
MLBP: MAS for Large-Scale Biometric Pattern

Recognition

Ram Meshulam, Shulamit Reches, Aner Yarden, and Sarit Kraus

Department of Computer Science, Bar-Ilan University, 52900, Ramat-Gan, Israel
{meshulr1,reches,yardena,sarit}@cs.biu.ac.il

Abstract. Security systems can observe and hear almost anyone every-
where. However, it is impossible to employ an adequate number of human
experts to analyze the information explosion. In this paper, we present
an autonomous multi-agent framework which, as an input, obtains bio-
metric information acquired at a set of locations. The framework aims in
real-time to point out individuals who act according to a suspicious pat-
tern across these locations. The system works in large-scale scenarios. We
present two scenarios to demonstrate the usefulness of the framework.
The goal in the first scenario is to point out individuals who visited a
sequence of airports, using face recognition algorithms. The goal in the
second scenario is to point out individuals who called a set of phones,
using speaker recognition algorithms. Theoretical performance analysis
and simulation results show a high overall accuracy of our system in
real-time.

1 Introduction

In this paper we address the general domain of Large-scale Biometric Pattern
recognition (LBP). The problems in the LBP domain include situations where
there is a stream of biometric information acquired at a set of locations, e.g. a set
of cameras positioned in several airports. The goal of LBP domains is to point
out individuals who act according to a predefined suspicious pattern in real-
time. The combination of multiple locations and streams of input, inaccuracy
of biometric tests [8] and real-time constraints make the LBP problems hard to
solve, and they are ideal candidates for MAS implementation [15]. In the age
of global terrorism, LBP has become even more important. Two representative
scenarios which fit the LBP domain are presented below.

Given a stream of face images acquired at a set of airports, we would like
our system to point out, in real-time, any person who visits a set of airports in
a certain predefined order. The alarm must be triggered as soon as the suspect’s
image is acquired detected at the last airport(s). For example: we would like to
detain anyone who flew from city A or B or C to D or E and then to F or G. In
this example, a passenger who flies from A to D and continues to F (without any
stop) should trigger an alarm as soon as she lands in F . Another sample scenario
is a high security facility heavily equipped with cameras. We define a prohibited
sequence of movements between locations in the facilities. For example, from

the safe-room to the locker-room and to the parking lot (although going to the
cafeteria and then to the locker room and parking lot is allowed). We would like
the system to point out in real time any individual who traveled the prohibited
route.

1.1 Problems Description

In this paper we present a framework of a multi-agent solution for the LBP
problems. We then present an implementation of this framework for two specific
problems:
The airport problem - Assume a set of L airports denoted ap1, ap2, ..., apL.
Our goal is to identify and detain at airport L every passenger who flew from
airport 1 to airport 2.... to airport L. We denote x → y as flying from airport x
to airport y. At each airport there are cameras which take one picture of each
passenger.
The tapping problem - Assume an autonomous system which listens to L
phones. The goal of the system is to identify in real time anyone who called all
L phones within a specified period of time (e.g. a week), with no specific order.
The system should trigger an alarm as soon as the last call ends. Note that the
caller might call from several different phones.

For each biometric domain, we apply two different boolean comparison algo-
rithms, namely ca1 and ca2. As input, each comparison algorithm receives two
biometric items (a pair of pictures or a pair of call recordings). The compar-
ison algorithm returns true if the items match, i.e. both items belong to the
same person. Otherwise the algorithm returns false. We assume the algorithms
are independent. Each comparison algorithm has a known false acceptance rate

(FAR) which is the probability that the algorithm receives two items which do
not belong to the same person and it returns true. Each comparison algorithm
has a known false reject rate (FRR) which is the probability that the algorithm
receives two items which belong to the same person and it returns false. There
is a trade-off between FAR and FRR. Without loss of generality, assume that
the first comparison-algorithm has a lower FAR and the second algorithm has a
lower FRR: FARca1

< FARca2
and FRRca2

< FRRca1
. We define an item-set

of size k as a set of items taken from k airports or phones. A key constraint of
LBP is that the suspects do not actively cooperate with the system (as opposed
to fingerprint or iris-scanning tests which require the ’suspect’ to cooperate).

1.2 Difficulties and challenges

We would like to point out some of the attributes that make LBP problems
difficult. The examples refer to the airport problem, although all attributes exist
in the tapping problem as well and in the LBP domain in general. First, this is a
large scale problem. Assume we would like to capture every person who visited
two different airports ap1 and ap2. Also assume there are 1000 people in each
airport. The agent must create 1, 000 × 1, 000 = 1, 000, 000 picture-sets of size
two and use a comparison algorithm to compare each pair of pictures. Note that

the cameras’ locations ensure that only pictures of passengers who arrived on a
certain flight are taken, so 1000 images per airport is not an unrealistic scenario.

