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Abstract
Area coverage is an important task for mobile
robots, mainly due to its applicability in many do-
mains, such as search and rescue. In this paper
we study the problem of multi-robot coverage, in
which the robots must obey a strong communica-
tion restriction: they should maintain connectiv-
ity between teammates throughout the coverage.
We formally describe the Multi-Robot Connected
Tree Coverage problem, and an algorithm for cov-
ering perfect N -ary trees while adhering to the
communication requirement. The algorithm is ana-
lyzed theoretically, providing guarantees for cov-
erage time by the notion of speedup factor. We
enhance the theoretically-proven solution with a
dripping heuristic algorithm, and show in extensive
simulations that it significantly decreases the cover-
age time. The algorithm is then adjusted to general
(not necessarily perfect) N -ary trees and additional
experiments prove its efficiency. Furthermore, we
show the use of our solution in a simulated office-
building scenario. Finally, we deploy our algorithm
on real robots in a real office building setting, show-
ing efficient coverage time in practice.

1 Introduction
A popular application of mobile robots is coverage: visit-
ing each location in a known or unknown environment in
order to perform a task [Rogge and Aeyels, 2007a; 2007b;
Hazon and Kaminka, 2008; Jensen and Gini, 2013; Jensen et
al., 2014]. The problem has been studied extensively using a
single robot, seeking a coverage path that visits each point in
the environment at least once in minimal time, e.g., [Gabriely
and Rimon, 2001]. Naturally, one can speed up the coverage
using multiple robots. In the multi-robot coverage problem,
the goal is to compute a trajectory for each robot in the team
so that the maximal coverage time (that is, the longest travel
time of any robot) is minimized among all robots.

One popular approach is to look at the coverage prob-
lem as a problem of covering a graph G = (V,E) [Rogge
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and Aeyels, 2007a; 2007b; Jensen and Gini, 2013; Jensen
et al., 2014]. Another approach is to consider the cover-
age problem of a tree T = (V,E) [Fraigniaud et al., 2004;
Brass et al., 2011; Cabrera-Mora and Xiao, 2012]. Under
this representation, at each time step, it should be decided for
each robot from the team which neighboring node it should
visit. Thus, the goal is to visit all nodes of the graph, at least
once, as quickly as possible.

In this paper we examine the problem of covering a per-
fect N -ary tree (that is, a rooted tree in which each node—
except for the leaves—has exactly N children) by a team of
robots while maintaining communication between the robots,
when the tree is known in advance. The robots are located
on the nodes of the tree and can move simultaneously along
the edges. Two robots are considered to be in communica-
tion range if there is an edge between the nodes on which
they are located. A tree environment is a convenient form of
representing disaster areas, where there is only one path to
reach any point on any specific location, thus there is only
one path between any pair of nodes [Fraigniaud et al., 2004;
Brass et al., 2011; Cabrera-Mora and Xiao, 2012].

Communication-constrained coverage problems are not
new, and exist in the literature. However, these solutions ei-
ther do not present theoretical analysis of coverage time, or
use active landmarks (or similar) to coordinate the robots’
movements. In this paper we present the N -ary Connected
Coverage Tree Algorithm (NCOCTA) for covering a given
perfectN -ary tree by a team of k robots without using any ex-
ternal devices. We provide a theoretical analysis of the cover-
age time using the notion of speedup factor (SF(A)) [Wilkin-
son and Allen, 1999], which represents the speedup attained
by some algorithmA using k robots compared to the optimal
coverage time achieved by a single robot. We enhance the
theoretically-proven NCOCTA algorithm by using a dripping
heuristic algorithm, the Connected Coverage Tree Algorithm
(COCTA), that was shown in extensive simulations to signif-
icantly decrease the coverage time of NCOCTA. In addition,
the COCTA algorithm works on general trees. We have im-
plemented our solutions on ROS/Gazebo 1, a realistic robotic
simulation, and deployed our solution on real robots, demon-
strating the efficiency of our coverage algorithms in a real
office building setting in practice.

