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Abstract

Focal points refer to prominent solutions of an interaction, solutions to which agents are
drawn. This paper considers how automated agents could use focal points for coordination
in communication-impoverished situations. Coordination is a central theme of Distributed
Artificial Intelligence. Much work in this field can be seen as a search for mechanisms that
allow agents with differing knowledge and goals to coordinate their actions for mutual benefit.
Additionally, one of the main assumptions of the field is that communication is expensive
relative to computation. Thus, coordination techniques that minimize communication are
of particular importance.

Our purpose in this paper is to consider how to model the process of finding focal points
from domain-independent criteria, under the assumption that agents cannot communicate
with one another. We consider two alternative approaches for finding focal points, one based
on decision theory, the second on step-logic. The first provides for a more natural integration
of agent utilities, while the second more successfully models the difficulty of finding solutions.
For both cases, we present simulations over randomly generated domains that suggest that
focal points can act as an effective heuristic for coordination.
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1 Introduction

Coordination is a central theme of Distributed Artificial Intelligence (DAI). Much of the
work in this field can be seen as a search for mechanisms that will allow agents with differing
views of the world, and possibly with different goals, to coordinate their actions for mutual
benefit. In this paper, we present techniques based on the concept of focal points [68] for
coordination in communication-impoverished situations. Focal points refer to prominent

solutions of an interaction, solutions to which agents are drawn.

1.1 Communication-Impoverished Interaction

Work in DAI has actively explored coordination techniques that require little or no commu-
nication. Researchers in this area may allow some limited communication in their models,
especially insofar as it is required to establish problem constraints. So, for example, in [31],
agents are assumed to perceive jointly an interaction (the joint perception could conceivably
involve communication), and then proceed without further communication. Similarly, there
have been attempts to get multiple agents to interact effectively with little communication,
while allowing the sensing of other agents’ external actions or conditions (e.g., location) [53].

Another motivation for studying communication-impoverished interactions, other than
the expense of communication, has been that communication is sometimes impossible (agents
may speak different languages) or inconsistent with the environment (communication has
been cut off or is inadvisable in the presence of hostile forces). There has also been a deep-
seated intuition that humans are sometimes capable of sophisticated interaction with little
explicit communication and that it ought to be possible for automated agents to emulate

this.

1.2 Communication-Rich Interaction

Other researchers have freely incorporated communication of all kinds into their models of
interaction. Again, the analogy to humans and human organizations is clear: communi-
cation is an indispensable aid to interaction, in setting up problem parameters, exchanging
information, and coordinating action. Within DAI, this focus on communication has become
embodied by a single over-burdened word, negotiation. As used by different researchers, the
term has come to mean all kinds of communication that further coordination, ranging from
the exchange of Partial Global Plans [20], to communication of information intended to alter
other agents’ goals [74], to incremental offers and counter-offers leading to joint plans of
action [79, 50, 51].



As Gasser has pointed out [29], “‘negotiation’ [is] a term that has been used in literally
dozens of different ways in the DAI literature.” Even though the word has been over-used, its
introduction into the DAI community has served a useful purpose: it has focused researchers’
attention on the multiple uses of explicit communication to achieve coordination.

There is also a powerful intuitive appeal to the idea of negotiation, precisely because it
is clear that various kinds of negotiation play an essential role in real-world interactions.
Exploiting similar techniques in automated agents has become a central concern of DAI.

In this paper, we present another technique, namely focal points. Although the term
is less well-known than “negotiation,” it plays an important and ubiquitous role in both
communication-impoverished and communication-rich human interactions. Just as the in-
corporation of negotiation techniques may make agents better able to coordinate themselves,
the exploitation of focal points in automated agents holds similar promise. Just as DAI bene-
fits from studying automated negotiation techniques, it can benefit from exploring automated
focal point techniques.

This paper presents two approaches to finding focal points, one based on decision theory
and the other on a logic approach, which can be used in different domains and settings. We
compare the advantages and disadvantages of each approach, along with various simulations
(over randomly generated worlds) that demonstrate the basic power of each approach. This
paper does not present a complete blueprint about how one would put focal point discovery
into an automated agent. Instead, it provides two general frameworks for building such
discovery into an agent, with certain elements left to be determined by the implementor

from domain-specific considerations.

2 Focal Points

Originally introduced by Schelling [68, 66|, focal points refer to prominent solutions of an
interaction, solutions to which agents are drawn. Schelling’s work on this subject explored
a number of simple games where, despite similarity among many solutions, human players

were predictably drawn to a particular solution by using contextual information.

2.1 Simplified Focal Point Examples

Before discussing real-world examples of focal points, it is useful to consider a “toy” example
that illustrates the concept clearly.
Consider two people who have each been asked to divide 100 identical objects into two

arbitrarily-sized piles. Their only concern in deciding how much goes into each pile is to



match the other person’s behavior. If the two agents match one another, they each win
$40,000; otherwise they get nothing. Schelling found that most people, presented with this
scenario, choose an even division of 50 objects per pile. They reason that, since at one level
of analysis all choices are equivalent, they must focus on any uniqueness that distinguishes a
particular option (such as symmetry) and rely on the other person’s doing likewise. A similar
problem has each person asked to choose any positive number, with their only concern being
to match the other person’s choice. Most people seem to choose the number 1, it being the
only positive number without a predecessor.

What is interesting about these scenarios is that traditional formal representation tech-
niques, like those of the theory of rational choice where players choose their strategies on the
basis of perceived differences in payoffs, cannot capture why people are consistently drawn to
a particular solution among many equivalent ones. The notion of equilibrium points (stable
strategies) is insufficient—there are 101 such points in the first example above. In addition,
they are all identical in terms of payoffs to the agents, and decision theoretic techniques that
only consider optimal strategies will be unable to distinguish which action should be chosen.
The exploitation of focal points is in large part a knowledge representation issue; we discuss
the problems of standard representation techniques at greater length in Section 2.4 below.

Nevertheless, human beings are able to coordinate effectively in these scenarios, using
information about the context of the interaction. The symmetry of a 50-50 split has been
abstracted away in the traditional game theory representation, but is still available to humans

who are considering what action to take.

2.2 Automated Agents’ Use of Focal Points

For automated agents, the possibility of exploiting focal points might enable more effec-
tive coordination in communication-impoverished scenarios. The key is to allow automated
agents to consider the context of their interaction in choosing a coordinated action, as hu-
mans do. Since we assume that the agents are rational, the choice should be among action
profiles which are equilibria.

Consider a group of automated agents who have been parachuted into enemy territory.
The agents are unwilling to communicate for fear of being discovered, but need to meet up
at some location. The unpredictability of where each would land, and lack of knowledge
about the area prior to the fly-over, have made prior choice of a meeting place impossible.
Even choosing some ad hoc rule, such as “meet at the highest point,” may be meaningless
if they land in a level area or if the highest point is unreachable. Now they each perceive

the features of the area, and we want them to coordinate the choice of a meeting place. One
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Figure 1: The Parachute Problem.

possibility is for them to choose a prominent meeting place (e.g., if there are many buildings
but only one bridge, they might choose the bridge, as in Figure 1).

Consider, as another example, automated agents working together on Mars, who have
lost communication with one another (e.g., their radio has developed interference). They
would like to meet again so as to reestablish their lines of communication, but need to decide
independently where the meeting will take place. The agents could not establish an a prior:
protocol for how to get back together, because they did not have sufficient information about
what the terrain would be like. The search for a focal point meeting place would be a natural
mechanism for solving this problem.

The Pursuit Problem has generated considerable interest in DAI [5, 47, 53, 71, 72]. In this
abstract domain, four blue agents are attempting to coordinate their actions so as to pursue
and capture a single red agent. Various protocols have been suggested, with and without
explicit communication. The solution of pursuit problems in real-world domains, however,
could make use of context that is absent from the abstract Pursuit Problem model. If four
allied agents are attempting to capture an enemy agent, and communication is unwise (for
fear that their prey would intercept it), then agents might use the concept of focal points to
help them decide on a coordinated plan of attack. So, for example, if there were a number
of dead ends towards which the agents might drive the prey to, but only one dead end with
some particular property (i.e., it is the lowest of the dead ends), the agents might, without

communication, coordinate their pursuit towards that point.



In some situations there are competing focal points. If, in such situations, communica-
tion is possible but expensive, the focal point techniques can limit the number of options
considered in the communication phase. For example, agents searching for a joint plan,
where there are a large number of possible joint plans, may limit the number of plans under
consideration by discussing only those that are focal points.

Another motivation for having automated agents use focal point techniques is to make
their interaction with humans more natural. For example, one of the Mars workers above
might be human, and the automated search for a focal point meeting place mirrors his own
thought processes. In another example, a robot might be cleaning up an auditorium, come
across a forgotten item, and have to reason about where to put it so that it will be found by
its owner on the following day.

Our purpose in this paper is to consider how to automate the process of finding focal
points from domain-independent criteria, under the assumption that agents cannot commu-
nicate with one another.! If the agent designer has detailed information about the domain
in which his agents will operate, he could build in domain-specific techniques for coordina-
tion (e.g., meet at the highest location). If the designer has perfect information about the
domain, he could build in exact instructions for coordination (e.g., meet at the top of Pike’s
Peak). We are, in contrast, interested in the case where the designer has considerably less
information about the domain and is interested in his agents independently discovering focal
points.

Following Schelling, most of the researchers believe that people use their own point of
view to identify prominent solutions. As Schelling says: “A prime characteristic of most of
these “solutions” to the problems..., is some kind of prominence or conspicuousness.” ([68]
pp- 57). In particular, Schelling’s understanding of focal points is that they are established
by some “conventional priority” which is commonly known [2]. Experimental work that
has focused on the processes by which people attempt to coordinate their actions supports
Schelling’s and the other researchers’ assumption [56] (see also sections 2.4.4,2.4.5 below.)

However, it is agreed by most of the researchers that identifying a focal point involves
two parts: “(a) some formal structure that represents the players’ apprehension of the game
situation,” [8] i.e., an agent tries to guess how the other agent represents the game situation;
and “(b) a mechanism to derive a salient option from this structure” [8].

In this paper we present methods for representing the world and mechanisms to derive
focal points and assume that the representation and the mechanism are common knowledge.

Y

That is, they serve as Schelling’s “conventional priority.” Following Schelling and the re-

!Communication among agents can also affect focal points, but that is beyond the scope of the current
paper.



searchers mentioned above, we assume that an agent uses its own point of view of the world

when applying our focal point mechanism.

2.3 Intuitive Properties

There are a number of intuitive properties that seem to qualify a given agreement as a focal
point. We make no claims for completeness here. These properties provide good coverage
of the focal point examples in [68], but additional properties may be appropriate in other

cases.

Uniqueness: An object may be a focal point if it is the only object with a given property.
For example, in the Parachute scenario, the bridge has the uniqueness property since

it is the only object of type “bridge.”

Uniqueness Complement: Lack of information can also cause a solution to be prominent.
An object may be a focal point if it is the only object without a given property, for
example, if there are four houses in the area where the parachutists have landed,
h1l,h2,h3,h4, and the parachuters believe that all the houses but h3 are white and
have no information about the color of h3. This lack of knowledge makes this house

prominent.

Centrality: Centrality is the intuitive property of a central point around which a domain
(or sub-domain) is symmetric. An object may be a focal point if it is a central object
within a given domain. For example, a church that is located in the center of a village

has the centrality property.

Extreme: An object can sometimes be prominent because it is the highest object, or the
tallest, or the smallest, among the elements of the domain. An object may be a focal
point if it is an extreme object in a totally-ordered domain. For example, the highest

hill in the area where the parachutists have landed has the extreme property.

Our overall intent is to consider the formal representation techniques that would allow
an agent to perceive focal points, so that they can be exploited for communication-free
coordination. Even when we consider these special properties, more must be done to identify
focal points. There are bound to be competing potential focal points, since there is something
unique about any solution. Another fairly strong contender for a solution in the original
game presented above is the choice of 0 objects in A, and 100 objects in B (or vice-versa).
Of course, it is precisely the “vice versa” aspect of this solution that makes it appear less

appealing in comparison with the 50-50 split.



Any solution, though, will have something to recommend it—but the less obvious that
something is, the less attractive the alternative becomes, precisely because it becomes less
obvious that the other agent will duplicate our line of reasoning. For example, the choice of
10-90 recommends itself, since it is the only choice where the number of tens in both piles
is a perfect square (1 squared and 3 squared), and where, at the same time, the first pile is
smaller than the second. And of course, we might choose 16-84 as our split, reasoning that
our partner will realize, as we did, that these are the only years in the 20th century (whose
last two digits add up to 100) that have seen the election of United States presidents with
the same number of letters in their last names (Wilson in 1916 and Reagan in 1984).

This is a farfetched example, but the point should be clear: a focal point is produced
not only because it satisfies one of the intuitive principles mentioned above, but because it
seems computationally more accessible—it seems more likely that the other agent will also

recognize the point than that he will recognize competing points.

2.4 Related Work
2.4.1 The Traditional Game Theory Approach

In game theory, an interaction might be represented as a game in normal form, where agent
strategies are condensed into single choices. The possible outcomes of the game comprise
pairs of such choices. Typically, the game is represented as a matrix, where each column
represents a particular strategy for one agent and each row represents a particular strategy
for a second agent. Each element of the matrix represents a particular state and contains
values which are the expected payoff as a result of a particular choice of strategies. In a zero
sum game, only one value is necessary for each matrix element. In the most basic types of
games (e.g., games with complete information), it is assumed that the agents have common
knowledge of those final payoffs, that they have unlimited computational power, and that,
in particular, they are able to generate the complete game matrix and can find so-called
“equilibrium points.” Two strategies S and S’ are said to be in Nash equilibrium [61] if,
assuming that one agent is using strategy S’, the best the other agent can do is to use S.
An equilibrium point is an outcome resulting from two agents’ use of equilibrium strategies.
For example, in the game matrix in Figure 2, the strategies whereby agent J chooses move

b and agent K chooses move d are in Nash equilibrium.

2.4.2 Multiple Equilibrium Points

In the matrix in Figure 2 there is a second equilibrium point, where agent J chooses move

a and agent K chooses move c¢. This simple game has an inherent symmetry, since both



Figure 2: Two Equilibrium Points.

equilibria are attractive to the agents. Schelling cites this precise game as an instance where
contextual clues might help the agents resolve the game’s inherent symmetry.

Consider again the original problem given above, with two contestants dividing 100 ob-
jects into two piles. The problem can be represented very easily, using a payoff matrix, with
the elements of the diagonal being $40,000 and all the other elements being zero. The short-
coming of this representation is that it does not allow the agents to reason about anything
other than the relationships among the payoffs, and these relationships are unenlightening.
There are 101 payoffs of $40,000, but there is no way, within the framework of the pay-
off matrix, of reasoning about why one action is better than any other (i.e., there are 101
equilibrium points).

Such games are called by game theoreticians matching games. A matching game is a

2 in which there are two players with the same strategies; both get a

pure coordination game
payoff if and only if both choose the same act; and the payoff is the same, whatever this act
may be [4]. The symmetries of a matching game have the consequence that, for all standard
game theory solution concepts, if the concept recommends any action it recommends all [4],
i.e, there are always multiple (equivalent) equilibria.

For games in which the payoff matrix is asymmetric, equilibrium selection theories have
been developed which can discriminate between Nash equilibria (e.g., [34, 38, 11]). A signifi-
cant amount of work has been performed on the evolution of equilibria in coordination games
that are played repeatedly within a population (e.g. [78, 77, 42, 6]). Crawford and Haller
[12] and later Kramarz [48] investigated how the players of an iterated coordination game
can converge on a pattern of coordinated play. Another approach is using cheap-talk which
may be roughly defined as non-binding, non-payoff relevant pre-play communication [26, 39]
for selecting an equilibrium. However, these papers do not address the problem of choosing
between multiple equilibria in one shot, symmetric cooperative games, without communica-
tion. Our methods can be considered as a method for choosing among equilibrium points in

such situations.

92 . . . . . . .
*A coordination game is a game in which there is at least one outcome which both agents prefer over
other outcomes.



2.4.3 Limited Rationality

The standard game theory assumption that agents have unbounded computational power
is problematic and unsuited to the real world. In most “real-world” situations, there is a
limit on the amount of computation ability which may be devoted to solving the interaction
problem. Moreover, there is a limit on the amount of time available. Thus, even in cases
where there might be a unique equilibrium point, it cannot be taken for granted that two
agents, with differing computational capabilities, will both discover it. Ideally, the search
for focal points will need to take limited computational power and/or time constraints into

account.

2.4.4 Labeling Theories

Gauthier [30] initiated a line of research based on the assumption that when a person chooses
an option, she chooses it under some “description.” A choice problem exists only if the player
conceives of a set of distinct alternative options; the problem is defined by the player’s
description of the world.® Gauthier claims that in order to understand focal points, we need
to consider the players’ own description of their options. Gauthier assumes that players are
able to choose among alternative ways of describing their options. In making this choice,
and then choosing between the options themselves, rational players follow a principle of
coordination®, which roughly corresponds to Harsanyi and Selten’s [34] principle of payoff
dominance: this ensures that Pareto-dominant equilibria are selected.

Following Gauthier, several theories [3, 73, 4, 40] which take information about “descrip-
tion” into consideration were developed. Sugden [73] uses the term label for the description
by which players refer to strategies. He presented a general theory of how labels can influ-
ence decisions in games; he examined its applications to pure coordination games. Sugden
focuses on the question: given the labeling schemes that players use, what choice is it ratio-
nal for them to make? He then proposes the notion of collective rationale, which is similar
to Gauthier’s principle of coordination. In this paper, we assume that the labels are given
and propose rules to select focal points that we show, via simulations, to be successful.

Bacharach and Bernasconi [3, 4] present a variable frame theory (VFT). They claim that
players choose strategies in a way that is rational in a perfectly familiar game-theoretic sense;
however, the game that gets played is determined by non-rational features of the players.

They refer to these features as frames. A player’s frame is the set of variables she uses

3Note that in traditional game theory, the question of how individuals conceive their option is normally
avoided: the analysis uses the theorist’s descriptions.

4The principle of coordination specifies that in a pure coordination game with multiple equilibria, it is
rational to play one’s part in the unique Pareto-optimal equilibrium, if there is one.



to conceptualize the game. Frames may vary both across players and within players from
occasion to occasion. The VF'T consists of three main parts: the idea that to choose among
alternatives a player must first have “described them to herself,” a model of what determines
players’ frames, and an equilibrium notion that allows the variability of frames. The theory
implies that it is rational to play focal points in coordination games with multiple equilibria.
Their reported experiment confirms most of the theory’s claims for such games. Janssen’s
work [40] is closely related to that of Bacharach [3]. He extends Bacharach’s work mainly
by considering general classes of dimensions, instead of examples, and proves the optionality
of the procedure for this general class. The approach suggested in our paper is directed at
studying mechanisms to find focal points by automated agents that are given their frames

by their designers.

2.4.5 Experimental Work

In the last few years several experiments, which replicate Schelling’s “informal experiments”
with pure coordination games, were performed. These experiments also test several theories
concerning focal points.

Mehta et al.’s results [58] confirm that players of pure coordination games are more
successful at coordination than if they would have chosen a strategy (or an item) at random.
In addition to this confirmation, Mehta et al. also added a control group of subjects who
faced the same set of questions as the main group. However, the members of the control
group were instructed merely to give “some” response without being given any incentive to
choose any particular response (rather than to try to match their partner’s choice, as in the
main group). The success rate of the main group was significantly higher than that of the
control group, which had no incentive for coordination.

Mehta et al. [58] also define the notion of primary salience as the strategy (or item)
which “comes” to the player’s mind.® They presented two alternative hypotheses which
might explain the success of humans in coordination games: “secondary salience”— each
player will choose the strategies whose label she believes most likely to have a primary
salience; “Schelling salience”— each player will look for a rule of selection which, if followed
by both players, would tend to produce successful coordination. Their experiment was not
designed to allow the discrimination between these two hypotheses by formal statistical tests.
However, their results suggest that Schelling’s salience may play a significant role in human

success in coordination games.

5The concept “salient” itself has received no formal treatment in the literature [4], but there is a wide
acceptance of Lewis’ characterization [54] of “being salient,” as being the only one which has some conspicuous
attribute.
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In our experiments we focus on Schelling’s salience, since we believe that it is more
dependable and also simpler to calculate. That is, we provided our agents with a rule of
selection.