Moreover, biometric comparison algorithms are not perfect. For example,
current state-of-the-art face recognition algorithms have an error margin that is
unacceptable in large-scale situations [8]. Suppose all the pictures in the previous
example are of different people. Even an algorithm with a FAR of 1% will, on
average, mistakenly positively identify 10,000 out of the 1,000,000 picture-sets.
Suppose there is a person whose picture was taken at ap2. This picture is matched
1,000 times, each time against different pictures acquired at ap1. The probability
that this picture appears in a set that is falsely accepted is very high. Using this
algorithm will cause all the passengers of the second airport to be (probably
falsely) detained.

Another problematic attribute is the influence of a target person (a person
who visited the desired airports) on the FAR of innocent people. Suppose we
are interested in a pattern of three airports. Assume that an individual c has
actually visited airports 1 → 2 → 3. Also assume there were 1000 visitors at each
airport. In this case there are 1, 000 picture-sets at the third airport out of 1000
in which two pictures of the first two airports belong to c and the third picture
is a picture acquired at airport 3. There are 3 possible picture comparisons in
each picture-set 〈1, 2〉 , 〈1, 3〉 and 〈2, 3〉 (we denote a pair of one image acquired
at airport x and one image acquired at airport y as 〈x, y〉). For each person
visiting airport 3 there is one picture-set which contains her picture (picture 3)
along with two matching pictures (pictures 1 and 2). The chance that such a
picture-set will be falsely classified as positive is larger than a picture set where
all the pictures belong to different individuals.

To overcome the above challenges and provide real-time solutions, we present
the Multi-agent system for the LBP (MLBP). As the name suggests, this is a
framework of a multi-agent system, aimed to solve LBP problems. Two main
reasons have encouraged us to choose a multi-agent approach. First, the real-time
constraint combined with the large-scale factor create a need to distribute the
problem and parallelize it among multiple computational units. Second, the LBP
involves separate ’stations’ or sources, of biometric data (e.g. phones or cameras).
It is only natural to put an agent in charge of each source, handling initial
acquisition, preprocessing etc. and communicating with other agents to produce
the final output. Each agent holds a partial solution database and creates new
candidates based on new information. The agent locally prunes candidates out
of the system as much as possible without losing important knowledge.

The paper is structured as follows. Section 2 contains the solution framework
divided into two. The first part, called the local-module is responsible of classi-
fying and pruning partial candidates. The local-module code is the same for all
LBP problems. We describe the module and provide a theoretical analysis. The
second part of the MLBP framework is the interaction-module which is a code
that creates new solution candidates and uses the local-module to classify them.
The interaction-module code is problem-specific. We present an implementation
of the interaction-module for the airport problem and the tapping problem. Sec-

Algorithm 1 MLBP framework: local module

Local-module(Path p, item i)
1 Let r,q=Phase1(p, i)
2 If r=‘borderline’ Then return Phase2(q, i)
3 return r,q

Phase1(Path p, item i)
1 Let q =AddItemToPath(p, i, ca1)
2 If q− > LE Then return ‘prune’,null

3 If (|q| < L) Then
3.1 return ‘continue’,q′

4 If (q− < LE) Then return ‘trigger alarm’,q′

5 return ‘borderline’,q′

Phase2(Path p)
1 Let q be an empty path
2 For each item i in p.I

2.1 q=AddItemToPath(q, i, ca2)
3.2 If q− > HE Then return ‘prune’
4 return ‘trigger alarm’,q

AddItemToPath(Path p, item i, comparisonAlg CA)
1 Let p′ = p

2 For each item i′ in p′

2.1 add i,i′,CA(i, i′) to p′.R

3 Add i to p.I

4 return p′

tion 3 describes simulation results which are matched against the theoretical
analysis. In section 4 we present an overview of related problems and domains.

The LBP problem lies at the junction of well known domains [12, 8, 3, 5].
We mention each domain and point out the differences between it and the LBP
domain. A discussion and summary are presented at the end of the paper.

2 MAS solution framework

We present a solution to the LBP problem assuming we have two biometric
comparison-algorithms. The solution uses multiple agents to incrementally build
candidate suspects. At each step, the algorithm tries to prune some of the can-
didates. Each agent consists of a local-module and an interaction-module.

2.1 Solution framework

The main information structure which is transferred between the agents is path

defined as p = {I, R}.

I = {i1, i2, ...ik} is a set of k items (e.g. face images or call recordings). R is a
set of the comparison results between any two items in I. Given a path p, we
denote p− as the number of negative comparison results in p.R. We also denote
the number of items in p.I as |p|. There are

(

k
2

)

comparison results in a path of
length k. A path p and an item i can be joined together to create a new path of
size |p| + 1. The method AddItemToPath (Algorithm 1) gets a path p and an
item i and returns a new path q. q.I = p.i∪ i and q.R holds p.R along with the
comparison results between items in p.I and i.

