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In this paper we study automated agents which are designed to encourage humans to take some actions
over others by strategically disclosing key pieces of information. To this end, we utilize the framework
of persuasion games, a branch of game theory that deals with asymmetric interactions where one player
(Sender) possesses more information about the world, but it is only the other player (Receiver) who can take
an action. In particular, we use an extended persuasion model, where the Sender’s information is imperfect
and the Receiver has more than two alternative actions available. We design a computational algorithm
that, from the Sender’s standpoint, calculates the optimal information disclosure rule. The algorithm is
parameterized by the Receiver’s decision model (i.e. what choice he will make based on the information
disclosed by the Sender) and can be re-tuned accordingly.

We then provide an extensive experimental study of the algorithm’s performance in interactions with
human Receivers. First, we consider a fully rational (in the Bayesian sense) Receiver decision model and
experimentally show the efficacy of the resulting Sender’s solution in a routing domain. In spite of the dis-
crepancy in the Sender’s and the Receiver’s utilities from each of the Receiver’s choices, our Sender agent
successfully persuaded human Receivers to select an option more beneficial for the agent. Dropping the Re-
ceiver’s rationality assumption, we introduce a machine learning procedure that generates a more realistic
human Receiver model. We then show its significant benefit to the Sender solution by repeating our routing
experiment. To complete our study, we introduce a second (supply-demand) experimental domain and, by
contrasting it with the routing domain, obtain general guidelines for a Sender on how to construct a Receiver
model.
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1. INTRODUCTION

Computer systems have a major role in providing information to humans. This infor-
mation may either be via the web (search engine, news etc.), GPS systems or decision
support systems. This information is not always ingenuous; at times, this information
may be intended to influence a user into performing some actions rather than others.
In this paper we focus on scenarios in which an automated agent interacting with hu-
mans possesses greater information than them. The automated agent needs to reveal
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information to humans, thereby leading them to perform actions that are preferable to
the agent.

Game theory, in particular persuasion games, are the most popular disciplines that
study strategic reasoning as required by the mixed intelligent systems on which we are
concentrating. In such games (e.g. [Crawford and Sobel 1982; Glazer and Rubinstein
2006; Kamenica and Gentzkow 2010]) two rational entities interact: a Sender and a
Receiver. The Sender provides information and is assumed to be more knowledgeable
and the Receiver performs an action based on the information received.

Some examples may be Google Maps [Google 2013a] or Waze [Google 2013b] applica-
tions: they know the possible settings that influence traffic congestion in the relevant
countries and their times (e.g., morning rush hours) and have a distribution over the
time it takes to drive on most of the roads. Similarly, automated travel agents have a
lot of prior information on flights and the distribution over their delays.

In this paper, we extend these game-theoretical models as follows: While the agent
holds private information (i.e., unknown to the user), it is also uncertain about the ex-
act current state of the world. For example, the system may have an estimation of the
congestion of traffic on different roads which may be unknown to the user. Still, the
system may have only an estimation and not the exact value of traffic density at a par-
ticular time. We consider the setting of a one-shot interaction where the agent presents
the user with information and the user chooses an action based on this information.
The agent can present partial information about the state, however any information
revealed by the agent must be true (unlike other work which consider manipulating
the information presented to the user such as [Sarne et al. 2011]).The utility functions
of both parties are different, but both depend on the state of the world and the ac-
tion performed by the user. We model this setting as an optimization problem for the
Sender and present an algorithm for solving it.

Following the game theory solution might not be the best strategy for an agent in-
teracting with humans as (1) humans are not necessarily rational decision makers and
therefore the agent needs to be able to model its user’s reaction to the information it
provides and plan accordingly. Moreover, (2) people are known to discount the advice
they obtain from experts (see for example [Yaniv and Kleinberger 2000; Bonaccio and
Dalal 2006] and [Kuang et al. 2007] for the case when the adviser has a monetary
stake in the advice provided). For example, drivers may prefer not to pay a toll even
if this decision will result in driving for a longer period of time on a more congested
road. The system, on the other hand, may at times prefer to notify its drivers about
a vacant toll-free road if the toll roads have heavy traffic. An intelligent traffic center
needs to reason about the effect of its notifications on the toll collection for the day, on
the resulting congestion for the toll-free road and on the user’s possible reaction to the
revealed information.