In another set of experiments [57], Metha et al. focused on a particular class of pure
coordination games which they call assignment games. In an assignment game, two players
are presented with a set of objects of some type A, and with two objects B; and By of
a different type. The players are instructed to assign each A-object to one or other of the
B-objects; each is rewarded if they choose the same assignment. Their purpose was to isolate
a small number of rules of selection of focal points. They presented three rules: (i) the rule
of closeness; (ii) a two-step variation on the rule of closeness; and (iii) the rule of equality.
In their experiments they found strong support for the hypothesis that the subjects used
these rules. In our experiments, we studied matching games, which are more general than
assignment games. In addition, the rules of selection which we propose are more general
and also more mathematically defined than in [57]. The particular rules which we tested are
shown to be appropriate for the development of automated agents which can successfully
cooperate without communication.

Mehta [56] developed a complementary experimental methodology that focuses on the
processes by which people attempt to coordinate their actions, rather than on the outcomes
of those actions. In her experiments, subjects were interviewed, alone and in teams, imme-
diately after completing a series of bargaining and pure coordination games. She found that
the comments of some subjects support Schelling’s hypothesis. For example, several sub-
jects spoke of choosing their responses because they were “obvious” or “logical,” where the
“logic” of the response, or its “obviousness,” derived what they perceived to be a mutually

recognized attribute of the solution.

2.4.6 DAI Approaches to Reduce Communication

As mentioned above, most of the research in DAI assumes that the agents can communicate
with one another. However, since communication consumes time and resources, there is
usually an attempt to reduce it. Furthermore, it is clear that agents in a realistic system
cannot have complete knowledge of the goals, actions, and interactions of the other agents
in the community. They must make some decisions without communicating with each other.

Georgefl [32] suggests using a set of finite and simple fixed signals to synchronize multi-
agent plans, thus reducing the overhead of coordination. In the case that he considers,
agents must exchange messages in order to know that an action has been completed. We do

not address such problems, but focal point mechanisms can be applied in choosing among
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different plans without communication.

In the Partial Global Planning (PGP) approach [22, 20, 21|, each node builds partial
global plans that represent its partial views of the joint problem-solving activity. In deciding
what action to take next, an agent refers to its local plans, and in deciding among its
possible plans, it refers to collective plans for all agents. Thus, in this approach, an agent
communicates its partial global plans to other agents in order to reach coherent behavior
in the overall system. Unfortunately, as we mentioned above, even if the nodes exchange
information, a node will still be uncertain about the role being played by each of the other
nodes. In [19], Durfee et al. developed a sophisticated local control that allows the nodes to
make rapid, intelligent local decisions based on changing problem characteristics, without the
overhead of conferring with each other to coordinate these decisions. Instead, coordination is
based on an organizational view of individual node activity. This is similar to the approach
taken by agents searching for focal points. However, the methods applied by the PGP nodes
are domain-dependent and lead to more sophisticated cooperation. Our methods are general
and do not depend on the specific problem that is being considered. However, our methods
allow for only relatively limited cooperation.

Others have also suggested using organizational structures to reduce communication.
That is, the relationship specified by the organizational structures gives general long-term
information about the agents and the community as a whole [41]. For example, Werner uses
“roles” for describing expectations about individual behavior [76]. Social laws [70, 60] are
another way to achieve better coordination by pre-defined organizational regulations. The
focal point approach can be used to reach joint decisions without communication or to limit
the domain of consideration and thus reduce communication.

Ronald Arkin [1] demonstrates the efficiency of multi-agent schema-based navigation for
object retrieval without communication. In this model, cooperation is achieved when several
agents are attracted to the same object and, together, transfer the object to its destination.
In this application, domain-specific knowledge is used to decide on objects that serve as focal

points, while, in contrast, we look for general methods for selecting focal points.

2.4.7 Related Work on Plan Recognition

The field of plan recognition [69] bears an interesting, complementary relationship to the
work on Focal Points described in this paper. Plan recognition assumes the existence of
some group of base-level actions carried out by an agent; an observer extrapolates from that
group of actions to a higher level goal, and by implication, to future actions (or unobserved

actions).
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Much of the work in plan recognition has focused on specific domains, such as story
understanding, psychological modeling, natural language pragmatics, and computer system
interfaces. The benefits of successful plan recognition are clear. Based on fragmentary
evidence (the actions of an observed agent), the observer could understand the agent’s un-
derlying intentions, and use that understanding to guide its own activities. In a cooperative
scenario, the observer may discover that additional information should be communicated,
or that there exists some collaborative opportunity. In a competitive scenario, the observer
may learn what is necessary to effectively counteract his opponent.

Plan recognition can thus be used, and indeed, has been used [37] as a direct mechanism
for multiagent coordination. The rationales for using plan recognition techniques, as opposed
to (or in addition to) conventional communication (even between cooperating agents) are
similar to the rationales for using our Focal Point techniques, such as unreliable communica-
tion channels, lack of a common language for communication, and the risk of communication
being intercepted by hostile agents.

This, then, is the common ground between our Focal Point techniques and plan recog-
nition: both can be used as mechanisms for communication-free coordination. The primary
difference between the two approaches is that plan recognition uses as its starting point the
actions of an agent, while Focal Point analysis is fundamentally an analysis of the domain.
Focal Point analysis sometimes views the domain in light of potential agent actions, but not
generally with reference to past agent actions.

There have been several axes for categorizing research in plan recognition. “Intended”
recognition is carried out when the observed agent’s actions have been intentionally struc-
tured so as to aid in the plan recognition process; “keyhole” recognition assumes no such
helpful structuring. Two other important distinctions in the literature are whether the ob-
server has full knowledge of the domain, and whether there might be “errors” on the part
of the observed agent (i.e., actions carried out by the agent that are inconsistent with its
actual plan).

The fundamental problem in effective plan recognition is that a sequence of actions may
be consistent with many high-level plans. Assume, for example, that the observed agent
walks down the street and enters a supermarket. The actions are consistent with a plan
to buy groceries, but also with a plan to rob the supermarket. In the absence of more
information, we might want the plan recognizer to prefer the former interpretation. On the
other hand, the overall process must be defeasible (altering conclusions based on additional
knowledge), since if we later discover that the agent picked up a gun before walking down
the street to the supermarket, we might prefer the robbery explanation of his plan.

Ideally, the plan recognition process should therefore, a) work from fragmentary informa-

13



tion to reach conclusions, b) be capable of entertaining multiple explanations, but perhaps
focusing on one or more as “most likely”, c) be capable of coming to new conclusions based
on new information.

This paper, in analyzing Focal Point discovery, presents both a decision-theoretic and a
step logic approach to the problem. There have similarly been several distinct approaches

to plan recognition. The major approaches have been:

e An argumentation approach, using truth-maintenance-like systems to support or deny

particular plan recognition conclusions;

e A circumscription approach, that seeks to minimize the set of plans that could plausibly

be implied by a set of actions;

e A probabilistic approach, that uses Bayesian nets to derive the most likely plan con-

sistent with the observed actions.

The decision-theoretic and step logic approaches to Focal Points that we present in this
paper are weakly analogous to the probabilistic approach and argumentation approaches to

plan recognition, respectively.®

The Argumentation Approach to Plan Ascription The work of Konolige and Pol-
lack [46] frames the plan recognition problem in the traditional artificial intelligence context
of “belief and intention ascription”, that is, ascribing beliefs or intentions to the observed
agent. The mechanism for carrying out this process is Konolige's argumentation system
ARGH, similar in many respects to the justification-based Truth Maintenance System of
Doyle [18]. The actions of the observed agent, which are plan fragments, serve as arguments
in favor of certain high-level plans (and as arguments against other high-level plans). The
system considers the “support” that a given plan has; if the plan is supported by an ar-
gument whose premises are accepted, and the plan is uncontested (there is no conflict of
propositions within the given domain), then the conclusion is accepted.

The plan recognition process takes in local cues, actions of the observed agent, and at-
tempts to fit this local information into the global coherence of a high-level plan. Since the
argumentation system itself is defeasible, i.e., it will come to new conclusions when presented
with new information, the plan recognition system itself has this property. The system also

has the advantages that it does not rely on the observer having complete knowledge of the

5For a non-declarative approach to plan representation and recognition, which does not fit neatly into
the above taxonomy, see [52].
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domain, nor does it depend on the observed agent having a correct plan, from the perspec-
tive of the observer. Finally, the argumentation system provides a precise, comprehensible

rationale for why one conclusion should be preferred over others.

The Circumscriptive Model of Plan Recognition Kautz [43, 44, 45] has proposed an
entirely different way of approaching the plan recognition problem, one based on McCarthy’s
circumscription scheme [55] which minimizes the set of inferences that can be derived from
an initial group of assumptions. Every observed action is assumed to be part of some high-
level plan; Kautz uses circumscription as the formal technique to minimize the number of
high-level plans deduced by the system.

Say, as a simple example, that an agent is observed carrying out actions p and ¢, where
p could be part of plans A or B, and ¢ could be part of plans B or C. Having observed
p and ¢, the system proposed by Kautz would deductively conclude that B is the agent’s
plan. There is no need for circumscription in this case, but it illustrates in a simple way the
overall approach.

There are advantages to Kautz’ approach, not least of which is the formal rigor that
he brings to the plan recognition problem (others have continued to pursue this deductive
theory of plan recognition, for example [75]). Some of the drawbacks of this approach,
however, are that the observed agent is assumed to be carrying out correct plans, and that
the observer has complete knowledge of the domain. Perhaps even more importantly, the
technique has no way of distinguishing between the a prior: likelihood of various plausible
plans. As pointed out in [10], upon observing an agent packing a bag and going to the
airport, the system would not be able to prefer the plan where the agent is taking a plane
trip (a likely scenario), or the plan where the agent is going to carry out a terrorist bombing

(a less likely scenario).

The Bayesian Model of Plan Recognition Handling this shortcoming of the circum-
scriptive approach, Charniak and Goldman [9, 10] propose a probabilistic model for carrying
out plan recognition. The plan recognition problem is converted into a Bayesian network,
and the resulting network provides a “most likely hypothesis” regarding the observed agent’s
plan. One advantage of this scheme is that the lowered computational overhead of using a
Bayesian network makes the probabilistic assumptions and calculations more tenable. In
addition, the likelihood of a given interpretation plays a direct role in the conclusions of
the system (as opposed to the set minimization approach, above). In related work, Car-
berry [7] similarly approached plan recognition using probabilistic reasoning, though instead

of a Bayesian model the system used Dempster-Shafer belief functions.
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3 A Decision Theoretic Model for Focal Points

Using focal points to choose among competing solutions requires that contextual information
regarding the solution be modeled and also requires a method for selecting a particular
solution based on the contextual information. Decision theory is a convenient paradigm for
both modeling contextual information and selecting a focal point.

In the decision theoretic model, the agents are assumed to be able to assign utilities
to various outcomes, similar to the assumption in game theory. An agent attempting to
decide on an action using a decision theoretic framework constructs a decision tree, leading
to different outcomes, with probabilities associated with each branch of the tree. The agent’s
expected payoff is the probability on the branch times the value at the leaf.

The decision theoretic focal point algorithm exploits focal point intuitive properties (such
as uniqueness) to establish more accurately the probability values on the decision tree’s
branches. This altering of the probabilities in turn affects the agent’s calculation as to the
most beneficial action to take; when the agents have found a focal point that sufficiently
alters their probabilities, they will coordinate.

Consider the following primitive example. Two agents must decide on a meeting point,
and the choice is between two houses (A and B) and a bridge (C). The utilities for agent J
of A and B are 5, and the utility for C is 10 (he must go further to reach C). For agent K,
the utilities for A and B are 10, while the utility for C is 5. In game theoretic terms, there
are three equilibrium points, with no way of distinguishing among them. Discovery that the
bridge is a focal point, however, increases the probability that the other agent will choose it
(even though, for K, it is a less preferred solution). If the focal point raises the probability of
the other agent choosing the bridge from .33 to above .5, then even agent K will choose the
bridge, and the agents will meet. This technique provides for a natural integration of payoffs
into the decision-making process. In this paper, we focus on techniques for identifying focal
points and only briefly consider the incorporation of the agents’ utilities into the decision
process. However, in all the cases, we assume that the agents consider only action profiles

that are equilibria.

3.1 The Agent Model

The database DB of an agent is a set of consistent sentences over a language £. For simplicity,
we assume that in £ there is a set of predicates Pred and a set of terms Term over which

the focal point computation is going to be done.” Each of the predicates P € Pred has

"Pred may be given to the agent by its designer and the agent may assume that the other agents are
given the same set. Another possibility is that the agent may try to estimate the predicates of the other
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two arguments: an element of Term and a constant from the set Valuep. For any predicate
P and a term T, the database may include at most one fact of the form P(T,v) for some
v € Valuep. The values in Valuep may be ordered, and there may be other predicates as
well as functions in £. A focal point should be chosen from the objects described by Term.®

For example, Color(hl,red) might mean that object hl is red, Height(h1,4) might mean
that the height of object hl is 4 meters, and Type(hl,House) may mean that A1 is a house.
This database does not change during the search for a focal point. Of course, the database
does change over time as the agent operates in the world and draws new inferences. We
propose that each fact in the database be tagged with a “measure of difficulty,” the effort that
went into derivation of the fact (e.g., number of supporting arguments, depth of derivation,
number of conjuncts in the compound predicate). Thus, although the focal point search is
carried out over a static database, the dynamic aspect of that database is partially captured
by the “measure of difficulty.” The way to compute the “measure of difficulty” depends on
the methods the agent uses to obtain information. We demonstrate the intuition behind the
“measure of difficulty” using a deductive database example, but we do not require that the
agent use logic for obtaining new facts.

Consider the following domain. There are three houses, labeled h1l, h2, and h3. Agent
A’s database, at some point, included the following facts and rules (by design and through
observation):

Va Type(z, House) — Color(z, White) V Color(z, Black)

Vz Type(z, House) A Less-Than(Age(z),25) — Color(z, Black)
Vz Type(z, House) A Made-of(z, Bricks) — Color(z, Black)

Va Type(z, House) A Architect-Of(z, Smith) — Color(z, Black)
Less-Than(Age(h2), 25), Less-Than(Age(h3), 25)
Architect-Of(h1, Smith), Made-of(h1,Bricks)

Type(hl,House), Type(h2,House), Type(h3,House).

In this case Term = {hl1,h2,h3}, and Pred = { Type, Color, Made-of, Architect-Of}. We
will consider how new facts are derived and adjust their measure of difficulty accordingly. For
example, the fact that Color(h2,White) and Color(h3,White) can be derived is a deduction
of depth 2. Color(h1,Black) can be derived in two separate deductions, each of depth 1.
The measure of difficulty assigned to the first two facts would be higher than the measure of
difficulty assigned to the last fact. Since multiple derivations lower the measure of difficulty, it

is necessary to keep a record of derivations over time (as in a Truth Maintenance System [15]).

agents (e.g., based on knowing their sensors) and may include these predicates in Pred.
8In the rest of the paper, we will abuse notation and we will use object and its term interchangeably.
Similarly, we will use value and their constants interchangeably.
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The measure of difficulty is intended to be a heuristic indication of how likely it is that the
other agent knows the fact. The deeper the derivation, the less likely that the other agent
has discovered it; the more alternative derivations there are, the more likely it is that the
other agent has found one.

The Pred set contains a collection of primitive predicates and also contains “conjunctive
predicates” that are the conjunction of two or more primitive predicates. The Pred set ideally
includes all possible conjunctions of predicates, though in an actual system only some subset
of these would actually be considered.

We want agents, in their search for focal points, to consider both explicit knowledge and
“obvious” knowledge that is easily computed from their databases. For example, if “less
than” is a predicate that the agent is considering, and both 5 and 6 are terms of which he
is aware, then we want the agent to use the knowledge that 5 is less than 6, even though
this fact is not explicitly represented in his database. We therefore use a special notation
to signify that a fact is “known” to the agent. We write €* to mean that the fact is either
explicitly listed in D B, or that it can be simply computed over the constant terms or values
that are in the database.’

The decision theory framework provides a quantitative technique for evaluation that
can take a number of factors into account. For example, the search for a focal point can
consider, in a weighted fashion, the complexity of a term relative to a predicate (as a heuristic
indication of whether the other agent has it in his database), as well as other factors, such
as the utility a successful matching on that term would have for the agent(s), its rareness,

and centrality.

3.2 Recasting Focal Point Criteria

We now consider how the four focal point intuitive criteria (see Section 2.3) — uniqueness,
uniqueness complement, centrality, and extremeness — can be formalized in a decision theory
framework. The characterizations are flexible, in that they may consider a term to be a focal
point even when it is not actually unique (but almost so), or not actually central (but
almost so). Because the definitions here differ from their related counterparts above, we will
sometimes change their names (for example, the uniqueness described above is related to the

rareness definition below).

9The question of what can be simply computed is domain-dependent, as well as agent-dependent. There
is an analogy here with the idea of being “operational” in the Explanation Based Learning literature [59].
Checking “less than” might be operational in some machines; in other machines, deciding in a game of
chess whether a given board position is reachable from the current state might be operational because of
specialized hardware.
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As mentioned above, finding a focal point ends up altering the probabilities associated
with a given choice. Once probabilities have been assigned, a standard decision theory
analysis is made (probability times outcome utility) to decide what move to make. An
evaluation is made of each Predicate/Term pair in the agent’s database. The focal point
criteria below give an agent “credit points” for each Predicate/Term pair, and these credit
points can accumulate from different sources (rareness, centrality, etc.). These points are
then combined and normalized to give us the probabilities (at this stage, as well, a meta-
analysis can be done that will lower the probabilities assigned to multiple points that compete
in the same category, such as extremeness).

The way in which the contributions of different sources are combined remains a matter
open for future research. It is our belief that it will require experimental evaluation to
determine how sources should be weighted when they are combined.'® Our intent below is
to show how to exploit the general relationships between predicate/term pairs in the database

and to show (grossly) how they contribute to a particular pair being a focal point.

3.2.1 Rarity

The probability of an agent’s partner making a certain choice is increased if that choice has
a property not shared by other choices. As mentioned above, the decision theory approach

” For example, if there

allows us to use a more sensitive concept than that of “uniqueness.
are 1000 objects, of which all but three are black, and the three non-black objects, h1, h2,
and h3, are all white, then we would like to consider the non-black objects as focal points,
even though their color is not unique, but only rare. We may use other properties to choose
among the white objects. In particular, if it is easier to conclude that h1 is white than to
conclude that h2 and h3 are white, we may choose h1l. Thus, given an item and a property,
we consider the number of objects with the same property and combine this information
with the measure of difficulty of the information.

That is, to capture the notion of “rareness” of an object 1" with respect to a predicate
P in a decision theoretic model, we want to weight positively the appearance of P(T,v),
and this weight will increase with the decrease of P(7,v)’s difficulty. We negatively weight
the appearance of other P(t,v), where ¢ # T, elements in the database in evaluating the
rareness of 7' with respect to P, though the greater P(¢,v)’s difficulty, the less negatively it
is weighted. Intuitively, if P(¢,v) is associated with great difficulty, there is more of a chance
that the other agent will not have it in his database, and since in such situations we would

like T’s rareness measurement to be higher, we decrease its rareness measurement less than

10We demonstrate the choice of such weights in Section 3.4.
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we would if P(t,v) were to have a lower difficulty measurement.

Example 1 Consider the objects hl and h2 mentioned above, and assume that the agent’s
database includes the facts Color(h1,White), Color(h2,White) — both with difficulty 1 — and
Color(h3,white) — with difficulty .5. For all the other objects, t, such that t is not equal
to hl, h2 or h3, the database includes Color(t,Black). We will consider h1 and h2 to be
more rare than the 997 black objects, with respect to the predicate Color, since there are
only three objects which are white. h1 and h2 rarity is the same with respect to color since
they have the same color and the same difficulty. We consider h3 to be more rare than all
the other objects (including h1l and h2), since it is white as hl and h2, but its measure of
difficulty is lower.

If there is an additional object, h4, which is blue, and its measure of difficulty is .5, it will
be considered more rare than h1l, h2, h3, and the black objects, since it has both a unique

color and a low measure of difficulty.

We will use the following notation below. 7" is a given constant term in Term; P is an
element in Pred; and v € Valuep. D[P(T,v)] for any P, T, and v, such that P(T,v) is in the
database, is the “measure of difficulty” for that term/predicate pair (the measure of difficulty
for a term/predicate pair that does not appear in the database is taken to be infinite).

