
Comparing Agents’ Success against People in Security Domains∗

Raz Lin1 and Sarit Kraus1,2
1 Department of Computer Science

Bar-Ilan University
Ramat-Gan, Israel 52900

2 Institute for Advanced Computer Studies
University of Maryland

College Park, MD 20742 USA
{linraz,sarit}@cs.biu.ac.il

Noa Agmon, Samuel Barrett and Peter Stone
Department of Computer Science
The University of Texas at Austin

Austin, Texas, USA
agmon,sbarrett,pstone@cs.utexas.edu

Abstract

The interaction of people with autonomous agents has be-
come increasingly prevalent. Some of these settings include
security domains, where people can be characterized as un-
cooperative, hostile, manipulative, and tending to take advan-
tage of the situation for their own needs. This makes it chal-
lenging to design proficient agents to interact with people in
such environments. Evaluating the success of the agents au-
tomatically before evaluating them with people or deploying
them could alleviate this challenge and result in better de-
signed agents. In this paper we show how Peer Designed
Agents (PDAs) – computer agents developed by human sub-
jects – can be used as a method for evaluating autonomous
agents in security domains. Such evaluation can reduce the
effort and costs involved in evaluating autonomous agents in-
teracting with people to validate their efficacy. Our experi-
ments included more than 70 human subjects and 40 PDAs
developed by students. The study provides empirical sup-
port that PDAs can be used to compare the proficiency of au-
tonomous agents when matched with people in security do-
mains.

Introduction
The ability of expert designed agents (EDAs) to interact suc-
cessfully with people is critical in any domain they are de-
ployed. Increasing security needs have heightened the de-
mand for autonomous agents operating and interacting with
people in security domains. In these domains, it is neces-
sary to react to intentional threats from adversarial agents,
often under significant uncertainty (e.g., agents performing
perimeter/border patrol). These environments are character-
ized as zero-sum environments, in which the adversary can
learn or observe the agent’s strategy and use it to its advan-
tage. The success of an agent in such environments can have
far-reaching consequences on capital or human lives (Pita et
al. 2009). Simple real-life examples of such domains may
include a perimeter patrol environment in which guards try
and detect penetrations or a predator-prey scenario (Benda,

∗This research is based upon work supported in part by the
U.S. Army Research Laboratory and the U.S. Army Research Of-
fice under grant number W911NF-08-1-0144 and under NSF grant
0705587.
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Jagannathan, and Dodhiawala 1985), in which predators are
required to surround a prey.

Although agents’ interactions in security domains have
gained focus, existing algorithms have some notable draw-
backs. Many of the drawbacks arise from the fact that many
of these algorithms assume optimal behavior on the part of
the adversaries, which rarely holds in real-world situations,
especially when people are involved (Pita et al. 2010). Many
applications are already deployed in real-world security do-
mains. For example, Amigoni et al. (2009) state that in pa-
trol environments current strategies for detecting intruders
are not always efficient in providing the patroller with high
utilities, and propose a game theoretic framework to find,
what they claim to be, optimal-efficient patrolling strategies.
Another example of successful agents are the ones used to
determine the scheduling of security at the Pittsburgh In-
ternational (PIT) and Los Angeles International (LAX) Air-
ports and the Federal Air Marshal Service (Pita et al. 2009).

One way to compare agents’ strategies that are destined to
perform against human adversaries is by facing them against
other autonomous agents that mimic the decisions taken by
human adversaries. However, designing agents that model
human behavior is a very difficult task, especially due to di-
verse behavior of people making it difficult to capture behav-
ior patterns in a monolithic model. People tend to make mis-
takes, and they are affected by cognitive, social and cultural
factors, etc. (Lax and Sebenius 1992). Thus, it is commonly
assumed that people cannot be substituted in the evaluation
process of agents designed to interact with people. Further-
more, when people are used for experimentation purposes
the evaluation process becomes time consuming and costly,
making it a very difficult task for researchers.

