Stackelberg games [9]. More pre-

cisely, we model our security domains as Bayesian–

Stackelberg games to take into account that the leader must

plan for possibly many different types of adversaries. The

solution concept for these games is that the security agent

has to pick the optimal strategy considering the actions,

payoffs and probability distribution over the adversaries. In

[15] and [16], we introduced efficient techniques for gen-

erating optimal leader strategies with controlled and

optimal randomization for Bayesian–Stackelberg games,

named as Agent Security via Approximate Policies (ASAP)

and Decomposed Optimal Bayesian Stackelberg Solver

(DOBSS), respectively. Furthermore, DOBSS is at the

heart of the ARMOR [16, 17] system that is currently

deployed for security scheduling at the LAX airport, which

has been described in popular scientific magazines and

news media such as [11].

The ARMOR software is a general-purpose security

scheduler built over the DOBSS algorithm. In particular, it

is being used for randomizing police checkpoints and

canine patrols for improving security at the LAX airport.

For example, airports cannot afford having checkpoints on

all roads at all times due to limited security personnel.

Potential adversaries can monitor the checkpoints regularly

and learn weaknesses/patterns. ARMOR accounts for var-

ious factors including number of checkpoints, their

operation times, traffic patterns, adversary’s cost for get-

ting caught, estimated target priority for adversary, etc. to

calculate the optimal randomized solution. In most security

domains, police/canine units commit first to a security

policy while our adversaries observe and exploit the policy

committed to. This key observation is mapped to a

Bayesian–Stackelberg games and is solved using the

DOBSS algorithm.1

1 The ARMOR software has been developed in close interaction with

the LAWA (Los Angeles World Airports) police, and has been in use

at LAX since Aug’07.

68 Inf Technol Manag (2009) 10:67–79

123

The rest of this paper is organized as follows, in Sect. 2

below we present related work. Section 3 introduces the

classic Markov Decision approach for planning and the LP

solution to solve it. We then present a non-linear program

and two approximate linear programming alternatives

called the CRLP and the BRLP algorithms for efficient

randomized policy generation in the presence of an un-

modeled adversary. Section 4 briefly presents the DOBSS

procedure for generating optimal randomized strategies,

first for non-Bayesian games, for clarity; then shows how it

can be adapted for Bayesian games with partial adversary

information. We then provide a brief description of the

ASAP algorithm that generates policies with controlled

randomization using the framework developed for DOBSS.

Section 5 provides experimental results for both the tech-

niques developed in this paper. Section 6 gives the

conclusions and discusses policy implications of the

methods presented in the paper.

2 Related work

There are two main methodological directions that are

followed in this work: decision theoretic and game theoretic

models. Below we point to related work in both these areas

and how it pertains to randomizing in security domains.

Decision theoretic frameworks, such as MDPs, are

extremely useful and powerful modeling tools that are being

increasingly applied to build agents and agent teams that can

be deployed in real world. The main advantage of modeling

agent and agent teams using these tools is the following:

– Real world is uncertain and the decision theoretic

frameworks can model such real-world environmental

uncertainty. In particular, the MDP [19] framework can

model stochastic actions and hence can handle transi-

tion uncertainty.

– Efficient algorithms have been devised for generating

optimal plans for agents and agent teams modeled

using these frameworks [19].

However, these optimal policy generation algorithms

have focused on maximizing the total expected reward

while taking the environmental uncertainties into account.

Such optimal policies are deterministic and therefore useful

when the agents act in environments where acting in a

predictable manner is not problematic. As agents get

increasingly deployed in real world, they will have to act in

adversarial domains often without any adversary model

available. Hence, randomization of policies becomes crit-

ical. Randomization of policies using decision theoretic

frameworks as a goal has received little attention, and is

primarily seen as a side-effect in attaining other objectives

like in Constrained MDPs [7, 13].

Stackelberg games [20, 23] are commonly used to model

attacker–defender scenarios in security domains [3]. In par-

ticular [3] develops algorithms to make critical infrastructure

more resilient against terrorist attacks by modeling the sce-

nario as a Stackelberg game. However they do not address the

issue of incomplete information about adversaries whereas

agents acting in the real world quite frequently are uncertain,

or do not have complete information, about the adversary

faced. Bayesian games have been a popular choice to model

such incomplete information games [4, 6] and the solution

concept is called the Bayes–Nash equilibrium [9]. The

problem of choosing an optimal strategy for the leader to

commit to in a Stackelberg game is analyzed in [6] and found

to be NP-hard in the case of a Bayesian game with multiple

types of followers. Methods for finding optimal leader strat-

egies for non-Bayesian games [6] can be applied to this

problem by converting the Bayesian game into a normal-form

game by the Harsanyi transformation [10]. However, by

transforming the game, the compact structure of the Bayesian

game is lost. In addition, the method by [6] (called the Mul-

tiple LPs method) requires solving many linear programs,

some of which may be infeasible. If, on the other hand, we

wish to compute the highest-reward Nash equilibrium, new

methods using mixed-integer linear programs (MILPs) [21]

may be used, since the highest-reward Bayes–Nash equilib-

rium is equivalent to the corresponding Nash equilibrium in

the transformed game. Furthermore, since the Nash equilib-

rium assumes a simultaneous choice of strategies, the

advantages of being the leader are not considered. Our work

proposes an efficient and compact technique for choosing

optimal strategies in Bayesian–Stackelberg games.

3 Randomization with no adversary model

In this section, we first describe MDPs, followed by our

approaches to randomization of MDP policies. An MDP is

a tuple hS;A;P;Ri; that consists of world states {s1,…,sm},

actions {a1,…,ak}, transition function which is a set of

tuples p(s, a, j) and immediate reward denoted by tuples

r(s, a). If x(s, a) represents the number of times the MDP

visits state s and takes action a and aj represents the

number of times the MDP starts in each state j [S, then the

optimal policy, maximizing expected reward, is derived via

the following linear program [8]:

max
X

s2S

X

a2A

rðs; aÞxðs; aÞ

s.t.
X

a2A

xðj; aÞ �
X

s2S

X

a2A

pðs; a; jÞxðs; aÞ ¼ aj; 8j 2 S

xðs; aÞ� 0 8s 2 S; a 2 A ð1Þ

If x* is the optimal solution to (1), the optimal policy p*

is given by (2) below, where p*(s, a) is the probability of

Inf Technol Manag (2009) 10:67–79 69

123

taking action a in state s and is deterministic i.e., p*(s, a)

has a value of either 0 or 1. However, such deterministic

policies are undesirable in security domains.

