
Utility-Based Multi-Agent System for Performing Repeated
Navigation Tasks ∗

Ram Meshulam
Computer Science Dept.

Bar-Ilan University
Ramat-Gan

Israel

meshulr1@cs.biu.ac.il

Ariel Felner
Information System
Engineering Dept.

Ben-Gurion University
Be’er-Sheva

Israel

felner@bgu.ac.il

Sarit Kraus
†

Computer Science Dept.
Bar-Ilan University

Ramat-Gan
Israel

sarit@cs.biu.ac.il

ABSTRACT
Suppose that a number of mobile agents need to travel back
and forth between two locations in an unknown environ-
ment a given number of times. These agents need to find
the right balance between exploration of the environment
and performing the actual task via a known suboptimal
path. Each agent should decide whether to follow the best
known path or to devote its effort for further exploration of
the graph so as to improve the path for future usage. We
introduce a utility-based approach which chooses its next
job such that the estimation of global utility is maximized.
We compare this approach to a stochastic greedy approach
which chooses its next job randomaly so as to increase the
diversity of the known graph. We apply these approaches
to different environments and to different communication
paradigms. Experimental results show that an intelligent
utility-based multi-agent system outperforms a stochastic
greedy multi-agent system. In addition the utility-based ap-
proach was robust under inaccurate input and limitation of
the communication abilities.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent Agents, Multiagent Systems

General Terms
Algorithms, Experimentation

∗This work was supported in part by NSF under grant no.
IIS-0208608 and by ISF grant no. 8008.
†Sarit Kraus is also afiliated with UMIACS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05,July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

Keywords
mobile agents, applications of autonomous agents & multi-
agent systems

1. INTRODUCTION
Intelligent agents often have to perform tasks when they

only have incomplete knowledge. In such cases, an agent
should learn about the structure of its environment to better
accomplish its tasks. Such learning involves exploration,
in which actions are chosen for the goal of increasing the
agent’s knowledge, as opposed to exploitation where actions
are chosen which directly lead to accomplishing the agent’s
given task. Exploring the world and learning its structure
may be performed either in a separate exploration phase a
priori, before performing any tasks, or it may be interleaved
with task performance.

Acting with incomplete knowledge occurs in many do-
mains such as motion planning and computer networks. In
this paper we focus on physical mobile agents. We address
the following problem. Suppose that an agent receives a task
to travel back and forth between two locations (s and g) in
the environment in a given number of times. For example,
there are many items to deliver from s to g which cannot be
delivered in one trip due to load capacity.

There are many algorithms which guide mobile agents in
unknown physical environments. They can be classified as
full exploration algorithms [3, 5, 7] or as navigation algo-
rithms [4, 8, 12, 10, 7]. Full exploration algorithms are used
when the entire environment should be a priori mapped out
[3]. Navigation algorithms are used when the agents need
to reach a specific target location once [5, 4].

Only extreme cases of our problem belong to the two
classes above. If the number of repeated tasks of our prob-
lem is very large (infinity), it would be most efficient to have
an a priori exploration phase of the entire state space so that
an agent can find the most efficient plan for its task. This
would minimize the travel cost of the agents as the cost of
the exploration phase will be amortized over the large num-
ber of repeated traveling. If however, we only need to reach
the target once then any navigation algorithm will suffice.

Our problem in its general form is a continuum of both
classes as the exploration degree depends on the total travel
cost of the mobile agents and on the bounded number of
times that the target should be reached. While there are
many solutions to these two extreme cases, there has been

almost no work on solving problems where the number of
repetitions of a particular task is bounded. Thus, we present
a unique algorithm which maintains the correct balance be-
tween exploration and exploitation.

Argamon et al. [2, 1] addressed this problem for a single
mobile agent. They showed that in such cases, it is more
effective to interleave exploration of the environment during
the actual performance of the task. This causes the agent to
learn better ways to perform it over time. They provided an
algorithm that chooses the best balance between exploration
of unknown regions and exploitation of the best known path.
This balance strongly depends on the given number of times
that the task should be performed (and denoted as R).