The use of peer designed agents (PDAs) – computer
agents developed by human subjects – has been proposed
for experimental usages to investigate decision making in a
multi-player computer game by Grosz et al. (2004). Lin et
al. (2010) suggested using PDAs to remove people from the
evaluation loop of automated negotiators and thereby sim-
plify the evaluation process. While few applications exist in
the automated negotiations domain, security domains have
been gaining attention and agents are already deployed in
many real-time applications. Thus, the ability to compare
these agents using PDAs is of great importance.

Alas, security domains are zero-sum environments. In



perfect information zero sum domains which consist of mul-
tiple rounds, such as chess and checkers (8 × 8 draughts),
autonomous agents play against people differently than the
way they play against other autonomous agents in the same
environment (Bushinsky 2010).

This brings us to the following questions. Can PDAs help
evaluate agents for security domains, or will this evaluation
break down in zero-sum environments due to adversaries
adapting to the PDAs? Is the evaluation of agents by PDAs
limited to bilateral negotiations? Does the large search space
and need of domain knowledge make security domains like
zero-sum games, where evaluation by PDAs is not valid? Or,
does the smaller action space in security domains make them
similar enough to negotiation domains to enable the use of
PDAs for evaluating agents?

In this paper we provide results of extensive experiments
involving more than 70 human subjects and 46 PDAs. The
main contribution of our work lies in the successful demon-
stration of the applicability of PDAs for comparing EDAs’
success in security domains. We focus on two security do-
main environments. These environments are characterized
by small game trees, small sized action sets and not requir-
ing too much domain knowledge on the part of the agents.
In the first experiment, people penetrated an area guarded by
a team of several robots patrolling around its perimeter. In
the second experiment, people had to control predators with
the aim of catching an agent controlling the prey. In each ex-
periment, we compared the performance of the EDAs both
against PDAs and people. This was done in order to under-
stand whether PDAs can be used to compare EDAs’ success
against people. Note that throughout the paper, we do not in-
vestigate the performance of the PDAs, but rather use them
to investigate the behavior of EDAs.

Related Work
Important differences exist between designing an au-
tonomous agent that can successfully interact with a hu-
man counterpart and designing an autonomous agent that
interacts with other autonomous agents. When dealing with
zero-sum environments or competitive games, results from
social sciences suggest that people do not follow equilib-
rium strategies (Erev and Roth 1998; McKelvey and Palfrey
1992).

Agmon et al. (2008) investigated the problem of multiple
robots patrolling a closed area. In this problem, a team of
robots repeatedly visit a target area to protect. The robots’
task is to detect the penetrators, adversaries played by peo-
ple, and catch them. Agmon et al. showed that the opti-
mal algorithm for the patrolling task fails miserably when
matched with people in this setting.

In addition to this, the evaluation of agents that interact
with people is a cumbersome task. For example, Agmon
et al. (2008) needed nearly 70 students to evaluate their
agents, and even then they did not obtain statistically signif-
icant results in all cases. Pita et al. (2010) used more than
200 students to compare different models of the autonomous
agents.

The use of PDAs has been extensively studied within the
context of the Trading Agent Competition (Wellman et al.

2001). In TAC, one needs to design a trading agent that
participates in auctions for a certain good item. While the
use of PDA’s within this domain demonstrates the benefits of
a large set of PDAs for evaluation purposes of EDAs, in this
case, the PDAs are actually a form of EDAs, as the agents
submitted to the competition are generated by experts and
researchers.

The Use of PDAs: The Methodology
It is important to understand the subtle considerations of the
methodology for using PDAs in our research. In this sec-
tion, we elaborate on the basis of using PDAs and on their
design process. All PDAs, detailed design instructions, code
skeleton, EDAs, domains, and results described in the paper
can be downloaded1 to allow replication of the results and
extension to different domains and scenarios. In addition,
Listing 1 summarizes the methodology procedures.