Suppose we have a perfect comparison algorithm, with no FAR and FRR.
The system should trigger an alarm only when it detects a path p of size L
which has the maximum number of positive comparison results, i.e. p− = 0.
For example, If L = 3, the system should trigger an alarm only if ca(1, 2) =
ca(1, 3) = ca(2, 3) = true. In actuality, however, comparison algorithms have
FRR and we must consider cases where all items are of the same person, but
some of the comparisons are falsely rejected. For the first comparison algorithm
ca1 we define a threshold LE where 0 ≤ LE ≤

(

L

2

)

. The algorithm triggers
an alarm when a path of size L is created and p− < LE. In other words, the
algorithm allows a path to have p− < LE false comparisons and still treats it as
a path with matching items which might lead to a target person. Similarly we
define a threshold HE for ca2.

Each agent is responsible for one biometric information source (e.g. a phone).
An agent receives new information from two sources. The first source is from his
biometric information unit (e.g. a phone call recording). The second source of
information is forwarded paths from other agents. Each agent holds a database
of paths PDB in which it stores every new path it receives.

Algorithm 1 describes the local module of the MLBP framework. The local-
module is embedded in each agent. As an input the module receives a path p
and a biometric item i. It returns the joint path q which contains all items in p
and i and a string which classifies q. The local module has three possible return
values:

– ‘prune’ - There is no point in keeping the joint path (and the returned path
is null).

– ‘continue’ - The joint path has a potential to become a target path.
– ‘trigger alarm’ The joint path is a target path and the system must notify

about it.

The module may return ‘continue’ only if the size of the joint path is smaller than
L. It may return ’trigger alarm’ only for full paths - paths of size L. Comparing a
pair of pictures is time consuming. Thus, the algorithm uses ca1 alone to classify
the new path in most cases (lines 3-5 in function Phase1). The only scenario in
which ca2 is used is a borderline scenario. A borderline scenario occurs when a
full path (|q| = L), has exactly LE negative results. The algorithm then uses ca2

(function Phase2) as follows. First the algorithm creates a new path q′ which
contains all items of q. Then it uses ca2 to compare all pairs of items. The same
classification rules are applied for q′, but this time the threshold is HE rather
than LE.

Though ca2 (which is used in phase 2 only) has a higher false alarm ratio,
it is of less concern since at this point the number of paths has already been
significantly reduced. Conversely, the low FRR of this algorithm makes it very
effective in verifying the identity of the true suspect. Phase 2 is significantly
more time consuming than phase 1. In phase 1 one item is added. The new item
i is compared with items in p, which totals L − 1 comparisons (worst case). In
phase 2, the algorithm matches all pairs of pictures using ca2, which totals to
(

L

2

)

comparisons.

The pruning made by the local-module is lossless. It is lossless in the sense
that a system which uses the module will have the same accuracy with and
without the pruning mechanism. This fact allowed us to ignore the pruning
mechanism when we analyzed the algorithm performance in terms of accuracy.
However, pruning is crucial in terms of run-time.

Note that the same picture might appear in many paths. For example,
Agent 3 gets paths of size 2 which differ only by picture 2. Thus, the algo-
rithm compares pairs of pictures over and over again. For example, consider
two paths 〈im1, im2〉 and 〈im1, im3〉 forwarded to airport 3. Suppose a picture
im4 was acquired at airport 3. The agent will be required to match the follow-
ing pairs of pictures:〈im1, im4〉, 〈im2, im4〉 for the first path and 〈im1, im4〉,
〈im3, im4〉 for the second path. Instead of activating the comparison algorithm
again, the results can be cached. The outcome of the above is that the main
time-consuming action of the MLBP algorithm is table lookup rather than ac-
tual item-comparison. This notion is important for the time performance analysis
discussed in section 3.

2.2 Performance Analysis

The FAR and FRR of the comparison algorithms are known in advance. However,
a user of such a system will be interested in the global FRR and FAR, denoted
FRR and FAR, respectively. Referring to the airport problem, for example,
one would like to know 1) What are the chances that a suspect who visited all
airports will not be detained at the last airport; 2) What are the chances that a
person who did not visit all airports will be falsely detained.

The thresholds LE and HE affect the relationship between FRR and FAR:
choosing high thresholds will increase the number of innocent people detained,
and decrease the number of target people who get away. Choosing low thresholds
will have the opposite effects.

The following paragraphs describe a formula which expresses the relationship
between FRR, FAR, LE and HE. The formula allows users of the MLBP system
to determine FRR and FAR through LE and HE adjustments.

In order to estimate the value of FRR, we find the lower bound of 1−FRR,
i.e. we calculate the probability that target suspect x will be detained using only
the first phase. In other words, what is the probability that at least one path
containing a biometric item of x in its last stage will have exactly LE negative
results or less?

To simplify our formula, we assume all individuals except x do not “appear”
in more than one location (e.g. in the tapping problem, all callers beside x
made only one phone call each). This assumption gives us a lower bound for
1 − FRR and therefore an upper bound for FRR. This is based on the fact
that 1 − FRR > FRR, thus the probability of having a path with at most
LE negative results is larger when several individuals appear in more than one
location.
Step I We will calculate the probability of a specific path to have exactly LE
negative results.