p�ðs; aÞ ¼ x�ðs; aÞP
â2A x�ðs; âÞ : ð2Þ

3.1 Maximal entropy solution

We aim to randomize these optimal deterministic policies,

where randomness is quantified using some entropy mea-

sure. The notion of entropy for probability distributions is

introduced by Shannon in [22]. Entropy for a discrete

distribution p1,…,pn is defined by H ¼ �
Pn

i¼1 pi log pi:

For a MDP we introduce the weighted entropy function,

borrowing from the classic entropy definition. The weigh-

ted entropy is defined by adding the entropy for the

distributions at every state weighted by the likelihood the

MDP visits that state, namely

HWðxÞ ¼ �
P
s2S

P
â2A

xðs; âÞP
j2S

aj

P
a2A pðs; aÞ log pðs; aÞ

¼ � 1P
j2S

aj

P
s2S

P
a2A

xðs; aÞ log
xðs; aÞP
â2A

xðs; âÞ

� �
:

Note that when all states have equal weight of 1, we call

the above function as additive entropy denoted by HA(x).

The maximal entropy solution for MDP can be defined as:

max� 1P
j2S aj

X

s2S

X

a2A

xðs; aÞ log
xðs; aÞP

â2A xðs; âÞ

� �

s.t.
X

a2A

xðj; aÞ �
X

s2S

X

a2A

pðs; a; jÞxðs; aÞ ¼ aj 8j 2 S

X

s2S

X

a2A

rðs; aÞxðs; aÞ�Emin

xðs; aÞ� 0 8s 2 S; a 2 A ð3Þ

Here, Emin is the reward threshold and is an input

domain parameter. Note that for Emin = 0 the above

problem finds the maximum weighted entropy policy, and

for Emin = E*, Problem (3) returns the maximum expected

reward policy with largest entropy, where E* is the

maximum possible expected reward. Unfortunately the

function HW(x) is neither convex nor concave in x, hence

there are no complexity guarantees in solving Problem (3),

even for local optima. This negative complexity motivates

the polynomial methods presented below.

3.2 Efficient single agent randomization

Note that, while entropy calculation is a non-linear

function, entropy-maximization is a convex problem. The

non-convexity in the functions above arises due to way

probabilities are calculated i.e. as a ratio of the flow

variables in the (MDP) network. We now present two

polynomial time algorithms to obtain policies for an MDP

that balance the reward and randomness. The algorithms

that we introduce below consider two inputs: a minimal

expected reward value Emin and a randomized solution �x
(or policy �p). The input �x can be any solution with high

entropy and is used to enforce some level of randomness on

the high expected reward output, through linear constraints.

One such high entropy input for MDP-based problems is

the uniform policy, where �pðs; aÞ ¼ 1=jAj: We enforce the

amount of randomness in the high expected reward solu-

tion that is output through a parameter b [[0, 1]. For a

given b and a high entropy solution �x; we output a maxi-

mum expected reward solution with a certain level of

randomness by solving (4).

max
X

s2S

X

a2A

rðs; aÞxðs; aÞ

s.t.
X

a2A

xðj; aÞ �
X

s2S

X

a2A

pðs; a; jÞxðs; aÞ ¼ aj 8j 2 S

xðs; aÞ� b�xðs; aÞ 8s 2 S; a 2 A: ð4Þ

which can be expressed in matrix notation. Let x ¼
ðxðs; aÞÞs2S;a2A be an |S||A| dimensional variable vector, a a

vector in <jSj; r a vector in <jSjjAj; and M a matrix with |S|

rows and |S||A| columns. The matrix shorthand would then be,

max rTx
s.t. Mx ¼ a

x� b�x:

As the parameter b is increased, the randomness

requirements of the solution become stricter and hence

the solution to (4) would have smaller expected reward and

higher entropy. For b = 0 the above problem reduces to (1)

returning the maximum expected reward solution E*; and

for b = 1 the problem obtains the maximal expected

reward (denoted E) out of all solutions with as much

randomness as �x:

Theorem 1 If �x is a feasible solution to (1) (that is

M�x ¼ a; �x� 0) andE* is finite, then �x is an optimal solu-

tion to (4) when b = 1 and �E ¼
P

s2S

P
a2A rðs; aÞ

�xðs; aÞ ¼ rT �x:

Proof If E* is finite then for any x such that Mx = 0,

x C 0 we must have that rTx B 0. By construction �x is

feasible for (4) with b = 1. Consider a solution ~x feasible

for (4) with b = 1. Then ~x� �x� 0 and Mð~x� �xÞ ¼ 0;

therefore since E* is finite we have rTð~x� �xÞ� 0; which

shows that �x is optimal for (4). h

Our new algorithm to obtain an efficient solution with a

expected reward requirement of Emin is based on the fol-

lowing result which shows that the solution to (4) is a

70 Inf Technol Manag (2009) 10:67–79

123

convex combination of the deterministic and random input

solutions.

Theorem 2 ([14], Theorem 1) Consider a solution

�x;which satisfies M�x ¼ aand �x� 0:Letx* be the solution to

(1) and b [[0, 1]. Ifxbis the solution to (1) then

xb ¼ ð1� bÞx� þ b�x:

Proof We reformulate problem (4) in terms of the slack

z ¼ x� b�x of the solution x over b�x leading to the fol-

lowing problem:

brT �xþ max rT z
s.t. Mz ¼ ð1� bÞa

z� 0;

The above problem is equivalent to (4), where we used

the fact that M�x ¼ a: Let z* be the solution to this problem,

which shows that xb ¼ z� þ b�x: Dividing the linear

equation Mz = (1 - b)a, by (1 - b) and substituting

u = z/(1 - b) we recover the deterministic problem (1)

in terms of u, with u* as the optimal deterministic solution.

Renaming variable u to x, we obtain 1
1�b z� ¼ x�; which

concludes the proof. h

Since xb = (1 - b)x* ? b�x we can directly find a ran-

domized solution which obtains a target expected reward of

Emin. Due to the linearity in relationship between xb and b,

a linear relationship exists between the expected reward

obtained by xb (i.e rTxb) and b. In fact setting b ¼ rT x��Emin

rT x��rT �x

makes rTxb = Emin. Using the theorem, we now present

below algorithm CRLP based on the observations made

about b and xb.