To face the challenge of human deviation from fully rational behavior we present
the Linear weighted-Utility Quantal response (LUQ) human model which relies on
the following two assumptions: Linear Weighted-Utility, i.e. people’s subjective utility
is a linear combination of attributes; and Logit quantal response: The probability that
people will chose a certain action is proportional to the action’s subjective utility.

We ran extensive evaluations involving a total of over 700 human subjects in two
different domains. One considers a road selection problem (described in Section 5.1)
and the second one considers a supply-demand interaction detailed in Section 5.2. We
discovered that, in the road selection problem domain, people deviated from rational
behavior and therefore an agent based on the LUQ method significantly outperformed
a game theory-based agent. However, in the supply-demand domain, people behaved
nearly rationally and thus the LUQ based agent and the game theory-based agent’s
performance did not differ significantly.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



Strategic Information Disclosure to People with Multiple Alternatives A:3

To summarize, our key contributions in this paper are:

— An extended persuasion game model for human-agent interaction with asymmetric
information and two-sided uncertainty;

— A formal solution algorithm for the model, parameterized by the Receiver (human)
behavior model;

— The LUQ method for building a human behavioral model pertinent to the Sender-
Receiver type interaction;

— A methodology determining when one can assume rational behavior and thus use the
game theory approach and when one should use the LUQ method.

The rest of the paper is organized as follows. Section 2 describes the necessary back-
ground to our work and positions our paper relative to other persuasion studies. Sec-
tion 3 formally defines the interaction model which we consider, while Section 4 pro-
vides its theoretical analysis and an algorithmic solution. Our experimental designs
and results begin with Section 5 which describes bounded rationality models of human
decisions, both general and specific to our experimental domains. Section 6 describes
the exact experimental setup and parameters that we used for our domains, and de-
scribes the experimental outcomes and statistics. Finally, we give some concluding
remarks in Section 7.

2. RELATED WORK

In our preliminary work [Azaria et al. 2011] we considered an information disclosure
game in which only one side, the Receiver, had incomplete information about the state
of the world, while the Sender had full information regarding the state of the world. In
this work we explicitly deviate from this assumption and force the Sender to deal with
incomplete information resulting in a two-sided uncertainty game. We furthermore
provide the full proofs in the theoretical section, conduct new experiments and add an
extra domain which yields interesting results.

Related scenarios to our problems are settings where advice-giving can influence
the decision-making of the advice taker (see e.g., [Bonaccio and Dalal 2006] for a tax-
onomy). Human players participating in a coordination game were found to accept a
third party’s advice, even though this third party has selfish interests in the game’s
outcome [Kuang et al. 2007]. Furthermore, communication will affect human play-
ers even if it comes from their opponents, who are directly involved in the game (see
e.g., [Liebrand 1984]). As a result, manipulative information exchange between players
becomes an issue to exploit. For example, travel guidance systems have been studied
for their effects on the commuting dynamics [Mahmassani and Liu 1999; Chorus et al.
2006].

Game theory researchers have long studied the manipulative interactions in the
context of persuasion games (see e.g. [Milgrom and Roberts 1986; Crawford and Sobel
1982]). In these games, the Sender (the highly informed player) attempts to calculate
and find that portion of information which will yield the maximum persuasive effect,
i.e. will prompt the Receiver (player capable of acting in the world, and whose actions
determine the welfare of both players) to choose an action which is most beneficial
for the Sender, rather than the Receiver itself. Though this interaction narrative is
common to all works utilizing the game theoretic persuasion, its detailed formaliza-
tions vary significantly. For example, Glazer and Rubinstein [Glazer and Rubinstein
2006] and Rayo and Segal [Rayo and Segal 2010] study the case where the Receiver
has only two options: either accept the action associated with the world’s current state
or decline it. Such would be the case, for instance, if following or skipping a sponsored
search link. The search engine would play the role of the Sender and provide additional
information about the sponsored link, while the browsing Receiver would consider the
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relevance of the link from its point of view. In contrast, Kamenica and Gentzkow [Ka-
menica and Gentzkow 2010], as well as our current work, view scenarios where the set
of action alternatives is greater than the simple binary choice. Another parameter of
a persuasion game model is the amount of knowledge that the Sender has about the
world and the Receiver. For instance, Turkay Pillai [2009] assumes that the Receiver
may have some private information (a type) and studies how the Sender can refine its
knowledge of the Receiver’s utility over time. In contrast, our model of the interaction
is single-shot, where such a refinement is not possible. We also assume an additional
impediment for the Sender, specifically that it does not have complete knowledge of
the state of the world.