The number of tests in a full path of length L is F (L) = L(L−1)
2 . The probability

for exactly K positive results in a path which contains only the items of x is :

AK
0 =

(

F (L)

K

)

(1 − FRR)KFRRF (L)−K .

The probability that a path with L − j items of x and j items of different
objects will contain exactly K positive results is:

AK
j =

F (L)−K
∑

i=0

(

Sj

i

)

FARSj−i(1 − FAR)i·

(

F (L) − Sj

K − (Sj − i)

)

(1 − FRR)K−(Sj−i)FRRF (L)−K−i

(1)

where Sj = {
0 j = 0
∑j

i=1(L − i) j 6= 0

Step II Let aj
i be the probability for exactly j positive results in a path with

L − i items of x and i items of different objects in the second pass. We will
calculate aj

i exactly as we calculated Aj
i , except for the values of FRR and

FAR which are different in the first and the second passes. Thus the probability
that a path with j items different from x and L − j items of x has exactly LE
negative results and will also pass the second path is:

A
F (L)−LE

j

F (L)
∑

i=F (L)−HE

ai
j .

To sum up the probability for such a path to pass the two passes is

Cj = A
F (L)−LE

j

F (L)
∑

i=F (L)−HE

ai
j +

F (L)
∑

i=F (L)−LE+1

Ai
j .

Step III Now we will calculate the probability that at least one path will pass
the two passes. There is only one path in which all the items are only of x.

Denote

B0 = C0 , Fi =

(

L − 1
i

)

.

There are (N − 1)iFi different paths with L− i items of x and the other i items
are different from each other. We then find that the probability that at least one
path of this form will pass the two passes is:

Bi = 1 − (1 − Ci)
(N−1)iFi . (2)

The final formula for the lower bound of 1 − FRR is:

1 −

L−1
∏

i=0

(1 − Bi) (3)

So the upper bound of FRR is:

L−1
∏

i=0

(1 − Bi) (4)

Now we are interested in calculating FAR, i.e. the probability that an individual
who is not a target will be detained because a path in which the last item was
acquired falsely triggered the alarm. We consider a group of individuals which
appears in exactly m < L locations, and we want to calculate the probability
that a specific item will falsely trigger the alarm. We then multiply this result
by the a priori probability that an individual appears in m locations.

In order to find an upper bound for FAR we consider the path which gives
us the largest probability of having maximum positive results. Let us refer to the
case in which the items are distributed throughout all the information sources
they match, i.e. that every item in the path is located in m information sources.
The probability that such a path will contain exactly K positive results for
m > 1 is:

DK
m =

F (L)−K
∑

i=0

(

f

i

)

(1 − FRR)f−iFRRi

(

F (L) − f

K − (f − i)

)

FARK−(f−i)(1 − FAR)F (L)−(K+i)

(5)

where f =
(

m
2

)

b L
m
c +

(

L mod m
2

)

For m = 1, DK
1 =

(

F (L)
K

)

FARK(1 − FAR)F (L)−K . The probability that such a
Path has exactly LE negative results and also passes the second path is:

DF (L)−LE
m

F (L)
∑

i=F (L)−HE

di
m ,

where di
m is the probability for such a Path to have exactly F (L) − i negative

results in the second pass, which means the same as Di
m, except for the values

of FRR and FAR which are different in the second pass.
In conclusion, the probability that (in a situation where every item exactly
matches m < L biometric information sources) a path will pass the two passes
is:

Gm = DF (L)−LE
m

F (L)
∑

i=F (L)−HE

di
m +

F (L)
∑

i=F (L)−LE+1

Di
m.

Therefore the upper bound for the probability that at least one path will
pass the two passes, when every item matches m < L information sources is

Em = 1 − (1 − Gm)Nm . (6)

where:

Nm = NL−m−1(

(

L − 1

m

)

ypL +

L−m−1
∑

i=0

(

L − i − 1

m

)

ypL−i−1

+

L−m−1
∑

i=0

(

L − i − 1

m

)

N1−i)

(7)

N1 = NL−1 −
∑L−1

m=2 Nm .
is an upper bound for the number of paths with m equal items, y is the total

number of items and pi is the a priory probability that an item appears in i
information sources. Because of the linear dependency between the paths, this
formula provides an upper bound. So the final formula for the upper bound of
FAR is:

1 −

L−1
∏

m=1

(1 − Em) , (8)

The local-module classifies a given path. The agents create paths, process
them using the local-module and send them to the relevant agents. This flow
of information is made according to the problem specifications. In the follow-
ing paragraphs, we describe implementations of the interaction-module for the
airport problem and the tapping problem.