1http://www.ros.org, http://gazebosim.org



2 Related Work
Robotic coverage2 is a canonical problem in robotics, which
has received considerable attention in the literature. The
single-robot coverage problem can be solved optimally in
polynomial time under the assumption that the environment
is represented as a grid, using the Spanning Tree Cover-
age (STC) algorithm [Gabriely and Rimon, 2001], where the
robot follows a spanning tree over the grid.

Fraigniaud et al. [2004] and Brass et al. [2011] developed
online algorithms for exploring unknown trees and graphs,
respectively. Fraigniaud et al. [2004] assumed that the robots
can communicate by writing the acquired information in the
node currently being visited, and reading the information
available at this node. They proved a competitive ratio for k
robots of O(k/ log k) for the time of exploration of an un-
known tree compared to the time of an optimal algorithm
which knows the tree in advance. Brass et al [2011] pro-
posed an algorithm for exploring an unknown graph and re-
turning to the starting point. Forster and Wattenhofer [2016]
obtained upper and lower bounds for the competitive ratio of
online exploration of directed and weighted graphs. Unlike
their approach, we assume the tree is given in advance and
that the robots can communicate explicitly, but in a limited
range. Cabrera-Mora [2012] proposed a multi-robot explo-
ration algorithm of a known tree using landmarks that aim
at minimizing the time of exploration but take into account
the overall distance traversed. The robots coordinate their
movements in a decentralized manner, relaying the informa-
tion stored in the active landmarks. They obtain upper and
lower bounds on the coverage time, but their model allows a
vertex to be occupied by only one robot and an edge to be
traversed by only one robot at each time step. Pei and Mutka
[2012] presented an algorithm for exploring an unknown en-
vironment. They considered the problem of minimum path
finding for the relay-deployment robot to travel and the posi-
tions to deploy necessary relays to support the stream aggre-
gation in each movement iteration. We assume that there’s no
bandwidth problem.

Similar to our communication assumptions, Jensen and
Gini [2013], Jensen et al [2014] and Rogge and Aeyels
[2007b; 2007a] developed algorithms for exploring a terrain
modeled as a graph. Jensen and Gini [2013] proposed a
Rolling Dispersion Algorithm (RDA) for exploring an un-
known area. The robots disperse as much as possible while
maintaining wireless communication and then advance as a
group, leaving behind beacons to mark explored areas and
provide a path back to the starting point. Jensen et al [2014]
proposed the Sweep Exploration Algorithm (SEA), which
uses a much more restrictive communication model, thus one
robot at a time travels down a single path until it is completely
explored, then it retracts and explores a new path. Rogge
and Aeyels [2007b; 2007a] developed a coverage algorithm
for unknown terrains. They assumed that communication be-
tween the robots is restricted to line-of-sight and to a maxi-
mum distance. Each robot explores a different part of the un-
known region and sends its findings to a central device which

2The notion of multi-robot coverage and exploration are inter-
changeable, and both can be found in the literature.

combines the data received from the robots into one global
map of the area. Banfi et al [2016] consider the communica-
tion constraints for the case in which robots must connect to
a base station only when new information is collected, allow-
ing robots to be disconnected for arbitrarily long periods. In
these papers, only completeness guarantees are provided, and
coverage time is evaluated empirically, while we evaluate the
performance (exploration time) theoretically.

3 The Connected Tree Coverage Problem
Consider an environment that is mapped as a perfect N -ary
tree T = (V,E) where V = {vi} is the set of graph nodes
and E = {eij} is the set of edges, and an edge eij = (vi, vj)
exists if a robot can move directly from vi to vj , vi, vj ∈ V .
A direct connection between two nodes exists if robots can
communicate when located on the nodes, and along the edge
between them. A simple interpretation is line-of-sight. LetH
be the height of tree T (the leaves are at height 0), and k be
the number of robots in the team. Robots ri and rj , located
in nodes vi′ , vj′ respectively, are said to be in communication
range in T if ei′j′ ∈ E, or if vi′ = vj′ (i.e., they are located
in the same vertex). Thus, in general, a team of k ≥ 2 robots
is said to be connected at time t if the subtree induced by the
locations of the robots forms one connected component.