Algorithm 1 CRLPðEmin; �xÞ

1. Solve Problem (1), let x* be the optimal solution

2. Set b ¼ rT x��Emin

rT x��rT �x

3. Set xb ¼ ð1� bÞx� þ b�x

4. returnxb (expected reward = Emin, entropy based on b�x)

Algorithm CRLP is based on a linear program and thus

obtains, in polynomial time, solutions to problem(4) with

expected reward values Emin 2 ½E;E��: Note that Algorithm

CRLP might unnecessarily constrain the solution set as

Problem (4) implies that at least b
P

a2A �xðs; aÞ flow has to

reach each state s. This restriction may negatively impact

the entropy it attains, as experimentally verified in Sect. 5.

This concern is addressed by a reformulation of Problem

(4) replacing the flow constraints by policy constraints at

each stage. For a given b [[0, 1] and a solution �p (policy

calculated from �x), this replacement leads to the following

linear program:

max
X

s2S

X

a2A

rðs; aÞxðs; aÞ

s.t.
X

a2A

xðj; aÞ �
X

s2S

X

a2A

pðs; a; jÞxðs; aÞ ¼ aj; 8j 2 S

xðs; aÞ� b�pðs; aÞ
X

b2A

xðs; bÞ; 8s 2 S; a 2 A: ð5Þ

For b = 0 this problem reduces to (1) returning E*, for

b = 1 it returns a maximal expected reward solution with

the same policy as �p: This means that for b at values 0 and

1, problems (4) and (5) obtain the same solution if policy �p
is the policy obtained from the flow function �x: However,

in the intermediate range of 0 to 1 for b, the policy obtained

by problems (4) and (5) are different even if �p is obtained

from �x: Thus, theorem 2 holds for problem (4) but not for

(5). We now present our BRLP algorithm 2.

Given input �x; algorithm BRLP runs in polynomial

time, since at each iteration it solves an LP and for toler-

ance of e, it takes at most O Eð0Þ�Eð1Þ
�

� �
iterations to

converge (E(0) and E(1) expected rewards correspond to 0

and 1 values of b).

Algorithm 2 BRLPðEmin; �xÞ

1. Set bl = 0, bu = 1, and b = 1/2.

2. Obtain �p from �x

3. Solve Problem (5), let xb and E(b) be the optimal solution and

expected reward value returned

4. while jEðbÞ � Eminj[� do

5. if E(b) [Eminthen

6. Set bl = b

7. else

8. Set bu = b

9. b ¼ buþbl

2

10. Solve Problem (5), let xb and E(b) be the optimal solution and

expected reward value returned

11. returnxb (expected reward ¼ Emin � �;entropy related to b�x)

Throughout this paper, we set �x based on uniform ran-

domization �p ¼ 1=jAj: By manipulating �x; we can

accommodate the knowledge of the behavior of the

adversary. For instance, if the agent knows that a specific

state s cannot be targeted by the adversary, then �x for that

state can have all values 0, implying that no entropy con-

straint is necessary. In such cases, �x will not be a complete

solution for the MDP but rather concentrate on the sets of

states and actions that are under risk of attack. For �x that do

not solve the MDP, Theorem 2 does not hold and therefore

Algorithm CRLP is not valid. In this case, a high-entropy

solution that meets a target expected reward can still be

obtained via Algorithm BRLP.

Inf Technol Manag (2009) 10:67–79 71

123

4 Randomization using partial adversary model

In this section, we first describe the Bayesian–Stackelberg

games, followed by our efficient approaches to obtain

optimal randomized policies. As mentioned in Sect. 1, in

the case that the leader has a partial model of the adversary,

we use a Bayesian–Stackelberg games to represent the

interaction between players. In a Stackelberg game, a

leader commits to a strategy first, and then a follower (or

group of followers) selfishly optimize their own rewards,

considering the action chosen by the leader. To see the

advantage of being the leader in a Stackelberg game,

consider a simple game with the payoff table as shown in

the table below. The leader is the row player and the fol-

lower is the column player.

1 2

1 2, 1 4, 0

2 1, 0 3, 2

If we consider the above problem to be a simultaneous

move game, then the only pure-strategy Nash equilibrium

for this game is when the leader plays 1 and the follower

plays 1 which gives the leader a payoff of 2; in fact, for the

leader, playing 2 is strictly dominated. However, if the

leader can commit to playing 2 before the follower chooses

its strategy, then the leader will obtain a payoff of 3, since

the follower would then play 2 to ensure a higher payoff for

itself. If the leader commits to a uniform mixed strategy

of playing 1 and 2 with equal (0.5) probability, then the

follower will play 2, leading to a payoff for the leader

of 3.5.

4.1 Exact solution: DOBSS

We developed an efficient exact procedure to generate an

optimal leader strategy for security domains known as

DOBSS. This method has two key advantages. First, it

directly searches for an optimal strategy, rather than a Nash

(or Bayes–Nash) equilibrium, thus allowing it to find high-

reward non-equilibrium strategies. Second, the method

expresses the Bayes–Nash game compactly without requir-

ing conversion to a normal-form game.

The DOBSS procedure we propose operates directly on

the compact Bayesian representation, without requiring the

Harsanyi transformation. This is achieved because the dif-

ferent follower (robber) types are independent of each other.

Hence, evaluating the leader strategy against a Harsanyi-

transformed game matrix is equivalent to evaluating against

each of the game matrices for the individual follower types.

This independence property is exploited in DOBSS to yield

a decomposition scheme. Also, note that DOBSS requires

the solution of one optimization problem, rather than solving

a series of problems as in the Multiple LPs method [6].

Note that for a single follower type, we simply take the

mixed strategy for the leader that gives the highest payoff

when the follower plays a reward-maximizing strategy. We

need only to consider the reward-maximizing pure strategies

of the followers, since for a given fixed strategy x of the leader,

each follower type faces a problem with fixed linear rewards.

If a mixed strategy is optimal for the follower, then so are all

the pure strategies in the support of that mixed strategy.

We begin with the case of a single follower. Let the leader

be the row player and the follower the column player. We

denote by x the leader’s policy, which consists of a vector of

the leader’s pure strategies. The value xi is the proportion of

times in which pure strategy i is used in the policy. Similarly,

q denotes the vector of strategies of the follower. We also

denote X and Q the index sets of the leader and follower’s

pure strategies, respectively. The payoff matrices R and C are

defined such that Rij is the reward of the leader and Cij is the

reward of the follower when the leader takes pure strategy i

and the follower takes pure strategy j.