Recall that the objective of our paper is to demonstrate
how peer design agents can be used for the purposes of eval-
uating expert design agents, and not as a mechanism for re-
placing the EDAs or comparing the PDAs with EDAs. The
paper hypothesizes that PDAs can serve as people’s proxies
in the design-test-revise cycles of computational decision-
making strategies. In addition, we do not claim that PDAs
behave in a way that is similar to the behavior of individual
people. Instead, we use them as a mechanism to compare
EDAs’ performance.

Ideally, the PDAs should be designed by a population
that is as similar as possible to the people who will later
be matched against the EDAs. In this paper, we use essen-
tially identical populations. The designers need to be given a
precise task of implementing a proficient autonomous agent
for a given security domain, with explanations about the se-
curity domain, but withholding information concerning the
EDAs themselves. Also, as the focus is on the design of
peer designed agents, and not expert design agents, no prior
knowledge of decision- or game-theory is required.

To minimize errors and facilitate implementation, using
the same simulation environment as the people who are
matched against the EDAs is encouraged, as well as pro-
viding them with skeleton classes and APIs, having all the
necessary functionality. This will also allow them to focus
on the strategy and behavior of the agent, and eliminate the
need to implement the communication protocol. This will
also allow them to use the simulation environment to test
the strategies of their agents.

After the PDAs are submitted, a pre-test phase of exper-
iments should be exercised to validate the correctness and
soundness of the PDAs. PDAs that fail this phase (e.g.,
have debugging or compilation errors, such as ‘crashing’ or
‘hanging’, due to the different settings or variations upon
which the experiments are run and of which the designers
are unaware) can be returned to the designers in order to fix
the errors. After gathering all PDAs, including the resubmit-
ted ones, they can be matched against the EDAs. PDAs that
still exhibit errors need to be removed from the repository
and be discarded for all experiments.

1Link removed to preserve anonymity.



Note that while we use people for the design of PDAs,
once the PDAs capture their strategy, the PDAs can be used
for the evaluation and comparison of different EDAs. This
enables the pre-testing, revision, and improvements of the
EDAs before operational testing and deployment. This is in
contrast to the process of evaluation with people which is
costly, requiring time, effort, and personnel. Furthermore,
another agent may need to be evaluated, or an additional set
of experiments and different people may be required when
the strategy of the agent seems problematic. On the other
hand, the PDAs can simply be reused, though careful ex-
perimental methodology must be used to avoid overfitting
to the PDAs. We now continue with the description of the
problem, the security domains and the EDAs with which the
PDAs were matched.

Listing 1 Building blocks of using PDAs.

1: Provide designer with the precise task and implementation details
2: Generate skeleton classes and simulation environment
3: Do not provide details about EDAs
4: Obtain PDAs from designers
5: Run pre-test to validate PDAs
6: for all PDAs do
7: if PDA fails then
8: Allow revision and fixing
9: end if
10: if PDA still fails then
11: Discard PDA
12: end if
13: end for
14: Run PDAs against EDAs
15: Compare EDAs success

Problem Description
We consider the problem of comparing agents’ success
against people in security domains. Multiple agents are in-
teracting with each other with the aim of achieving a certain
goal despite the presence of adversaries. Two distinct secu-
rity domains were used in the research, and both domains
are described below.

The Perimeter Patrol Environment
The first environment was motivated by security issues of
perimeter patrol. In this environment, a team of k mobile
agents is required to repeatedly visit a given circular path
(the perimeter of some polygon) in order to detect penetra-
tions that are controlled by an adversary (see Figure 1). The
robots may execute a wide variety of patrol algorithms. The
adversary, based on the knowledge it has on the patrolling
robots, has to choose a spot to penetrate that will maximize
its chances of penetrating without being detected. We as-
sume that the penetration time of the adversary is not instan-
taneous, and lasts t time units at which time the robots can
detect the adversary if they are located in the same spot.

In our environment, the PDAs and humans play the role of
the attacker facing simulated robotic defenders (the EDAs)
which patrol along the perimeter. The humans or PDAs ob-
serve the patrolling robots for several time steps (depending

Figure 1: Multi-robot perimeter patrol game environment.

on the setting) before deciding through which point to pen-
etrate.