Interestingly, the assumption of complete information is not limited to game theo-
retic persuasion approaches. In a recent work in e-Commerce, Hajaj et al. [Hajaj et al.
2013] consider comparison shopping agents (CSAs). They suggest a set of methods
for affecting users decisions based on selective disclosure of information, aiming to
influence users not to query additional CSAs. However, Hajaj et al. do not allow the
presentation of uncertain information, using probabilities as we do, but merely allow
the agent do decide whether to present a certain shop or not.

Fenster et al. [Fenster et al. 2012] design an agent which influences human decision-
making in a conversational setting. Their agent tries to convince the human by provid-
ing examples for her to emulate, or by providing justifications for a certain choice. The
work studied an environment where the human had to select a location for a school.
The agent interacted with the human and attempted to convince her to choose a cer-
tain location. However, in a striking contrast to our work, Fenster et al [Fenster et al.
2012] have no uncertainty involved.

Although game theory has provided a wide variety of persuasive models and meth-
ods, the core assumption of rationality and equilibrium choice remain. Yet, following
equilibrium strategies is often less beneficial in practical applications, where agents
need to interact with people (see e.g. [Hoz-Weiss et al. 2008; Peled et al. 2011; Azaria
et al. 2012]). Thus, there’s a need to develop persuasion solutions where an alterna-
tive (bounded-rational or learned/mined) decision model of human behavior can be
easily incorporated. Indeed such interaction methods, which are capable of combining
psychological factors and human decision-making theory with machine learning meth-
ods towards creating a human model, have been demonstrated to be successful. (see
e.g. [Rosenfeld et al. 2012; Gal and Pfeffer 2007; Oshrat et al. 2009; Rosenfeld and
Kraus 2011; Peled et al. 2011; Azaria et al. 2012a; Azaria et al. 2012b]).

3. THE INFORMATION DISCLOSURE GAME WITH TWO-SIDED UNCERTAINTY

In this section we will formally describe the protocol of the interaction between the hu-
man user and the advising agent. To this end we will use the terminology and general
format of (Bayesian) persuasion games [Kamenica and Gentzkow 2010] (hence, nam-
ing the human user a Receiver, and the agent a Sender) and a guided route selection
example as intuition.

The game describes an asymmetric interaction between two players: a Sender and a
Receiver. The Receiver has a privately observed type associated with it (6 € ©) that is
sampled from a commonly known distribution (f ~ pg). The Sender can send messages
to the Receiver and the Receiver can perform actions from a set A. The utilities of the
interaction between the players depend on the state of the world v € V that is sampled
independently from the commonly known distribution v ~ py. The Sender can obtain
an observation of the state of the world w € Q that is sampled from the commonly
known distribution w ~ pq(-|v). The utilities of the interaction between the players are
given by two functions u, : V x A — R for the Sender, and u, : V x © x A — R for the
Receiver.
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In our example, 6 can correspond to the tolerance or patience exhibited by a driver
and influence his utility (see below). The messages sent by the Sender naturally corre-
spond to the traffic management center sending route information. The action chosen
by the Receiver corresponds to the driver choosing a specific route. The state of the
world corresponds to different traffic conditions across the road network with an ap-
propriate statistic. The traffic management center can monitor the traffic conditions
with some degree of uncertainty. The utility functions in our example scenario describe
how content the user would be (u,) if he took a specific route (a € A) given his patience
(6 € ©) and current traffic conditions (v € V), and respectively (u;) how profitable it
would be for the traffic management center if the driver adopted a particular route
(a € A) given the current traffic conditions (v € V).

The game unfolds as follows:

— The Sender selects a finite set of messages, M, and a disclosure rule 7 : Q@ — A(M),
where A(-) denotes the space of all distributions over a set. In other words, the disclo-
sure rule specifies the probability 7(m|w) of sending a message m given any possible
Sender’s observation w. Note that v is unknown (even through observation) to the
Sender at the time of computing this disclosure rule. We will refer to the disclosure
rule as the Sender’s policy.