We first fix the policy of the leader to some policy x. We

formulate the optimization problem the follower solves to

find its optimal response to x as the following linear

program:

maxq

X

j2Q

X

i2X

Cijxi qj

s.t.
X

j2Q

qj ¼ 1

q� 0: ð6Þ

Thus, given the leader’s strategy x, the follower’s

optimal response, q(x), satisfies the LP optimality

conditions:

a�
X

i2X

Cijxi; j 2 Q

qj a�
X

i2X

Cijxi

 !
¼ 0 j 2 Q

X

j2Q

qj ¼ 1

q� 0:

Therefore the leader solves the following integer

problem to maximize its own payoff, given the

follower’s optimal response q(x):

maxx

X

i2X

X

j2Q

RijqðxÞj xi

s:t:
X

i2X

xi ¼ 1

xi 2 ½0. . .1�: ð7Þ

72 Inf Technol Manag (2009) 10:67–79

123

Problem (7) maximizes the leader’s reward with fol-

lower’s best response, denoted by vector q(x) for every

leader strategy x. We complete this problem by including

the characterization of q(x) through linear programming

optimality conditions. The leader’s problem becomes:

maxx;q;a

X

i2X

X

j2Q

Rijxiqj

s.t.
P

i
xi ¼ 1

P
j2Q

qj ¼ 1

0�ða�
P
i2X

CijxiÞ� ð1� qjÞM

xi 2 ½0. . .1�
qj 2 f0; 1g
a 2 <: ð8Þ

Here, M is some large constant and a is the follower’s

maximum reward value. The first and fourth constraints

enforce a feasible mixed policy for the leader, and the

second and fifth constraints enforce a feasible pure strategy

for the follower. The third constraint enforces dual feasi-

bility of the follower’s problem (leftmost inequality) and

the complementary slackness constraint for an optimal pure

strategy q for the follower (rightmost inequality).

We now show how we can apply our decomposition

technique on the MIQP to obtain significant speedups for

Bayesian games with multiple follower types. To admit

multiple adversaries in our framework, we modify the

notation defined in the previous section to reason about

multiple follower types. We denote by x the vector of

strategies of the leader and ql the vector of strategies of

follower l, with L denoting the index set of follower types.

We also denote by X and Q the index sets of leader and

follower l’s pure strategies, respectively. We also index the

payoff matrices on each follower l, considering the matri-

ces Rl and Cl.

Given a priori probabilities pl, with l [L of facing each

follower, the leader now faces the decomposed problem:

maxx;q;a

P
i2X

P
l2L

P
j2Q plRl

ijxiq
l
j

s:t:
P

i xi ¼ 1P
j2Q ql

j ¼ 1

0�ðal �
P

i2X Cl
ijxiÞ� ð1� ql

jÞM
xi 2 ½0. . .1�
ql

j 2 f0; 1g
a 2 < ð9Þ

Proposition 1 Problem (9) for a Bayesian game with

multiple follower types is equivalent to Problem (8) on the

payoff matrices given by the Harsanyi transformation.

Proof To show the equivalence we show that a feasible

solution to (9) leads to a feasible solution to (8) of same

objective value or better and vice-versa. This implies the

equality in optimal objective value and the correspondence

between optimal solutions.

Consider x, ql, al with l [L a feasible solution to

Problem (9). We now construct a feasible solution to (8).

From its second constraint and integrality of q we have

that for every l there is exactly one jl such that ql
jl = 1.

Let j be the Harsanyi action that corresponds to (j1,…,j|L|)

and let q be its pure strategy (i.e. q is a strategy in the

transformed game where qj = 1, and qh = 0 for all other

h = j). We now show that the objective of (9) equals that

of (8) exploiting these corresponding actions. In

particular:
X

i2X

X

l2L

plxi

X

h2Q

Rl
ihql

h ¼
X

i2X

xi

X

l2L

plRl
ijl

¼
X

i2X

xiRij ¼
X

i2X

X

h2Q

xiRihqh

So now we just have to show that x, q, and a ¼P
l2L plal is feasible for Problem (8). Constraints 1, 2, 4,

and 5 in (8) are easily satisfied by the proposed solution.

Constraint 3 in (9) means that
P

i2X xiC
l
ijl
�
P

i2X xiC
l
ih; for

every h [Q and l [L, leading to
X

i2X

xiCij ¼
X

l2L

pl
X

i2X

xiC
l
ijl
�
X

l2L

pl
X

i2X

xiC
l
ihl
¼
X

i2X

xiCih0 ;

for any pure strategy h1,…,h|L| for each of the followers and

h0 its corresponding pure strategy in the Harsanyi game.

We conclude this part by showing that
X

i2X

xiCij ¼
X

l2L

pl
X

i2X

xiC
l
ijl
¼
X

l2L

plal ¼ a:

Now we start with (x, q, a) feasible for (8). This means

that qj = 1 for some pure action j. Let (j1,…,j|L|) be the

corresponding actions for each follower l. We show that x,

ql with ql
jl
¼ 1 and ql

h = 0 for h = jl, and al ¼
P

i2X xiC
l
ijl

with l [L is feasible for (9). By construction this solution

satisfies constraints 1, 2, 4, 5 and has a matching objective

function. We now show that constraint 3 holds by showing

that
P

i2X xiC
l
ijl
�
P

i2X xiC
l
ih for all h [Q and l [L. Let us

assume it does not. That is, there is an l̂ 2 L and ĥ 2 Q such

that
P

i2X xiC
l̂
ijl̂
\
P

i2X xiC
l̂
iĥ
: Then by multiplying by pl̂

and adding
P

l 6¼l̂ pl
P

i2X xiC
l
ijl

to both sides of the

inequality we obtain

X

i2X

xiCij\
X

i2X

xi

X

l 6¼l̂

plCl
ijl
þ pl̂Cl̂

iĥ

0
@

1
A:

The right hand side equals
P

i2X xiCih for the pure

strategy h that corresponds to ðj1; . . .; ĥ; . . .; jjLjÞ; which is a

contradiction since constraint 3 of (8) implies thatP
i2X xiCij�

P
i2X xiCih for all h. h

Inf Technol Manag (2009) 10:67–79 73

123

We can then linearize the quadratic programming

problem (9) through the change of variables zl
ij = xiq

l
j,

obtaining the following problem:

maxq;z;a

P
i2X

P
l2L

P
j2Q

plRl
ijz

l
ij

s.t.
P
i2X

P
j2Q

zl
ij ¼ 1

P
j2Q zl

ij� 1

ql
j�
P

i2X zl
ij� 1P

j2Q ql
j ¼ 1

0�ðal �
P

i2X Cl
ijð
P

h2Q zl
ihÞÞ� ð1� ql

jÞMP
j2Q zl

ij ¼
P

j2Q z1
ij

zl
ij 2 ½0. . .1�

ql
j 2 f0; 1g

a 2 < ð10Þ

Theorem 3 Problems (9) and (10) are equivalent.