For all P € Pred, T € Term, such that P(T,v) is in the agent’s database,

RE = f.(D[P(T,v)]) + g.({D[P(t,v)]|t # T, P(t,v) €* DB}).

The functions f, and g, allow for more flexibility by providing different scaling of the
difficulty measurement. f, decreases with the difficulty measurement of P(7,v), indicating
that the prominence of an object decreases as its measure of difficulty increases. g,’s domain
is the set of difficulty measurements. g, decreases as the number of elements of its set
increases and as their difficulty measures decrease. That is, if there are more objects with
the same property as 7', its rareness decreases; however, if the difficulty of these objects is
high, and there is a chance that the other agent does not have this information in its database,
then 77s rareness is affected less. Using two different functions captures the intuition that
different weights should be given to the fact that P(T,v) is in the database, and that for other
terms, denoted by ¢, P(t,v) is also in the database. Since the function D (i.e., the measure
of difficulty) may be used for computing the rareness of different objects simultaneously, it
is not possible to change D to reflect this intuition. This is because the same object may
play a different role in the computation of its own rareness and in the computation of the

rareness of another item.
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Example 2 This rule would be applicable in the case where we know about two Bridges,
C125 and C412. The measure of difficulty associated with Type(C125,Bridge) is low (e.g., 2),
while the measure of difficulty associated with Type(C412,Bridge) is high (e.g., 5). The fact
that Type(C125,Bridge) is in the database contributes significantly to the Rg%{g; utility, while
Type(C412,Bridge) does not decrease that utility by very much. Type(C125,Bridge) is rare,

even though it is not unique. In particular, if we choose f,.(z) = % and g,.(X) = —Y,ex miz,
then REY% = 0.46 and R5UPS = —0.05.

Similarly, if we consider the objects of example 1 and apply the above functions, i.e.,
fr(z) = % and ¢.(X) = — Y ,ex I%, we obtain R{PT = 1, ROglr = —4, ROr = —4, and
Ry = 2.

3.2.2 Centrality

The probability of an agent’s partner making a certain choice is increased if that choice is
somehow “central” to the group of terms in the domain, relative to some predicate. For
example, given a group of houses in a line, the central one would have a greater likelihood
of being a focal point.

We introduce the following function to capture, in our decision theory framework, the
notion of “centrality” (or “symmetry”):

For all P € Pred, T € Term, such that P(T,v) is in the agent’s database,

CF = L(DIP(T,v))+
gc({mam(D[P(tl,vl)],D[P(tg,vg))} | th # T,P(tl,vl) E* DBA
dts # 1,12 # T, P(t2,v2) € DB A Diff(v1,v) — Diff(v2,v) < €})—
0.({D[P(t1,v1)] | Yt £ T, P(t1,v1) € DBA
ﬂtg # t,tg ;é T, P(tz,’vg) <h DB A D’iﬁ(Ul,U) — D’L:ﬁ(’l)g,’l)) < E})

Centrality for 7" is increased for each pair of terms that lie roughly equidistant from
T, using the Diff domain-specific metric. The size of the increase depends on the maximal
measure of difficulty of the pair. As the measure of difficulty of the pair decreases, T becomes
more central. Centrality for 7" is decreased for each term in the domain that has no matching
term that is roughly equidistant from 7'. As the measure of difficulty of the term increases,
T becomes more central. It is important that Diff properly capture the notion of centrality
in the given domain. For example, if terms are arranged along a single dimension (e.g., the
integers), Diff might return the difference between its arguments’ locations. In practice, when
we want the above definition of centrality to be combined with our definitions of rareness,

the weighting functions f. and g. must be chosen carefully.
Example 3 Consider five houses in a row, labeled A, B, C, D, and E (each contiguous pair
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being equidistant). House C is considered central, with House A being matched (within ¢)

by House E, and House B being matched (within €) by House D.

3.2.3 Extreme

The probability of one’s partner making a certain choice is increased if that choice is somehow
“extreme” to the group of terms in the domain, relative to some predicate. For example,
given a group of houses in a line, the end ones would have a greater likelihood of being focal
points. Also, the tallest house in town would be a candidate for being a focal point.

For all P € Pred, T € Term, such that P(T,v) is in the agent’s database, and a partial
order () on Valuep,

Er? = f.D[P(T,v)))-

g({D[P(', V)] | t' #T,P(t',v') € DBAQ(v',v) €* DB A Q(v,v") ¢* DB}).

If T' is an extreme point candidate, we subtract points from it whenever it is “exceeded”
by some other term. On the other hand, we do not add points to it when it is preceded by
other terms. If an object is extreme, this quality is not strengthened by more terms below
it (e.g., the tallest building does not become more pronounced because additional small
buildings have been built). Extremeness is weakened, however, by exceptions and depends

on the exception measure of difficulty.

Example 4 In the set {1,4,5,13,29}, the number 1 is extreme, using “less than” as the @
predicate above. The number 4 is relatively less extreme than 1, using “less than,” but is
relatively more extreme than the number 5. The number 29 is extreme, using “greater than”
as the @) predicate, and 13 is relatively more extreme than 5 and 4 with respect to “greater
than.”

Similarly, consider a database that has Height(h1,10) (with difficulty 8), Height(h2,11)
(with difficulty 4), Height(h3,15) (with difficulty 10), Height(h4,6) (with difficulty 3). As-
sume also that fe(z) = 1 and g.(X) = ¥,cx = and uses “greater than” (>) as the @ predi-
cate. We obtain: Ep9"> = _0.225 EJ49"> = 0.15, B> = 0.1, EL59"™> = —0.14.
It is interesting to observe that the tallest object, h3, is considered less extreme than h2,
since its measure of difficulty is much higher.

On the other hand, if we use “less than” (<) as the @ predicate, we obtain: E,ﬁeightK =

0.333, E,ﬁeightK = —0.208, etc., and the lowest object is considered as the most extreme one.

3.3 Success and Implementation Issues

There are many details in the above formalization that have been left unspecified; for ex-

ample, the functions that relate difficulty of derivation to points were simply labeled f, g,
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etc., without giving real values for them. The combination of these points is another major
unresolved issue for the implementation of the decision theory procedure. These issues need
to be resolved relative to any specific domain. We demonstrate the development of such a
procedure for the robot rendezvous domain in Section 3.4.

When interacting human agents search for focal points, there is generally no guarantee
that their choices will be identical. When interacting automated agents search for focal
points, they are following a set of algorithms. Depending on their own knowledge, and
their knowledge of each other and of the domain, they may be able to reach a guaranteed
solution. In other cases there is no guaranteed agreement, but the focal point algorithm can
be thought of as a heuristic to “prune” the search for a focal point. That is, as mentioned
above, the focal point algorithm can be used to limit the number of possible solutions that
will be explicitly discussed by the agents.

As with various forms of communication, the agents can benefit from having some com-
mon background when they use a focal point algorithm. For example, agents that negotiate
the allocation of a common resource should have some common language and some protocol

for negotiations.

3.3.1 Guaranteed Joint Selection

Consider the case where agents have identical knowledge about everything and in addition,
the difficulty of derivation they attach to various propositions is the same. It is clear that
in this case, if there is a set of focal points, the set will be generated identically by both. If,
furthermore, the identified set of focal points includes only one object, then it is clear that

the agents will agree on the same object.

3.3.2 Incomplete Information

The focal point decision theory approach is trying to exploit information an agent has about
the domain, but it really does not relate to the other agent’s information, except implicitly
when taking into account the “measure of difficulty.” An agent gives lower weight to facts
with higher measures of difficulty. The intuition behind this approach is that as the measure
of difficulty increases, the likelihood that the other agent knows the fact decreases.

That is, while searching for focal points, an agent does not try to model the beliefs of its
specific partner, but rather examines the possible solutions and tries to choose prominent
solutions. However, in situations of incomplete information, when each agent has a different
set of possible solutions or attached different properties to some of the solutions, combining

the focal point approach with other approaches that do model partners may be beneficial.
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For example, in some situations agents do have explicit information about one another’s
knowledge or beliefs. In the best case, they might have common knowledge [33] of the
domain. It probably makes sense, when common knowledge is sufficient, to use it and only
it in the focal point derivation. In most situations, however, common knowledge will not be
available to the agents.

If an agent A knows that B does not know the fact P, it is a reasonable heuristic for A
to avoid using that fact when searching for a focal point. However, there is no guarantee
that avoiding P will increase the chances of finding a focal point. For example, B may use
some other fact, (), of which A is unaware, and coincidentally arrive at the conclusion that
A would have found if A had used P.

When A does not know whether B knows or does not know P, then a reasonable heuristic
is for A to continue using P. There is simply too much likelihood of not knowing very much
about the agent’s partner’s information, and the default should be to assume that he knows
what the agent does; otherwise the search will be too restricted. Again, however, there can
be no guarantees that using or not using P is the most efficacious strategy.

Even when A has specific information about things that B does know, A cannot simply
use only that information: A does not necessarily even know that B knows that A knows
that B knows the information, without which its use in the focal point search will not be
useful. If the two agents have more than one level of cross-knowledge, they could reason
back and forth, eventually reaching a minimal group of facts known to all levels greater than
i (perhaps empty). Nevertheless, it is far from clear that carrying out this search for a base
group of facts constitutes a desirable strategy. Consideration of these issues of inter-agent
knowledge and its effects on focal point derivations is left for future work. In this paper we
follow Schelling and other researchers and assume that the agents use their own point of

view to identify a focal point.

3.3.3 Effects of Representation on Joint Selection

One important characteristic of the focal point algorithms is how they are affected by agents’

representations. One agent might have a predicate “Size” with the possible value “Big,” and

the second agent have a predicate “Dimension,” with a possible value “Huge.”

As long as
the extensions of the predicates are the same, the different words that the two agents use
will not matter. Thus, even when agents do not make the same lexical choices, they may
still reach the same focal point. However, when the agents have differing ontologies, their

focal point searches may not reach the same conclusion.!!

1In Distributed Artificial Intelligence, there is often a distinction made between “distributed problem
solving” (DPS) and “multi-agent systems” (MA). The former often consists of centrally-designed groups of
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Some focal points that are discovered represent a “syntactic” aspect of the domain, while

others that are discovered represent a semantic aspect of the domain:

Example 5 Different ontologies, the same focal point Agent A uses miles, while agent
B uses kilometers. If the agents choose “the middle point on the road” as a focal point, they
choose the same location, even though their representations are very different. Similarly, if
agent A uses Celsius, and agent B uses Fahrenheit, the freezing (boiling) point of water (or
the normal human body temperature) are the “same” for both, and might be chosen as focal
points. Another example might be agents choosing 7, or the square root of 2, or e &~ 2.71828,
regardless of what base number system they are using.

Here, the focal point is associated with a natural phenomenon, and the different methods
agents use for measuring won’t disturb their agreement on a focal point. This, of course,
assumes that the action which the agents are coordinating is itself independent of the repre-

sentation of the focal point.

Example 6 Different ontologies, different focal points Agent A uses miles; agent B
uses kilometers; both use integers for measuring; A chooses a focal point of 10 miles; B
chooses a focal point of 10 kilometers. Similarly, if A uses U.S. dollars and B uses pounds
sterling, they might have different focal points (using the concept of round numbers!?).
Similarly, if agent A uses the base 10 number system, and agent B uses the base 8 number
system, they may choose different focal points, with different concepts of what constitutes a
round number.

Here, the focal point is associated intrinsically with the method of measurement used by
agents. Therefore, when agents use different measurement systems, they will reach different

focal points.

In the focal point algorithms we present below, we use methods that are not sensitive to
the specific ontologies used by the agents (as in Example 5). For example, our “uniqueness”
criterion is used to evaluate how many objects have a specific property, but it does not

depend on the name of the property.

agents who cooperate to solve a global task. The latter consists of independently-designed agents who, while
interacting, pursue their local goals without consideration of global group utility. The ability to rely on
one’s interaction partner’s having an identical ontology is one aspect that truly differentiates DPS from MA
systems.

124Round numbers” seem to be good focal points because they are the numbers that uniquely satisfy the
predicate Evenly-divisible-by-base. Although this may seem like an unusual predicate, it is actually strongly
reinforced by cultures, playing a role in how people learn about numbers and the words that name those
numbers (twenty, thirty, etc.).
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3.4 The Application of the Decision Theory Focal Point Method
to Robot Rendezvous

We have, up to this point in the paper, demonstrated the concept of focal points primarily
through examples found in [68]. Most of these examples, originally presented by Schelling,
are quite simple. Even though they bear a relationship to real world examples, they were
specifically designed to demonstrate the focal point concept.

Validation of the power of focal points as a communication-free coordination heuristic
would seem to be difficult and certainly dependent on the specific domain in which it is used.
A real-world test of a focal point algorithm, however, runs the risk of being overly specific
to the domain over which it is held.

In order to overcome this problem, we apply the focal point decision theory model to an
abstraction of a real world situation. We assume that there are objects in the world with
various properties, and we want two agents to choose one of the objects (i.e., the same one)
without communicating. If the two agents choose the same object, we have a “meeting,”
and a success. Our approach here is to check a focal point decision theory algorithm in
simulations of various randomly generated worlds and to see just how useful the focal point
technique is.

We make no assumptions about the properties of the objects, the way they are ordered,
or any other special characteristics of the domain, beyond the very general description given
above. The algorithm we explore in this section is intended to be useful in any domain that
satisfies the outlines of the description above.

The power of focal points in coordinating meetings among agents was highly evident in
our simulations. We found that in most situations there is more than a 90% probability that

the agents will meet, and in many situations the probability rises to 100%.

3.4.1 Situation Description

Two agents are trying to choose the same object out of a set of objects. The following
examples might occur in an environment where communication is difficult (radio frequency
disturbance, or secrecy demands during a battle, or the simple inability to communicate
because a specific frequency has been jammed), and therefore an attempt must be made to
come to an agreement without any communication. There are various scenarios that might
require this kind of communication-poor interaction. For example, two agents that are out of
touch with one another must agree on the same plan of action, out of a set of several equally
reasonable plans. Another example is of agents who are unable to communicate, but who

must choose one of several “safe houses” where they will meet and communicate. Another
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possibility is when agents may actually need to reestablish communication by choosing a
radio frequency to use for future messages.

The worlds we examine have the following characteristics:

e There is a group of objects (denoted by Term) out of which the agents must choose

one (ideally the same one).

e As described above, there is a set of predicates Pred. Each of the predicates P € Pred
has two arguments: an object in Term and a value from the set Valuep, so that each

object has a value for each predicate.

e Any characteristic of an object can be encoded in the values that the predicates can
take. We assume, without loss of generality, that the predicates in Pred are ordered

and numbered by 1, 2, 3, and so on.!3

We make the following additional assumptions:

1. The agents observe the same objects and properties in the world. They have the sets

Term, Pred, and Valuep’s, as described above.

2. The agents have great flexibility regarding their internal representations of the world,
and these internal representations of the different agents need not match one another.
For example, they may have different predicates and may represent the value of the

predicates differently.

3. Utility is only attached to success in choosing the same object, not to the selection of
any specific object (i.e., the agents are indifferent about the specific objects). In game
theory, the above problem can be described using a game matrix. One agent needs to
choose a row, and the other agent needs to choose a column. The payoff for each agent

is written in the cell specified by their respective choices.

The algorithm described below is useful in situations where a single designer builds
both agents'* and sends them to an environment about which s/he does not have advance

information. If the designer suspects that the agents may lose communication and need to

13The predicates’ numbers are used only for the presentation of the paper. As is explained below, we allow
flexibility regarding the agents’ internal representation. In particular, we do not assume that the agents
assign the same names to the predicates. Furthermore, we do not assume that the agents assign the same
values to the same object, with respect to a given predicate. In some situations we even do not require
that their ordering of the values be the same. However, we do require that two values be different in the
presentation of one agent, if and only if they are different according to the presentation of the other agent.

14The algorithm is also useful if the agents were designed by different designers and if they agreed by prior
communication to use this algorithm.
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get back in touch, s/he might choose to provide them with a mechanism as described below.
Since s/he doesn’t know the exact details of their environment, the coordination policy can’t
make use of instructions such as “go to the highest building,” since there may not be a
unique building that satisfies the criterion.

The important point here is that the designer wants to use as little prior information
as possible to aid the agents’ coordination, but some prior information (e.g., the existence
of certain predicates) might still be required by a focal point algorithm. This is not an
unreasonable demand. For example, the fact that the agents have certain sensors to which
they have access mirrors the prior existence of predicates that can be used in a focal point

algorithm.

3.4.2 Decision Theory (DT) Focal Point Algorithms

In our simulations we have made use of the properties of rareness (Section 3.2.1) and ex-
tremeness (Section 3.2.3). As we explained above, the premise of the work done was that
in any random world some objects will have a predicate-value vector that is different from
those of other objects, and so the object itself will be marked as special. Several agents ex-
amining the same world will see the same “special” objects. Focal point algorithms provide
a technique to choose one of these “special objects” uniquely.

It is important to emphasize that there is no unique “focal point algorithm”; rather,
there are many algorithms that might make use of the basic focal point idea, as presented
above (the identification and use of “prominent” objects to aid coordination heuristically).
The simulations we carried out below make use of a specific DT focal point algorithm. Our
intent was to test how effective this algorithm was over a series of randomly generated worlds.
Other focal point algorithms, making use of different formulas, might have performed better
or worse. The ones which we tried did worse than the algorithm we presented [27]. The
relative success of our own focal point formula shows the basic power of the technique.

The specific formula we used in our simulations is rather simplified compared to the full
discussion that appeared above; for example, we do not make use of relative utility attached
to different objects that might be chosen, nor use of the “measure of difficulty” discussed
above. These simplifications can be viewed as a further removal of context from the world
in which the algorithm operates. The simulations thus use a technique of greater domain-
independence, since the formula they make use of requires less information about the domain

than some alternative formulas.

An important consideration in choosing a method for finding focal points is the tech-

nique’s generality. Optimally, the method chosen should succeed in finding focal points in
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all possible worlds. Of course, since there are worlds in which all objects are alike and no
focal points can be defined, there is no perfect method. However, we would like a method
that, in the majority of possible random worlds, will find a single focal point.

The method used in our simulations has three steps, based on the algorithm presented

in Section 3.

Algorithm 1 Joint selection of an object using DT focal points

1. Calculate the focal point value for all objects i € Term using the following equation:

F(i)= Y. Rf+05%ElS” (1)
PEPred
where R is the rarity of i with respect to predicate P — i.e., how rare is the value

of 1 relative to the other objects — and which E¥ is the extremeness of i with respect
to predicate P, i.e., how close (relative to the other objects) is the value of i to one of

the extreme values that predicate P takes in this particular world.*® Formally, assume
P(i,z); then,
100
Rl = 2
o || P(i' ) is true in this world}| 2)
Suppose we have P(i,x), the order on Valuep denoted by < and >, and let M AX (i, P)
be the largest of the following numbers: (1) number of objects that have the value = or

less for predicate P; (2) number of objects that have a value greater than z for predicate

P. Then we have

pr<s> _ 100MAX(i, P) 3)
o [Tern]

2. Choose the object c with the largest value that is unique in having that value. Formally,
let UFP = {i|i € Term,¥i' € Term; if i’ # i, then F(i) # F(i')}. If UFP # (), then
¢ = argmaz,. ypplF(i).

There are several aspects of the algorithm that were chosen arbitrarily. To normalize the
values calculated, an arbitrary factor of 100 was chosen. The extremeness property was
given a lower weight (0.5 in Equation 1), because it seemed to be intuitively weaker than the
rarity property. Most importantly, the definitions of the rarity and extremeness properties
are arbitrary.

Another problem we faced in creating this algorithm was the relative weight of the dif-
ferent predicates. Since we chose to assume the maximum possible flexibility in the internal

representation of the agents, we could not assume that agents would identify the predicates

15EF is only calculated if there is an order on the values of the predicate P.
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‘ object ‘ type ‘ size | color ‘
1 1 (=bridge) | 1 (=small) | 1 (=red)
1 (=bridge) | 2 (=big) 2 (=blue)
2 (=house) | 1 (=small) | 1 (=red)

2 (=house) | 2 (=big) 3 (=brown)
2 (=house) | 3 (=huge) | 3 (

O x| W N

=brown)

Figure 3: A world description.

in a similar manner. The solution, as mirrored in the formula, was to give equal weight to
all the predicates.'®

Note that if the focal point algorithm succeeds (i.e., UFP # ), the agents will definitely
meet. That is, both agents, when choosing the object according to the algorithm, know that
the other agent will also choose the same object. That is the simplest case. Sometimes,
however, the focal point algorithm fails to provide the agents with a solution. Even then,
the algorithm can help agents coordinate.!” We discuss below, in Section 3.4.9, the way the
agents can use the information provided by the DT focal point algorithm, even when it fails,

to increase the probability of meeting.