2.3 Interaction-module

Airport Problem: We have a camera installed in L airports: ap1, ap2, ...apL.
At airport L we would like to detain every person who visited all airports in a

specific order : ap1 → ap2 → ...apL. This allows us to use a simple sequential
flow of paths as follows.

Algorithm 2 Airport Problem - Agent Ai

ProcessImage(Image im)
1 For each Path p in PDB

1.1 Let r, q=Local-module(p, im)
1.2 If r==’trigger alarm’ Then trigger alarm
1.3 If r==’continue’ Then forward q to Ai+1

Algorithm 3 Tapping problem - agent Ai

IncomingCall(Call call)
1 add call to calls database C

2 For each path p in PDB

2.1 Let r,q=Local-module(p,c) 2.2 If r==’trigger alarm’ Then trigger alarm
2.3 If r==’continue’ Then forward q to agent Ai+1

IncomingPath(Path p)
1 add p to PDB

2 For each call c in C

2.1 r,q=Local-module(p,c)
2.2 If r=’continue’ Then
2.2.1 forward q to agent Ai+1

Agent A1 (located at ap1) acquires images and sends them to A2. The interior
agent, Ak, 1 < k ≤ L maintains a database of paths sent by Ak−1 denoted PDB.
Each path in PDB is of length k − 1. When a passenger’s image im is acquired
at airport k, each path in PDB is sent to the local-module along with im (See
algorithm 2). Paths that have enough positive comparison results are sent to
Ak+1 or trigger an alarm (if the path was created by the last agent).

Tapping Problem: Here, the goal is to locate a caller who phoned all L
phones tapped by our system in real-time. Compared to the airport problem, the
tapping problem is harder to solve. Current state-of-the-art speaker recognition
algorithms are far less accurate than face recognition algorithms [11]. Moreover,
the tapping problem does not require a specific order of calls, and any order
of calls must be considered (we enumerate the phones from 1 to L arbitrarily).
Algorithm 2.3 describes the implementation of the MLBP interaction-module
for the tapping problem embedded in agent i.

The interaction-module of the tapping problem is similar to the airport
interaction-module with one main difference. A tapping agent which gets a path
from a previous agent must match it with all calls acquired earlier (see function
IncomingPath in algorithm 2.3). The agent must do this because in most cases,
the order of incoming calls is different from the order of phones. For example,
suppose a person called phones 2,3 and then 1. Agent 2 and 3 will do nothing
until the matching call was acquired by agent 1. Agent 1 will forward the call
to agent 2. Agent 2 must match the call with previous calls to discover if there
is a matching call. The goal in the airport problem was to locate a sequential

order of airport travel, thus matching incoming paths with previous items was
unnecessary.

Given the same initial parameters, both airport and tapping algorithms will
produce the same paths and return the same results since both algorithms for-
ward a path to the next agent iff it has not exceeded the allowable number of
false matches. Note that the costly procedure Phase2 of the local-module is
activated only by the last agent, which is the only one to process paths of size
L.

3 Experimental Results

In this section we wanted to answer the following questions: (1) how the problem
size (number of people N and number of information sources L) affects the
accuracy of the algorithm, (2) how these parameters affect the running time of
the algorithm, (3) how close the theoretical analysis predictions are to simulation
results.

In order to answer these questions we implemented simulations of the airport
problem and the tapping problem. For statistical significance we averaged results
from 100 trials of each parameter studied. For each trial of the airport problem,
we created a database which contains the flight plan for each passenger. We
assumed a distribution function where most of the passengers only visit one or
two airports out of the possible L airports. We modeled this behavior as an
exponential decay function with the fewest people visiting all L airports. We
made similar preparations for the tapping problem simulation.

3.1 The airport problem

We studied scenarios of 4,5 and 6 airports. In each airport we assumed 500,
1000 and 1500 pictures of passengers. For each scenario, we experimented with
increasing values of LE and HE. We stopped when the resulting FAR was no
longer reasonable. We used the performance rates of the state-of-the-art face
recognition algorithms [10] as comparison algorithms ca1 and ca2. ca1 has a
10%/1% FRR/FAR. ca2 has a 4%/10% FRR/FAR.

Table 3.1 shows selected simulations and the theoretical bounds1. Each line
represents an average of 100 simulations over one scenario using a certain set
of parameters. The first and second columns show the number of airports and
the number of pictures taken in each airport respectively. The third column
shows the number of false matches we allow for a path to have and still con-
sider it as a target path. There are two numbers for the first and second phase
of the algorithm. Columns 4-7 shows the simulations results (columns 4-5) and

1 We have decided to discuss our results using a table and avoid a graphical represen-
tations such as a ROC curve. There is no meaning to a continuous line representation
when the number of possible results is small (it is the number of assignments to the
LE and HE thresholds).