— The Sender computes the effective disclosure rule mo(mv) = 3 w(m|w)pa(w|v).
we

— The Sender declares and commits to (7, M).3

— The Receiver’s private types 6 and the state of the world v are independently sampled
from pe and py, respectively.

— The Sender is supplied with the observation w ~ pq(-|v).

— The Sender samples a message m ~ 7(-|w) and sends it to the Receiver.

— Given the message m, the Receiver performs a Bayesian update to calculate p}}
ma(m|-)T o py, where “o” denotes the entry-wise product [Horn and Johnson 1991].

— Based on pj} and 6 the Receiver selects an action a € A.

— Players obtain their respective utilities us(v,a) and u,(v, 8, a).

4. SOLVING INFORMATION DISCLOSURE GAMES WITH TWO-SIDED UNCERTAINTY

To solve the information disclosure game we represent it as a mathematical program
(which can be non-linear). Solving such a problem consists of maximizing the expected
utility of the Sender by using a particular protocol that chooses what messages to
send given its observation of the state of the world. At the same time, the action se-
lection policy of the Receiver contributes the bounding conditions of this mathematical
program. In this Section, we analyze such games formally and provide a solution, as-
suming that the Receiver is fully rational.

4.1. Mathematical Program

Since the Sender must commit in advance to its randomized policy, we use a subgame
perfect (SP) Bayesian Nash equilibrium where the only choice made by the Sender
is selecting the disclosure rule (we analyze the game as if a third party sends the
message to the Receiver based on the disclosure rule given to him by the Sender). In
the SP equilibrium the Receiver’s strategy is the best response to the Sender’s policy,
simplifying the equilibrium calculations [Osborne and Rubinstein 1994].

We limit the possible states of the world V/, the Receiver types O, the set of obser-
vations 2 and the Receiver actions A to finite sets (we refer to this as the finite sets

3In our route selection scenario the above stages correspond to the traffic management center describing
and advertising its services.
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assumption). Let p? denote the beliefs of the Receiver about the state of the world. The
Receiver will choose an optimal action:

a* = arg max E, p [ur(v,0,a)] (1)

The set of feasible responses can be limited even further if the disclosure rule 7 is
given. By strategically constructing the rule 7, the Sender can influence the actions
chosen by the Receiver. Since the Sender has only partial knowledge of the private
value 6 of the Receiver, the Sender can only compute a prediction of a, p4 : A(V) —
A(A), the action choice. We denote p’y = pa(-|p{?). Having precomputed the response
function p4 of the Receiver, the Sender can calculate the expected utility of a specific

disclosure rule 7 (we removed the details of the simple mathematical manipulations).

Us[r] = Elus] = Z Z us (v, a)p(v, a)

veEV a€A

ST S v, a)py @)palalpfpa(el)m(mlw)

vEV a€EAmMEM wE

Since we have assumed that V, Q and M are finite, we can formulate the disclosure
rule construction as an optimization problem over the space of stochastic policies
7m(m|w) and the message space M:

T = arg Max s r:v—A(M) Us [ﬂ-] (2)

The following theorem shows that if an optimal solution exists, then the set of mes-
sages selected by the Sender can be limited to the size of |Q}|.

THEOREM 4.1. Given an information disclosure game, (V,py, 0, pg, Q, pa, A, u,, us),
with the finite sets assumption (i.e. V, Q and A are finite). If there is an optimal solution

(7, M) where |M| < oo, then there exists an optimal solution (%, M), where |M| < |,

Theorem 4.1 shows that an optimal solution with a finite message space can be
transformed so that the set of messages does not exceed |Q)|. However, it is possible
to question whether an optimal solution with a finite message set in fact exists. The
following theorem deals with that question, demonstrating that a countable set of mes-
sages of an optimal solution can always be replaced by a finite set.

THEOREM 4.2. Given an information disclosure game, (V,py, 0, pg, Q, pa, 4, u,, us),
with the finite sets assumption (i.e. V, Q) and A are finite). If the optimal U, is attainable
by some protocol (w, M), then there is an optimal solution with a finite message space.