The patrol algorithms executed by the simulated robots
are based on a nondeterministic optimal patrol framework
described in (Agmon, Kraus, and Kaminka 2008). In
this framework, all robots are placed uniformly along the
perimeter and move in a coordinated manner, changing di-
rections simultaneously (thus maintaining a uniform distri-
bution throughout the execution). At each time step, the
robots decide whether to continue straight (with probabil-
ity p) or turn around (with probability 1− p). The choice of
the p value is the essence of the patrol algorithm.

In this environment, we experimented with four EDAs
which were adopted from (Agmon et al. 2009) and calcu-
lated their behavior according to the following algorithms:

• vMin whereby the robots maximize the probability of
penetration detection in the weakest v segments (with sev-
eral v values).

• vNeighbor whereby the robots maximize the probability
of penetration detection in v− neighborhood of the weak-
est segment (with several v values).

• MaxiMin, which maximizes the minimal probability of
penetration detection along the perimeter, proven by (Ag-
mon, Kraus, and Kaminka 2008) to be optimal against a
full-knowledge adversary.

• MidAvg, a heuristic algorithm that averages between the
p value of the optimal algorithms and the full and zero
knowledge adversaries (MaxiMin and deterministic algo-
rithms, respectively).

The adversarial behavior is assumed to be random wher-
ever there is not enough knowledge to make knowledgeable
decisions. Specifically, we assume that once the adversary
has several locations through which she can penetrate and
does not have enough knowledge to tell the difference be-
tween them, she will choose between these possibilities pen-
etration spots at random. Algorithms vMin and vNeighbor
take into consideration such cases, and optimize the robot’s
behavior under different assumptions on levels of uncer-
tainty, i.e., number of possible spots. Therefore the actual



Figure 2: The predator-prey environment, represented by the
gazelle and tigers, respectively.

patrol algorithm (the p value) adopted by the EDA varies,
and depends on the assumed level of knowledge gained by
the adversary on the patrolling robots.

The Predator-Prey Environment
The second security domain was motivated by the predator-
prey scenario (Benda, Jagannathan, and Dodhiawala 1985).
In this setting P predators are required to surround one prey.
The game is played on a two-dimensional discrete grid of
size n × m, which is bounded and toroidal (e.g., one can
move from the most right square to the most left square
in the same row). The agents move simultaneously from
their initial squares either up, down, left, or right, and agents
cannot occupy the same position. The predators’ goal is to
surround the prey in all four directions (see Figure 2). All
agents (both the predators and the prey) have perfect knowl-
edge of the predators’ and prey’s positions.

In this environment, two EDAs were used. In the Man-
hattanWalk behavior, the prey calculates the minimum
Manhattan Distance of the predators for every square on the
board and moves to its adjacent square which has the max-
imum Manhattan Distance. The second EDA was Guess-
ManhattanWalk, which also utilizes the Manhattan Dis-
tance as the previous one, but instead of employing it based
on the current location of the predators, the algorithm tries
to estimate the location of the predators in the next turn and
then applies the Manhattan Distance. The estimation of the
location of the predators is based on the prediction that each
predator will choose to move to an adjacent square that is on
the shortest path to reach the prey.

We proceed by describing the experiments conducted on
these environments, their methodology and results.

Empirical Methodology
The experiments were conducted using the simulation en-
vironments described earlier. We ran an extensive set of
simulations, consisting of more than 70 human players (40
and 35 people in the perimeter patrol and predator-prey en-
vironments, respectively) and 46 PDAs (36 and 10 PDAs
in the perimeter patrol and predator-prey environments, re-
spectively). The human players were mainly computer sci-
ence undergraduate and graduate students, while a few were

former students who are currently working in the high-tech
industry. Each subject played in only one security domain.
Prior to the experiments, the subjects were given oral in-
structions regarding the experiment and the environment.
In the perimeter patrol environment, they were also handed
additional explanation sheets describing the process of the
game and explaining the parameters displayed to them along
the game. A similar population was also used in the design
of the PDAs.