Proof Consider x, ql, al with l [L a feasible solution of

(9). We will show that ql, al, zl
ij = xiq

l
j is a feasible solution

of (10) of same objective function value. The equivalence of

the objective functions, and constraints 4, 7 and 8 of (10) are

satisfied by construction. The fact that
P

j2Q zl
ij ¼ xi asP

j2Q ql
j ¼ 1 explains constraints 1, 2, 5 and 6 of (10).

Constraint 3 of (10) is satisfied because
P

i2X zl
ij ¼ ql

j:

Lets now consider ql, zl, al feasible for (10). We will

show that ql, al and xi ¼
P

j2Q z1
ij are feasible for (9) with

the same objective value. In fact all constraints of (9) are

readily satisfied by construction. To see that the objectives

match, notice for each l one ql
j must equal 1 and the rest

equal 0. Let us say that ql
j_l = 1, then the third constraint in

(10) implies that
P

i2X zl
ijl
¼ 1: This condition and the first

constraint in (7) give that zl
ij = 0 for all i [X and all

j = jl. In particular this implies that

xi ¼
X

j2Q

z1
ij ¼ z1

ij1
¼ zl

ijl
;

the last equality from constraint 6 of (10). Therefore

xiq
l
j ¼ zl

ijl
ql

j ¼ zl
ij. This last equality is because both are 0

when j = jl (and ql
j = 1 when j = jl). This shows that the

transformation preserves the objective function value,

completing the proof. h

We can therefore solve this equivalent linear integer

program with efficient integer programming packages

which can handle problems with thousands of integer

variables. We implemented the decomposed MILP and the

results are shown in the following section.

We now provide a brief intuition into the computational

savings provided by our approach. We compare the work

done by DOBSS and by the other exact solution approach

for Bayesian–Stackelberg games, namely the Multiple-LPs

method by [6]. The DOBSS method achieves an expo-

nential reduction in the problem that must be solved over

the multiple-LPs approach due to the following reasons:

The multiple-LPs method solves an LP over the exponen-

tially blown Harsanyi transformed matrix for each joint

strategy of the adversaries (also exponential in number). In

contrast, DOBSS solves a problem that has one integer

variable per strategy for every adversary.

To be more precise, let X be the number of agent

actions, Q the number of adversary actions and L the

number of adversary types. The DOBSS procedure solves a

MILP with XQL continuous variables, QL binary vari-

ables, and 4QL ? 2XL ? 2L constraints. We note that this

MILP has QL feasible integer solutions, due to constraint 4

in (10). Solving this problem with a judicious branch and

bound procedure will lead in the worst case to a tree with

O(QL) nodes each requiring the solution of an LP of size

O(XQL). Here the size of an LP is the number of variables

? number of constraints.

On the other hand the multiple-LPs method needs the

Harsanyi transformation. This transformation leads to a

game where the agent can take X actions and the joint

adversary can take QL actions. This method then solves

exactly QL different LPs, each with X variables and QL

constraints, i.e. each LP is of size O(X ? QL).

In summary, both methods require the solution to about

O(QL) linear programs, however these are of size O(XQL)

for DOBSS while they are of size O(X ? QL) for Multiple

LPs. This exponential increase in the problem size would

lead to much higher computational burden for Multiple LPs

as the number of adversaries increases. We note also that

the branch-and-bound procedure seldom explores the entire

tree as it uses the bounding procedures to discard sections

of the tree which are provably non-optimal. The multiple-

LPs method on the other hand must solve all QL problems.

4.2 Approximate solution: ASAP

We now present our limited randomization approach

introduced in [15], where we limit the possible mixed

strategies of the leader to select actions with probabilities

that are integer multiples of 1/k for a predetermined integer

k. One advantage of such strategies is that they are com-

pact to represent (as fractions) and simple to understand;

therefore they can potentially be efficiently implemented in

real patrolling applications. Thus for example, when

k = 3, we can have a mixed strategy where strategy 1 is

picked twice i.e., probability = 2/3 and strategy 2 is

picked once with probability = 1/3. We now present our

ASAP algorithm using mathematical framework developed

in the previous section. In particular we start with problem

9 and convert x from continuous to an integer variable that

varies between 0 to k; thus obtaining the following

problem:

74 Inf Technol Manag (2009) 10:67–79

123

maxx;q;a

X

i2X

X

l2L

X

j2Q

pl

k
Rl

ijxiq
l
j

s.t.
P

i

xi ¼ k
P
j2Q

ql
j ¼ 1

0�ðal �
P
i2X

1
k Cl

ijxiÞ� ð1� ql
jÞM

xi 2 f0; 1; . . .:; kg
ql

j 2 f0; 1g
al 2 < ð11Þ

We then linearize problem (11) through the change of

variables zl
ij = xiq

l
j, obtaining the following equivalent

MILP:

maxq;z;a

X

i2X

X

l2L

X

j2Q

pl

k
Rl

ijz
l
ij

s.t.
P
i2X

P
j2Q

zl
ij ¼ k

P
j2Q

zl
ij� k

kql
j�
P
i2X

zl
ij� k

P
j2Q

ql
j ¼ 1

0� al �
P
i2X

1
k Cl

ij

P
h2Q

zl
ih

 ! !
�ð1� ql

jÞM
P
j2Q

zl
ij ¼

P
j2Q

z1
ij

zl
ij 2 f0; 1; . . .:; kg

ql
j 2 f0; 1g

al 2 < ð12Þ

Unfortunately, although ASAP was designed to generate

simple policies, the fact that it has so many more integer

variables makes it a more challenging problem than DO-

BSS. In fact, as we present in the next section, our

computational results show that solution times for DOBSS

and ASAP are comparable, when ASAP finds an optimal

solution. However, ASAP can experience difficulty in

finding a feasible solution for large problems. This added

difficulty makes DOBSS the method of choice.

5 Experimental results

5.1 No adversary model

Our first set of experiments examine the tradeoffs in run-

time, expected reward and entropy for single-agent prob-

lems. Figure 1 shows the results based on generation of

MDP policies for 10 MDPs. These experiments compare

the performance of our four methods of randomization for

single-agent policies. In the figures, CRLP refers to Algo-

rithm 1; BRLP refers to Algorithm 2; whereas HW(x) and

HA(x) refer to Problem 3 with these objective functions.