The Multi-Robot Connected Tree Coverage (MRCTC)
Problem is defined as follows: Given a perfect N -ary tree
T = (V,E) of height H , and a team R = {r0, . . . , rk−1}
of robots initially located in the root of T , find a coverage
path for each robot ri ∈ R such that each vi ∈ V is visited
by some robot, all robots in R are connected throughout the
coverage, and the total coverage time is minimized.

Unfortunately, the MRCTC problem is NP-hard, based on
the analysis in [Fraigniaud et al., 2004], which shows that the
collective tree exploration is NP-hard even if the tree and
the starting node are known in advance. We therefore turn to
a solution that has a theoretically proven speedup factor.

We propose a novel strategy to solve the MRCTC prob-
lem on perfect N -ary trees: NCOCTA. An important aspect
of NCOCTA is where the robots split into subtrees (leav-
ing at least one robot at the location of the split, to main-
tain connectivity between the subtrees). In particular, the pa-
rameter of how many points along the exploration (height in
the tree) they split into plays an important role. NCOCTA
guarantees that SF(NCOCTA) = 2Nm − 1, where m =
arg maxm{1+Nm(logN (m)+m+4)+(Nm−N) 1

N−1 ≤ k}
(m represents the number of heights where the robots split,
as presented in section 4.1). We then describe the heuris-
tic algorithm COCTA, a modification to NCOCTA, which
allows the robots to “drip” to a neighboring subtree with-
out waiting for all of the robots to finish the current sub-
tree coverage. COCTA is proven to have SF(COCTA) ≥
SF(NCOCTA), and rigorous empirical evaluation shows that
in practice SF(COCTA) >> SF(NCOCTA).

4 Solving MRCTC on Perfect N -ary Trees
In this section we describe in detail the solution to the
MRCTC problem for perfect N -ary trees. The algorithm
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Figure 1: Simulation of NCOCTA algorithm on a perfect 2-ary tree
when k = 11, H = 3 and h = {3, 2}. The number in a node
represents the number of agents located in that node.

seeks to find the best way to split the given k robots be-
tween different subtrees under the communication restriction.
The height of the first split (starting from the root and going
down) defines the first location in which one robot should be
left in order to maintain communication between the N sub-
trees. Following this split, the exploring robots leave a trail
of robots along the coverage path, to guarantee that the team
will not disconnect. See Figure 1 for a demonstration of a
split (note that it does not present an optimal split). Analayz-
ing the theoretical SF, we will first assume that we are given
k robots and the heights of the splits {hi}mi=1. After finding
the SF formulation, we will find the best heights to split the
robots in order to gain the best SF for any given k.

4.1 NCOCTA Algorithm
In this subsection we will describe the NCOCTA algorithm,
whose speedup factor will be analyzed in Section 4.2. In this
algorithm, we are given a set of predefined heights {hi}mi=1 at
which the robots will stop moving together along the tree, and
are split between N subtrees rooted at this height. In order to
maintain communication along the trail of the robots to all
splits we require that ∀1 ≤ i ≤ m, H ≥ hi > hi+1 and that
k be at least 1 +Nh1 +

∑m
i=2(N i −N i−1)hi.

We denote by Tu a subtree of an explored tree T , rooted at
node u. The node u is finished if Tu is explored and either
there are no robots in it, or all robots in it are in u. Otherwise,
it is called unfinished. Node u is inhabited if there is at least
one robot in Tu. Denote by h(u) the height of node u ∈ V .