The experiments comprised two sub-experiments. In the
first sub-experiment, the human subjects played the role of
an adversary while working against the EDAs in a web-
based environment. In the second sub-experiment, we
matched the PDAs with the EDAs. In the perimeter patrol
environment, the people and PDAs played the role of the ad-
versary that tries to penetrate through the simulated robots.
A higher score was given to those who managed to pene-
trate successfully as an adversary more times than others. In
the predator-prey environment, the people and PDAs played
the role of the predators. A higher score was given to those
who managed to surround the prey with the least number of
moves.

Results and Discussion
The goal of the experiments was to analyze whether the
strategy method of PDAs can be used to compare algorithms
implemented for autonomous agents matched against peo-
ple in security domains. Throughout this section, we also
evaluate the significance of the results. The significance test
was performed by applying the Mann-Whitney U-test on the
results. The Mann-Whitney U-test is a non-parametric alter-
native to the paired t-test for the case of two related samples
or repeated measurements on a single sample, suitable for
data without normal distribution (like the data in our case).

Perimeter Patrol Environment Results
In the perimeter patrol environment, people and PDAs
were matched against 4 types of EDAs: vMin, vNeighbor,
MaxiMin and MidAvg, in different settings. The human
players were instructed not to infer from one variation of the
game to another. Twelve different settings were evaluated,
which varied in reference to three characteristics:

• Distance between the robots (denoted by d, where d =
8, 16).

• Adversary’s penetration time (denoted by t, where t =
6, 9, respectively). During this time, the adversary is sta-
tionary along the fence, and can be detected by a pa-
trolling robot that comes across its location.

• Which EDA defenders the attackers had to confront (as
described in the Problem Description Section).

In our experiment, when d = 8 and t = 6, we chose to
examine two levels of adversarial uncertainty, as described
earlier, for each type of vMin and vNeighbor EDAs, marked
in our results by vMin1 and vMin2 for the EDA of type
vMin, and vNeighbor1 and vNeighbor2 for the EDA of
type vNeighbor (which represent 2 and 3 points of uncer-
tainty, respectively).



As proven in (Agmon et al. 2009), in some cases (depend-
ing on the d and t values), the vMin and vNeighbor types
of EDAs act the same, i.e., the chosen patrol algorithm for
both of them coincide. Therefore, we decided to also exper-
iment with the values d = 16 and t = 9, when this situation
occurs. In this case we examined several implementations
of the vMin EDAs, denoted in the results as vMin3, vMin4,
vMin5 and vMin6, whereby these implementations differ in
the level of assumed uncertainty in the adversarial choice.

As the attackers (people or PDA) choose the segment for
penetration and the EDAs use probabilistic strategy to de-
tect the penetration, we compute the expected probability of
penetration detection. This computation is done based on
a given EDA’s policy and the subject’s penetration choice.
The result corresponds to the probability that the chosen seg-
ment will be visited by one of the EDAs during the t time
units following the subject’s choice. We then average this
over all subjects’ choices to obtain the expected probabil-
ity of penetration detection. Figures 3 and 4 describe the
expected probability of penetration detection given the play-
ers’ choice of penetration locations for d = 8, t = 6 and
d = 16, t = 9, respectively. The values of the x-axis repre-
sent the different EDA types (as described above). The val-
ues in the y-axis represent the expected probability of pene-
tration detection, i.e., the expected ratio of adversarial pen-
etrations detected by the EDAs. The dark, light and white
bars represent the expected penetration detection when peo-
ple, PDAs, or an optimal algorithm were involved, respec-
tively.

Note that since the y-axis represents the expected prob-
ability of penetration detection by our defending agents,
higher values mean better performance by our designed
agents, and as result worse performance of the other side.