Simulation Analysis

L N LE,HE FRR FAR FRR FAR

4 500 1,0 0.1500 0.0001 0.1900 0.0010
4 500 1,1 0.0900 0.0002 0.1200 0.0001
4 500 1,2 0.0700 0.0011 0.1050 0.0004
4 500 2,0 0.0100 0.0682 0.0230 0.0710
5 500 2,3 0.0700 0.0022 0.0690 0.0004
5 500 2,4 0.0650 0.0055 0.0580 0.0010
6 500 0,1 0.8400 0.0000 0.8180 0.0000
6 500 1,2 0.4700 0.0000 0.4570 0.0000
6 500 2,3 0.1900 0.0000 0.1840 0.0000
4 1000 1,1 0.0967 0.0012 0.1180 0.0010
4 1000 1,2 0.0900 0.0037 0.0894 0.0019
5 1000 2,3 0.0588 0.0040 0.0490 0.0003
5 1000 2,4 0.0575 0.0108 0.0230 0.0010
6 1000 2,1 0.2500 0.0000 0.2150 0.0000
6 1000 2,2 0.2225 0.0000 0.1890 0.0000
4 1500 1,0 0.1500 0.0001 0.1940 0.0035
4 1500 1,1 0.0900 0.0002 0.1200 0.0040
4 1500 1,2 0.0700 0.0011 0.0940 0.0088

Table 1. Airport problem - Various scenarios and results.

the theoretical predictions (columns 6-7) for each scenario. Performance is mea-
sured in terms of FRR and FAR. Though the table shows only a portion of the
simulations, the following paragraphs refer to all data collected.

In most cases, the theoretical results have quite accurately predicted the
results obtained in simulations. The differences between simulations results and
analysis have not exceeded 6% for both FAR and FRR. In many cases it was less
than 1%. This implies that the user may use the theoretical analysis to choose a
desired FRR and FAR by assigning the thresholds LE and HE without actually
running any experiments. For example, given a set of 4 airports and 500 pictures
taken at each airport, one may choose to assign LE = 1, HE = 2 (line 1 in table
3.1). The outcomes of such an assignment risk a 15% false rejection rate while
avoiding the need to detain innocent passengers. Alternately, assigning LE = 2,
HE = 0 (line 4) might be chosen to decrease the false rejection rate to 1% while
increasing the false alarm rate to 6.8%. This means that about 34 passengers
will need manual examination.

3.2 The tapping problem

We studied scenarios of 4 and 5 phone lines. We assumed 100 or 200 calls from
each line which is a reasonable estimation for the number of calls made in sev-
eral days. We used state-of-the-art relevant speaker recognition algorithms (two
speaker conversations with limited data) as ca1 and ca2 [11]. ca1 has a 20%/5%
FRR/FAR. ca2 has a 15%/10% FRR/FAR.

Simulation Analysis

L N LE,HE FRR FAR FRR FAR

4 100 1,2 0.2900 0.0206 0.2510 0.0199
4 100 1,3 0.2400 0.0473 0.1110 0.0512
4 100 1,4 0.1900 0.1693 0.0680 0.1990
5 100 2,4 0.3800 0.0070 0.0800 0.0140
5 100 3,3 0.1300 0.1373 0.0001 0.1950
6 100 4,3 0.2100 0.0045 0.0186 0.0222
6 100 4,2 0.2100 0.0038 0.0380 0.0152
6 100 4,3 0.2100 0.0045 0.1860 0.0222
4 200 1,1 0.3400 0.1137 0.2750 0.1160
4 200 1,2 0.2800 0.1302 0.1600 0.1330
5 200 2,4 0.2600 0.0347 0.0210 0.0410
5 200 2,5 0.2400 0.0401 0.0130 0.0460
6 200 4,3 0.1400 0.0430 0.0060 0.0570
6 200 4,2 0.1500 0.0380 0.0077 0.0480

Table 2. Tapping problem problem - Various scenarios and results.

The number of phone calls of the tapping problem is less than the number of
pictures taken in the airport problem. However, the comparison-algorithms are
less accurate. Thus, reaching a reasonable global FRR and FAR is harder. Table
3.2 shows selected simulations and the theoretical bounds. Each line represents
an average of 100 simulations over one scenario using a certain set of parameters.
The table structure is similar to table 3.1.

Here too, the theoretical analysis has successful predictions of the FAR.
However, the FRR predictions of the theoretical analysis sometimes do not match
the results obtained by simulations. The FRR measures the relative number of
rejections out of a total number of target persons. For the tapping problem, we
assumed that the number of people calling all phones is only one or two. This
means that the number of possible values for each simulation is extremely low.
For example, if the scenario includes one target person, the possible values of the
catching rate are either 0% or 100% . The theoretical analysis which assumes
a valid statistical domain fails to predict such a scenario. In spite of the high
inaccuracy of voice-recognition algorithms, the algorithm produced reasonable
rates in various scenarios. Note that a relatively high percentage of FAR is still
acceptable since the tapping problem deals with a relatively small number of
items (100 and 200 in our simulations).