In this paper we generalize their work for the case where
there are a number of mobile agents. Each of these agents
is capable of performing the task as well as exploring the
environment. The balance problem here is more compli-
cated since we must also consider actions and tasks of other
agents. We present an efficient algorithm for distributing ex-
ploration and exploitation tasks among the different agents
such that the total travel cost of the agents is minimized.
This algorithm chooses tasks for the agents based on a global
utility function. A utility value is given to the possible fu-
ture tasks and agents are instructed to perform tasks with
high utility. We compare this utility-based approach to a
stochastic, greedy, task selection mechanism where agents
randomaly choose whether to search for shortcuts (explo-
ration) or to follow the best known path (exploitation).

We used two different communication paradigms. In the
first there is full knowledge sharing between the agents and
in the second agents exchange only partial information. Fur-
thermore, we tested the algorithms in two different known
models [2, 1, 4] of environments. Each assumes different
initial input and different abilities of the agents. We com-
pare the two task selection approaches both theoretically
and experimentally under the four different ways to com-
bine the two communication paradigms with the two models
of environments. We provide strong experimental evidence
to show that using a utility-based task-selection approach
consistently outperforms a stochastic greedy task-selection
approach in all four combinations. Furthermore, the utility-
based approach was superior even when it used a more
constrained communication paradigm than the stochastic
greedy approach. The utility-based approach is robust over
different communication paradigms and limitations and for
any number of agents.

2. PROBLEM DESCRIPTION
Let G = (V, E) be a weighted undirected graph. Suppose

that an agent receives a task to travel back and forth be-
tween two vertices of G, s and g, a given number of times
(denoted by R in this paper). If the agents know the en-
tire structure of the graph then the optimal path between
s and g could be calculated with ordinary algorithms such
as Dijkstra’s single-source shortest path algorithm or the A*
algorithm. However, the agents only have partial knowledge
about the graph. Thus, physical exploration of the graph is
needed to learn about the existence of nodes and edges.

We would like to minimize the overall cost (defined below)
of all the agents while R trips from s to g and back are
performed by the agents. At each point of time, when an
agent reaches a node, it must choose between walking on the
best known path and exploring unknown edges which might

reveal a shorter path. Note that revealing a new edge can
create a shorter path even if the edge is not attached to any
of the nodes of the known path.

2.1 Models of environments
We experimented with two models of environment each

with a different set of assumptions concerning the initial
capabilities of the agents as well as assumptions made about
the environment. The first model of assumptions was also
used by Aragamon, Kraus and Sina in [2] and is referred
to as the AKS model in this paper. The second model of
assumptions was used by Cucka, Netanyahu and Rosenfeld
in [4] and is referred to as the CNR model in this paper.

2.1.1 AKS model
In the AKS model we assume that the entire set of nodes

including their Euclidean coordinates are given as input. We
also assume that some path between any two nodes is also
known. The simplest way to achieve this is by providing a
spanning tree of the graph as input. Thus, many edges of
the graph are not known to the agents and the known paths
might be much longer than the shortest path.

In this model, when an agent reaches a node n it has two
options. The first option is to leave node n via an edge that
is already known to the agent. We assume that the cost
of traversing an existing edge (n, m) is given by the weight
w of that edge. We assume that w(n, m) ≥ d(n, m) where
d(n, m) is the Euclidean distance between the two nodes.
Another option is to try to find new edges connected to n.
This is done by querying whether an edge exists between the
node n to another node m. We define the cost of querying
whether an edge (n, m) exists as follows:

query(e) =

�
w(n, m) If (n,m) exists
d(n, m) otherwise

After the query the agent is located in m if the edge exists
and remains in n if it does not exist. The rational behind
these settings is that querying might be that the agent ac-
tually tries to walk on the edge. If it succeeds, it finds itself
at node m at a cost of w(n, m). If it fails then it is back in
n with a cost penalty of d(n, m).