The top graph examines the tradeoff between entropy and

expected reward thresholds. It shows the average weighted

entropy on the y-axis and reward threshold percent on the

x-axis. The average maximally obtainable entropy for these

MDPs is 8.89 (shown by line on the top) and three of our

four methods (except CRLP) attain it at about 50%

threshold, i.e. an agent can attain maximum entropy if it is

satisfied with 50% of the maximum expected reward.

However, if no reward can be sacrificed (100% threshold)

the policy returned is deterministic.

Figure 1 also shows the run-times, plotting the execution

time in seconds on the y-axis, and expected reward threshold

percent on the x-axis. These numbers represent averages

over the same 10 MDPs. Algorithm CRLP is the fastest and

its runtime is very small and remains constant over the

whole range of threshold rewards as seen from the plot.

Algorithm BRLP also has a fairly constant runtime and is

slightly slower than CRLP. Both CRLP and BRLP are based

on linear programs and hence their small and fairly constant

runtimes. Problem 3, for both HA(x) and HW(x) objectives,

0

1

2

3

4

5

6

7

8

9

10

50 60 70 80 90 100

Reward Threshold(%)

A
ve

. W
ei

g
h

te
d

 E
n

tr
o

p
y

BRLP
Hw(x)
Ha(x)
CRLP
Max Entropy

0

20

40

60

80

100

120

50 60 70 80 90 100
Reward Threshold(%)

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

BRLP

Hw(x)

Ha(x)

CRLP

Fig. 1 Comparison of single agent algorithms

Inf Technol Manag (2009) 10:67–79 75

123

exhibits an increase in the runtime as the expected reward

threshold increases. This trend can be attributed to the fact

that maximizing a non-concave objective while simulta-

neously attaining feasibility becomes more difficult as the

feasible region shrinks.

We conclude the following from Fig. 1: (i) CRLP is the

fastest but provides lowest entropy. (ii) BRLP is signifi-

cantly faster than Problem [16], providing 7-fold average

speedup over the 10 MDPs over the entire threshold range.

(iii) Problem 3 with HW(x) provides highest entropy among

our methods, but the average gain in entropy is only 10%

over BRLP. (iv) CRLP provides a 4-fold speedup on an

average over BRLP but with a significant entropy loss of

about 18%. In fact, CRLP is unable to reach maximal pos-

sible entropy for the threshold range considered in the plot.

5.2 Partial adversary model

We performed experiments on a patrolling domain where

the police patrol various number of houses as presented in

[16]. The domain is then modeled as a Bayesian–Stackel-

berg games consisting of two players: the security agent

(i.e. the patrolling robot or the leader) and the robber (the

follower) in a world consisting of m houses, 1…m. The

security agent’s set of pure strategies consists of possible

routes of d houses to patrol (in some order). The security

agent can choose a mixed strategy so that the robber will be

unsure of exactly where the security agent may patrol, but

the robber will know the mixed strategy the security agent

has chosen. With this knowledge, the robber must choose a

single house to rob, although the robber generally takes a

long time to rob a house. If the house chosen by the robber

is not on the security agent’s route, then the robber suc-

cessfully robs the house. Otherwise, if it is on the security

agent’s route, then the earlier the house is on the route, the

easier it is for the security agent to catch the robber before

he finishes robbing it.

The payoffs are modeled with the following variables:

– vy,x: value of the goods in house y to the security agent.

– vy,q: value of the goods in house y to the robber.

– cx: reward to the security agent of catching the robber.

– cq: cost to the robber of getting caught.

– py: probability that the security agent can catch the

robber at the yth house in the patrol ðpy\py0 () y0\yÞ:

The security agent’s set of possible pure strategies

(patrol routes) is denoted by X and includes all d-tuples

i = \ w1,w2,…,wd [. Each of w1…wd may take values 1

through m (different houses), however, no two elements of

the d-tuple are allowed to be equal (the agent is not allowed

to return to the same house). The robber’s set of possible

pure strategies (houses to rob) is denoted by Q and includes

all integers j = 1…m. The payoffs (security agent, robber)

for pure strategies i, j are:

– -vy,x, vy,q, for j ¼ l 62 i:

– pycx ? (1 - py)(-vy,x), -pycq ? (1 - py)(vy,q), for

j = y [i.

With this structure it is possible to model many different

types of robbers who have differing motivations; for

example, one robber may have a lower cost of getting

caught than another, or may value the goods in the various

houses differently. We performed our experiments using

four methods for generating the security agent’s strategy:

DOBSS method for finding the optimal solution [16],

ASAP procedure that provides best policies with limited

randomization [15], the multiple-LPs method presented in

[6] that provides optimal policies and the MIP-Nash pro-

cedure [21] for finding the best Bayes–Nash equilibrium.

The multiple-LPs method and the MIP-Nash procedure

require a normal-form game as input, and so the Harsanyi

transformation is required as an initial step. We do not

record this preprocessing time here thus giving those other

methods an advantage.

Figure 2 shows the runtime results for all the four

methods for two, three and four houses. Each runtime value

in the graph(s) corresponds to an average over twenty

randomly generated scenarios. The x-axis shows the num-

ber of follower types the leader faces starting from 1 to 14

adversary types and the y-axis of the graph shows the

runtime in seconds on log-scale ranging from .01 to 10000

s. The choice of .01 to 10000 is for convenience of rep-

resentation of log scale(with base 10). All the experiments

that were not concluded in 30 min (1800 s) were cut off.

From the runtime graphs we conclude that the DOBSS

and ASAP methods outperform the multiple-LPs and MIP-

Nash methods with respect to runtime. We modeled a

maximum of fourteen adversary types for all our domains.

For the domain with two houses, while the MIP-Nash and

multiple-LPs method needed about 1000 s for solving the

problem with fourteen adversary types, both the DOBSS

and ASAP provided solutions in less than 0.1 s. Note that

DOBSS provided the optimal solution while ASAP pro-

vided the best possible solution with randomization

constraints. These randomization constraints also some-

times cause ASAP to incorrectly claim solutions to be

infeasible, the details of which are presented later on in this

section. The runtime for ASAP in all our results is taken as

either the time needed to generate an optimal solution or to

determine that no feasible solution exists.