We also tried to use ca2 for the first phase and ca1 for the second phase of the
local-module (with L = 1000). The result was FAR = 1 ! Assigning these values
in the formula confirmed the results. The high FAR of ca2 led to the result that
each passenger in the last airport had at least one path which had enough false
positive classifications to trigger an alarm.

We also measured the time performance of the MLBP algorithm. As men-
tioned in subsection 2.1, the comparison results are cached. Thus, we do not
execute a comparison algorithm more than once on a pair of items. The time per-

formance is dominated by the number of matches lookups. Using a comparison-
algorithm with high FAR in phase I of the local-module will generate many
paths. Obviously, a high number of items N also increases the number of paths.
A high number of biometric sources L influences mainly the last agent. The last
agent is the only agent who uses the costly second pruning phase. This agent has
the most time intensive decision to make, deciding in real time which passenger
to single out. The algorithm uses

(

L
2

)

tests (in the worst case) in the second
phase. Therefore the longer the path, the more time is needed by the last agent
for each path.

Fig. 1. Time of last agent per N ,L = 5

All tapping simulations ended in a matter of seconds, so we focus our analysis
on the airport problem. Figure 1 shows time performance of the last agent for 4,5
and 6 airports over increasing number of pictures taken at each airport. When
L = 4, LE = 2, when L = 5, LE = 2 and when L = 6, LE = 1. Note that even
when N = 1000 and L = 5, the final agent was able to render a judgment under
12.5 seconds using a Pentium IV 3.0 Ghz computer with 1 GB of memory.

Two interesting phenomena arise from figure 1: (1) five-airport simulation is
slower than six-airport simulation. (2) Moreover, below 700 pictures four-airport
simulation is slower than six-airport. Both phenomena can be explained consid-
ering the previous paragraph. As mentioned above, LE has a large influence
on time performance. Only one error was allowed for the six-airport simulation
while the five (and four) airport simulations had two errors allowed. Thus, more
paths were generated and forwarded in the five-airport simulation. The reason
the six-airport simulation became slower than four-airport simulation as the
number of pictures increased is the increasing number of paths reaching phase
II. Phase II, which is executed on borderline paths of size L, involves L(̇L−1)/2
picture matches which are 6 matches for four-airport simulation and 15 matches
for six-airport simulation. As the N grows, so does the number of borderline
cases, which slowed down the six-airport simulation.

4 Related Work

The LBP problem lies at a junction of well known domains: multi-modal biomet-
ric identification [12, 8], data mining [3, 5] and bioinformatics [2]. In the following
paragraphs we will present a brief overview of these subjects and explain the LBP
domain’s uniqueness. We use the airport problem as a representative problem of
the domain.

The solutions to all LBP problems mentioned above must involve a biomet-
ric system [8]. A biometric system is a pattern recognition system. It acquires
biometric data from a target person. A feature set is then extracted from the
acquired data. The feature set is compared to known feature sets residing in a
database. One sub-domain of biometrics is biometric identification [14]. A bio-
metric identification system tries to identify an individual by matching his/her
biometric feature set to all feature sets in its database. Three main differences
make it impossible to use popular identification biometric algorithms to solve
LBP problems. First, there is no template database to which the acquired picture
can be compared. The person who traveled through L airports in a sequence was
not known to the system a priori. His recent actions made him a target. Second,
there is not a single test which can classify a person as a target. Even if the
biometric tests were perfect, only a series of tests with positive results makes a
person a target. For example, only a sequence of L − 1 comparisons of L pic-
tures taken at L airports will indicate that the same person has traveled through
the desired airports. The last difference is the time issue. The results must be
calculated in real-time, before the suspect leaves the last airport.

The local-module uses two phases of processing to classify paths. Multi-modal

biometric systems use multiple biometric modalities [12, 8, 13]. Using more than
one type of evidence or algorithm can improve robustness to noise, and increase
security and accuracy. The tests are either merged together or used in an or-
dered way as a main and a secondary classifier. For example, in [13] iris and
face biometric data are jointly used to achieve a higher accuracy of identity
recognition. Hong and Jain developed multi-modal systems which combine face
and fingerprint information [7]. Face recognition was first used to create the
best n possible matches. They chose to use this method first due to its speed.
Then, fingerprint information was used to identify the person from the n possible
matches. To solve the LBP problem we use two comparison algorithms to com-
pare some of the pictures. In this sense our proposed system can be categorized
as a multi-modal system.

One of the main targets of data mining research is pattern discovery. Pattern
discovery algorithms try to discover interesting patterns in a given database.
Although LBP problems also focus on finding a pattern in a large amount of
data, they cannot be classified as traditional pattern discovery problems. The
imperfect tests (the biometric comparison algorithms) create noise in the system
which does not allow us to use regular data-mining algorithms.

A melding of molecular biology with data-mining has created the field of
bioinformatics. One of the main problems of the field is homology-search [2].
Two proteins are homologous if they have related folds and related sequences.