2.1.2 CNR model
In the CNR we apply a completely different set of assump-

tions. First, we assume that the input of the problem only
contains the coordinates of the start and goal nodes. Other
nodes as well as all the edges are not known in advance.
In this model we also assume that once in a node an agent
can sense the directions of outgoing edges without knowing
which node they lead to.

In this model, when an agent reaches a node it has two
options. The first option is to leave node n via an edge
(n, m) where the destination node m is already known to
the agent. The other option is to explore an outgoing edge
whose destination is unknown. Once the agent reaches the
destination node m it learns about it and adds the existence
of that node as well as the existence of that edge (n, m) to its
knowledge databases. In both cases, after taking the action
the agent is located in node m and the cost of the action is
w(n, m).

2.2 Communication models
There are many paradigms for communication in multi

agent systems. The most trivial model is complete knowl-
edge sharing where any new discovery of an agent is imme-
diately shared with all other agents. Other models restrict
the level of communication. Some models allow broadcast-
ing or message exchanging between agents but restrict the
amount of data that can be exchanged in each message or
restrict the frequency or the number of messages that are
allowed.

In our work we have used two paradigms of communica-
tion namely full knowledge sharing (FKS) and partial knowl-
edge sharing (PKS). Other paradigms will be a subject for
future work.

2.2.1 Full knowledge sharing
In FKS we assume that any information gathered by one

agent is known to all of the other agents at once. Further-
more, the intentions and the next task taken by each agent
is also known. This framework can be obtained by using
a centralized supervisor that moves the agents according to
the complete knowledge that was gathered by all of them.
Another possible model for complete knowledge-sharing is
that each agent broadcasts any new data about the graph
to all the other agents. Note that the assumption of knowing
intentions of other agents is especially valid with the central-
ized supervisor model since the supervisor surely knows the
next task of each of the agents. However, even for the broad-
casting model we can assume that each agent broadcasts its
intentions and its next task.

2.2.2 Partial knowledge sharing
In the PKS paradigm we assume that each agent is au-

tonomous and makes its own decisions. In order to limit
the broadcast rate we assumed that an agent can broadcast
messages only under special circumstances and that only a
small amount of knowledge can be broadcasted. Therefore,
an agent only broadcasts the following two messages:

• The fact that R has been decremented when the goal
node has been reached.

• The existence of the edge and its weight after an edge
query, if the edge exists.

Note, that if an agent realizes that an edge does not exist
then it does not broadcast this fact and this is not known
by the other agents. Also, locations of the agents and tasks
assigned to them are not shared.

2.3 Performance measurement
In the case of mobile agents, most of the effort is devoted

on physically moving them in the environment. We want to
minimize the total cost of moving the agents. While many
calculations are computed (e.g., initializing and updating
the distance matrix) we omit the complexity of the com-
putation time as it is insignificant (and is accomplished in
fractions of a second) compared to the time of physically
moving the agents. We measure the performance of the al-
gorithm by the following two cost functions:

• Time elapsed - The amount of time needed for the
agents to complete the task.

Algorithm 1 Algorithms Framework

mainLoop(spanningTree,start,goal,R)

1. knownGraph=spanningTree.

2. Initialize D and keep it updated at all times.

3. Initialize missingEdges = φ

4. While R > 0 do

(a) Update relevant data structures.

(b) e = nextEdge().

(c) Traverse e.

(d) If goal is reached then goal ↔ start, R = R − 1

• Resource cost - The sum of the costs associated with
the different actions of the agents, i.e., walking and
querying (for the AKS model).

Note that when adding more agents to the system the
time elapsed may decrease since more agents are working in
parallel. However, the total resource cost of the agents will
not necessarily decrease as the same amount of work should
be done.

3. ALGORITHMS FOR THE AKS MODEL
The algorithms presented in this section are for the envi-

ronment assumptions and possible actions of agents of the
AKS model. In the next section, we describe the changes
that are needed to apply these algorithms to the CNR model.