We give the complete proofs of Theorems 4.1 and 4.2 in Appendix A rather than
here due to their technicality. Their intuition, however, is easily outlined. For Theo-
rem 4.1, we show that the effects induced by the extra messages can be achieved by
distributing the information that they transfer to other messages without effecting
the Sender’s utility. The re-distribution process relies on the linear properties of the
disclosure rule as a matrix. In turn, for Theorem 4.2, we show that the utility gains
obtained from almost all, but a finite number, of messages is negligible and so is the
information which they provide to the Receiver. In fact, they can be aggregated into
a single message (thus reducing the total number of used messages to finite) without
impacting the Sender’s utility.

4.2. Finding an Optimal Policy

Unfortunately, directly finding an optimal policy by solving the disclosure rule maxi-
mization problem presented in Equation 2 is intractable, since it includes a strongly
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non-linear component. More specifically, it assumes availability of the Receiver’s best
response (defined by Equation 1) in a (closed) functional form. However, it is possible
to circumvent this hindrance. Instead of assuming a functional best response form,
we expand Equation 2 by a set of constraints that compare the Receiver’s utility from
its chosen action to that of all other actions available to him/her. In other words, we
transform an explicit (functional) non-linear representation of the Receiver’s response
into an implicit (constraints-based) linear form.

We begin by generating messages for each possible response from the Receiver. Note
that the response will depend on the Receiver’s type. Formally, we define a set of func-
tions: F = {f : © — A}. f specifies an action for each Receiver’s type. For each function
f we create a set of messages. From Theorem 4.1 we know that for an optimal policy
there is a need for at most || messages. Therefore, there is no need for more than ||
messages to lead to a specific behavior that is described by a function f. Thus, we cre-
ate a set M of messages such that, for every f € F, we generate () messages denoted
by m}, 1 <j <[9].

Using this set of messages with a size of |Q||F|, we would like to consider possible
policies and choose the one that maximizes the Sender’s expected utility. However, we
need to focus only on policies m where, given a message mic, a Receiver of type 6 will
really choose an action f(6). We achieve this formally by designing a set of inequalities
that express this condition as follows.

First, given a message m € M, a Receiver of type § € © and a policy g, the Receiver
will choose an action a € A only if he believes that his expected utility from this action
is higher than his expected utility from any other action. Note that after receiving a
message m, the Receiver’s belief that the state of the world is v € V is proportionate to
py (v)ma(m|v). Thus, the set of constraints is

Va' € A Z ur (v, 8, a)py (v)mo(m|v) >
veV

Z ur(v,0,a")py (v)mo(mlv) (3)

veV

Focusing on a specific message m]f', we want to satisfy these constraints for any type

6 € © and require that the chosen action will be f(6). Putting these together after
some mathematical manipulations, we obtain the following constraints for V6 € © and
Va' € A:

Z(UT(’U, f(g)) - UT(U, 07 al))PV(U)WQ(mW) 2 0 (4)
veV

Note that there may be many functions for which we will not be able to find an
effective policy m that will satisfy the required constraints. However, given such a mq

and a function f we can calculate the probability = A(a|m§) that an action a € A will be
chosen when the Receiver gets the message mg}, regardless of his type. Formally, given
aset © C O,let 16(0') = 3" ,co Po(t:). Then, m4(alm}) = mo(f~(a)).
Putting it all together, we obtain the following optimization problem:
T =argmax > 3 us(v,a)py (v)me(f ! (a))ma(my|v)
" mieMm ascd
s.t.
, o = TpQ
Vmgc EMNYOcOVa c A
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> (ur(v,0, £(0)) = up(v,0,d"))pv (v)ma(milv) > 0

veV )
Yw € Q Z m(m}lw) =1
m}EI\/I
vm} € M m(m}lw) > 0
The complexity of solving the optimization problem within the above algorithm is
polynomial in |A], |V| and ||, but exponential in |©| since | F| « |A|'®!.
We refer to this agent as the Game Theory Based Agent (GTBA).