The first graph in Fig. 2 shows the trends for all these

four methods for the domain with two houses. While the

runtimes of DOBSS and ASAP show linear increase in

runtimes, the other two show an exponential trend. The

76 Inf Technol Manag (2009) 10:67–79

123

runtimes of DOBSS and ASAP are themselves exponential

since they show a linear increase when plotted on a log-

scale graph. Furthermore, they have an exponential

speedup over the other two procedures as seen in the graph.

The second graph in Fig. 2 presents results for the

domain having three houses. Both the MIP-Nash and

multiple-LPs could solve this problem only till seven

adversary types within the cutoff time of 1800 s whereas

DOBSS and ASAP could solve the problem for all the

fourteen adversary types modeled under 10 s. (The cutoff

of 1800 s is also the reason MIP-Nash and multiple-LPs

appear to have a constant run-time beyond seven adversary

types.) Similar trends can be observed in the third graph

with a domain of four houses where MIP-Nash and mul-

tiple-LPs could solve only till 5 adversary types whereas

DOBSS and ASAP could solve till fourteen adversary

types within 400 s for DOBSS and 500 s for ASAP. From

this set of three graphs, we conclude that DOBSS and

ASAP outperform the other two procedures, by an expo-

nential margin.

Between DOBSS and ASAP, DOBSS is our procedure

of choice since ASAP suffers from problems of infeasi-

bility. Therefore, we present our second set of experimental

results in Fig. 3 to highlight the infeasibility issue of the

ASAP procedure. In this experiment, the same settings as

described above were used. The number of houses was

varied between two to seven (columns in the table) and the

number of adversary types was varied between one to

fourteen (rows in the table). For each fixed number of

houses and follower types, twenty scenarios were randomly

generated. We ran the ASAP procedure and presented the

number of infeasible solutions obtained, as a percentage of

all the scenarios tested for each of the fixed number of

houses and adversary types. For example, with the 8th

adversary type (row numbered 8) and 4 houses (column

numbered 4) scenario, ASAP generates 15% infeasible

solutions. Note that for the values marked with a star the

percentage presented in the table represents an upper bound

on the number of infeasible scenarios. In these starred

scenarios the ASAP procedure ran out of time in many

instances. When ASAP ran out of time, it either indicated

infeasibility, in which case it was classified as infeasible

solution making it an upper bound (since there might be

feasible solution when sufficient time is provided); or it

indicated that there was a feasible solution even though it

has not found the optimal yet, in which case it was obvi-

ously not marked as infeasible.

We make the following conclusions about ASAP from

the table in Fig. 3: (a) In general, given a fixed number of

Fig. 2 Runtimes (plotted on log scale): DOBSS, ASAP, MIP-Nash

and multiple–LP methods

Fig. 3 Percent of infeasible solutions for ASAP. Rows represent # of

adversary types (1–14), columns represent # of houses (2–7)

Inf Technol Manag (2009) 10:67–79 77

123

houses, as the number of adversary types increase (i.e from

1 to 14) the percentage of infeasible solutions increase(as

we go down the columns). (b) Given a fixed number of

adversary types, as the number of houses increase, the

percentage of infeasible solutions increase(as we go across

the rows). Although there are exceptions to both the con-

clusions, the general trend is that as the problem size

increases (due to increase in either houses or adversary

types or both) ASAP tends to generate more infeasible

solutions thus making it unsuitable for bigger problems.

From the table we obtain that more than 12.5% of the

solutions are infeasible for the five house problem when

averaged over all the adversary scenarios. This number

increases to as high as 18% and 20% on an average for the

six and seven house problems. If we perform similar cal-

culations over the last five adversary scenarios i.e., when

the number of adversary types are varied from 10 to 14, we

obtain 16%, 29% and 25% respectively for the five, six and

seven house scenarios. This shows that the ASAP produces

more infeasible solutions as the problem size increases.

Furthermore, there is no procedure to determine if ASAP

will generate a infeasible solution until runtime, thus

making the ASAP approach impractical.

6 Conclusions and policy implications

In this paper we present our recent work on algorithms for

secure patrols in adversarial domains. We follow two dif-

ferent approaches based on what is known about the

adversary. When there is no information about the adver-

sary, we provide for random policy generation using

MDPs. When there is partial information available about

the adversary, we model our domain as a Bayesian–Stac-

kelberg games and provide efficient MIP formulations for

it. We also present experimental results to show that our

techniques provide optimal, secure policies. Thus, this

work represents a significant advance in the state of the art

in addressing security domains.

We note that these two types of models are related. In

fact, a randomized solution that reduces the information

made available to the adversary can be the optimal Stac-

kelberg strategy for the leader given a balanced adversary

reward matrix. We illustrate this with the following simple

example, where the optimal Stackelberg solution turns out

to be the (minimal information) uniformly random solu-

tion. Consider a zero-sum square game where the payoff

matrix for the agent gives 1 in the diagonal and -1

everywhere else. Note that for this problem, when the agent

decides among a set of actions, the maximum entropy

solution is also the uniform strategy. Given a strategy x for

the leader in this example, the payoff the leader gets if

adversary chooses action j is xj - (x1 ? _ ? xj-1

? xj?1 ? _ ? xn) = 2 xj - 1 since x adds up to 1. Since

the adversary receives a payoff = 1 - 2xj (a zero sum

game) for this action, the adversary will select the action

which does the following: maxj=1…n 1 - 2xj, giving the

leader a reward of minj=1…n 2xj - 1. The leader therefore

must maximize minj=1…n 2xj - 1 when selecting x which

is done for the uniform x. Thus, we conclude that uniform

randomization, which is the maximum entropy solution, is

obtained as a Stackelberg game solution with appropriate

payoffs for the agent and adversary. In general the uni-

formly random solution is not the maximum entropy

solution, however this simple example helps illustrates the

connection between these two types of models.