At first, we present a high level framework which is iden-
tical to the different approaches and communication para-
digms. Algorithm 1 is activated by each agent autonomously.
The basic principle of the algorithm is very simple. As long
as the goal node has not been reached R times, every time an
agent reaches a node n it updates relevant data structures
and chooses which outgoing edge to traverse. The following
data structures are used by each agent:

• knownGraph: includes the subgraph that is cur-
rently known to the agent. It is initially set to include
the spanning tree.

• D: distance matrix between all pairs of nodes. This
matrix is initialized according to the distances of the
spanning tree provided.

• missingEdges: this list contains pairs of nodes for
which the agent is certain that edges between them do
not exist.

Every time an agent queries about the existence of an edge
and that edge exists, KnownGraph and D are updated to
reflect this new edge. Otherwise (the edge doesn’t exist),
MissingEdges is updated. Once goal or start are reached,
R is decreased and we flip start and goal. Note that once an
agent reaches g it now needs to travel back to s. From the
algorithmic point of view, this task is identical to the task
of traveling from s to g. Thus R also includes the trips back
from g to s. So if one needs to move 5 packages from s to g

we set R to 10. The core of this algorithm is the nextEdge()
function which consults the agent about where to go next.

ga

b

c

d

Figure 1: Possible shortcuts.

This function is modified below for the various approaches
and communication paradigms.

3.1 Algorithms for the FKS communication
paradigm

Recall that in this paradigm agents share their entire
knowledge. Thus every agent knows the location of other
agents as well as their next task. Also, every discovery of
existence or non existence (missing) of edges is shared by all
the agents.

3.1.1 Stochastic greedy algorithm
Assume that the agent is located in node n and that the

shortest known path to the goal is P . The agent can choose
to travel along the known path P to the goal (exploitation)
or to try to find shortcuts (exploration). The agent now
consults the nextEdge() in order to choose where to go next.
This function for the stochastic greedy approach is defined
as follows.

With probability p the agent looks for shortcuts. Other-
wise, it follows the known path P. Looking for shortcuts is
done by querying the existence of an edge (n, m) where m ∈
P and (n, m) is neither in KnwonGraph nor in MissingEdges.
If there are many candidates for the node m the algorithm
chooses the node that is closest to the goal node. If an
agent chooses to query an edge, this fact is shared with
other agents and they may not choose to query this edge
again.

Consider the scenario presented in figure 1. The agent is
located in node a. If the agent chooses to exploit the known
path then it will go to node b. If it chooses to explore it
will first query about the existence of the edge (a, d) (note
that edge (a, g) is known to be a missing edge, or is already
being queried by another agent). If it fails, (a, d) will be
added to the MissingEdges list and the agent will again
choose whether to explore a new possible shortcut or to go
via the best known path to node b. The idea behind this
algorithm is to derive a simple but yet powerful mechanism
for alternating between the possible two alternatives of ex-
ploring versus exploiting. Randomization is very effective
as a method that introduces diversity and is known to be
very powerful in local search and in solving combinatorial
problems [9].

3.1.2 Utility-based algorithm
Here, we use a utility function to estimate the benefits

of possible shortcuts and compare them to the utility of
the known path. If all shortcuts have utilities which are
lower than the utility of the known path, the agent follows
the known path. Otherwise, the agent chooses to explore
the shortcut with the highest utility. This utility function
defined below was first presented by [2, 1] for a single agent.

We generalize this idea to the multi-agent case.
The utility of the known path (without exploring any new

edge) is U(P) = cost(P) × R where P is the known path,
cost(P) is the cost of traversing P and R is the number of
times that the task still needs to be achieved. Therefore,
the utility of exploring an edge e is

utility(e) = p(e) × costs(e) + (1 − p) × costf (e)

where

• e is an edge to be queried.

• p(e) is the probability that e exists (p is equal to the
density of the graph which is given in advance).

• Assuming that e does exist, costs(e) is the new cost of
completing the mission based on the fact that e exists
(’s’ stands for success). We estimate the cost of e.

• Assuming that e doesn’t exist, costf (e) is the new cost
of completing the mission based on the fact that e

doesn’t exist (’f ’ stands for failure).