5. PEOPLE MODELING FOR DISCLOSURE GAMES IN MULTI-ATTRIBUTE SELECTION
PROBLEMS

Trying to influence people’s action selection presents novel problems for the design of
persuasion agents. People often do not adhere to the optimal, monolithic strategies
that can be derived analytically. Their decision-making process is affected by a mul-
titude of social and psychological factors [Camerer 2003]. For this reason, in addition
to the theoretical analysis, we propose to model people participating in information
disclosure games and integrate that model into the formal one. We assume that the
agent interacts with each person only once, thus we propose a general opponent mod-
eling approach, i.e., when facing a specific person, the persuasion agent will use models
learned from data collected from other people.
The opponent modeling is based on two assumptions of human decision-making:

— Linear Weighted-Utility: People’s decision-making deviates from rational choice
theory; they use a subjective utility function which is a linear combination of a set
of attributes. This utility function may divert from the expected monetary utility
function.

— Logit quantal response (stochastic decision-making): People do not choose ac-
tions that maximize their subjective utility, but rather choose actions proportional to
this utility. A formal model of such decision-making has been shown in [Lee 2006;
Daw et al. 2006] to be of the form:

ar(ald,pl) o exp (Ezwp’;/ [ur(v, 0, a)])

We name this method for human modeling: Linear weighted-Utility Quantal re-
sponse (LUQ). (This method was also proved to be successful in modeling human be-
havior in security games [Nguyen et al. 2013].) The study of the general opponent
approach and its comparison with the formal model was done in the context of two
games. The Multi-attribute Road Selection Problem with two-sided uncertainty about
road traffic and the Sandwich Game with two-sided uncertainty regarding the number
of attendees of a particular event. Next we will describe the two games and explain
their differences.

5.1. Multi-attribute Road Selection Problem with Two Sided Uncertainty

The multi-attribute road selection problem with two-sided uncertainty about the state
of the world is an extension of the game that was studied in [Azaria et al. 2011]. It is
defined as an information disclosure game I', with two players: a driver and a center.
The center, playing the role of the Sender, can provide the driver, playing the role of the
Receiver, with traffic information about road conditions. In particular, the driver needs
to arrive at a meeting place in 6 minutes. There is a set H of n highways and roads
leading to his meeting location. Each road h € H is associated with a toll cost c(h).
There are several levels of traffic load L on the roads and a set of highway network
states V. A highway network state is a vector ¥ € V specifying the load of each road,
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ie., ¥=<ly,...,l, >, 1; € L. The traffic load yields a different time duration for the trip
denoted d(@j, h) (where 7}, denotes the traffic load on road i in state ©). If the driver
arrives at the meeting on time he gains g dollars, however he is penalized e dollars for
each minute he is late. Denote the chosen road by a. Putting this together, the driver’s
monetary utility is given by:

up (v, a,0) = g —max{d(a, ) — 6,0} - e (5)

The driver does not know the exact state of the highway network, but merely has a
prior distribution belief py, over V. The center also does not know what the exact state
of the highway network will be when the driver drives along the chosen road (e.g., even
though the traffic flows on a given road, an accident can occur shortly and the road
will be blocked). However, given its observations, the center has a better estimation
of the state of the roads. The center has only prior beliefs, pg, regarding the possible
meeting times, ©. Once given the observations on the state, the center sends a message
m to the driver which may reveal data about the traffic load of the various roads.
The center’s utility depends on the actual traffic load and the driver’s chosen road
us(Uq,a). It increases with the toll road c¢(a) and decreases with o’s load as specified
in 7 (see below two examples of such utility functions). The center must decide on a
disclosure rule and provide it to the driver in advance (before the center is given some
information on the road loads). For the center, the road selection problem is therefore:
given a game I' = (H,L,V,Q, M, ¢,d, pv, pa, us, u,), choose a disclosure rule which will
maximize Flug].

5.2. The Sandwich Game

The Sandwich Game is defined as an information disclosure game I', with two players:
a seller and an organizer. The organizer, playing the role of the Sender, can provide
the seller, playing the role of the Receiver, with information regarding the anticipated
conference attendees. The organizer himself receives noisy information regarding the
exact number of attendees (can be interpreted as the number of people who registered
to the conference during the pre-conference registration). The seller must decide in
advance how many sandwiches to prepare for the conference (a). The sandwiches are
sold for a fixed price ¢, and it is assumed that each conference attendee buys a single
sandwich. Each seller is associated with a private type # which indicates the cost for
preparing each possible number of sandwiches. Thus the seller’s monetary utility given
the number of attendees (v), the number of sandwiches prepared (a) and 6 is given by
ur(v,6,a) = min{a,v} - ¢ — 6(a). Depending on the actual conference size, the organizer
is assumed to have some preferences as to the number of sandwiches prepared by the
seller (us(v,a)).