A demonstration of several iterations of the NCOCTA al-
gorithm on a perfect 2-ary tree with height 3 (H = 3) and a
set of splits h1 = 3, h2 = 2 using 11 robots (k = 1+2·3+2·2)
is presented in Figure 1.

4.2 Properties of the NCOCTA algorithm
Lemma 4.1. During the execution of NCOCTA, the robots
maintain communication among themselves, hence the in-
duced subtree creates one connected component.

Proof. Initially, all robots are in the root of the tree, so the
claim is trivially true. Assume, in contradiction, that there is

Algorithm 1 NCOCTA
while root is not finished do

for all v ∈ V in which robots are located on (go over from the
lowest to the highest height) do

if v is finished then
\* There are no robots in Tv subtrees, so we can return
to the parent node *\
if v 6= root then

All robots from v go to the parent of v.
else

All robots from v stop.
end if

else if ∃ u a child of v such that u is unfinished then
\* v is unfinished, hence, there are still nodes to explore.
We can move to a child*\
if ∃hi such that the h(v) = hi then

Leave one robot at v and split the rest equally among
the children.

else if h(v) ≤ h1 then
Select a child u of v such that u is unfinished.
Move all the robots in v to u leaving one robot in v.

else
Select a child u of v such that u is unfinished.
Move all the robots in v to u.

end if
else
\* v is inhabited, the subtree is explored but there are still
robots in the subtree. The robots wait on a node (vertex)
with height ∈ {hi}mi=1 (split node) until all the robots
arrive. Now, the node is finished and the robots move
together to another subtree. *\
if ∃hi such that the h(v) = hi then

All robots from v remain in v.
else if v 6= root then

All robots from v go to the parent of v leaving one
robot in v.

else
All robots from v stop.

end if
end if

end for
end while

an iteration of the algorithm that changes the induced subtree
(of height h) from one connected component to several con-
nected components. If the robots are located on a node u of
height h(u) > h1, then all the robots move together (by the
initial split rule described above), thus all k robots are located
in the same node, which is equivalent to the initial state (so
we can exclude this case and assume h(u) ≤ h1).

Since we have two (or more) connected components, there
was a node u from which the robot separated into two com-
ponents. This separation can happen in one of two cases: (1)
a subteam of R moved down a subtree of u (without leaving
a representative in a node u′ which is a child of u) while a
subteam of R remained in u; or (2) a subteam of R went up
the tree (without leaving a representative at u′′, the parent of
u).

In the first case, moving to a child will occur when Tu
is unfinished. We leave a robot behind for any case except
h(u) > h1 (in that case all k robots are located in u and



finished

unfinished inhabited

Figure 2: A DAG representing the possible states of each u ∈ V

move together), leading to a contradiction.
In the second case, moving to a parent while not leaving

a robot behind can occur only if Tu is finished, but if Tu is
finished, there are no robots in any node of the subtree except
for u, again leading to a contradiction.

Lemma 4.2. Algorithm NCOCTA completes exploring all
nodes v ∈ V in finite time.

Proof. For every v ∈ V , v can be finished, unfinished or
inhabited. The directed acyclic graph, or DAG (except for
self loops) representing the possible states of v is presented
in Figure 2. The initial state of all v ∈ V is unfinished, and
the desired state of all nodes is finished. If we show that for a
given tree, after a finite time (δt) the state of at least one vi ∈
V will change (according to the DAG described in Figure 2),
then after at most 2|V |δt time units, all nodes in V will reach
the final state (finished).