In other words, the utility of the query about e is the
sum of the possible results of the query (existence or non-
existence of e), weighted by the probability of each possibil-
ity to occur. Usually, a utility of an action is measured by
considering the profit of the action and the cost of perform-
ing it. We want high profits at a low cost. Here, the profit is
constant since the mission must be completed. Thus, in this
paper when we talk about higher utility we actually mean
low costs.

If there is a single agent working alone then the NextEdge()
function returns the task with the best utility among all pos-
sible tasks. This might be either a query about an unknown
edge or following the best path.

When there are a number of agents the work should be
distributed among them in an efficient manner. Recall, that
in FKS, we assume that the agents share their locations
and assigned tasks at all times. The nexEdge() function for
an agent working in a mutli-agent environment is defined
as follows. It first identifies the best k shortcuts and store
them in a sorted list according to their utility where k is
the number of agents. After deleting shortcuts which are
assigned to other agents an agent chooses the shortcut to
which it is the closest than all the other agents. If it is not
the closest to any of the candidate edges, then:

• If the performance measure is the resource cost - the
agent will remain idle until new knowledge changes the
circumstances.

• If the performance measure is the time - the agent will
go to the edge where it is second close etc,

The notion behind this difference is that in this case the
agent cannot find a useful task. Therefore, if the perfor-
mance measurement is the total resource cost it should re-
main idle. If however, the cost is the total time then it is
better to choose any task than to remain idle. This observa-
tion was also noticed by [5, 6]. The idea to assign an agent
to a nearby node was also used in MAPHA* [5] which ac-
tivates A* in a real physical environment by a number of
mobile agents.

3.2 Algorithms for PKS
As described above, in PKS an agent only broadcasts two

types of messages, i.e., the existence of an edge and that R

has been decremented. Missing edges, locations of agents
and assigned tasks are not shared. We have observed that
with this setting the communication rate is only 5% of the
communication rate of the FKS paradigm because we do not
broadcast about missing edges and tasks of other agents.

3.2.1 Stochastic greedy algorithm
The stochastic greedy algorithm for PKS is identical to

the one presented for FKS. Here also an agent first chooses
whether to explore a new edge with a probability of p. Ex-
ploration is conducted greedily as described for the PKS
paradigm.

3.2.2 Utility-based algorithm
Suppose that we have k possible edges to explore. In the

FKS paradigm above, these k edges would be distributed
among all the agents for querying. The results of all these
queries would also be shared among the agents. Thus, if a
query failed, the fact that this edge does not exist is now
known to all the other agents. Here, however, each agent
acts autonomously. Agents do not know the location of
other agents and are not informed about new missing edges.
Thus, we face the problem that the same missing edge will
be repeatedly queried by different agents.

In order to address this problem the selection algorithm
employed by the agents should have the following main fea-
tures:

• Every edge queried by the single agent version of the
utility-based algorithm will be queried in a high prob-
ability by the multi-agent version of the algorithm.

• The number of cases where agents query edges that
were already queried by other agents should be mini-
mized.

We achieve these requirements as follows. First, the agent
identifies the exploration edge e∗ with the highest utility
as described above for the FKS paradigm. Then, with a
probability of p, the agent chooses to explore e∗. Otherwise,
(with a probability of (1 − p)) the agent treats this edge as
if it does not exist, adds this edge to its own missingEdges

list and runs the nextEdge() function again. All the agents
follow this stochastic approach.

Choosing the right p is very important. With a high value
of p agents will tend to re-query edges that were queried
by others. With a low value of p, however, agents might
skip the querying of high-utility edges. To obtain a proper
balance we introduce the following formula for choosing p.
Let e be an edge, let q be the probability the edge e will
be actually explored by at least one agent and let n be the
number of agents. Note the relation between p, q and n is
q = 1 − (1 − p)n. Extracting p from this reveals

p = 1 − n

p
1 − q.

For example, if we have 8 agents and we would like to ensure
that every edge will be explored at least once with proba-
bility of 90% - we set p = 1 − 8

√
1 − 0.9 ≈ 0.25. This also

means that each edge would be visited n ∗ p = 8 ∗ 0.25 = 2
times on average.