5.3. Hypothesis

In the original Road Selection problem presented in [Azaria et al. 2011], which con-
sidered only one-sided uncertainty, the agent using the general opponent modeling ap-
proach achieved a significantly higher utility than the GTBA agent. The major cause
for this effect is that people preferred not to choose jammed roads in the game even
when they could be on time to their meetings and therefore did not attempt to max-
imize their monetary values. Thus, we hypothesize that a similar agent (relying on
the LUQ method for human modeling) for the two-sided uncertainty Road Selection
problem will also outperform the GTBA agent in the extended game. In addition we
designed the Sandwich Game, a new game in which the goal of the players is to maxi-
mize their monetary values. We expect that, in such situations, people’s behavior will
be more motivated to maximize their expected monetary values and GTBA may per-
form similar to an agent which relies on the LUQ method for human modeling.
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5.4. Non-monetary Utility Estimation for the Road Selection Problem with Two-Sided
Uncertainty

Given a game I') =< H,L,V,0, M, c,d,py,pe,us, u, >, based on the LUQ method for
human modeling, we assume that the driver chooses the road based on a non-monetary
subjective utility function, denoted @'~ (here and in the functions defined below, we
omit I') when it is clear from the context). We further assume that % is a linear com-
bination of three parameters given the chosen road: travel time, road load and the toll
of the road. We associate different weights (as) with each of these parameters: a4 for
the trip duration time, «. for the toll cost, and for all /; € L we have «;,. That is, given
a game I',, assuming that the driver knew the highway network load ¢ and chose road
a:

Up(U,a) = aq - d(U,a) + ac - c(a) + ag, (6)

Note that the utility associated with a given road depends only on the given road and
its load and not on the load of other roads according to the state.

We assume that the user uses logit quantal response and therefore, given I',, we
assume that the driver chooses road h with a probability of

i (1)

= S X (TR
WeH

pla = h|T,,7) @)

where )\ is a parameter. However, since %, (7, h) has an extra degree of freedom, we set
A= 1.

When choosing an action, the driver does not know # but only m. Thus, the probabil-
ity of choosing a road 4 is:

eE[aP('vh|m)]
p(a = h’|F/)am) = Z eE[ap('»h/h”)]
h'eH

Consider a set of games G, such that they all have the same set of levels of traffic
load.

In order to learn the weights of the subjective utility function associated with G,,
we assume that a set of training data ¥ is given. The examples in ¥ consist of tuples
(T'%,m, a) specifying that a subject playing the driver’s role in the game Fj, € G, chose
road a € H after receiving the message m € M. We further assume that there is a
predefined threshold = > 0, and for each m that appears in ¥ there are at least 7
examples. Denote by prop(l“;, m, a) the fraction of examples in ¥ of subjects who, when
playing I‘f) and receiving message m, chose road a.

Next, given ¥ we aim to find appropriate as that minimize the mean square error
between the prediction and the actual distribution of the actions given in the set of
examples ¥. Note that we propose to learn as across all the games in G,. Formally we
search for as that minimize > (p(a = h|T,,m) — prop(T*,m, h))>.

't m,h

One may notice that the subjective utility function that we propose does not depend
on the meeting time 6. This is because the meeting time 6 is a private value of the
driver and therefore is not specified in the examples in V. However, since we are in-
terested in the expected overall response per message of the whole population and not
in predicting each individual response, if the distribution of the meeting time is left
unchanged, dependence on the meeting time is embedded in the utility results. (We
actually learn p’} directly and therefore don’t depend on 6).
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Next, given a specific I',, we incorporate the learned function p(a = h|m) as an
instantiation of p’} into the calculation of the expected utility of a disclosure rule:

Uslr] = >0 >0 X X us(0 h)py (B)pa(w|v)m(m|w)p(him).
7€V he H meM we
Unfortunately, it means that U[n] has a very non-trivial shape (involving positive
and negative exponential and polynomial expressions of its argument), and even such
properties as convexity were hard to verify analytically. As a result, we chose to use
the standard pattern search algorithm in order to find a reasonable approximation of
the optimal disclosure rule with respect to U,[n].