3.4.3 Example

Suppose there are five objects in the world and three predicates: Type, Size, and Color. The

values of the predicates with respect to the objects are given in Figure 3.

Some examples of how one would calculate the extremeness and rarity values are:

EP¢ — Not relevant RYPe = 0 =50

B9 =100 % £ = 60 Rjize = 100 = 50
The general formula for calculatmg the focal point value in this example is: F(i) = R" +
5 x BPeS> 4 Rsize 4 5y BEFOS> 4 Reolor L 5y BOMTS> | Qee Figure 4.

Thus, the agents choose the big blue bridge, i.e., Object 2, which has the largest unique

focal point number.'®

16n order to reformulate RY in 2 of Algorithm 1, using the functions presented in sections 3.2, it is first
important to note that the measure of difficulty of all the facts is the same. For example, we can set them all
to one, e.g., D[P(i,z)] = 1. In our algorithm, for any predicate P, term 7', and value v, f.(D[P(T,v)]) = 0.

If S is a set, then g¢.(S) = %. Similarly, concerning E§’> in equation 3 above, using the notions of
Section 3.2.3, we choose f. = f,. and g.(S) = %lill and E;’5’> = mam{Eg’S,Eq}?">}.

1"The analogy here is to a heuristic function in chess. Although such a heuristic function does not guarantee
victory, it can help guide the agent in the right direction. Similarly, the focal point heuristic can help guide
the agents to a meeting.

18Note that in this case all the objects belong to the set UFP that is defined in Algorithm 1; however,
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Object Rfype Efype R:isize EZ{”Z&’S,> ngolor EiCOIOTaS»> F(l)
1 50 0 50 60 50 0| 180
2 50 0 50 80 100 0| 240
3 33 0 50 60 50 0] 163
4 33 0 50 80 30 0 173
) 33 0 100 100 30 0] 233

Figure 4: The extremeness, rareness, and the focal point values of the objects of the example.

3.4.4 Properties of the Algorithm

The DT-focal point algorithm described above has the following properties:

Success Rate: The high success rate of the algorithm is demonstrated in the “Results”

section below.

Front End: If the DT-focal point algorithm succeeds (i.e., UFP # (), the agents will defi-
nitely meet. That is, when choosing the object according to the algorithm, both agents
know that the other agent will also choose the same object. That is the simplest case.
In the rare cases that the DT-focal point algorithm fails, both agents know that it has
failed (also common knowledge), and so this algorithm can be used as a front end for

any other coordination algorithm.

Simplicity and Intuitiveness: The algorithm is simple to describe, which is important in
case it needs to be transmitted in a noisy environment (e.g., just before communication
cut-off). In addition, the algorithm resembles human thought processes, which can help
in communication between man and machine. It seems that such simple computations

can be easily done by people (see also Section 5.)

Complexity of the Algorithm: One of the advantages of the DT focal point algorithm

is its low complexity:

Lemma 1 Given a set of objects Term and a set of predicates Pred, the complexity of
Algorithm 1 1s O(|Term| * Maxz(|Pred|, Log(|Term|))).

Domain Independence: The algorithm is applicable in any domain where there are ob-

jects, predicates, and the need to choose one of the objects.

Object 2 is the one that has the largest value.
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Independence of Agents’ Internal Representations: All agents must have sets of ob-
jects, predicates, and values for the predicates. However, the agents may have different
names for objects, predicates and values. For example, one agent might see a big house
and a little house, i.e., Size(1,big) and Size(2,little), while the other agent sees a
medium sized house Size(1, medium) and a small house Size(2, small), respectively.
Furthermore, agents may have different names for the houses; i.e., the first agent may
denote the big house by 1 and the small house by 2, and the second agent may call
them 2 and 1, respectively. They may also use different terminology internally; the first
agent may use the concept of “house” and the second the concept of “building.” Fur-
thermore, the algorithm is applicable even if the agents order the values of a predicate
differently.

3.4.5 Description of the Simulations

A configuration of the world included the number of objects and the number of predicates
in the world. For example, a possible configuration is two predicates and four objects. In
each run of the simulation with a given configuration, a new random world was created by
giving values to the predicates with respect to the objects. First, the number of values that
a predicate could take was randomly chosen from the range 2-20.1° Second, the values were
generated for each predicate/object pair. For example, in the configuration of two predicates
and four objects, it could be determined that the first predicate would have 3 values, while
the second predicate would have 2 values. A randomly generated world may specify that
the value of the first predicate with respect to the first two objects is 1, that it is 3 for
the third object, and 2 for the fourth object. In addition the value of the second predicate
with respect to the first object is 2, and it is 1 for the other three objects. After randomly
generating a world, the third step was to calculate the focal point value for each object of
the world, as described by Algorithm 1. Finally, if there was an object with a unique focal
point value, the run was considered a success; otherwise, it was deemed a failure.

To make the simulations computationally tractable, we assumed that the world contained
up to 19 objects, that there were up to 9 orthogonal predicates, and that each predicate had
up to 19 different possible values.

For each configuration, 500 runs over random worlds were simulated, giving a calculated
accuracy of 5% (with 95% probability [14] [Section 7]). The final output of 500 runs for each
configuration was a number between 0 and 100 that represented the probability of finding

an object with a unique focal point value in a random world with the parameters described

19We also consider situations where, the number of values of the predicates, was the same for all the
predicates and was fixed in advance.
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above. That is, the number represented the probability that the agents would be in a world
such that they would definitely meet when they use the focal point mechanism.?

We conducted four sets of simulations. In each set of simulations, we varied some aspect
of the world (such as the distribution of the values of predicates and the homogeneity of the

world) in order to cover a variety of situations in which agents might find themselves.

A. Same number of values, even distribution: In this set of simulations we consider

configurations where:

1. The number of possible values for all predicates are the same.

2. There is an even distribution of values.

Thus, first we ran simulations when there was only one predicate, and then when there
were two predicates, etc., up to 9 predicates. For each case, we tested the algorithm
when all of these predicates had 2 possible values (e.g., true and false), then when all
the predicates had 3 values etc., until the case where all the predicates had 19 possible
values. For each such setting (e.g., 3 predicates, each with 4 values), we considered
situations of 2 objects, 3, objects etc., until we reached situations of 19 objects. For any
given configuration (i.e., number of predicates, number of values for all the predicates
and number of objects), we ran the simulations as described above 500 times, with the
specific value with respect to each predicate which is assigned to a given object chosen
randomly each time among the possible value of the predicate. For example, when the
configuration of 5 objects, 6 predicates, and 4 values for each predicate was considered,
for each object and predicate, one of the 4 possible values was chosen with an even

distribution.

That is, we considered 18 X 18 X 9 = 2916 configurations, and for each of them we
randomly generated 500 worlds and for each world calculated the focal point value.
As mentioned above, running the simulations 500 times gives an accuracy of 5% (with
95% probability [14] [Section 7]). Note that the type of worlds that were considered in

this set of experiments is extremely homogeneous.

B. Different number of values, even distribution: In this set of simulations, the world

had the following details (in addition to the general structure described above):

1. The number of values for each predicate was randomly chosen among all the

possible ones.

20This in no way depends on the number of agents in the world.

33



2. There was an even distribution of values.

In this case, given a possible configuration, for each predicate the number of possible
values was randomly drawn from the range of the number of values. For example,
when the configuration of 5 objects, 6 predicates, and 2 — 19 values for each predicate
was considered, first (for each predicate) the number of possible values was randomly
chosen from the range 2 — 19. Then, for each object and predicate, one of the possible

values was chosen with an even distribution.
For each configuration, we again ran the three-step simulation 500 times.

This set of experiments was motivated by the observation that the size of possible
values for different predicates may vary. For example, in a given world there may be

two types of objects, but they may have ten possible colors.

C. Different number of values, even and dependency distribution, ordered values:
In this set of simulations, the world had the following details (in addition to the general

structure described above):

1. The possible values in the world were distributed using an even distribution.

2. Some of the predicates were statistically dependent on other predicates. For
example, suppose there were two predicates, as in the example of section 3.1.
Suppose that Type can have two values: House and Tree and Color can be either
Green or White. It is clear that, for a given object, its color depends on its type;

e.g., there are more green trees than green houses.

3. The predicates’ values were ordered.

The dependency among predicates was defined as follows: we randomly chose?! % of
the predicates to be dependent on the predicates before them, in the following manner.
Assume Pj(z,v;) is true in the generated world. Suppose that P;;; was selected to
depend on P;. Then, we added Pj(x,v;41) to the world, where vj4; = [# + 7/, and

where » was randomly chosen between 0 and 1.

Again, for each configuration, we ran the three-step simulation 500 times. This set of
experiments was motivated by the observation that there may be dependencies among

the different predicates.

2In each run, different predicates were chosen.
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D. Different number of values, binomial and dependency distribution, ordered values:
This case is similar to the previous one, but the values of the independent predicates
were chosen with a binomial distribution, rather than an even distribution. We con-
sidered this case also so as to show that the type of distribution (which is not realistic)

does not really affect our results.

The consideration of the above four different cases demonstrates the applicability of our

algorithm in a wide range of situations.

3.4.6 Results and Explanations

The results of cases B-D are presented in Figures 5-7, respectively??. The rows correspond to
the given number of objects, and the columns correspond to the given number of predicates.
In general, the results of the simulations show that the success rate of the algorithm was
very high.

For example, in case B (Figure 5), if there are at least 6 objects and more than one
predicate, then in at least 99% of the possible worlds the agent will definitely choose the
same object. If there are more than 2 predicates and more than 2 objects, then in at least
97% of the worlds the agents will definitely choose the same object. The only cases where,
only in a very low percentage of the worlds, the agents will definitely choose the same object
are when there is only one predicate or two objects. When there is only one predicate,
there is not enough information about the objects to allow for identifying one of them as
a focal point. When there are only two objects, in situations which are symmetric, e.g., if
one of the objects is green and the other blue, the measure of their rareness is the same.
As we explained above, in these cases the agents may still use a variation of the algorithm
to increase the probability of their choosing the same object (see Section 3.4.9 below for
details).

A similar success rate was obtained in Cases C and D. In Case C, if there are at least 5
objects and more than 2 predicates, then in at least 99% of the possible worlds the agents will
definitely choose the same object. If there are more than 2 objects and at least 3 predicates,
the success rate is at least 97%. We suspect that the need for at least 3 predicates to
obtain the high rate, compared with Case B, where 2 predicates were enough, is due to the
dependency among the predicates in Case C. Nevertheless, the results demonstrate that even
in this case of dependency among the predicates, a low success rate is obtained only in cases

where there are only one predicate and two objects.

22We discuss Case A below.
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No. of No. of Predicates

Objects 1| 2| 3| 4| 5| 6| 7| 8| 9
2 8| 61| 8| 73| 8 | 82| 88| 83| 87

3 97 | 100 | 100 | 99| 99| 99| 99| 99| 99

4 91| 90| 97| 98| 97| 98| 99| 99| 99

5 93| 98| 99| 99 (100 | 99 | 100 | 100 | 100

6 91| 99 | 100 | 100 | 100 | 100 | 100 | 100 | 100

7

8

9

89 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
87| 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
8 | 99 | 100 | 100 | 100 | 100 | 100 | 100 | 100
10 871 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
11 83| 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
12 84 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
13 82| 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
14 81 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
15 80 | 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
16 771 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
17 79| 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
18 73| 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
19 72| 99| 100 | 100 | 100 | 100 | 100 | 100 | 100

Figure 5: Probability of definitely choosing the same object in case of different number of
values, even distribution (B).

In Case D, we obtained slightly better results than in Cases B and C. In Case D, if there
are at least 5 objects (as in Case C) and more than 1 predicate (as in Case B), then in at
least 99% of the possible worlds the agents will definitely choose the same object. If there
are more than 1 object and at least 1 predicate (as in Case B), the success rate is at least
97%. Thus, changing the way in which the values of the independent predicates were chosen,
from even to binomial, further improved the results slightly; but in all cases, regardless of
the exact configuration, we obtained excellent results.

Case A, discussed above, consists of nine tables, not all of which are presented here.
Instead, we present the two extreme situations from among these nine tables. In Figure 8
the results of the simulations when there is only one predicate are presented, and in Figure 10
the results in the case where there are nine predicates are presented. In both cases the rows
correspond to the given number of objects (as in Figures 5-7), but the columns correspond
to a given number of values of the predicates (which was chosen, in Cases B-D, randomly.)

In Cases B-D, when there was only one predicate, and the number of values for each

predicate was chosen randomly between 2-19, the focal point algorithm did not have a success
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No. of No. of Predicates
Objects | 1] 2] 3] 4] 5| 6] 7] 8] 9
2 85 | 67| 8 | 76| 87| 85| 83| 88| 89
3 97199 99| 99| 99| 99| 99| 100 | 99
4 91193 97| 97| 99| 99| 99 | 100 | 100
5 93198 | 99| 100 | 100 | 99 | 100 | 100 | 100
6 91|98 | 100 | 100 | 100 | 100 | 100 | 100 | 100
7 89199 | 100 | 100 | 100 | 100 | 100 | 100 | 100
8 87198 | 99| 100 | 100 | 100 | 100 | 100 | 100
9 85198 | 99| 100 | 100 | 100 | 100 | 100 | 100
10 87197 | 100 | 100 | 100 | 100 | 100 | 100 | 100
11 83|98 | 100 | 100 | 100 | 100 | 100 | 100 | 100
12 84 |98 | 100 | 100 | 100 | 100 | 100 | 100 | 100
13 82|97 | 100 | 100 | 100 | 100 | 100 | 100 | 100
14 81198 | 99| 100 | 100 | 100 | 100 | 100 | 100
15 80 | 98 | 100 | 100 | 100 | 100 | 100 | 100 | 100
16 77197 | 100 | 100 | 100 | 100 | 100 | 100 | 100
17 79199 | 100 | 100 | 100 | 100 | 100 | 100 | 100
18 73196 | 99| 100 | 100 | 100 | 100 | 100 | 100
19 72197 | 99| 100 | 100 | 100 | 100 | 100 | 100

Figure 6: Probability of definitely choosing the same object in
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No. of No. of Predicates

Objects | 1| 2] 3] 4] 5] 6] 7] 8] 9
2 81| 72| 82| 79| 8 | 8 | 90| 89| 92

3 951 99| 99| 99| 99| 99 (100 | 99| 99

4 90 | 97| 98| 98| 99 100 | 99| 99| 100

5 93| 99 | 100 | 100 | 100 | 100 | 100 | 100 | 100

6 91| 99| 99| 100 | 100 | 100 | 100 | 100 | 100

7

8

9

89 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
871 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
871 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
10 89| 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
11 87 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
12 84 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
13 85 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
14 82 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
15 83| 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
16 80 | 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
17 84 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
18 78 | 99 | 100 | 100 | 100 | 100 | 100 | 100 | 100
19 78| 99 | 100 | 100 | 100 | 100 | 100 | 100 | 100

Figure 7: Probability of definitely choosing the same object in case D.
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g

No. of Values for each Predicate

2] 3] 4] 5] 6] 7] 8] 91011 12[13] 14| 15] 16] 7] 18] 19
2 [53[65[77[79 8388878989 93] 92[93] 95[ 93] 93| 93] 96| 94
3 | 789293959697 97999999 99 [99| 99| 99100 | 99| 99 | 99
4 |46 748387 [ 91|95 95 |97 |97 |97 | 97|99 | 98| 98| 99| 99 99| 99
5 | 28|72 8894969897 999999 99|99 | 99| 99| 99 | 100 | 100 | 99
6 |20 |64 |84 9295|9697 97 98|98 99|99 | 99| 99| 99| 99| 99| 99
7 | 9 (58|77 8791|9596 98 98|98 99|99 | 99| 99| 99| 99| 99| 99
8 | 74177899497 98979999 99|99 100 99| 99 | 100 | 99 | 100
9 | 4[30|72[80 |91 |91 9497 98|98 98|98 | 99| 99| 99 | 100 | 99 | 99
10 | 228638390 95] 97989999100 99| 99| 99| 99| 99 | 99 | 100
11 | 2205173899394 979897 | 99 98| 99| 99| 99| 98| 99| 99
12 | 0|12 |44 |77 89949597 |99 99| 9999|100 | 99 | 100 | 100 | 99 | 100
13 | 0| 634658491 93[95[97 98| 97| 98] 99| 98| 99| 99| 99| 99
14 | 0| 9316381 92]93[97[99 98| 9999|100 | 99 | 100|100 | 99 | 100
15 | O| 626557390 9295|9898 99 99| 99| 98| 99| 99 | 100 | 99
16 | 0| 3|18[48 75|86 9195|9799 100 99| 99100 | 99| 99 | 100 | 99
17 | 0| 2|17 4371839397 |96 98| 9999 | 99| 99| 99| 99 | 100 | 100
18 | 0| 0| 13395883 9296|9898 9899 | 99| 99| 100|100 | 99 | 99
19 [ 0] of11[33]59 75899496 96| 98] 99| 99| 99| 99| 99| 99| 99

Figure 8: Probability of definitely choosing the same object in case A, with one predicate.
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rate as high as in the other configurations. The results in Figure 8 allow us to conclude that,
even in the case where there is only one predicate in the world (e.g., height), if the number of
values for each predicate is large enough, the chances that in any given world the agents will
definitely meet are very good. For example, if there are more than seven predicate values,
more than two objects, and fewer than 19 objects, in at least 91% of the worlds the agents
will definitely meet. The only cases where there is a low chance that the agents will definitely
be able to meet are when there are two or three values to the predicate. When there are 9
predicates (Figure 10), and in all cases where there are more than two objects, in at least
98% of the possible worlds the agents will definitely meet.

It can be observed that the results presented in Figure 10 are better than the results
presented in Figure 9, which are better than those presented in Figure 8. In general, as the
number of predicates and/or values increases in the world, the data describing an object
become more complex. If the data are more complex (i.e., chosen out of a wider range of
possibilities), there is a higher chance of finding a special object, i.e., an object which is rare
or extreme. Thus, in these cases the probability that both agents will find a unique focal
point is higher than in the cases where the agents’ data is simpler, and thus the objects have
similar properties.

There are also some specific configurations which lead to better results. For example,
in most of the cases (see for example Figures 5, 6) when there are 3 objects with a small
number of predicates, the probability is higher than when there are 2 or 4 objects. A
similar effect is found for higher numbered odd and even objects as well. However, the effect
weakens. Although the selection of an object as a focal point is, in our algorithm, driven by
a combination of factors, it should be noted that some of the factors may have greater weight
in some situations. A typical reason for this differential effect of factors is that some factors
have an overall relatively low contribution to the focal point score and/or a low variability
between the objects. However, as the number of relevant factors goes down, the individual
behavior of the factors begin to take central stage. Thus, a possible explanation for the
supremacy of low-count odd numbers of objects is that the probability of an object having a
“unique” score may be higher if there is an odd number of objects, possibly since, if there is
an even number of objects, the scores may be paired. When the number of objects increases,
the probability of pairing goes down, so there is less of an effect of the parity. Generally, an
overall low focal point score is indicative of situations where only a small number of factors

are relevant.
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g3

No. of Values

2] 3] 4] 5] 6] 7] 8] 9] 10| 11] 12| 13[ 14| 15[ 16| 17] 18] 19
2 80| 8| 8| 8 | 82| 8 | 8 | 88| 8| 91| 88| 8| 90| 89| 92| 8| 92| 92
3 99| 99| 99100 | 100 | 99| 99 991|100 | 99| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99
4 98 1100 | 99 {100 | 99| 99| 99 98| 98| 99| 98| 98| 98| 97| 97| 99| 99| 99
5 99 | 100 | 100 | 100 | 100 | 100 | 99 | 100 | 100 | 100 | 99| 99 | 100 | 100 | 99| 99| 99| 99
6 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
7 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
8 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
9 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
10 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
11 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
12 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
13 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
14 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
15 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
16 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
17 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
18 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
19 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
Figure 9: Probability of definitely choosing the same object in case A, with seven predicates.