There are two cases to consider: [A] there is at least one
node vi which is unfinished, and vi contains robots. [B] every
node vj with robots is either finished or inhabited (meaning,
we do not have any vl ∈ V which is unfinished, with robots
located on vl).
[A] Let us consider the node vi with the minimum height that
has robots located on it. Following the condition on k (the
number of robots k is at least 1+Nh1+

∑m
i=2(N i−N i−1)hi

as shown in section 4.1), if vi is unfinished and h(vi) ≤ h1,
then we have at least one robot which can move to a child
of vi while maintaining communication, hence it continues
moving to a child recursively until reaching a leaf, thus the
leaf changes to finished within h(vi) time units, and we are
done (meaning, δt = h(vi)). If h(vi) > h1, then all robots
move together until they reach a node of height h1, continu-
ing as shown previously.
[B] There exists a node vj of the lowest height on which
robots are located, and vj is finished. We know that vj’s
parent is inhabited (otherwise it would have been case [A]).
If vj’s parent is not a split node (a node u where h(u) ∈
{hi}mi=1), then all robots go up to vj’s parent and vj’s par-
ent becomes finished, thus within δt = 1, vj’s parent’s state
has changed. If vj’s parent is a split node, then since T is a
perfect N -ary tree and by NCOCTA all movements of robots
along the paths occur simultaneously, then when going up to
vj’s parent, all subtrees which originated in the parent move
back to it simultaneously, thus vj’s parent’s state changes to
finished within δt = 1.

(a) iteration 3 (b) iteration 4 (c) iteration 5

(d) iteration 6 (e) iteration 7 (f) iteration 8

Figure 3: Simulation of NCOCTA algorithm when k = 7, H = 3
and h = {3}. The number in a node represents the number of agents
located in that node.

We turn to analyze the NCOCTA algorithm using the no-
tion of speedup factor, i.e., the difference between the cover-
age time guaranteed by NCOCTA, compared to the optimal
coverage time of one robot. For clarity, the proofs refer to the
simpler case of perfect 2-ary trees (full binary trees), and the
generalization for perfect N -ary trees, N ≥ 2, is described
briefly. We start by providing some mathematical founda-
tions for the proof. Recall that we are given a set of heights
{h1, . . . , hm} in which the robots split equally between sub-
trees of nodes {vi|h(vi) = hj}, where hm is the lowest split
point.

Lemma 4.3. The time to explore a subtree of height hm with
Nhm + 1 robots using NCOCTA is Nhm−1

N−1 + hm.

Proof. In perfect N -ary trees, the robots split equally be-
tween the N subtrees, so in every subtree there are as many
robots as the height of the subtree (hm). At every step of the
algorithm, we visit a new node of the subtree (when a robot
returns to his parent node, the robot that is located at the par-
ent node can move to a different node). The number of nodes
in the subtree is Nhm−1

N−1 and the time to return to the root of
the split node is hm. The robots move simultaneously along
theN subtrees, so the coverage time is: Nhm−1

N−1 +hm (for the
2-ary case the coverage time is 2hm − 1 + hm with 2hm + 1
robots). See illustration in Figure 3.

We denote the time of covering a subtree of height hm as
Ehm

. The time needed to explore a subtree with height hm−1
is the time needed to explore a subtree of height hm multi-
plied by the number of subtrees with height hm, summing
with the runtime of DFS for a tree of height hm−1 − hm:

Ehm−1
= 2hm−1−hm−1 · Ehm

+ 2hm−1−hm+1 − 2

This continues recursively up to h1. Hence, the coverage time
of a subtree with height h1 is

Eh1
= 2h1−h2−1 · Eh2

+ 2h1−h2+1 − 2



Simple algebraic manipulations yields the following:

Eh1 ={2h1−h2−1 · {2h2−h3−1{. . . {2hm−2−hm−1−1·

{2hm−1−hm−1 · (Ehm) + 4) + 2}...}+ 2}+ 2} − 2

Recall that we initially assumed a given set of m splits
{hi}mi=1; we now turn to calculate the best choice for these
values. By the last equation, increasing hm will decrease the
coverage time more significantly compared to increasing any
hi, 1 ≤ i ≤ m− 1. Therefore, we find the speedup factor un-
der the assumption that hi = hi+1 + 1 . The time to explore
a binary tree of height h1 can now be calculated as:

2hm − 1 + hm + 2(m− 1),

and for the general case:

Nhm − 1

N − 1
+ hm + 2(m− 1).