A stochastic distribution of tasks among agents was also
presented in [11]. They generalized the best-first minimax
search algorithm for the case of parallel processing. The
best-first minimax algorithm is a variation of minimax search
for game trees where the next node expanded is chosen
according to an evaulation function. In order to paral-
lelize the algorithm, each processor uses a probability func-
tion to choose the next node to expand. While they chose
their probability according to a heuristic evaluation value
attached to each node we provided the formula for p above
which proved to be very effective in the experiments de-
scribed below.

4. MODIFICATIONS FOR THE CNR MODEL
A number of changes to the algorithms should be made to

modify them for the CNR model. First, recall that here ex-
ploration means traveling along an outgoing edge and reach-
ing its destination. Also, since a spanning tree is not given,
the agent(s) first need to navigate to find an initial path
between the two given nodes. This can be done with any
navigation algorithm. We used a multi-agent version of hill
climbing when nodes are ordered by their utility. After an
initial path is found the utility based agent uses the utility
function to rank the potential shortcuts.

Another difference is the calculation of the utility func-
tion. In the AKS model, looking for a shortcut between
two nodes n and m was done by querying whether the edge
between them, (n, m), exists. Here, however, looking for
a shortcut between n and m is done as follows. For each
outgoing edge from n we calculate a utility value estimat-
ing the possible shortcut via this edge to m. Similar to
the definitions above, given an outgoing edge e we define:
cost(e, n, m) = d(n, m)× (c1 + c2 × angle(l(n, m), e)) where
angle(x, y) is the angle between the two lines x and y, and
l(n, m) is the straight line between n and m. We also esti-
mate the exploration overhead cost which is the cost over-
head of searching a path between m and n: explore(n, m) =
c3 × d(n, m) We now define the utility function1 as:

utility(e, n, m) = R × cost(e, n, m) + explore(n, m)

Another modification to the CNR model is that in the
PKS paradigm agents broadcast only new paths that de-
crease the length of the shortest known path.

5. EXPERIMENTAL RESULTS
We experimented with triangle graphs in which edges are

generated based on the Delaunay triangulation of a random
point set in the plane. These graphs are commonly used to
simulate physical navigation tasks [5, 4, 2, 1]. We experi-
mented with graphs with 100, 500, 800 and 1000 nodes. To
simulate shortcuts (e.g., highways between distant cities in
a roadmaps) we added random edges to these graphs until
a desired density of the graph was reached. We used densi-
ties of 0.05 and 0.1. Figure 2 shows graph of size 100 and
density 0.05. The dots on the graph are the start and goal
points. Experiments with all these graphs confirmed the
same tendencies provided below.

Figure 3 presents the elapsed time needed to complete
the repeated task as a function of the number of agents for

1We have used c1 = 2,c2 = 1

180
,c3 = 2.5

Graph size 100 500 800 1000
Agents number 4 6 8 4 6 8 4 6 8 4 6 8
Greedy for PKS 2.31 2.51 2.66 1.84 2.04 2.13 1.61 1.78 2.04 2.13 2.88 3.23
Greedy for FKS 1.68 1.64 1.62 1.53 1.57 1.67 1.45 1.46 1.52 1.74 1.94 2.09
Utility for PKS 1.27 1.27 1.19 1.08 1.11 1.12 1.09 1.10 1.11 1.12 1.15 1.16
Utility for FKS 1 1 1 1 1 1 1 1 1 1 1 1

Table 1: Time ratios over the utility-based approach for FKS for different graphs for the AKS model

Figure 2: Delaunay graph of size 100 and density

0.05

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 3 4 5 6 7 8

E
la

ps
ed

 T
im

e

Num. of Agents

Util. with FKS
Util. with PKS

Greedy. with FKS
Greedy. with PKS

Figure 3: Time for graph with 100 nodes and a den-

sity of 0.05 for the AKS model

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 1 2 3 4 5 6 7 8

C
os

t

Num. of Agents

Util. with FKS
Util. with PKS

Greedy. with FKS
Greedy. with PKS

Figure 4: Cost for graph with 100 nodes and a den-

sity of 0.05 for the AKS model

the different approaches on a graph with 100 nodes and a
density of 0.05. Figure 4 shows the overall resource cost (de-
fined in section 2.3) consumed by the agents. Both figures
3 and 4 refer to the AKS model. Each data point (in all
our figures) is the average over 100 different runs. Unless
otherwise stated, the number of repeated tasks was set to
100.