No. No. of Values
Obj| 2| 3] 4[] 5] 6] 7] 8| 9] 10 11] 12] 13| 14| 15[ 16] 17] 18] 19
2 82| 82| 86| 8 | 87| 86| 87| 89| 88| 88| 92| 91| 90| 89| 91| 87| 92| 91
3 100 | 99100100 | 99| 99100 | 99| 99| 99| 99| 99 |100| 99| 98| 98| 98| 98
4 98 | 99| 100 | 100 | 99| 99| 99 99| 99| 99| 99| 98| 98| 99| 98| 99| 98| 98
5 100 | 100 | 100 | 100 | 100 | 100 | 99 | 100 | 100 | 100 | 100 | 100 | 99| 99 | 100 | 99 | 100 | 100
6 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
7 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
8 99 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
9 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
10 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
11 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
12 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
13 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
14 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
15 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
16 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
17 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
18 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
19 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

Figure 10: Probability of definitely choosing the same object in case A, with nine predicates.
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3.4.7 Modification of the experiment

Several simple modifications of the simulated worlds were tested. The results presented
above covered cases where both agents had the exact values of predicates in the world. We
ran similar sets of experiments where the agents have only the ordinal values. For example,
suppose there are three houses in the environment. The first is 3 meters tall, the second is 5
meters tall, and the third is 9 meters tall. Then, in this modified simulation, one agent can
have the information Height(1,2), Height(2,3), and Height(3,5), while the second agent
may have Height(1,4), Height(2,7), and Height(3,9). The probability of the possible
worlds where the agents definitely meet, using the focal point algorithm, was very similar to
the world in which both have the same exact values.

With the same focal point function, we tested the case in which not all the predicates
had an ordering and only some (i.e., half) had values. For example, colors and fruit types
cannot be ordered. The results obtained seemed to show that the algorithm disregarded the
predicates that did not have an ordering and gave similar results in the case where the number
of predicates was half the number of predicates tested in this case. This is reasonable, since
the predicates where both extremeness and rareness were computed dominated the ones in
which only rareness was considered.?

To take care of the case where no predicate had an ordering, we slightly modified the
focal point function and used only the rareness property. The results in Case B are presented
in Figure 11. It is clear that when there are only two objects, there is no way to choose
one of them based on rareness; hence the zeros in row 2. Also, when there is only one
predicate, the probability that the agents will definitely meet is very low. However, if there
are at least 7 objects and at least 4 predicates, then, in more than 94% of the worlds, the
algorithm will succeed. In general, as the number of predicates and objects increases, the
probability of definitely meeting also increases, even in this case, where the values are not
ordered. This seems to be the case in all of our experiments and indicates the convergence
of our algorithm. As mentioned above, as the number of predicates and values increases,
the information describing each object becomes more complex, which in turn increases the
probability of finding a special object which is chosen as a focal point.

The next case tested was one where both agents see the same world, but each agent has

its sensors calibrated differently, so that each “sees” in a different dynamic range (one has %

23This is essentially a feature of our specific algorithm. The focal point value for each object was a

combination of the rareness (RF) and the extremeness (Ez-])’s’>) with respect to all predicates. If the values
P757>
i
that this predicate contributes to the sum is, on the average, only half of what is contributed by each of the
other predicates, and thus P has less effect on the focal point value than do the ordered predicates.

of a predicate P are not ordered and E = 0, it does not contribute to the focal point value, so the value
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No. of No. of Predicates

Objects 1|2| 3| 4| 5| 6| 7| 8| 9
2 0 O 0 0 0 0 0 0 0

3 31| 54| 68| 77| 80| 87| 88| 91| 91

4 8133 42| 55| 62| 71| 75| 82| 82

5 17 |55 | 76| 8 | 90| 93| 94| 97| 97

6 9149 68| 81| 88| 93| 95| 96| 98

7

8

9

11| 65| 88| 94| 97| 98| 98| 99| 100
9161 8| 96| 97| 99| 99| 99| 100
10180 92| 99| 99| 99| 99 100 | 100
10 10|75 92| 98| 99| 99 | 100 | 100 | 100
11 11181 97| 99| 99 | 100 | 100 | 100 | 100
12 12 {8 | 97| 99| 100 | 100 | 100 | 100 | 100
13 11 {8 | 99| 99| 100 | 100 | 100 | 100 | 100
14 11| 8| 97| 99| 100 | 100 | 100 | 100 | 100
15 11 {8 99| 99| 100 | 100 | 100 | 100 | 100
16 12 | 87 | 99 | 100 | 100 | 100 | 100 | 100 | 100
17 12 | 92 | 100 | 100 | 100 | 100 | 100 | 100 | 100
18 10|90 | 99 | 100 | 100 | 100 | 100 | 100 | 100
19 10 | 92 | 100 | 100 | 100 | 100 | 100 | 100 | 100

Figure 11: Probability of definitely choosing the same object in case of a different number
of values, even distribution (B), non-ordered values.
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of the range of the other). This algorithm yields a probability of meeting which is lower than
50%, and decreases as the number of objects and values rises. If the results are compared
to the random case (where objects are chosen at random, for lack of a better method), the
results are still improved, using the focal point algorithm, but not as dramatically improved.
We believe that this effect is due to some specific technical features of our algorithm. Our
algorithm strongly depends on two predicate values being differentiated by one agent iff they
are also differentiated by the other one. Thus, for example, if one agent observes that objects
1 to 5 have values 1, 2, 2, 4, and 4, respectively, with respect to a given predicate, then it
will choose the first object as a focal point. If the sensors of the other agent are calibrated
differently and it cannot “see” the value 1, observing only the values 2, 2, 2, 4, and 4 for the
same predicate, for objects 1 to 5 respectively, then the second agent will not select the first
object, but will randomly decide between the fourth and fifth objects.

The above results were obtained when we used both the uniqueness and the extremeness
criteria. We suspect that if we had used only extremeness and assumed that, given values a
and b of a given predicate, a # b for agent one iff a # b for the second agent, then the results

obtained would be closer to 100%, as in the other cases.

3.4.8 Environments with Noise

In our model we assume that an agent uses its own view of the world to select a focal point.
However, there are situations where the agents’ information about the world is not exactly
the same. We tested the performance of our algorithm in such situations by introducing
noise to the environment. As can be expected, the algorithm does not perform as well in
these cases as in cases with full information; however, it still performs much better than
random choice and other methods that we checked.

In this set of simulations we considered configurations as in Case A: i.e., in each run,
the number of possible values for all predicates are the same. In each run of the simulation,
one agent received a randomly generated world as in the previous cases. The other agent
received a modified world, in which with probability X, the value associated with a given
predicate and a given object was different from the one in the original world and was chosen
randomly from the rest of the values. For example, suppose that, in a configuration of a
specific run, the predicate Color has three possible values: white, black, and green. If in the
original world (given to the first agent), the color of object 1 is white, then, with probability
X, the color will not be white, but either black or green. We consider situations where X
was either 5% or 10% and present the results when there is only one predicate (Figures 12

and 13), and when there are seven predicates (Figures 14 and 15.) We also considered other
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situations and obtained similar results.

It is clear that as the amount of noise in the environment increases, the performance of
the algorithm decreases, but it is still much better than choosing randomly. In particular, as
the number of objects increases the performance of the algorithm decreases (but so does the
probability of success when choosing randomly). In addition, as the number of predicates
increases, the performance decreases. We suspect that this is because the number of errors
increases when the number of objects and the number of predicates increase. For example,
the probability that the agents will have exactly the same world when there are 9 objects,
7 predicates with only 2 values, and 5% or 10% noise is only 0.039 and 0.0013, respectively.
On the other hand, as the number of values of the predicates increases, the performance
of the algorithm improves. This is because the rareness and the extremeness properties do
not depend on the exact values of the predicates, and as the number of values increases, the
damage that can be caused by the errors is less severe.

We also developed other algorithms which did not depend on the exact properties of the
objects, but rather on their “distance” from each other in the “properties space.” We found

out that the performance of our original algorithm was the best ([27].)

3.4.9 Extension of the Algorithm to Probabilistic Choice

In previous sections, the focal point algorithm provided the agents with a mechanism for
guaranteeing their meeting. That is, the algorithm provided a technique to identify if there
was a unique object. If the algorithm succeeded, the meeting was guaranteed. If the algo-
rithm failed, the agents were aware of the failure. As we explained before, the data presented
in the tables above measured the probability of definitely meeting in a random world with
different sets of configurations. However, even when the focal point algorithm fails, the
information that it provides can be used to increase the probability of a meeting.

A focal point algorithm cannot guarantee a definite meeting in a given world when UFP =
(. In such situations, the agents should look for the smallest set of objects whose focal point
value is the same and choose one of them randomly. This is described in the following

algorithm.
Algorithm 2 Extended Focal Point Algorithm for Probabilistic Meeting
1. Perform steps (1 — 3) of Algorithm 1.

2. If UFP =, then divide the objects in Term to sets, S,...,Sk, where 1 < k < |Term|**
such that the objects of each S; have the same focal point value, i.e., for all1 < j <k

24Note that since UFP =0, k < _I’E;ml_

45



No. No. of Values for each Predicate
Obj| 2[ 3] 4[ 5] 6] 7| 8] 9J10|11[12]13[14[15]16] 7[18]19
2 5161 |72][75]79]83 |82 (8586|8388 [89[91][91[90]89]91]93
3 [ 70818 [91]91[90[93[91[92|94[95[93[93[94|94][95]095]92
4 |45 |68 7881|8788 9089 [90 (90|89 [91[92]91[93]94]|091]093
5 [30[67|81[82|86 |86 |89 [8 (90|89 [91[92]90]92[92]91]92]091
6 |19 [58|75(83 |82 |86 |86 |86(8 |[90|89[90[90]90|90]90]| 88|92
7 8|48 |67 [ 77|79 |81 88 |85[88 (89|87 (90 |92]91]91]89]91|88
8 4134|6671 |81[82 |88 |83 [87 |83 |85(88 8687|8587 |91]90
9 4133577280 |81 |82[83 (86|86 |88 |87 |88 [87[83[89 88|91
10 | 0|21 [51]69|76[79|83|86|83 82|87 |85|86|87|85/|88|88]89
11 | 0134662 |73 [76 |80 |83 [82|82[86(83 |81 (86|87 |87 |85]87
12 | o 84164 |72 77|76 [82]84 |83 |85 83|84 |88 |87 [86|88]88
13 ] 0 732577073 |79|78[78|82[83 |84 |82/[87 (8683|8787
14 [ 0| 53048 |67 [76|80[83[83 7982|8384 [81|82][85]|87]86
15 ] 0] 2204560697480 [79[8 [80[85[81[84[83[83[85]85
16 | 0 3[15(37|60[68 |73 75|78 |79[80 8582828283 |84]86
17 [ 0] 21033 [50[64|75[8 |77 80 [79 82|81 [81|85][85]|87]83
18 | o 11227 [52]62|69 | 7478|7781 |82 |81 [81|81[83|85]87
19 [ o 1] 8224958 |70[72|73|75[80 81|80 |81 |83 |84 |84 ]84

Figure 12: Probability of definitely choosing the same object in case A, with one predicate
and 5% of noise.
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Z
o

No. of Values for each Predicate

o
. ¢

2] 3] 4] 5] 6] 7] 8] 9[10[11]12]13|14[15[16] 7[18]19
2 |48 [62 |68 72|78 |81 |78 86|80 86|87 |87 |87[91|87[88]|87]89
3 |67[74]82]84]83|85[88 |87 [89|87[89[87|90[89]|87[89]89]89
4 416672 |76[79|8082]83|83[83|83[85]|87|83[86]85]85]86
5 |30 (61|71 78|79 |81 |84 |79]82|84[82[82)|83[80|84]85]86]82
6 |15 (58|62 74|76 |77 |78 |80 83| 76|81 |86 |83[83|85]83|82]|85
7 | 6476169 |71 |76 74|77 79|78 81|78 |81 84|85 |83]|82]|84
8 | 3[35|55[60|70|69 |76 |79 |77 777977 |77[79|80[81|82|79
9 | 2[25[48[59 6266 [72|74[73]76[78[77|76[76| 7775|7878
10 | 0]18|47[60 | 65|68 |69 |74[70|76[78 |77 81|76 |76|77|79]|74
11 | 1[15|35[55[59[66[70|70[69 |71 7375|7674 |74[76]| 77|73
12 | 0] 7|33[50]62]64[64|68[69|72[72[77|73[76|74[77]78]76
13 | 0] 82849 55|60 |63 |65|64)|68[71|72[72|75|74[73]|76]|74
14 | 0] 3]20[37|52][58[64|64[68|67[72[72]69[74]|71[74]75]76
15 | 0] 2]18[36[48[56[63[66[66|65][72[73|67[7L[70][71[72]72
16 | 0] 210324554 (62 |64[65|69|70|65|68[70|74][70]|70]|73
17 | 0] 1]11[29|45[55[61 |64[65)|66[67|69]66|70|66][70]71]74
18 | O] 1] 9[24[41[49[54|58[59|64[63]66]|67[68|73][73]73]73
19 | 0] 1] 6223649 [57|57[64|61]63]63)|69][67]|66]68]70]68

Figure 13: Probability of definitely choosing the same object in case A, with one predicate

and 10% of noise.
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No. No. of Values for each Predicate
Obj| 2[ 3] 4[ 5] 6] 7| 8] 9J10|11[12]13[14[15]16] 7[18]19
2 7479|7978 777980 [84[82|83[83[84[86]85[8) ]88 ]|88]85
3 [ 8385|865 (86|84 |84 85|82 (86|87 |87 [87|86[85|85[83|87]86
4 8o |78 |77 |81|79|76| 9|76 |79 77|77 | 4|77 | 79|78 |76 75|77
5 |84 |76 |75 |78 | 75|76 |74 |76 |77 |76 72|76 |75 | 73|77 | 74|74 74
6 |78 73|76 |73|69 |75 |73 |74 73|71 |77 |76 |73 75|75 75]|75]73
7 |36l ri|72|67 | 73|76 | 4|71 |73 |5 |76 | 72| 7L|76 |73 | 71|74
8 |75 72727068 71|67 ]69 |73 |72|70]|72]70][69]|70]|72]|67]67
9 [75]72|70[66|68]66|65|70]67|64]68[68[72]67[68][67]69]70
10 [74 |70 65|67 |68]66|65|68|66[68[69[67[69]69|70][72]69]71
11 [75 |70 67|68 |68 |67 |65]66]64[63[65[67]62]63[69]67]64]62
12 [ 756869 69|64 |67 |64]68]67|63]64|66]|63]64]|65]64]64]66
13 [72|65|67|61|62[65|64|65|68|63[65|66]|64|67|63]68]|61]68
14 [71]67]63]63[62[69|65]64]63[66|67[65]62]69]65]66]|61]62
15 [76 67646861 [59[62[59]62[67][68[63][64][60[61]62]67]66
16 [ 69|64 [67]62|62[63|62]64]60[59][59[63]65]62][65]59]62]61
17 [ 737016662 |57[62|63]65]58[62]61[65]64]60]62][65]60] 62
18 [ 68|67 |66 |64 |64[62|62[63]63[53[62[61]60]61][62]60]62]61
19 [70 65636264 [57]62]63]63[61[57[61]60]59]|59][59]64]63

Figure 14: Probability of definitely choosing the same object in case A, with seven predicates
and 5% of noise.
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No. No. of Values for each Predicate
Obj| 2[ 3] 4[ 5] 6] 7| 8] 9J10|11[12]13[14[15]16] 7[18]19
2 716|734l 27|78 rr|8 | 767681 ]78][81[8 |84 |79 |79
3 [ 7373|4233 |23 73| 8|76|79| 5|77 |74]76]|76]73
4 676967 |66|67]67[69[69]|65[62|67|64]64]64]62]63]65]62
5 | 64[67|66[60|63]61|62[60]59|63]|63|64]61]58]|59]61L|60]59
6 |65]63|62[56|60]|62|63]|55|57|63[60|63]63]58|59]57]59]62
7 | 6158|5858 |61]62|58|56(58|60[59]|56]|57]61]|59]61L|61]61
8 | 6155|5753 |55/|55|55/[53[57|53[57|53][55/(54(55]56]|53]55
9 [56[60|53[55|53|57|54[53][55|54][55[49(55](56](51][51]57]54
10 [ 59|56 56|57 |50[53|48 [53]56|53[56(50]50/(50(50]55]53] 52
11 [ 615556 |58 5252|5251 ]50([55][53[50]51]47[52]55]52]51
12 [ 58 [ 50 [ 49 |44 |49 [ 51 |48 [48 |49 |50 [ 49 |50 |49 [ 51 [ 52 [ 46 | 49 | 51
13 [ 6052|5452 |52[50(49 5147 |51 [53|45(52]48|50](50]| 53] 49
14 [ 58 |50 |49 [ 52 |53 |54 |47 [ 46 |47 49|49 |50 [ 47 |53 [ 51|52 | 48|50
15 [59 [ 535150484945 [50 51 47|50 [52 [ 44|48 [43 [ 474750
16 |54 [ 51 | 51 |47 | 46 | 45 [ 48 | 49 | 49 | 49 | 46 | 48 | 47 | 48 | 47 | 47 | 45 | 45
17 | 61|54 | 53 |45 | 46 | 45 [ 51 | 48 |45 |49 | 44 [ 44 | 48 | 45 | 47 [ 49 | 48 | 45
18 [ 58 |54 [ 5249 |46 | 47 |47 [ 44 |50 |45 [ 43 |43 |51 |44 |47 [ 45|45 | 45
19 [ 53|53 [48 |47 |48 [ 43 |45 [ 49 |51 |47 [ 45|49 |46 |48 |47 [ 48 | 44 | 45

Figure 15: Probability of definitely choosing the same object in case A, with one predicate

and 10% of noise.
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and for all i,3' € S;, F(i) = F(i'). Denote by f; the focal point value of the elements

n S;.

3. Let SFP={S; |1 <j <k, andV1 <1<k, |S;| <|Si|}. That is, SFP includes all

the sets whose number of elements are minimal. Let S = argmazs.esrpf;-
4. Choose randomly one of the objects of S and denote it by c.

In this case, the algorithm does not guarantee a meeting, but increases the probability
of meeting, as compared to a random choice. The probability that the agents meet in cases
where UFP = () and the agents use Algorithm 2 is |—é—|, while the probability that they meet
when they don’t use the focal point algorithm and just choose one object randomly is |TelTn|

Let p denote the probability of definitely meeting in a random world in one of the con-
figurations that we considered in the previous section. The overall probability of meeting in
that case, using Algorithm 2 (i.e., in both the cases where UFP # () and UFP = {)), is as
follows: P, =p+ 1—|g-,|£.

In Figure 16, we present the results for P, after running the three-step simulation 500
times for the configuration in case B described above. In this case, if there are at least 2
objects and 2 predicates, the probability of choosing the same object is at least 98%. In the
other cases, the probability of success is at least 80%.

Similarly, when we consider the non-ordered case using the technique above, we get the
results for P, that appear in Figure 17. In this case, the probability of choosing the same
object is at least 94% when the number of predicates is at least 4 and the number of objects
is at least 7.