There are number of different conclusions and policy

implications from this work, for example: (a) Randomi-

zation decreases predictability and the information given

out to the adversary and hence increases security for many

problems. The increase security comes at the expense of

the efficiency of the solution, where a patrol’s efficiency

refers to the value of some alternate measure, such as

resources consumed, cost, or coverage for example. (b)

When there is no model of the adversary or there is great

uncertainty about the adversary information, the rational

choice for the agent is to patrol following the maximally

random solution while ensuring that some efficiency con-

straints are met. (c) When security planners have a

reasonable, possibly partial, model of the adversaries

actions and rewards, then it is natural to represent the

relation between security and adversaries using game-the-

oretic formulations. (d) Both the decision-theoretic and

game-theoretic approaches return a probability distribution

over a set of actions, which can depend on the state in the

case of MDPs. Actual patrolling schedules are obtained by

sampling from these optimal probability distributions. This

procedure on the long run will generate a patrolling policy

that approximates the optimal probability distributions over

actions. (e) We assume the optimal probability distribu-

tions are known for the adversaries because they could

observe samples over time to estimate it. In addition we

assume that the adversaries respond optimally to this

information, either maximizing their reward (in the game-

theoretic approach) or by some unspecified means (in the

decision-theoretic approach). The realistic situation in

which adversaries do not have all the information or do not

behave rationally are the topic of current research. (f) The

algorithms presented here are general-purpose and can be

tailored to improve security at many real-world targets,

such as airports, dams, museums, and stadiums. In fact, the

DOBSS formulation is used in the real-world security

scheduler ARMOR, which is in deployment at the LAX

airport since August 2007 [11, 17]. The implementation of

this methodology to other domains is the subject of

ongoing work.

78 Inf Technol Manag (2009) 10:67–79

123

Acknowledgments This research is supported by the United States

Department of Homeland Security through Center for Risk and

Economic Analysis of Terrorism Events (CREATE). This work was

supported in part by NSF grant no. IIS0705587 and ISF.

References

1. R. Beard, T. McLain, Multiple UAV cooperative search under

collision avoidance and limited range communication constraints,

in Proceedings of the 42nd IEEE Conference on Decision and
Control, vol. 1, pp. 25–30 (2003)

2. N. Borisov, J. Waddle, Anonymity in Structured Peer-to-peer
Networks. University of California, Berkeley, Technical Report

No. UCB/CSD-05-1390 (2005)

3. G. Brown, M. Carlyle, J. Salmeron, K. Wood, Defending critical

infrastructures. Interfaces 36(6), 530–544 (2006)

4. J. Brynielsson, S. Arnborg, Bayesian games for threat prediction

and situation analysis, in Proceedings of the Seventh Interna-
tional Conference on Information Fusion, vol. 2, pp. 1125–1132

(2004)

5. D.M. Carroll, C. Nguyen, H. Everett, B. Frederick, Development
and Testing for Physical Security Robots. http://www.nosc.mil/

robots/pubs/spie5804-63.pdf (2005)

6. V. Conitzer, T. Sandholm, Computing the optimal strategy to

commit to, in Proceedings of the 7th ACM Conference on Elec-
tronic Commerce, pp. 82–90 (2006)

7. D. Dolgov, E. Durfee, Approximating optimal policies for agents

with limited execution resources, in Proceedings of the Eigh-
teenth International Joint Conference on Artificial Intelligence,

AAAI Press, pp. 1107–1112 (2003)

8. D. Dolgov, E. Durfee, Constructing Optimal Policies for Agents
with Constrained Architectures. Technical report, University of

Michigan, 2003.

9. D. Fudenberg, J. Tirole, Game Theory (MIT Press, 1991)

10. J.C. Harsanyi, R. Selten, A generalized Nash solution for two-

person bargaining games with incomplete information. Manag.

Sci. 18(5), 80–106 (1972)

11. A. Murr, Random checks, in Newsweek National News. http://

www.newsweek.com/id/43401. Accessed 28 September 2007

12. C. Ozturk, Y. Zhang, W. Trappe, Source-location privacy in

energy-constrained sensor network routing, in Proceedings of the

2nd ACM Workshop on Security of ad hoc and Sensor Networks,

pp. 88–93 (2004)

13. P. Paruchuri, M. Tambe, F. Ordonez, S. Kraus, Towards a for-

malization of teamwork with resource constraints, in Proceedings
of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 596–603 (2004)

14. P. Paruchuri, M. Tambe, F. Ordonez, S. Kraus, Security in

multiagent systems by policy randomization, in Proceedings of
the Fifth International Joint Conference on Autonomous Agents
and Multiagent Systems, pp. 273–280 (2006)

15. P. Paruchuri, J.P. Pearce, M. Tambe, F. Ordonez, S. Kraus, An

efficient heuristic approach for security against multiple adver-

saries, in Proceedings of the Sixth International Joint Conference
on Autonomous Agents and Multiagent Systems, Article No. 181

(2007)

16. P. Paruchuri, J.P. Pearce, J. Marecki, M. Tambe, F. Ordonez, S.

Kraus, Playing games for security: an efficient exact algorithm

for solving Bayesian Stackelberg games, in Proceedings of the
Seventh International Joint Conference on Autonomous Agents
and Multiagent Systems, vol. 2, pp. 895–902 (2008)

17. J. Pita, M. Jain, J. Marecki, F. Ordonez, C. Portway, M. Tambe,

C. Western, P. Paruchuri, S. Kraus, Deployed ARMOR protec-

tion: the application of a game theoretic model for security at the

Los Angeles international airport, in Proceedings of the Seventh
International Joint Conference on Autonomous Agents and
Multiagent Systems, Industry Track, pp. 125–132 (2008)

18. R.W. Poole, G. Passantino, A risk based airport security policy,

Policy Study No. 308, Reason Foundation, pp. 20–21 (2003)

19. M. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming (Wiley, 1994)

20. T. Roughgarden, Stackelberg scheduling strategies, in Proceed-
ings of the 33rd Annual ACM Symposium on the Theory of
Computing, pp. 104–113 (2001)

21. T. Sandholm, A. Gilpin, V. Conitzer, Mixed-integer program-

ming methods for finding Nash equilibria, in Proceedings of the
20th National Conference on Artificial Intelligence, pp. 495–501

(2005)

22. C.E. Shannon, A mathematical theory of communication. Bell

Labs Tech. J. 27, 379–423 and 623–656 (1948)

23. H.V. Stackelberg, Marketform und Gleichgewicht (Springer,

Vienna, 1934)

Inf Technol Manag (2009) 10:67–79 79

123

http://www.nosc.mil/robots/pubs/spie5804-63.pdf
http://www.nosc.mil/robots/pubs/spie5804-63.pdf
http://www.newsweek.com/id/43401
http://www.newsweek.com/id/43401

	Coordinating randomized policies for increasing security�of agent systems
	Abstract
	Introduction
	Related work
	Randomization with no adversary model
	Maximal entropy solution
	Efficient single agent randomization

	Randomization using partial adversary model
	Exact solution: DOBSS
	Approximate solution: ASAP

	Experimental results
	No adversary model
	Partial adversary model

	Conclusions and policy implications
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