As can be expected, with all configurations the elapsed
time decreases when more agents are added to the system.
Also, we can clearly observe a diminishing return when adding
more agents. This is not the case with the resource cost
which tends to remain about the same (except for the sto-
chastic greedy algorithm with PKS).

The results show that a utility-based approach clearly out-
performs a stochastic greedy approach in both communica-
tion paradigms. Furthermore, the utility-based approach for
the PKS paradigm even outperformed the stochastic greedy
approach for the FKS paradigm. Even though the broadcast
rate was much lower for PKS, the utility-based approach
needed no more than 20% more time than the same ap-
proach for FKS.

Table 1 shows the relative time performance ratio between
the different approaches and the utility-based approach on
the FKS paradigm (considered as 1 in the figure) on different
graph sizes for the AKS model. This table confirms that the
improvement rate of the utility-based approach is significant.

Figure 5 show the elapsed time of the 4 algorithms as a
function of different number of repeated tasks which was
varied from 10 to 320. Here again we can see the the utility-
based approach outperformed the stochastic greedy approach.

Table 2 presents the number of queries that were per-
formed by the different algorithms for graph of size 500 and

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300 350

E
la

ps
ed

 T
im

e

R

Util. with FKS
Util. with PKS

Greedy. with FKS
Greedy. with PKS

Figure 5: Elapsed time for increasing number of re-

peated tasks

R 10 20 40 80

Greedy PKS 113.73 150.59 185.03 180.40
Greedy FKS 80.85 93.75 99.64 105.49
Utility PKS 22.16 42.00 56.11 63.90
Utility FKS 17.70 29.53 34.22 40.77

Table 2: Num of queries with various R values

with 5 agents. The table shows that the number of queries is
increased with increasing R. The reason is that with larger
R it is more beneficial to explore more regions. Note that
while the utility-based performed smaller number of queries
it managed to find shorter paths and thus completed the
mission faster as presented in figures 4, 3 and 5.

These results show that the utility-based approach is ro-
bust under different communication paradigms and under
different number of repeated tasks. On the other hand, the
stochastic greedy approach is not robust for different com-
munication limitations and its performance degrades by a
significant factor when more limitations on communications
are introduced when moving from FKS to PKS.

Figure 6 and 7 presents results for the CNR model. Fig-
ure 6 presents the elapsed time of the different approaches
as a function of the number of agents on graph of size 500
and density of 0.05. Figure 7 presents the results for the
resource cost consumed by the agents. The results are sim-
ilar to these of the AKS model: The utility-based approach
outperforms the stochastic greedy approach in both com-
munication paradigms. As in AKS model, the utility-based
approach for the PKS paradigm outperforms the stochastic
greedy approach for the FKS paradigm.

6. DISCUSSION AND SUMMARY
We have shown the strength of the utility-based approach.

The results that we obtained are conclusive for both the
AKS and CNR environment models even though these mod-
els are completely different. The fact that this was true for
both paradigms, both models and both performance mea-
surements supports the effectiveness of the utility-based ap-
proach.

Note that the results from both models show that if one

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7 8

E
la

ps
ed

 T
im

e

Num. of Agents

Util. with FKS
Util. with PKS

Greedy. with FKS
Greedy. with PKS

Figure 6: Time for graph with 500 nodes and a den-

sity of 0.05 for the CNR model

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 1 2 3 4 5 6 7 8

C
os

t

Num. of Agents

Util. with FKS
Util. with PKS

Greedy. with FKS
Greedy. with PKS

Figure 7: Cost for graph with 500 nodes and a den-

sity of 0.05 for the CNR model

can filter the best message types and only send such mes-
sages that inform about new existing knowledge then the
performance of the algorithm with partial knowledge shar-
ing will not significantly decrease even if the communication
rate significantly drops. This is very encouraging as usually,
communication abilities between agents seem to be very im-
portant.