Similar to the calculation of coverage time of a tree of height
h1, the time it takes to explore a tree with heightH is the time
it takes to explore a subtree of height h1 multiplied by the
number of subtrees of height h1, summing with the runtime
DFS for a tree of height H −h1 as before. Hence, the overall
coverage time for a full binary tree is

EH = 2H−h1Eh1 + 2(2H−h1+1 − 1)− 2

= 2H−h1(2hm − 1 + hm + 2(m− 1) + 4)− 4,

and for the general case:

EH = NH−h1Eh1 + 2

(
NH−h1+1 − 1

N − 1

)
− 2

= NH−h1 ·
(
Nhm + 2N − 1

N − 1
+ hm + 2(m− 1)

)
− 2N

N − 1

This yields the following.

Lemma 4.4. 3 SF >
2Nhm+m

Nhm + 1 + (N − 1) · (hm + 2m)

Note that this implies that in order to maximize SF, it is
desired to use the largest feasible value for m (as m appears
in the exponent in the numerator and as a linear term in the
denominator).
Lemma 4.5. SF(NCOCTA) > 2 · Nm − 1 for hm > m +
logN (m) + 4

Note that the number of robots we need in order to obtain
the speedup factor is 1 + Nh1 +

∑m
i=2(N i − N i−1)hi =

1 + Nh1 +
∑m

i=2(N i−1(N − 1))hi in order to leave a trail
of robots from the root to the leaves for every split. For
hi = hi+1 + 1 = hm + m − i ∀1 ≥ i ≥ m, after alge-
braic manipulation we obtain that the number of robots we
need must be at least

k ≥ 1 +Nm · hm +
Nm −N
N − 1

or, after some simplification, and denoting ε = 1/(N − 1)
(where 0 < ε ≤ 1),

k ≥ Nm · (hm + ε)− ε . (1)
3Pure mathematical proofs are omitted due to space constraints.

It remains to select m and hm so as to maximize SF. Tak-
ing hm = m + logN (m) + 5, we get from Lemma 4.5 that
SF(NCOCTA) > 2 ·Nm−1, so we need to select the largest
m that satisfies Eq. (1) with this hm, namely,

k ≥ Nm · (m+ logN m+ 5 + ε)− ε (2)

The optimal value turns out to be m = logN k −
logN logN k − 1 (i.e., using m with the above hm satisfies
Eq. (2), while if we take m− 1, Eq. (2) no longer holds).

With this choice of m and Lemma 4.5, we get:
Corollary 4.5.1. Using m = logN k − logN logN k − 1 and

hm = m+ logN (m) + 5, we get that SF = Ω
(

k
logN k

)
.

Lemma 4.6. 3 SF(NCOCTA) < 2 ·Nm

For large H and k, it is possible to obtain a better asymp-
totic bound than that of Cor. 4.5.1.
Lemma 4.7. Using hm = logN logN k − ε and m =

logN k − logN (hm + ε), we get that SF = Ω
(

k
logN logN k

)
.

To better understand these equations, we bring the follow-
ing example: the speedup factor on a 3-ary tree of height 7 us-
ing 16 robots is 5 (m = arg maxm{1+3m(log(m)+m+4)+
0.5(3m − 3) ≤ 16} ⇒ m = 1 hence SF = 2 · 3m − 1 = 5).
The speedup remains less than 6 (2 · 3m) until the number
of robots is 58, when it becomes 17. This example demon-
strates the inability of NCOCTA to exploit additional robots
until there are enough robots to make an additional split. We
address this problem next, presenting the COCTA algorithm.