The results which are reported in Figure 16 should be compared with those of Figure 5,
and Figure 17 should be compared with Figure 11. For example, it is easy to see that for any
configuration, the probability in Figure 16 is greater than the corresponding one in Figure 5.
This follows immediately from the above formula of P,, which is used in Figure 16 and
which is always greater than p, which is used in Figure 5. For example, when the number
of objects in the world is only two, and the original focal point algorithm does not prefer
one object over the other, i.e., UFP = 0, S includes both objects, and the probability
of choosing one of them randomly is .5. In particular, if there are five predicates in the
world, the probability of definitely meeting, in the original algorithm (Figure 5), is 85%, and
the probability of meeting in the extended algorithm (Figure 16), is 92%. However, when
there are more objects, the extended algorithm provides better results than does choosing

randomly in case of a failure (i.e., S does not include all the objects). For example, when

there are 10 objects and one predicate, the probability of definitely meeting (Figure 5) is
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No. of No. of Predicates

Objects | 1| 2] 3] 4] 5] 6] 7] 8] 9
2 92 | 80| 91| 8 | 92| 91| 94| 91| 93

3 98 | 100 | 100 | 99| 99| 99| 99| 99| 99

4 95| 94| 98| 99| 98| 99| 99| 99| 99

5 951 99| 99| 99 (100 | 99 | 100 | 100 | 100

6 93 | 99 | 100 | 100 | 100 | 100 | 100 | 100 | 100

7

8

9

92 | 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
90 | 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
89 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
10 91| 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
11 88 | 99 | 100 | 100 | 100 | 100 | 100 | 100 | 100
12 89 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
13 87| 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
14 86 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
15 85 | 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
16 83| 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
17 85 | 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
18 80 | 99| 100 | 100 | 100 | 100 | 100 | 100 | 100
19 80 | 99 | 100 | 100 | 100 | 100 | 100 | 100 | 100

Figure 16: Probability of choosing the same object using algorithm 2 in case of different
number of values, even distribution (B).
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No. of No. of Predicates

Objects 1|2| 3| 4| 5| 6| 7| 8| 9
3 53169 | 79| 8 | 8 | 91| 92| 94| 94

4 41 | 58 | 66| 74| 78| 84| 8 | 90| 90

5 47 173 | 8 | 91| 94| 95| 96| 98| 98

6 39| 68| 8 | 8| 93| 95| 97| 98| 99

7 42 178 | 93| 96| 98 | 98| 99| 99 | 100

8

9

38 |76 | 8| 97| 98| 99| 99| 99| 100
39 87| 95| 99| 99| 99| 99| 100 | 100
10 37 (84| 95| 99| 99| 99 | 100 | 100 | 100
11 38 18 98| 99| 99 | 100 | 100 | 100 | 100
12 38 | 88 | 98| 99| 100 | 100 | 100 | 100 | 100
13 36 (91| 99| 99| 100 | 100 | 100 | 100 | 100
14 35190 98| 99| 100 | 100 | 100 | 100 | 100
15 34193 99| 99| 100 | 100 | 100 | 100 | 100
16 34 192 | 99 | 100 | 100 | 100 | 100 | 100 | 100
17 35|95 | 100 | 100 | 100 | 100 | 100 | 100 | 100
18 32 {94 | 99 | 100 | 100 | 100 | 100 | 100 | 100
19 33 | 95 | 100 | 100 | 100 | 100 | 100 | 100 | 100

Figure 17: Probability of choosing the same object using algorithm 2 in case of different
number of values, even distribution (B), non-ordered values.

87%. Using the naive algorithm of choosing randomly among the 10 objects will increase
the probability to 88%. However, using our extended algorithm, we obtained a probability
of meeting of 91% (Figure 16).

3.4.10 Discussion of the experimental results

The series of simulations which we described above and which were run over various randomly
generated worlds demonstrates the usefulness of the focal point algorithm as a heuristic for
multi-agent coordination.

The algorithm is shown to be successful in a wide variety of cases, including cases where
the only information that the agents can use for their coordination is the non-ordered values
of a few properties (predicates). In all the cases, the algorithm converges when the number
of predicates and their values is large enough.

It is difficult to find experiments with settings similar to ours to make comparisons.
Related experiments were performed by Stephens and Merx [72], measuring the performance
of three different control strategies — local-control, distributed-control, and central-control

— in solving the Pursuit Problem. In their experiments, the local-control system had the
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lowest communication overhead: 4 broadcasts for an entire pursuit. However, it had a very
low capture ration: 0.1. The distributed-control system required 4 broadcasts for each unit
move and was the most efficient strategy. However, in term of capture ratio (0.833), it did
worse than did the central-control (1.000), which required only 1 broadcast for each unit
move. Currently, our algorithm assumes that all the objects have the same utility; thus
more work is required in order to apply it to the Pursuit Problem. However, based on our
high success ratio when all the objects have the same utility, we expect it to do better than

the distributed-control strategy.

4 A Logic Approach to Focal Points

In the previous section, we assumed that the knowledge bases of the agents do not change
while they search for a focal point. This assumption greatly simplified the algorithm, but
may not be realistic. Agents acting in dynamic worlds obtain information continuously. This
information may be useful in finding a focal point. Furthermore, computational complexity
seems central to identifying focal points. This condition has been captured in the decision
theory model by assuming that each fact in the database is tagged with a “measure of
difficulty.” However, taking the time to reason when looking for a focal point seems essential
in situations in which not all the information is provided to the agents in advance, and when
they need to collect and process information while searching for focal points.

The logic-focal point approach considers these issues. The intuition behind it is that the
agent will continually look for candidates in the domain that have certain properties (such
as uniqueness). If something in the domain has that property, it is a focal point at the time
it is identified. As time goes on, new beliefs are derived (e.g., through modus ponens), and
the domain over which the search is being conducted also expands (through observations
or consideration of new conjunctive properties). Then the search for candidate focal points
is repeated — and an old focal point, given the new information, may no longer remain as
one. The search for focal points is cut off at some depth of computation, depending on time
constraints, at which point the agent attempts to resolve competing focal points. The logic
approach does not assume that the agents have utilities to assign to different outcomes or
measures of difficulty that are associated with the facts of the database. The search for focal
points proceeds without that information.

We assume that as time passes while the agent is searching for focal points, the agent

may discover new properties of objects via three main mechanisms:

1. Deduction of new facts from old ones.
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2. Observation.

3. Increase in the set of predicates.

Their role in searching for focal points is as follows. If the agent has a deductive database and
can reach new conclusions based on its explicit database, then it may deduce new facts about
the candidates for focal points. Using these new facts, it may be realized that some objects
satisfy some criteria, e.g., uniqueness, to qualify them as focal points. We demonstrate this

mechanism in the following example.

Example 7 Suppose the original database of an agent includes the following facts:
Type(hl,House), Type(h2,House), Type(h3, house), Type(b1,Bridge),Type(b2,Bridge),
Architect-Ofth2, Smith), Architect-Of(b2, Smith), Color(h1,White) and Color(b1,White). In
addition, it has the following axioms:

Vz Type(z, House) A Architect-Of(z, Smith) — Color(z, Black)

Vz Type(z, Bridge) A Color(z, W hite) — Size(z, Large)

Vz Type(z, House) A Color(z, Black) — Age(z,25).

The agent is not able to identify any focal point from the initial database: there is no
object which is unique, extreme, central, or even a unique complement. The agent may start
to deduce new facts about the objects, using its axioms and modus ponens. It first realizes
that Color(h2,Black) and Size(bl,Large). Now it has two candidates for focal points: h2,
because it is the only black object, and b1, because it is the only object which is large.
The agent may continue its reasoning and realize that Age(h2,25). In that step, h2 may be
chosen as a focal point since it is unique with respect to two properties, color and age, and

there is no other object which is unique with respect to two properties.

In other situations, an agent may observe new properties of objects that it is familiar
with, or may observe that there are new objects in the environments. Consider the following

example.

Example 8 Suppose an agent knows that there are three houses in the environment, but
does not know any facts about them. In particular, its database includes exactly three facts:
Type(hl,House), Type(h2,House), and Type(h3, house). Thus, it cannot choose any of the
objects as a focal point. However, it may look around and observe that houses hl and h2
are white, while h3 is black. After doing so, it can choose h3 as a focal point, since its color
is unique. This agent may observe the area some more and find out that there is also a black
bridge in the area. This new information may disqualify h3 from being a focal point, since
its color is no longer unique, but may lead the agent to choose the bridge as a focal point

since its type is unique.
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There are situations in which the agent can find focal points by using combinations of

predicates specified in its initial database, as in the following example.

Example 9 Suppose the initial database of the agent consists of the following facts:
Type(hl,House), Type(h2,House), Type(h3, House), Type(b1,Bridge), Type(b2,Bridge),
Type (b3,Bridge), Color(h1l, White), Color(h2, White), Color(h3, White), Color(b1,White),
Color(b2, Black), and Color(b3, Black). In this initial database there is no object that may
qualify as a focal point. However, the agent may consider a combination of properties, i.e.,

Type and Color, and realize that bl is the only bridge which is white.

Often, using the above mechanisms will produce competing focal points. Furthermore, ob-
jects that were identified as focal points, at one point, may be disqualified later. For example,
in the scenario of Example 7, after one iteration of deductions, both h2 and b1 are considered
as focal points, and only in the second round is it possible to choose one of them, i.e., h2 as
a focal point. In example 8 above, first the black house qualified as a focal point, but further
observation of a black bridge disqualified it as a focal point. In such situations, different
heuristics, relying on the time at which these focal points were identified, may be used to
resolve conflicts among the competing focal points. For example, one may give priority to
objects that were identified as focal points earlier, rather than later, since there is a higher
probability that the other agent will be able to find them too. For the same reasons, it may

choose focal points that have been focal points for more steps than have the others.

4.1 Discussion of Step-Logic

In order to implement the mechanisms discussed above, there is a need for a logical framework
which is able to model the computational process itself in the reasoning procedure as the
agents search for focal points. For example, if the agent finds a focal point after making some
deductions, then we would like to identify the ones that were easier to find. In addition,
there is need for a framework which allows for observations and the incremental increase of
the set of predicates. Classical first order logic does not model the computational process.
Consider the deduction database of Example 7 described above, with the additional
facts Near(h2,b2), Near(h2,h3), and the following additional axiom: Vz,y, z(Age(z,25) A
Color(z, z) A Near(z,y)) — Color(y,z) A Age(y,25) A Size(y, Large). The first and sec-
ond iterations proceed as in Example 7; i.e., in the first iteration, Color(h2,Black) and
Size(b1,Large) are deduced, and in the second iteration, Age(h2,25) is deduced. In the
third iteration of the deduction process, the agent may conclude that Color(b2, Black),
Color(h3,Black), Size(b2, large), Size(h3,Large), Age(b2,25), and Age(h3,25). At this stage,
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no object may be qualified as a focal point; however, h2 may still be considered as a focal
point, based on its properties in the previous iteration.

The identification of the above focal points is not possible in first order logic, where there
is no formal way to model the deduction process and its time frame. An agent, using FOL,
may close the initial data base under inferences and obtain all the facts that were deduced
in the three iterations. Using this set, no object may qualify as a focal point. Thus, we need
some framework in which each iteration will be formally defined and the agent will be able
to maintain information about the time at which a specific fact was proven and will be able
to take this into consideration in its search for focal points.

Since classical first order logic is not sufficient for our needs, we turn, instead, to a
modification of first order logic, called step-logic, that deals explicitly with the passage of
time as an agent reasons and allows us, formally, to introduce observations.?®

In the formalism of step-logics, introduced by Elgot-Drapkin, Miller, and Perlis ([64,
24, 23]), inferences are parameterized by the time taken for their inference, and these time
parameters themselves can play a role in the specification of the inference rules and axioms.2¢
Step-logics offer a natural representation of the evolving process of reasoning itself. A step
is a fundamental unit roughly characterized by the time it takes the agent to draw a single
inference.

Observations, which are inputs from the external world, may arise at the beginning of
a discrete time-step and may be denoted by by the meta-predicate Observe. When an
observation appears, it is considered to be a belief in the same time-step. Apart from his
observations at the beginning of step 7, the only information available to the agent is a
snapshot of his deduction process completed up to and including step : — 1. During step
1, the agent applies all available inference rules in parallel, but only to beliefs at step ¢ — 1
(denoted by Facts;_1).>"

New beliefs thus generated through applications of inference rules are not available for

use in further inference until step 7 + 1. For example, consider an agent which has the

25There is some related work in Artificial Intelligence that addresses the issues of the passage of time during
the reasoning process. In [36], [35], and [67], decision theoretic approaches are used to optimize the value of
computation under uncertain and varying resource limitations. In these works, deadlines and the passage
of time while reasoning are taken into consideration in computing the expected computational utility. Dean
and Boddy [13] formulated an algorithmic approach to the solution of time-dependent planning problems by
introducing “anytime algorithms” that capture the notion that utility is a monotonic function of deliberation
time. Etzioni [25] considered using a decision theoretic architecture, with learning capabilities, to control
problem solving searches.

26Step-logics have also been used for planning in deadline situations [63] and for handling some interesting
real-time variants of the Yale shooting problem [62].

2n [63], an improved version of step-logic that considers space and computation bounds in each step is
described. For simplicity, we use the original schema of step-logic here.
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following inference rules:

1:a,a—=b
i+1:b

then in the next step it believes b.

Modus ponens: indicating that if in step ¢ the agent believes that a and that a — b,

:Type(z,z) i COZOT’(m,z)
i+1:Type(z,2)’ ;4+1:Color(z,z)
and type are inherited from one step to the other. In addition, all axioms are inherited

Inheritance rules: , indicating that beliefs with respect to color

from one step to the other.

i:NOW (4)

T1Now(i1)’ specifying the way the predicate Now changes over time.

Time:

The following describe the reasoning from step 7 to step ¢+ 1 and then to step ¢+ 2, given

that the original beliefs of the agent in step ¢ are as specified below.

it Color(c2,White); Type(c2,House); Color(e9,White); Type(e9,House); Type(e3,House);
Now(2); Color(z, White) A Type(x, House) — Size(z, Big);
Size(z, Big) A Size(y, Big) — Near(z,y) ...

i+ 1: Size(c2,Big); Size(e9,Big); Type(c2,House); Color(e9,White); Type(e9,House);
Type(e3,House); Now (i+1); Color(xz, White) A Type(z, House) —
Size(z, Big); Size(z, Big) A Size(y, Big) — Near(z,y) ...

i+ 2: Near(c2,e9); Near(e9,c2); White(c2); House(c2); White(e9); House(e9);
House(e3); Now(i + 2); White(z) A House(z) — Big(z);
Size(z, Big) A Size(y, Big) — Near(z,y) ...

The new facts in step ¢+ 1, which are emphasized, are derived by the application of modus
ponens to the axiom Color(z, White) A Type(z, House) — Size(z, Big) and the relevant facts
and application of the time inference rule, which yields Now(i+1). The other facts and axioms
are inherited, using the inheritance inference rules. Note that in step 7 4+ 1, the agent does
not conclude that c2 is near €9, since it only applies the inference rules to the agent’s beliefs
at step 7. However, at step 7 + 2 it reaches the conclusions, Near(c2,e9) and Near(e9,c2), by
applying modus ponens to its beliefs in step 7 + 1, Size(c2,Big), and Size(e9,Big), and the
appropriate axiom. Size(c2,Big) and Size(e9,Big) are not inherited, since there is no relevant
rule.?8

Step-logics are inherently nonmonotonic, in that further reasoning always leads to re-
traction of some prior beliefs. The most obvious case is Now(i), which is believed at step 7,

but not at ¢ + 1. In the following section we will show how the mechanisms discussed in the

28The agent may adopt a general default rule that all beliefs are inherited, apart from Now or other special
predicates.
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previous section can be formalized by using step-logic. We first consider the way in which
the agent models the (changing) domain, and then the rules that qualify a candidate as a

focal point. Finally, we consider the ways in which an agent resolves competing focal points.

4.2 Domain of Consideration

As in the decision theory case, before the process starts, the agent is given two finite sets
enumerating the domain constants (one, Pred, is a set of predicates, and the second, Term, is
a set of term constants) over which the focal point computation is going to be done initially.
While in the decision theory case this set does not change over time, in the step-logic approach
both lists can grow as the computation progresses.

For example, in the Schelling’s scenario of dividing 100 objects into two piles (Sec-
tion 2.4.2), the vectors that sum to 100, with no element less than 0, can be given as an initial
finite domain over which properties will be discovered. That is, Term = {[z,y] | z + y =
100, z,y >0, z,y € IN}.

It should be noted that these finite sets represent the explicit knowledge of the agent,
not its implicit knowledge. For example, an agent may be implicitly aware of the infinite
set of positive integers, but for the moment only be considering the finite set of integers
from 1 to 500. As time goes on, numbers above 500 may come under the explicit scope of

consideration.

4.2.1 Addition of Term Constants

There are two mechanisms for adding new explicit terms. The first is observation, where
new term constants are observed over time (e.g., a new bridge is observed, as in Example 8
above). The second mechanism is the use of inductive rules, such as a successor rule that

generates new integers.

Example 10 In step 4, the domain includes Type(Bridge, C125). In step ¢ + 1, the agent
has Observe{ Type(Bridge, C237)}. In step i + 2, it then has C237 in Zérm.

Example 11 If Int(z) — Int(z 4+ 1) is an axiom in step ¢, and Int(5) is known at step 4,
then in step 7 + 1 the agent will know Int(5+ 1). Assuming that the agent has the requisite
procedure attached to the symbol +, it will (in step 7 + 2) add the term 6 to Zerm.

4.2.2 Addition of Predicate Constants

Here we consider the formalization of situations such as the one described in Example 9.

When the agent starts, it considers predicates of the original set given to it in choosing a
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focal point. For example, there might be only one object whose color is white. However,
as in Example 9, such a unique object may not exist, and the agent may then consider
conjunctions of predicates. For example, there might be only one bridge which is white.
Thus, when the process starts, Pred is equal to the finite set of predicates provided to
the agent. In the second step, the agent considers binary conjunctions of predicates from
the original list. In step three, it considers ternary conjunctions of predicates from the
original list, and so on. Since we assume that each predicate in Pred has two arguments
— a Term and a value — the combination should be of the same form. In particular, the
first argument will be a term, and the second will be a vector of the values of the combined
predicates. For example, the values of the combination of P,Q € Pred, Vp_ g, will be
{(v1,v2) | v1 € Vp, va € Vo }. Furthermore, if P(t,v;), Q(t,v2) € Facts;, then P_Q(t, (v1, v2))
will be in Facts;+1. The following lines describe the evolution of Pred through successive steps.
Note that in the decision theory approach we assumed that all these combinations appear

in the original Pred set.

Step 1: Pred; = {domain constant predicates and their negations} =
{P]_,_LPl,PQ,_'PQ...}.

Step 2: Pred, = {binary combinations of predicates of Pred;} =
{Pl_PQ,Pl_Pg,PQ_Pg,, ey —lpl_PQ, —IP1__|P2, .. } U P’f’ed]_.

Step 3: Pred; = {ternary combinations of predicates of Pred;} =
{P1_Ps_P3,P_P;_Py,... ,~Pi_~Py —P5, ...} UPreds.

Of course, this may lead to combinatorial explosion and some heuristics should be used
to limit the growth of Pred;. Consider the scenario of Example 9. In step 1, Pred; =
{ Type, Color}, and Facts; consist of the original facts. In step 2, the agent may consider a new
predicate which is the combination of Color and Type, i.e., T'ype_Color, Color_Type € Pred,,
and new facts are added to Factss, e.g., Color_Type(h1,(White,House)) and
Color_Type(b2,(Black,Bridge)).

4.3 Focal Point Rules

In this section we present the actual rules by which an agent identifies candidates for focal
points in the step-logic approach. Identification of focal points in the step-logic approach is
a two-stage process. First the agent identifies candidates by looking for meta-characteristics
of objects, such as uniqueness. Second, the agent resolves competing candidates to the best
of his ability (using other rules) and decides on one or more focal points. As in the decision

theory case, we will use the notation €* and write P(z,v) €* Facts; to denote that P(z,v)
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is either explicitly listed in the agent’s facts at level i, or that it can be simply computed
over the constant terms or values that exist in the facts of level 1.
4.3.1 Uniqueness

As was discussed in Section 2.3, an object may be a focal point if it is the only object with
a given property. Formally, if in the i — 1th step we have P € Pred;_1, v € Valuep®®, and

there exists an = € Term,;_; such that
P(z,v) € Facts,—1 NNy € Term;_1,y # z[P(y,v) &€ Facts;_1],
then in step ¢ the agent will believe
Unique(z, P, ).

Note that the term z is considered unique with respect to the predicate P; this will be

important later, when competing focal points must be resolved.

Example 12 This rule would be applicable in the case in which we know about only one
Bridge, namely bl. For example, if

Facts;= { Type(b1,Bridge), Type(hl,House), Type(h2,House)}, then in step 2 the agent will
add Unique(bl, T'ype, 2) to Factss.

In the logic approach, an object is either unique or not. The agent does not measure an
object’s “rareness” in a given time step, as in the decision theory approach. However, as we
demonstrated above, an object may be unique at time ¢, but may turn not to be unique at
t + 1. The accumulated information about its uniqueness over time may be used for more

“fuzzy” evaluation of its rareness.

4.3.2 Uniqueness Complement

As we discussed in Section 2.3, an object may be a focal point if it is the only object without
a given property. Formally, if in the ¢+ — 1th step we have P € Pred;_;, and there exists an

x € Term,_; such that
(Vv € Valuep, P(z,v), " P(z,v) ¢ Facts,—1)\(Iv' € ValuepVy € Term,y # z[P(y,v") €* Facts;_1]),
then in step ¢ the agent will believe

Unique-Comp(z, P, ).

29For simplicity, we assume that the value set of a predicate does not change over time. However, it will
be easy to extend our formalization for handling this option, too.
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Example 13 This rule would be applicable in the case in which we know that everybody
in the domain is a member of the Democratic Party, except that we have no information
one way or the other about John. Although we do not know whether or not John is also
a member, this lack of knowledge causes him to be prominent. Formally, if Term(1) =
{John, Dan, Dalia, David},

Facts; = {Member(Dan, D), Member(Dalia, D), Member(David, D)}, then in step 2 the
agent will conclude that Unique-Comp(John, Member, 2).