We presented a multi-agent solution to the repeated-task
problem. We compared a utility-based approach which chooses
its next action in order to maximize a global utility with a
stochastic greedy approach which decides about its next ac-
tion according to a probability function. These algorithms
were modified for the FKS and PKS communication para-
digms. Our experimental results show that in both para-
digms an intelligent utility-based multi-agent approach out-
performs the stochastic greedy approach in both time and
cost. Furthermore, we showed that the utility-based al-
gorithm outperforms the stochastic greedy algorithm even
when it has inferior communication and knowledge shar-
ing paradigms. This implies that a utility-based approach is
preferable in choosing between exploration and exploitations
and in choosing which exploration step to perform.

Future work will continue in the following directions. Here
we assumed that the environment is static and unchanged
over time. The same ideas should be tested and modified
to a dynamic environment where nodes and edges of the
graph are not stable. A possible application could be ad-
hoc networks which is of great interest in the research and
industrial communities.

Moreover, many assumptions made on this paper should
be challenged to make the algorithm useful to real world
robots. For example, the algorithm should handle commu-
nication failures and limit the number of agents in one node
at the same time. Another enhancement of the algorithm is
to assign cost to communication between agents and embed
communication cost in the utility function.

Another direction will be to modify the utility-based ap-
proach to other communication paradigms and to other prob-
lems that are solved by multi-agent systems. This might
highlight the attributes and benefits of the utility-based ap-
proach.

7. REFERENCES
[1] S. Argamon-Engelson, S. Kraus, and S. Sina.

Utility-based on-line exploration for repeated
navigation in an embedded graph. Artificial

Intelligence, 101(1-2):267–284, 1998.

[2] S. Argamon-Engelson, S. Kraus, and S. Sina.
Interleaved versus priori exploration for repeated
navigation in a partially-known graph. IJPRAI,
13(7):963–896, 1999.

[3] M. A. Bender, A. Fernandez, D. Ron, A. Sahai, and
S. P. Vadhan. The power of a pebble: Exploring and
mapping directed graphs. In Proceedings of the

Thirtieth Annual ACM Symposium on the Theory of

Computing, pages 269–278, May 1998.

[4] P. Cucka, N. S. Netanyahu, and A. Rosenfeld.
Learning in navigation: Goal finding in graphs.
International Journal of Pattern Recognition and

Artificial Intelligence, 10(5):429–446, 1996.

[5] A. Felner, R. Stern, A. Ben-Yair, S. Kraus, and
N. Netanyahu. PHA*: Finding the shortest path with

A* in unknown physical environments. Journal of

Artificial Intelligence Research, 21:631–679, 2004.

[6] L. Finkelstein, S. Markovitch, and E. Rivlin. Optimal
schedules for parallelizing anytime algorithms: the
case of independent processes. In Proc. AAAI-02,
pages 719–724, 2002.

[7] Y. K. Hwang and N. Ahuja. Gross motion planning -
a survey. ACM Comput. Surv., 24(3):219–291, 1992.

[8] R. E. Korf. Real-time heuristic search. Artificial

Intelligence, 42(3):189–211, 1990.

[9] S. Russell and P. Norvig. Artificial Intelligence, A

Modern Approach. Prentice Hall, 2002.

[10] L. Shmoulian and E. Rimon. Roadmap-A*: An
algorithm for minimizing travel effort in sensor based
mobile robot navigation. In Proc. ICRA, pages
356–362, Leuven, Belgium, May 1998.

[11] Y. Shoham and S. Toledo. Parallel randomized
best-first minimax search. Artif. Intell.,
137(1-2):165–196, 2002.

[12] A. Stentz. Optimal and efficient path planning for
partially-known environments. In Proc. ICRA, pages
3310–3317, San Diego, CA, May 1994.