4.3 COCTA Algorithm
In order to increase the efficiency of our coverage algorithm,
we would like to allow robots to start moving to adjacent sub-
trees before the root of the tree has become finished. We
therefore introduce the dripping-based heuristic algorithm
COCTA, which is similar to the NCOCTA algorithm, except
that when Tv is inhabited, the robots always move to the par-
ent node, leaving one robot behind (if v is the root, then the
robots stop). Another enhancement in the algorithm is that
when a node is not finished, we restrict the number of robots
that move to the child, allowing a number of robots that does
not exceed the number of nodes in the subtree, excluding the
nodes that are finished. The rest of the robots can drip to a dif-
ferent subtree. The algorithm is shown in Alg. 2. We find the
number of splits in the same way as before, and use the min-
imal hm that gives us the proven speedup factor. We use the
additional robots to disperse and explore a different subtree.
Trivially, the speedup factor guaranteed by COCTA is not
worse than NCOCTA. Going back to the example presented
in section 4.2, the speedup on a perfect 3-ary tree was flat un-
til there were enough robots to perform another split. Using
COCTA the speedup of four additional robots increases to 8.6
(and up to 5 using 16 robots on NCOCTA).

4.4 Empirical Evaluation: COCTA vs. NCOCTA
We have fully implemented both the COCTA and NCOCTA
algorithms, and compared the coverage time of both algo-
rithms with different perfect N -ary trees. The impact of the



(a) SF vs number of robots on
a perfect 2-ary tree (H=15)

(b) SF vs number of robots on a
perfect 3-ary tree (H=8)

(c) SF vs number of robots on a
perfect 4-ary tree (H=8)

(d) SF on a perfect 2-ary tree
using 60 robots with different
tree heights

(e) Coverage time vs number of
robots on a perfect 2-ary tree
(H=15)

(f) Coverage time vs number of
robots on a perfect 3-ary tree
(H=8)

(g) Coverage time vs number of
robots on a perfect 4-ary tree
(H=8)

(h) Coverage time on a perfect
2-ary tree using 60 robots with
different tree heights

(i) SF(COCTA) on general 2-
ary tree (H=10) using 60 robots

(j) SF(COCTA) on general 2-
ary tree (H=12) using 60 robots

(k) COCTA coverage time on
general 2-ary tree (H=10) using
60 robots

(l) COCTA coverage time on
general 2-ary tree (H=12) using
60 robots

Figure 4: Experiment results.

number of robots on the coverage time is presented in Fig-
ures 4e, 4f, 4g. The influence of the number of robots on the
speedup factor is presented in Figures 4a, 4b, 4c. As demon-
strated in the example in section 4.2, NCOCTA’s speedup
does not increase much after reaching the number of robots
allowed for a split, until an additional split is possible. This
is indicated by the flat lines in Figures 4a, 4b, 4c. In contrast,
COCTA is able to exploit these robots, as indicated by the
associated graphs with an almost linear decrease in the cover-
age time. One can see from the figures that for the same num-
ber of robots, as the branching factor N grows, the coverage
time becomes significantly smaller (and the speedup factor
increases). The reason lies in the fact that when N is small,
for example in binary trees, the robots do not have many op-
tions to disperse in order to explore the graph, thus they do
not contribute to the coverage time compared to 4-ary trees,
where it is easier to distribute the effort between the robots.

Additionally, we fixed the number of robots to examine
how the tree’s height impacts the coverage time. We used

this model on a perfect 2-ary tree using 60 robots. This il-
lustrates another contribution of the dripping-based heuristic
algorithm COCTA: the deviation between the coverage times
is significantly larger as the height ascends, as shown in Fig-
ure 4h. We can see in Figure 4d that there is no improvement
in the speedup factor, as expected, since the number of robots
determines the number of splits.

We have evaluated COCTA on general N -ary trees (not
perfect) of heights 10 and 12 (Figures 4k, 4i and Figures 4l, 4j
respectively). In order to create these imperfect trees, we de-
fined a number of nodes to remove from the tree, and removed
them from a predefined height (and all its subtrees) at random.
We ran the simulation 10 times for 7 different heights, (hence,
70 times for every number of nodes to remove) and present
the average coverage time and average speedup. This simula-
tion mainly shows that COCTA works efficiently on general
trees, even without the assumption of perfection. We can also
see the comparison to a perfect tree (0 nodes removed) in this
simulation and see a linear improvement in the coverage time.