4.3.3 Centrality

Another intuitive criterion is the concept of centrality. Recall, that an object may be a focal
point if it is a central object within a given domain. Formally, if in the ¢ — 1th step we have

P € Pred;,_1, v € Valuep, and there exists an z € Term;_; such that

P(m, v) €* Facts;_1 A\
Vy € Term,y # z,3vy € Valuep A P(y,v1) €* Facts;_1 —
(32 € Term,vs € Valuep, z # y A P(z,v2) €* Facts,—1 N Diff(vi,v) = Diff(v,v2)),

where Diff is a difference function defined on the values in Valuep (e.g., “—” if the values

are numbers), then in step ¢ the agent will have
Central(z, P,1).
Example 14 In the range between 0 and 10, the number 5 is Central, where P is the
predicate Integer, and Diff is defined as the minus function.
4.3.4 Extreme

An object may be a focal point if its value with respect to some predicate is extreme.
Formally, if in the ¢ — 1th step we have P € Pred;_;, and @ is a total order on Valuep, and

there exists an x € Term;_1, v € Valuep such that

P(z,v) €* Facts;_1A\
Vy € Term;_1,y # = A (Fv' € Valuep)P(y,v') € Facts(i — 1) —
Q(v,v'") €* Facts;_1 N Q(v',v) &* Facts;_1)),

then in step ¢ the agent will believe
Extreme(z, P, Q,1).

Example 15 Inthe range between 1 and 10000, the number 1 is Extreme (with the predicate

@ being “less than” and P being an integer).

Every object that is unique is also central and extreme, trivially.
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4.4 Computing Focal Points—The Resolution Rules

The rules above specify when an object is unique or extreme, etc. They do not relate directly
to the question of when the object is actually a focal point. Thus we need a rule to use in
tying together these attributes with the notion of a focal point. The most straightforward
approach is to relate each of the meta-predicates above to a focal point attribute:
i: Unique(z, P,1)
i+ 1: FocalPoint(z,1)

i: Unique-Comp(z, P, 1)
i+ 1: FocalPoint(z,1)
i: Central(z, P,1)
i+ 1: FocalPoint(z,1)

i: Extreme(z, P,1)
i+ 1: FocalPoint(z,1)

These rules, of course, may not supply us with a unique focal point, since there could
be one term that satisfies Unique and another that satisfies Extreme, etc. There could even
be two separate terms that are Unique with respect to different predicates. Moreover, two
separate terms that are (for example) extreme might receive less attention than would a single
term that is central, precisely because the two extremes are competing with one another.
There is still utility for the agent in discovering the set of focal points, since even if the
choice is made among them probabilistically, there is an increased chance for coordination
among the agents.

A more sophisticated rule will associate some measure for the item being a focal point,
e.g., by counting the number of times the object appears in the database as Unique, Extreme,

etc. Formally, let us denote the set of meta-predicates by MPred, i.e.,

MPred = {Unique, Unique-Comp, Central, Extreme}

If in the ith step there is at least one meta-predicated MP € MPred, such that MP(z, P,i) €
Facts;, then in step ¢ + 1 the agent will conclude that

FocalPoint(z, i,d), where
d = [{MP(z,P',i) | P' € Pred;_1,z € Term;_y,MP(z, P',i) € Facts;}|.

Example 16 Consider Example 7, where in the third step the agent has the following facts:
Type(hl,House), Type(h2,House), Type(h3, house), Type(b1,Bridge),Type(b2,Bridge),
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Architect-Ofth2, Smith), Architect-Of(b2, Smith), Color(h1l,White), Color(b1,White),
Color(h2,Black), Size(bl,Large), and Age(h2,25).

In Step 4, it will conclude, Unique(h2,Age,4), Unique(h2,Color,4), Unique(bl,Size,4),
Extreme(b1,Size,4), Extreme(h2,Age,4). In Step 5, it will conclude FocalPoint(h2,4,3) and
FocalPoint (b1, 4, 2).

Other techniques can be used to identify focal points. In particular, the decision theory
approach can be incorporated into the step-logic mechanism. That is, in each step, an
algorithm such as the one described in Section 3.4 can be applied to the agent’s database
during the previous step in order to identify focal points.3°

Regardless of the method used for identifying focal points, there is no guarantee that a
unique one will be found. Furthermore, in different steps, different objects can be considered
as focal points. It is critical to resolve which focal points to choose so that the ones that
are discovered more easily have higher priority. Step-logic provides us with a natural tool
for dealing with this. Using step-logic, there are several mechanisms for relating priority to
complexity. We do not attempt here to provide additional rules that guarantee a single focal
point. Instead, we illustrate that one could introduce additional rules so as to reduce the
size of the focal point set.

As mentioned above, a focal point might be generated (given the above rules) at a given
level, and then not be a focal point at a subsequent level.3! An agent looks for focal points
only up to a certain level k. At this level, there might be several competing focal points that
are still valid (e.g., arising from different rules or from different predicates). One possible
initial winnowing mechanism can be to keep the focal points that were generated earliest
and to discard the others. The intuition is that, since the other agent may not go as deeply
into the deduction as we have in looking for a focal point, we are more likely to match the
other agent by taking the earliest focal point. This will provide the solution most likely to

have been reached by the other agent.3?

Example 17 In the range between 1 and 10000, the number 1 is Extreme (with the predicate
P being “less than”), and 10000 is Extreme (with the predicate P being “greater than”),
after the first step. If the domain of considered integers grows at each step, 1 will still be

extreme, while 10000 will no longer be extreme. Thus, at the end of the process, 1 will be

30The measure of difficulty of a given fact can be chosen as the step in which the fact was concluded.

31Note that in step-logic, beliefs at step i are not automatically beliefs at step 7 + 1.

32Qther approaches present themselves, such as considering the coverage of a focal point; e.g., if a term is
a focal point for much of the deduction, though it is not in the final step, we would still consider it a likely
solution. We could also then probabilistically weight the steps of the deduction, so that, for example, earlier
steps receive more weight than later steps. These methods are left for future work.
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chosen, since it has been “extreme” for the longest period. This disambiguates between the

two extreme ends of a finite domain that grows in only one direction.

The procedure only considers “term-property” pairs; if a term was a focal point because
of some property at level i, then it was no longer a focal point because of that property at
level i+1. It then again became a focal point because of a different property at level i+2 (and
remains a focal point until the end), and is then considered to have been generated at level
i+2.33 We may also choose to introduce rules that assign a priority to the meta-predicates
(such as Unique), so that, for example, a unique object gets priority as a focal point over an
extreme object.

We emphasize that the step-logic framework does not determine which inference rules
we choose for focal point identification and the resolution between competing focal points.
However, it allows us to develop general rules which can take into consideration the time of

the reasoning process and the time frame in which an object is considered as a focal point.

4.5 Conditions for Joint Selection

The conditions for joint selection of the same object by agents using the logic approach is
similar to the case in which the agents use the decision theory approach. However, there are
additional aspects that influence the joint selection in this case.

Consider the case in which agents have identical knowledge about everything, including
the original axioms and inference rules, run-time observations, the domain of predicates,
terms, and functions, and, in addition, the agents’ computational “power” (i.e., how deep
the search for focal points will go) is the same. It is clear that, in this case, where search
depth is identical, if there is a set of focal points, the set will be generated identically by
both; i.e., the procedure guarantees joint selection.

When the search depth is not identical, but is known to both agents, they need only
consider the derivation to the depth that can be reached by the weaker of the two agents.
In this case, the focal point set will also be generated identically by both agents.

When the agents have identical knowledge about everything other than the power of
computation (i.e., how deep the focal point search will go), there is another consideration
that affects whether or not the agents will select the same object: the monotonicity of the

focal point derivation.

33The idea behind looking at term-property pairs to establish the first appearance of a focal point is that
once a focal point has disappeared because of other terms with the same property, its prominence because
of that original property is completely negated.
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Definition 1 A focal point derivation s said to be monotonic if a focal point generated at

step i continues to be re-derived at all steps greater than 1.

The monotonicity of the focal point meta-predicates (such as unique, extreme, central)
is, in general, not related to whether or not the base level predicates are monotonic. For
example, one might have a monotonic domain (such as theorem proving) where a focal point
a is found related to some property P with the value v (by uniqueness). Later we may derive
P(b,v), causing P(a,v) to be no longer unique.3*

When agents are involved in a monotonic focal point derivation, and when they have
reached a level at which their focal point candidate set is non-empty, they can cease com-
putation of focal points. How can agents (or their designers) know whether or not they are
participating in a monotonic focal point derivation? The following is one example of such a
monotonic focal point derivation.

Assume that we are dealing with Horn clause databases, and the derivations are mono-
tonic (e.g., no observations). If a focal point a is found to be related to some property,
P, then if P does not appear as a consequence of any rule, a is a monotonic focal point.
These kinds of focal points are based only on facts that were known at the beginning of
the derivation. This is true even when their focal point status is only discovered by using

conjunctions of properties.

Example 18 A database contains P(a,v), P(b,v), Q(a,v'), Q(c,v"), plus some rules that
do not have P or () as consequences. In the first step, there is no “unique” focal point. In
the second step, we add the combination P_() to the Pred set; in the third step we discover
the “unique” property of a relative to P_(); and in the fourth step we conclude that a is a
focal point. In the next step we see that neither P nor () appears as a consequent of any

rule in the database, so there is no chance of a losing its status as a focal point.

Definition 2 a is a literal focal point with respect to predicate P, when it was derived solely
from the set of literals in the database, not from rules. If, in addition, the predicate P does

not appear as a consequence of any rule in the database, we call the focal point strictly literal.

If P appears as a consequence of any rule in the database, there may be some (lengthy)
derivation of k steps that will exclude a as a focal point. For example, if a was chosen as a
focal point since it was unique with respect to P with the value v, after & steps, P(b,v) can

be deduced using the rule in the database where P appears as a consequence, and thus a

34In general, any combination of monotonicity and nonmonotonicity is possible between the base level and
the meta-level.
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will no longer be unique. There is no way of discovering whether a will remain a focal point
except by actually carrying out the derivations over k time steps. Note, that in the case of
Datalog databases (i.e., Horn-clause rules with no function symbols), the depth, in general,
of this derivation is polynomial. It is also clear that almost any focal point can be excluded
at step 7 by an observation at step ¢ — 1, most often by observing another term or predicate
in the domain, or by observing a new property of a term in the domain. The above property
of focal point monotonicity can only hold, in general, when observations are excluded from
consideration.

If the set of focal points is non-empty, and the search goes on long enough and is mono-
tonic, agents will reach agreement using the above procedure (this is true regardless of the
finite axiomatization of their theory). However, it is difficult to characterize, for an arbitrary
database, just how long the agents need to search (the special case of Datalog was mentioned
above).

We now propose a minor extension to the step-logic focal point procedure presented
above. The extension only affects when an agent can safely conclude his search.

Extension to the focal point procedure:

Case 1: Strictly literal focal point a is discovered at step ¢, and no other focal point has
been discovered at step h < 7. The search can stop and use a as the focal point. If there
are no observations, and the agents have identical knowledge, then the joint selection

of this single focal point is guaranteed.

Case 2: Strictly literal focal point a is discovered at step 7, no other focal point has been
discovered at step h < i, and a non-literal focal point has also been derived at 1.
The search should then stop and use a as the focal point (as above). In this case,
joint selection is only guaranteed if the other agent happens to be following this same
heuristic; otherwise, the other agent might actually choose the other non-strictly literal
focal point. Nevertheless, this heuristic is reasonable, as the non-strictly literal focal

point may later vanish, while the strictly literal focal point will not.
Case 3: In other cases, follow the original procedure.

To summarize, as in the decision theory approach, when the agents truly have common
knowledge about their databases, then any arbitrary algorithm will satisfy their need to
coordinate, including the algorithm we have presented above. The focal point algorithms
are really designed for cases in which the agents do not have common knowledge, and where
coordination is not guaranteed, but where the design of the algorithms is such as to raise

the probability of coordination. If designers of automated agents could coordinate search
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strategies among those agents ahead of time, then (as long as the strategy is general enough),
those designers could settle on an arbitrary joint strategy (alphabetic, for example). One
motivation for using a focal point search strategy is its relationship to the way people work
and its generality. Barring specific information about the other agent, these algorithms are

reasonable candidates for communication-limited coordination.

4.6 The Application of the Step-Logic Focal Point Method to
Robot Rendezvous

In the beginning of Section 4, we discussed three mechanisms specifying how the agent’s
beliefs may change over time and affect the objects it may consider as focal points. We
demonstrated how these mechanisms can be modeled in step-logic. In this section, we present
an algorithm which is based only on the third mechanism: an increase in the set of predicates
over time. We apply this algorithm to the robot rendezvous problem described in Section 3.4.

We concentrate only on the mechanism related to the increase in the set of predicates
over time since “observation” is too domain-dependent, and we try to develop a general
algorithm. Deduction of new facts from old ones is difficult to implement, and a lot of open
questions which are related to it still exist. It also seem to us that mechanisms that are
related to “deduction” are mainly beneficial for very large databases. We leave the study of
these issues for future work.

The situation description of the robot rendezvous problem and the assumptions which
we make are exactly as described in Section 3.4.1. We first describe the data-structures that
are created when applying the step-logic focal point algorithm to such situations. Given a
set of predicates, there are two ways in which the agent can create new predicates: by adding
Unique or Extreme in front of the given predicates®, or by combining several predicates of
the given set.3® This is done repeatedly in several iterations. To illustrate the sets which are
created, we use a tree, as in the example given in Figure 18. The algorithm may consider
these sets using different orders.3”

A node in the tree which is used to illustrate the above sets is labeled with a set of
predicates that may be created while searching for a focal point. Each node has two children,

reflecting the two ways new predicate sets are created: the label of the left child is created

35The new predicates which are created by adding unique or extreme in front of old ones have two
arguments: an object and a truth value, where its possible value is either 1, indicating true, or 0, indicating
false.

36 A new predicate which is a combination of I old predicates has two arguments. The first argument
is an object, and the second argument is an [-tuple of the original values, and they are ordered using a
lexicographic order.

3"The specific algorithm described below uses a depth-first approach.
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by adding Unique or Extreme in front of the predicates in the node; the label of the right
child is created by combining [ predicates from the set of predicates of the node, where [ is
the height of the right child.

In the process of choosing a focal point, a set of relevant facts is associated with each
node. The agent considers only the set of facts which are associated with left nodes when
trying to identify a focal point. After each time that such a set is created for any i € Term,
a measure F'(i) is calculated. This calculation is done similar to the way in which d is
computed in Section 4.4. After F(i) is calculated, the step-logic algorithm proceeds as in the

decision theory algorithm. This process is demonstrated in the following example.

Example 19 Consider the case in which the original set of predicates includes three pred-
icates: P, Q, and R. Thus, the root of the tree in Figure 18, which illustrates the sets of
predicates that are created in this case, is labeled by the original predicate set, i.e., P, Q and
R. The left child of the root is labeled by UP, UQ, UR, EP, EQ, and ER, with U standing
for Unique and E for Extreme (e.g., Unique_P is denoted by UP.) The right child of the root
is labeled by PQ, PR, and QR, which are the possible combinations of length two of the
original sets of predicates specified in the root. We refer to the predicates which appear in
left nodes (the oval nodes) as the “left” predicates, and the predicates that appear in right
nodes (the rectangle nodes) as the “right” predicates.

As mentioned above, all the predicates have two arguments, as in the original set. The
first argument is an object. The second argument of a “left” predicate is a truth value, whose
possible value is either 1, indicating true, or 0, indicating false. The second argument of a
“right” predicate, which is a combination of [ predicates (of the father’s node), is an I-tuple
of the original values, and they are ordered using a lexicographic order. Since the values of
predicates starting with U or E are always extreme, and thus do not influence the choice of
a focal point, we have omitted from the example predicates of the form EUQ or EEQ), etc.
This omission does not influence the focal points that are found.

After a set of predicates is created, a new set of facts with respect to the new predicates
is also created. In our example, suppose that there are three houses in the environment, with
the properties P, specifying its price, Q, specifying the size of the house, and R, specifying
the street where the house is located. In Figure 19, the facts that may be created when
trying to identify a focal point are specified. The original set of facts associated with the
root of the tree is specified in the first table in Figure 19, e.g., the price (P) of house hl is
150K. The facts associated with the left child of the root (Table 2 in Figure 19) indicates

the uniqueness and extremeness of the houses with respect to the original set of facts; e.g.,
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UUP, UUQ, UUR,

UEP, UEQ, UER

UP, UQ, UR
EP, EQ, ER

P, Q, R

T

UPUQUR, UPUQEP,

UPUQEQ, UPUQER

UQUREP, UQUREQ....
UREQER, EPEQER.....

PQ, PR, QR

UPQ, UPR, UQR
EPQ, EPR, EQR,

PQR

7 \
UUPUQUR, UUPUQEP,
UUPUQEQ, UUPUQER,

UPQUPRUQREPQ
UPQUPRUQREPR
UPQUPRUQREQR
UPRUQREPQEPR
UPRUQREPQEQR,

/
UPQ, UUPR, UUQR,
[:gEPQ,URPQ,UEQR

UUQUREP, UUQUREQ),..;

UUREQER, UEPEQER,

UPUQURUPUQEPUPUQEQUPUQER
UPUQEQUPUQERUQUREPUQUREQ

Figure 18: An example of the creation of new predicates in Algorithm 3. P and Q are
predicates. “U” is added to indicate Unique, and “E” to indicate Extreme. The arguments

of the predicates in the oval nodes are an object and a truth value. The arguments of the
rectangle nodes are an object and a tuple.
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Table 1: ROOT
Obj | P Q R
hl 150K | Small | 5
h2 | 150K | Big |3
h3 100K | Small | 9
h4 150K | Med 5
Table 2: LEFT-ROOT Table 3: RIGHT-ROOT
Obj [UP|UQ|UR|EP|EQ |ER|F Obj | PQ PR QR
Rl [0 |0 Jo |1 [T |0 |2 L1 | (150K,Small) | (150K,5) | (Small,5)
2 [0 [T |1 [T [T [T [5 L2 | (150K,Big) | (150K,3) | (Big,3
B3 |1 |0 |1 [T [T |1 [5 b3 | (100K,Small) | (100K,9) | (Small,9)
4 [0 [1 o [T [0 [0 |2 L4 | (150K,Med) | (150K,5) | (Med,5
Table 4: LEFT-LEFT-ROOT Table 5: LEFT-RIGHT-ROOT
Obj | UUP | UUQ | UUR | UEP | UEQ | UER | F Obj | UPQ | UPR | UQR | EPQ | EPR | EQR | F
h1 0 0 0 0 0 0 0 hl 1 0 1 0 1 1 4
h2 |0 0 0 0 0 0 0 h2 |1 1 1 1 0 1 5
h3 1 0 0 0 0 0 1 h3 1 1 1 1 1 0 5
h4 0 0 0 0 1 0 1 h4 1 0 1 0 1 0 3
Table 6: RIGHT-LEFT-ROOT
Obj UPUQUR UPUQEP UPUQEQ UPUQER UPUREP UPUREQ UPURER UPEPEQ UPEPER UPEQER UQUREP UQUREQ
hi {0,0,0) (0,0,1) 10,0.1) 70,0,0) (0,0,1) 0,0.1) (0,0,0) 0.1,1) (0,1,0) (0,1,0) (0,0,1) (0,0.1)
ho (0,1,1) (0,1,1) (0,1,1) (0,1,1) (0,1,1) (0,1,1) (0,1,1) (0,1,1) (0,1,1) (0,1,1) (1,1,1) (1,1,1)
h3 (1,0,1) (1,0,1) (1,0‘1) (1,0,1) (l,l.l) (1,1.1) (1,1,1) (1‘1,1) (1.1,1) (1‘1,1) (U,l,l) (0.1,1)
ha (0,1,0) (0,1,1) (0,1,0) (0,1,0) (0,0,1) (0,0,0) (0,0,0) (0,1,0) (0,1,0) (0,0,0) (1,0,1) (1,0,0)
Table 6 (Continue): RIGHT-LEFT-ROOT
Obj | UQURER | UQEPEQ | UQEQER | UREPEQ | UREPER | UREQER | EPEQER
hl ] (0,0,0) (0,1,1) (0,1,0) (0,1,1) (0,1,0) (0,1,0) (1,1,0)
h2 (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1
h3 (0,1,1) (0,1,1) (0,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1
h4 (1,0,0) (1,1,0) (1,0,0) (0,1,0) (0,1,0) (0.0.0) (1,0,0

Table 7:RIGHT-RIGHT-ROOT

Table 8: LEFT-RIGHT-RIGHT-ROOT

Obj | PQR Obj [ UPQR [ EPQR | F
hl | (150K,Small,5) hl |1 0 1
h2 | (150K,Big,3) h2 |1 1 2
h3 | (100K,Small,9) h3 |1 1 2
hd | (150K, Med,5) hd |1 0 1

Figure 19: Some of the sets which may be created with respect to the tree in the previous
“Left-Root” indicates the left child of the root,
“Left-Left-Root” indicates the left child of the left child of the root, etc.

figure.