The results show that the best EDA for the (d, t) value
pairs of (8, 6) was the vNeighbor2 agent - both against peo-
ple and PDAs with expected penetration rates of 0.63 and
0.52, respectively. The worst EDA – MaxiMin – could also
have been predicted by matching it against PDAs as it per-
formed worse both against people and PDAs (0.40 and 0.42,
respectively). Similar results were obtained for the (d, t)
value pairs of (16, 9). The best EDA was the MidAvg with
expected penetration rates of 0.37 and 0.40 for people and
PDAs, respectively. The worst EDA was the vMin4 agent
with expected penetration rates of 0.26 and 0.23 against peo-
ple and PDAs, respectively. These trends were proven to
be statistically significant (p < 0.05). The main results,
though, are the consistencies between the performance of
the PDAs and people against the EDAs, as reflected in Fig-
ures 3 and 4. For all twelve algorithms implemented in
the EDAs, a similar trend was observed between the PDAs
and people. The results demonstrate that performing better
against the PDAs entails performing better against people,
though the actual results may differ. To bolster our confi-
dence in the strength and benefits of using PDAs we also
matched the EDAs with an optimal algorithm. In contrast to
the trend found between EDAs and PDAs, when investigat-
ing the results of the EDAs against the optimal algorithm, for
all twelve algorithms we can see inconsistency of the results.
That is, unlike using PDAs, one cannot use optimal agents to

compare how proficient EDAs will be when matched against
people.

Figure 3: Results of the experiment for d = 8, t = 6. The
bars represent the expected penetration detection ratio of the robots
given the actual choices of the players.

Figure 4: Results of the experiment for d = 16, t = 9. The
bars represent the expected penetration detection ratio of the robots
given the actual choices of the players.

Predator-Prey Environment Results
In the predator-prey scenario, 4 predators were required to
surround one prey on a 10 × 10 board. Human players and
PDAs were matched against different prey algorithms, as de-
scribed in the Problem Description Section. Each PDA was
run 100 times against each EDA in order to obtain unbiased
results. Table 1 summarizes the results and compares the
average time steps it took the PDAs and people to surround
the prey in the experiments, when the prey followed either
of the two implemented algorithm.

Comparing the PDAs behavior to that of people demon-
strates that the GuessManhattanWalk EDA performs
worse against both the PDAs and people, allowing them
to surround it in less number of time steps (52.518 and
29.956 for the PDAs and people, respectively). Similarly,
it took both the PDAs and people more time steps to sur-
round the prey implementing the ManhattanWalk (109.605
and 43.879, respectively). The difference in the perfor-
mance of the PDAs and the people against the EDAs is sta-
tistically significant (p < 0.0045 and p < 0.046, respec-
tively). The results reveal the though GuessManhattan-
Walk is seemingly the more sophisticated (smarter) algo-
rithm, it surprisingly does worse than the ManhattanWalk
algorithm. Thus, the matching of the EDAs with PDAs was
useful for predicting this counterintuitive result, and assist
the designer in choosing which EDA to use.



Prey Type Predators’ Type
PDAs People

(1) ManhattanWalk 109.605 43.879
(2) GuessManhattanWalk 52.518 29.956

Table 1: Results of the predator-prey experiment.

Unlike the perimeter patrol environment, in which it was
shown that an optimal adversary exists (Agmon et al. 2008),
it was infeasible to design an optimal adversary agent to
match with the EDAs. This is due to the large branching
factor of 54 and state space of 1004 which made the compu-
tation intractable. Thus, in this domain, like many other pos-
sible domains, there is no option of comparing EDAs against
an optimal agents. In those cases, the PDAs are not just a
preferable option, but the only option.

Conclusions
This paper presented a novel investigation about the use of
PDAs – computer agents developed by human subjects – in
evaluation of agents in security domains. Evaluating expert
designed agents is an obligatory process in validating the
proficiency of the EDAs in their designated tasks. As EDAs
are involved in more and more interactions with people, the
evaluation process becomes increasingly difficult, as it re-
quires time, effort, and personnel to evaluate the EDAs with
people to assess their proficiency. We have demonstrated in
two distinct security domains how peer designed agents can
be used to compare the agents’ proficiency.