Algorithm 2 COCTA
while root is not finished do

for all v ∈ V in which robots are located on (go over from the
lowest to the highest height) do

if v is finished then
\* There are no robots in Tv subtrees, so we can return
to the parent node *\
if v 6= root then

All robots from v go to the parent of v.
else

All robots from v stop.
end if

else if ∃ u a child of v such that u is unfinished then
\* v is unfinished, hence, there are still nodes to explore.
We can move to a child If there are more robots than
nodes to explore, we can use the rest of the robots to ex-
plore a different subtree*\
if ∃hi such that the h(v) = hi then

Leave one robot at v and split the rest equally among
the children.
If there are more robots than nodes to explore, move
the rest of the robots to the parent

else if h(v) ≤ h1 then
Select a child u of v such that u is unfinished.
Move all the robots in v to u leaving one robot in v.
If there are more robots than nodes to explore, select
another child to move the rest to.

else
Select a child u of v such that u is unfinished.
Move all the robots in v to u.
If there are more robots than nodes to explore, leave
one robot at the node and select another child to move
the rest to.

end if
else
\* v is inhabited, the subtree is explored but there are
still robots in the subtree. The robots leave one robot
behind to maintain the communication and drip to the
parent node. *\
All robots from v go to the parent of v leaving one robot
in v.

end if
end for

end while

5 Simulated and Real Deployment in an
Office Building

We simulated the coverage in a realistic simulation
(ROS/Gazebo) for exploring an office building using the
COCTA algorithm, as presented in Figure 5. We compared
the results of the coverage time using one, three and four
robots. From the results that are presented in Figure 5a it is
clear that by using three robots, the coverage time decreases
from 260 seconds to 140 seconds, i.e., close to the theoret-
ically proven speedup factor. An additional robot does not
significantly improve the coverage time, since the tree being
modeled was narrow and high with a branching factor of 3.
We also implemented the coverage algorithm (COCTA) on
real robots, the Hamster robots 4, as seen in Figure 5b. The

4http://www.cogniteam.com/hamster4.html

(a) Coverage using 1,3,4
robots (b) Hamster robots

(c) Office building map on
ROS/Gazebo

Figure 5: Realistic Simulation

robots explored an office building with a similar tree repre-
sentation to the one used in the ROS/Gazebo simulation in
order to compare the two results.

The tree that modeled the office building is a general 3-ary
tree of height 7. The Hamster robots moved fast (0.5 me-
ters/sec). When using 3 robots for the coverage, the speedup
factor of the (theoretical) tree environment was 2.05. The
speedup in the ROS/Gazebo simulation was 1.843, and on
the real robots the speedup factor was only 1.4816. We
believe that the smaller speedup factor values in both the
ROS/Gazebo simulation and on the actual robots is due to
time spent on coordination and synchronization between the
robots. Regardless, the ability of the Hamster robots to effi-
ciently explore an office building while maintaining commu-
nication is very promising for real applications such as search
and rescue.

6 Conclusion and Future Work

In this paper we developed a novel algorithm for exploring a
perfect N -ary tree. We provide a theoretical analysis of the
coverage time using the notion of a speedup factor. We im-
proved the theoretically-proven NCOCTA algorithm by using
a dripping-heuristic algorithm, COCTA, which is shown in
extensive simulations to significantly decrease the coverage
time of NCOCTA. Additionally, we have implemented our
solutions on a realistic robotic simulation and deployed our
solution on real robots, which demonstrates in practice the
efficiency of our coverage algorithms in a real office building
setting.

In the future we plan to extend our solution to general trees
both in theory and in practice. Additionally, we would like
to find theoretical tight bounds on possible speedup factors
(lower and/or upper bounds).
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