Popular homology search algorithms receive a new found protein as input, and
search in protein databases for matches [9, 1]. Homology search shares several
attributes with MLBP. Both problems search for target patterns in a large data-
base. Both problems also have to positively classify sequences which are not
a perfect match to the target pattern. However, while bioinformatics problems
use static databases, the MLBP database rapidly changes. Popular sequence
matching algorithms in bioinformatics [9, 1] assume cached databases in which
extensive preprocessing has been done.

Moreover, LBP problems are different in the sense that the items in the
stream of data are created by using a certain set of known rules. For example, if
we know for certain that a pair of pictures does not belong to the same individual,
we can prune any set of pictures which contain these images. This knowledge is
exploited by the MLBP framework. Each pruned partial path saves processing
of an exponential number of paths later.

We cannot use known classification algorithms such as Bayesian networks [6]
or decision trees [4] to solve LBP problems in a centric way, using one computer.
Without incremental pruning the system will fail to operate in real-time. One
may suggest keeping the MLBP framework and the incremental pruning, but
replacing the classifying mechanism. We have experimented with classifiers such
as Bayesian-networks [6] and decision trees [4] but they did not yield any im-
provements. Due to lack of space we do not describe these trials here. Note that
any alternative classifier must be simple enough to provide real-time solutions.

5 Conclusions

In this paper we addressed the domain of large-scale biometric pattern-recognition.
The goal in LBP problems is to single out, in real-time, any individual who acts
in a suspicious pattern. The combination of multiple locations and streams of in-
put, inaccuracy of biometric tests and real-time constraints make LBP problems
hard to solve, and they are ideal candidates for MAS implementation.

In this paper, we have presented the MLBP - a multi-agent solution to the
LBP problem. The solution uses multiple agents to incrementally build solution
candidates. Each agent consists of a local-module and an interaction-module.
The local-module prunes candidates which do not reach a certain threshold.
Borderline cases go through a secondary process of classification. Theoretical
analysis of the local-module has provided upper bounds of the algorithm global
performance. Simulations results of the problems show that the accuracy of the
system is high while the number of innocent people detained is kept low. All
results were obtained in real-time.

Future work can extend in three directions. First, we would like to solve new
LBP problems using the MLBP framework. Second, we would like to generalize
the algorithm to exploit more than two comparison algorithms. We would like
to back the generalization with theoretical analysis. Intuitively, increasing the
number of comparisons will improve overall performance. A third direction for
future work is to include time performance into current theoretical analysis.

Current analysis can predict the false rejection and acceptance rates for a certain
scenario. We would like to have a time estimation too.

References

1. S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and
D. J. Lipman. Gapped BLAST and PSI–BLAST: a new generation of protein
database search programs. Nucleic Acids Res., 25:3389–3402, 1997.

2. A. Baxevanis and B. Ouellette. Bioinformatics. A Practical Guide to the Analysis

of Genes and Proteins. Wiley-Interscience, 1998.
3. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Ad-

vances in Knowledge Discovery and Data Mining. AAAI/MIT Press, Menlo Park,
CA, 1996.

4. S. French. Decision Theory - Introduction to the Mathematics of Rationality. Ellis
Horwood, London, 1993.

5. D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT Press, 2001.
6. D. Heckerman, E. Horvitz, and B. Nathwani. Toward normative expert systems:

Part I. The Pathfinder project. SIAM J. Comput., 31:90–105, 1992.
7. L. Hong and A. K. Jain. Integrating faces and fingerprints for personal identifica-

tion. IEEE transactions PAMI, 20(12):1295–1307, 1998.
8. A. K. Jain, A. Ross, and S. Prabhakar. Introduction to biometric recognition.

Transactions on Circuits and Systems for Video Technology, 14(1), 2004.
9. W. Lipman, D.J. & Pearson. Rapid & sensitive protein similarity searches. Science,

227:1435–1441, 1985.
10. P. J. Phillips, P. Grother, R. J. Micheals, D. M. Blackburn, E. Tabassi, and J. M.

Bone. FRVT 2002: Overview and summary. In Proc. of Face Recognition Vendor

Test 2002, Virginia, 2002.
11. M. Przybocki and A. Martin. The NIST speaker recognition evaluation series,

2002.
12. A. Ross and A. K. Jain. Multimodal biometrics: An overview. In Proc. of 12th

European Signal Processing Conf., pages 1221–1224, 2004.
13. Y. Wang, T. Tan, and A. K. Jain. Combining face and iris biometrics for identity

verification. Audio and Video-based Biometric Person Authentication, pages 805–
813, 2003.

14. J. L. Wayman. Fundamentals of biometric authentication technologies. INT J. of

Imaging and Graphics, 1(1):93–97, Jan. 2001.
15. P. Weinstein, H. V. Parunak, P. Chiusano, and S. Brueckner. Agents swarming in

semantic spaces to corroborate hypotheses. In Proc. of AAMAS04, 2004.