“Root” refers to the root node;
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h1’s value with respect to predicate P is not unique; thus there is 0 in the box of the second
column and the second row. The last column of the table specifies the focal point value
(F value) that is computed for each house according to the algorithm presented in the next
section. For example, F(h1)=2 since hl has an extreme value with respect to predicates P
and Q. F(h2)=5 since h2 has a unique value with respect to Q and R, and an extreme value
with respect to all the predicates. In this step of the example, there is no house that could
be chosen as a focal point, since there is no house with a unique focal-point. However, h1l
could be chosen as a focal point when the set of the left child of the right child of the root

is created (Table 5 of Figure 19) since it has the highest unique F value.

4.6.1 Step-Logic (SL) Focal Point Algorithms

In order to simplify the description of the algorithm, we present it as a recursive function
rather than presenting the appropriate inference rules of step-logic. We first specify two
functions that we use in the algorithm. The first function, Focal, creates new predicate lists
and new fact lists and uses the second function, FP, to check if there is a unique focal point
in the new sets.

The function Focal receives a set of predicates and an associated set of facts. The
first time Focal is called the predicate set is equal to the original set of predicates (e.g.,
P, Q) and the associated original set of facts (e.g. P(h1,150K), Q(h2,Big)). In the other
cases, it consists of predicates which are either combinations of the original set of pred-
icates (e.g., P_Q), or which are obtained by applying Unique or Extreme to some pred-
icates (e.g., Unique_P, Unique_Extreme_Q), or the combination of such predicates (e.g.,
Unique_P_Unique_Q_Unique_R). Given these sets, it creates a new set of predicates (in step
(2a)) by adding Unique and Extreme and an associated set of facts. Then it calls the func-
tion FP to check whether the new set consists of a focal point. If it does, then it returns this
object. Otherwise, it tries to find a focal point, either by calling itself recursively with the
new set or by creating a different set of predicates and facts by combining the predicates of
its input, and then calling itself recursively with the “combination” of new sets.

Function Focal

Input:
lev: the current level of the search.
Pred: the current set of predicates.

Facts: the current set of facts.

Output: If there is an object which is a focal point, it is returned; otherwise False.
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Temporal variables:
TMPPRED: stores the new predicates created in the current iteration (by adding
Unique or Extreme).
TMPFACTS: stores the new facts which refer to the new predicates of TMPPRED.

maxlev: is a global variable which specifies the maximal search level.

1. If lev > mazlev, then return False.
2. Else,

(a) Create new predicates by adding Unique and Extreme in front of the predicates
of Pred (“left” predicates):
TMPPRED= {Unique_P, Extreme_P | P € Pred}.

(b) Create a new set of facts using TMPPRED and the old facts Facts:
For any P € Pred,

i. Compute the truth value of the new “unique” predicates:
if P(z,v) € Facts and Yy € Term,y # z[P(y,v) ¢ Facts|, then add Unique_P(z, 1)
to TMPFACTS.
Else, add Unique_P(z,0) to TMPFACTS.

ii. Compute the truth value of the new “extreme” predicates:
Suppose < is the total order on Valuep. If P(z,v) € Facts and Yy €
Term,y # =z, such that P(y,v') € Facts v' < v or Vy € Term,y # z, such
that P(y,v") € Facts v < v/, then add Extreme P(z,1) to TMPFACTS
Else, add Extreme_P(z,0) to TMPFACTS.

(c) Search for a focal point in the new set of facts:

If (res=FP(TMPFACTS)), then return res.

(d) If failed, then try again by repeating the same process on the new set of predicates
and facts:

Else, if (res=FOCAL(lev+1,TMPPRED,TMPFACTS)), then return res.
(e) Else,
1. If failed, create new predicates which are tuples of length [ev of predicates
from Pred (“right” predicates):
TMPPRED = {Py_P,_..._Py,, | P, € Pred}.

ii. Create a new set of facts using TMPPRED and the old facts Facts:
For any Py, ...., P}, € Pred,
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if Py(z,vp), Pi(@,v1), ey Pew(2, View) € Facts, add Py_P;-..._Pjey(z, (v1, ...y View )
to TMPFACTS.

iii. Repeat the process using the new sets of predicates and facts:

return(FOCAL(lev+1, TMPPRED, TMPFACTS)).

The next function receives a set of facts of the form Unique P(7,1), indicating that 7
is unique with respect to P, Unique_P(3,0), specifying that j is not unique with respect
to P, Extreme_P(7, 1), specifying that i is extreme with respect to P and Extreme_P(j,0),
indicating that j is not extreme with respect to P. It calculates the focal point value (F) of
each object by counting the number of unique and extreme facts associated with it. Then it
looks for all the objects with a unique focal point value. If there are such objects, it chooses
from among them the one with the largest focal point value and returns it as a focal point.
Otherwise, (i.e., if no unique focal point is found) it stores the set with the smallest number
of objects with the same focal point value and returns False for future consideration.

Function FP

Input: Facts

Output: If there is a focal point, based on Facts, then it is returned; else, the set S is

updated and False is returned.

Temporal variables:
UFP: the set of objects with a unique focal point value.
SFPT: the set of sets of objects; each set of objects consists of objects with the same
focal point number; the size of the sets is the same and minimal with respect to other

such sets.

1. Calculate the focal point value for all objects i € Term, using the following equation:

F(i) = [{P(i,1) | P(i,1) € Facts}|.

2. Choose the object ¢ with the largest F value that is unique in having that value.
Formally, let UFP = {i|i € Term;Vi' € Term, if i’ # 14, then F(i) # F(i')}.
If UFP +# 0, then ¢ = argmaz, UFPF(Z'); return(c).

3. Else, divide the objects in Term to sets, Si,...,Sk, where 1 < k < |Term|, such that the
objects of each S; have the same focal point value, i.e., for all 1 < j < k and for all
i,3' € Sj, F(i) = F(¢'). Denote by f; the focal point value of the elements in ;.
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4. Let SFPT = {S,; |1 < j <k, and V1 <[ < k,|S;| < |Si|}. That is, SFPT includes
all the sets whose number of elements are minimal. Add argmazs,esrprf; to S;

return(False).

The following algorithm uses the function Focal to identify focal points. It fixes the
maximal level of the search (step (1)) and then calls Focal with the original set of predicates
and facts (step (2)). If Focal succeeds, then ¢ includes the chosen focal point, and the agents
will definitely choose the same object; i.e., the algorithm succeeds. If Focal fails (step (3)),
then, like Algorithm 2 of the decision theory approach, the algorithm will try to increase
the probability of choosing the same object by randomly choosing among the objects of the

smallest set with objects with the same focal value.

Algorithm 3 Joint selection of an object using SL focal points
1. S =0; determine mazlev.

2. Try to find a definite focal point using the recursive function, Focal. Formally,
¢ = Focal(1, Pred, Facts).

8. If c = False, let SFP={S | S € S andVS' € S,|S| < |5'|}. That is, SEP includes
all the sets whose number of elements are minimal. Let S* be the set in SF'P which

was added first to S. Choose randomly one of the objects of S* as the chosen object c.

4.6.2 Properties of the Algorithm

The logical-focal point algorithm described above has the following properties:

Success Rate: The high success rate of the algorithm is demonstrated in the “Results”

section below.

Front End: As in the DT-focal point algorithm, if the SL-focal point algorithm succeeds
(i.e., Focal at step 2 returns a value), the agents will definitely choose the same object.
In the rare cases in which the SL-focal point algorithm fails to find a unique object, both
agents know that it has failed (also common knowledge), and so the results collected
in the iterations of the function Focal and saved in S are used in the third step of the
algorithm to increase the probability of “meeting.” In the algorithm above, we choose
the set from which an object is chosen randomly by using the criterion: the smallest
set that was found first. However, there are other criteria that can be used, such as

the set that was most persistent.
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No. of No. of Predicates

Objects 2 | 3 | 4 | 5
3 100 | 100 | 100 | 100
4 92| 99| 99 | 100
5 92 | 100 | 100 | 100
6 89 | 98 | 100 | 100
7 86 | 98 | 99 | 100
8 87 | 97 | 100 | 100
9 88 | 97| 99 | 100
10 83| 97| 99 | 100

Figure 20: Probability of definitely choosing the same object in case of a different number
of values, even distribution, using the step-logic, focal point algorithm.

Any Time Algorithm: While the DT-focal algorithm provides an answer only when it
finishes, the step-logic focal point algorithm may be terminated after each iteration,
and the sets that are accumulated in S may be used to increase the option of choosing

the same object, i.e., choosing an object randomly out of one of the sets of S.

Domain-Independence: The algorithm is applicable in any domain in which there are
objects, predicates, and the need to choose one of the objects, as in the DT-focal point

algorithm.

Independence of Agents’ Internal Representations: All agents must have sets of ob-
jects, predicates, and values for the predicates. However, the agents may have different

names for objects, predicates, and values, as in the DT-focal point algorithm.

4.6.3 Results and explanations

We conducted simulations, as in the decision theory case. However, while the decision theory
algorithm implements most of the aspects of our ideas, the focal point algorithm is partial and
implements only the mechanism for creating new predicates. Therefore, we conducted only
a limited number of simulations. We concentrated on Case A of Section 3.4.5. The number
of possible values was 10, and even distribution was used. We considered configurations
in which the number of objects was between 3 and 10, and the number of predicates was
between 2 and 5. For any given configuration (i.e., number of objects, number of predicates),
we ran the three steps of the simulations 1000 times.

Figure 20 specifies the probability of definitely choosing the same object, i.e., the prob-
ability that the function Focal in the second step of Algorithm 3 will succeed. It is easy to
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No. of No. of Predicates

Objects 2 | 3 | 4 | 5
3 100 | 100 | 100 | 100
4 96 | 99 | 99 | 100
5 96 | 100 | 100 | 100
6 94 | 99 | 100 | 100
7 93 | 99 | 100 | 100
8 94 | 98 | 100 | 100
9 94 | 98 | 100 | 100
10 91| 98 | 100 | 100

Figure 21: Probability of choosing the same object in case of a different number of values,
even distribution, using the step-logic, focal point algorithm.

see that our algorithm did very well. In all the configurations, the probability of definitely
choosing the same object was at least 83%. In configurations with more than 2 predicates,
the probability was at least 97%, and in configurations with 5 predicates, regardless of the
number of objects, there was a probability of 100%.

Comparing these results with the ones obtained in similar configurations for the D'T-focal
point algorithm (Figure 5), we observe that the DT algorithm performed a little better when
there were only two predicates, but the SL algorithm performed a little better when there
were b predicates. However, the differences are very small, and it is difficult to speculate
about the reasons for this.

Figure 21 presents the general probability of choosing, i.e., the success rate for all steps
of Algorithm 3. This increases the chances to at least 91% for any configuration that we
considered. These results can be compared with the ones obtained for similar configurations
by the DT algorithm (Figure 16.) The SL algorithm did a little worse when the number of
predicates was 2 or 3, but both algorithms provide a high probability for choosing the same
object. Since, in this case, as well, the differences are small, it is difficult to explain them.
However, the SL algorithm may be a little weaker, since it uses less available information
than does the DT algorithm. For example, the SL algorithm only uses the fact whether an
object has a unique value with respect to a given predicate or not, but the DT algorithm,
in the case in which an object is not unique, uses the information about how many objects
have the same value with respect to that predicate.

Further work is needed to incooperate the two other mechanisms described at the begin-
ning of the section, i.e., the inference mechanism and the observation mechanism, into the

SL algorithm. For example, the agents can make observations and some deductions after
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each level of the algorithm. The exact details of such implementation are left for future
work. However, since the simple SL algorithm has already performed so well, we also expect

the extensions to do well.

5 Decision Theory/Step-Logic/People: Comparisons

Focal points provide a test case for representation and reasoning in multi-agent domains.
By studying focal points, we gain insights into representing and reasoning about multi-agent
encounters. We have presented two alternative formalisms for enabling an automated agent
to discover focal points, one based on step-logic and the other on decision theory. Each has
certain advantages and disadvantages.

As Doyle points out [17, 16], logic and decision theory “are not competing theories, but
instead are two complementary parts of the solution.” It thus makes sense to consider how
each might be used to treat a difficult new problem in knowledge representation, to consider
their strengths and weaknesses, and ultimately, perhaps, to combine them into a unified
solution.

Decision theory allows for a natural integration of payoffs into the decision-making pro-
cess. In the step-logic-focal point algorithm, in contrast, payoffs were considered only indi-
rectly, when they affected uniqueness, etc. Another difference between the two approaches
is that with decision theory, the changes brought about by searching “one level deeper” will
be continuous and can even be analyzed ahead of time (i.e., the agent can ask the question,
“What is the maximum utility that I can derive by searching one level deeper?”). None of
this is true of the step-logic approach: searching one level deeper can lead to a non-continuous
change in the choice of focal point.

Another difference between the two approaches is that, with decision theory, the measure
of difficulty is intended to take into account, among other factors, multiple derivations—if
a fact is derived from multiple sources, its measure of difficulty is lower. In the step-logic
approach, it doesn’t matter if a fact was derived at level n in several ways from the n — 1
level.

At times, of course, the deductive approach of step-logic will succeed, while the decision
theoretic approach will fail to cause coordination. If the probability in the example of the
beginning of Section 3 was raised to only .45, then agent K might not choose to go to C,
because his payoff values steer him away from that solution—even though it is a unique focal
point. The step logic approach would cause the agents to coordinate.

At other times, the step-logic approach will fail, while the decision theory approach will

succeed. For example, there can be interactions in which there are multiple equilibrium
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points and multiple focal points, as well. Even when the utility to the agents is greater
from one choice, step-logic would not help the agents coordinate. The decision theoretic
approach, on the other hand, causes them both to choose the high utility option.?® Another
problem with decision theory is that the agent designer must somehow supply the necessary
numeric information, which, in general, is difficult to generate. In certain ways, the step-logic
approach requires less information from the agent designer and is thus suitable even when
utility information is difficult to come by.

In order to compare the decision theory and step-logic approaches, we conducted a pre-
liminary experiment which also involved people. Based on this preliminary experiment, our
hypothesis is that the current version of the DT algorithm, when acting in a static environ-
ment such as the one described in Figure 3, is able to match the actual choices of people.
The SL algorithm did worse than did the average person in this experiment. Further work
is needed to check our hypothesis.

In order to compare the decision theory and step-logic approaches, we conducted an
experiment which also involved people. We constructed a questionnaire consisting of twelve
questions. In each question there was a description of a number of objects (between 4 and
12) and their properties. The situation described in Figure 3, which was used to demonstrate
the DT algorithm, and the situation of Example 9, which was used to demonstrate the SL
algorithm, were included in the questionnaire.

We asked 20 senior computer science students to choose one object for each question and
to try to match their friends’ choices. That is, we explained to them that a correct answer
would be one in which the chosen object would be the one which was selected by most of
the other students. We compared the students’ choices with the objects chosen by the step
logic-focal point algorithm and the decision theory-focal point algorithm. A summary of the
results is presented in Figure 22. In all cases, the DT algorithm and the SL algorithm were
able to find a focal point.

In 10 of the questions, at least half of the students chose the same object (i.e., all questions
but 6 and 11). In 9 of them, the DT algorithm also chose the same object which they selected.
The SL algorithm was able to choose only 5 of these objects. The average student score was
6. Only in 4 questions did the DT and the SL algorithms choose the same object.

If we consider as a “correct answer” for any question the object which was chosen by
the largest number of students, even if fewer than half of the students selected it, then the
DT algorithm was able to choose 9 objects correctly; i.e., 2 of its misses were in cases in

which fewer than half of the students chose the same object. The SL algorithm scored 6; the

38Game theory might resolve this interaction by noting that one equilibrium point yields maximal utility
for all players. This solution is sometimes mandated axiomatically [65].
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Ques. Object No. | Algo. | additional
No. 1| 2‘ 3‘4|5|DT‘SL objects

1 3110 3|22 2] 2

2 1113 |51 3| 4

3 2|10 315 21 5

4 12| 3 213 1| 4

5 13| 3] 1]2|1 1 1

6 2| 6 3 2] 3

7 11 4|15 31 3

8 3|11 ] 1 2] 5

9 17 111]1 1] 4

10 1 16 2] 3

11 3] 1] 1]1|1 8| 8] 6-8;84;10-1
12 1 7| 716-3;7-12; 10-2

Figure 22: Results of experiments with people. Each row corresponds to one of the questions.
Columns 2-6 correspond to the number of students who chose the specified object. Columns
7 and 8 specify the objects that were chosen by the DT and SL algorithms, respectively. The
situations in questions 11 and 12 consisted of ten objects, and the number of students who
chose objects 6-10 are specified in the last column. For example, for question 11, 8 students
chose object 6, 4 students chose object 8, and one student chose object 10.
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average student score was 7.05.

This is a preliminary experiment, and more experiments are needed to reach significant
results. However, our hypothesis is that the current version of the DT algorithm, when
acting in a static environment such as the one described in Figure 3, is able to match the
actual choices of people. The SL algorithm did worse than did the average student in this
experiment. From an observation of the computations of the SL algorithm, we realized that
it wasn’t “sensitive” enough. For example, in some questions it gave the “correct” object the
highest focal point value, but gave the same value to an additional object or objects. Since
it selects an object with a unique focal point value, it chose a third object that received the
second highest focal point value. Further work is needed to improve the SL algorithm and,
in particular, to develop an inference system that will use the special properties of step-logic.
We suspect that such an extended algorithm will do better than the DT algorithm does in
a dynamic environment in which not all information is given to agents in advance.

In addition, we made several interesting observations concerning the behavior of people.
In most of the questions in the questionnaire, the properties of the objects were meaningful,
i.e., type, size, color, etc. Also, their values were meaningful, e.g., house, big, white (as
in Figure 3). However, in three questions we specified the properties of the objects with
abstract names, e.g., P1, P2, and the values were also abstract, e.g., lines, shapes, letters,
and numbers. In particular, question 3 considers the same situation as does question 8, but,
while in question 3 we used meaningful properties and values to describe the objects, in
question 8 we used an abstract specification. Similarly, questions 4 and 9 refer to the same
situation as do questions 6 and 10. In all three cases, the same object was chosen by most
of the students, regardless of the representation. For example, in question 4, 12 students
chose object 1, and in question 9, 17 students chose object 1. However, in all three cases,
more students were able to choose “correctly” when the descriptions were abstract, than in
the case of meaningful representations. Of course, both the SL and DT algorithms chose
the same object in the similar questions, regardless of the representation. From interviewing
the students, we realized that in the case of meaningful presentations, the specific value of
the property of the object influenced their decisions. For example, they were leaning toward
choosing a yellow house rather than a white house, since yellow is a “stronger” color than
white. Further experiments are needed to study such influences and the way to incooperate

them into automated agents which cooperate with humans.
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6 Summary

We have presented the concept of focal point solutions to interaction problems and discussed
why conventional representation techniques are insufficient for focal point discovery. An
algorithm was presented for discovering focal points, using a decision theoretic framework;
this algorithm provides a natural way to incorporate theories of utility into the focal point
calculation. A second algorithm was developed that allows for the uncovering of focal points
through the use of step-logic, special inference rules, and sets of predicates, functions, and
terms that change over time. The technique is particularly well-suited for modeling the
time-dependent nature of a focal point search.

A series of simulations were run over various randomly generated worlds that demon-
strated the usefulness of the focal point algorithms as a heuristic for multi-agent coordina-
tion. We also conducted an experiment which compared the behavior of people and our
two approaches. The results indicate that, in case of a static database, the decision theory
algorithm matched human behavior better. The question of how people and the algorithms

will behave in a dynamic environment is left for future work.
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