The success in comparing an agent’s proficiency based
on interaction with PDAs is important. First, we showed
that even though in other zero-sum environments the use
of PDAs is not feasible, it is indeed applicable in the secu-
rity domains environment. Second, once PDAs are obtained
they are available for repeatedly testing, thus allowing re-
searchers to apply the evaluation process at any given time.
Moreover, their unbiased behavior allows them to be used
repeatedly, with different designs of the tested agent, with-
out affecting the results, as long as care is taken to avoid
overfitting, e.g. by holding out some PDAs for one-time fi-
nal testing.

In this research the population involved computer science
undergraduate and graduate students (both in the design and
the interaction). Our research demonstrated the success of
comparing EDAs’ using the PDAs methodology when the
same population type is used. Obviously, in security do-
mains, security experts (or hackers) are required to design
the PDAs. Obtaining PDAs from this population can be
achieved, for example, by capturing their strategy using pro-
grammers.

It is an interesting avenue for future work to explore to
what extent the methodology extends to cases in which there
is no access to the population of people (e.g. when they
are enemies from a different culture and mindset). Future
work also warrants careful investigation of the applicabil-
ity of PDAs in domains that are more complex than bilateral
negotiations and security domains, as well as larger domains
(more than two agents). Such investigation will facilitate a

better understanding of the differences in the characteristics
of these domains, as well as the underlying assumptions be-
hind the agents’ design and interaction with people.

References
Agmon, N.; Sadov, V.; Kraus, S.; and Kaminka, G. A. 2008.
The impact of adversarial knowledge on adversarial plan-
ning in perimeter patrol. In AAMAS.
Agmon, N.; Kraus, S.; Kaminka, G. A.; and Sadov, V.
2009. Adversarial uncertainty in multi-robot patrol. In IJ-
CAI, 1811–1817.
Agmon, N.; Kraus, S.; and Kaminka, G. A. 2008. Multi-
robot perimeter patrol in adversarial settings. In ICRA.
Amigoni, F.; Basilico, N.; and Gatti, N. 2009. Finding the
optimal strategies for robotic patrolling with adversaries in
topologically-represented environments. In ICRA, 819–824.
Benda, M.; Jagannathan, V.; and Dodhiawala, R. 1985. On
optimal cooperation of knowledge sources. Technical Re-
port BCS-G2010-28, Boeing Advanced Technology Center.
Bushinsky, S. 2010. Personal communication.
Erev, I., and Roth, A. 1998. Predicting how people play
games: Reinforcement learning in experimental games with
unique, mixed strategy equilibrium. American Economic
Review 88(4):848–881.
Grosz, B.; Kraus, S.; Talman, S.; and Stossel, B. 2004. The
influence of social dependencies on decision-making: Initial
investigations with a new game. In AAMAS, 782–789.
Lax, D. A., and Sebenius, J. K. 1992. Thinking coalition-
ally: party arithmetic, process opportunism, and strategic
sequencing. In Young, H. P., ed., Negotiation Analysis. The
University of Michigan Press. 153–193.
Lin, R.; Kraus, S.; Oshrat, Y.; and Gal, Y. K. 2010. Fa-
cilitating the evaluation of automated negotiators using peer
designed agents. In AAAI, 817–822.
McKelvey, R. D., and Palfrey, T. R. 1992. An experimental
study of the centipede game. Econometrica 60(4):803–836.
Pita, J.; Jain, M.; Ordàñez, F.; Portway, C.; Tambe, M.;
Western, C.; Paruchuri, P.; and Kraus, S. 2009. Using
game theory for los angeles airport security. AI Magazine
30(1):43–57.
Pita, J.; Jain, M.; Tambe, M.; Ordàñez, F.; and Kraus, S.
2010. Robust solutions to stackelberg games: Addressing
bounded rationality and limited observations in human cog-
nition. Artificial Intelligence 174(15):1142–1171.
Wellman, M. P.; Wurman, P. R.; OMalley, K.; Bangera, R.;
Lin, S.; Reeves, D.; and Walsh, W. E. 2001. Designing the
market game for a trading agent competition. IEEE Internet
Computing 5(2):43–51.