5.5. Non-monetary Utility Estimation for the Sandwich Game with Two-Sided Uncertainty

Based on the LUQ method for human modeling we assume that the seller decides on
the number of sandwiches to prepare based on the following subjective utility function:
aq - min{a, v} + as - max{(a — v), 0}. That is, the seller tries to maximize the number of
sandwiches sold, and minimize the number of sandwiches thrown away (we anticipate
that as will be negative). For similar reasons to those mentioned in Section 5.4, the
proposed subjective utility function does not depend on 6. According to LUQ we assume
logit quantal response. Learning these as and building an optimal policy is conducted
in a method identical to that of the road selection problem. Each of these proposed
agents which rely on the LUQ method (for each of the two domains) will be called LUQ
Agent (LUQA).

6. EXPERIMENTAL EVALUATION
Our experiments are aimed at answering three questions:

(1) How well did the game theory-based agent that finds the optimal policy of the infor-
mation disclosure game, assuming that people choose the best response according
to u, (GTBA), do?

(2) Does LUQA improve the Sender’s results in comparison to GTBA?

(3) Do the answers to the above questions depend on the domain and, if so, given a
domain, can we provide a way to predict whether LUQA or GTBA will perform
better?

6.1. Experimental Design

In both games the subjects were given the description of the game including the
Sender’s preferences. Before starting to play, the subjects were required to answer
a few questions verifying that they understood the game. For each subject, the center
received a state drawn randomly and sent a message using the disclosure rule de-
scribed in section 3. To support the subjects’ decision-making, we presented them with
the distribution over the possible states that was calculated using the Bayesian rule
given the message, the prior uniform distribution and the center’s policy. That is, the
subjects were given p¥!(m). The subjects then selected a single action (either a num-
ber of sandwiches to prepare or a road). As a motivation, the subjects received bonuses
proportionate to the amount they gained in dollars. Comparisons between different
means were performed using t-tests.

We considered two variations for each of the two games (the sandwich game and the
road selection game). The first one was used for answering the first question and in
order to collect data for the opponent modeling procedure. The second variation was
used for answering the second question, using the collected data of the first variation
as the training data set. We now describe the parameters used for both variations of
the sandwich game and the road selection game.
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Table I. Seller types

Number of | Cost for Cost for Cost for
sandwiches | Type 1 Type 2 Type 3
None $0 $0 $0
10 $5 $8 $12
20 $9 $12 $15
30 $14 $16 $18
50 $20 $20 $20

6.1.1. Road Selection Game. In the first game, I'', the players had to choose one of three
roads: a toll free road, a $4 toll road or an $8 toll road (i.e. H = {hy, ha, h3}, c(h1) = 0,
¢(hg) = 4 and ¢(h3) = 8). Each road could either have flowing traffic which would result
in a 3 minute ride, heavy traffic which would take 9 minutes of travel time or a traffic
jam which would cause the ride to take 18 minutes. That is, L = { flowing, heavy, jam},
and d(h;, flowing) = 3, d(h;, heavy) = 9 and d(h;, jam) = 18, for all h; € H. An example
of a state v could be (heavy, flowing, flowing), indicating that there is heavy traffic on
the toll free road and traffic is flowing on the other two toll roads. Arriving on time (or
earlier) yields the player a gain of $23 and he will be penalized $1 for every minute that
he is late. Finally, the meeting could take place in either 3,6,9,12 or 15 minutes, i.e.,
© = {3,6,9,12,15}. Thus u, (7, a, ) = 23 —maz{d(a,?) —w, 0} - 1. The prior probabilities
over V and W were uniform.

The center’s utility was as follows: if the subject took the toll free road, the center
received $0 regardless of the state. If the subject took the $4 toll road, the center
received $4 if the traffic was flowing, $2 if there was heavy traffic and $0 if there was a
traffic jam. If the subject took the $8 toll road, the center received $8 if the traffic was
flowing, $2 if there was heavy traffic and lost $4 if there was a traffic jam.

In the second game, I'2, the meeting time was changed to be in 12,13,14 and 15
minutes, i.e., © = {12,13,14,15}. The center’s utility was also changed: the center
received $1 if the driver chose the most expensive road among those with the least
traffic. Otherwise the center received $0.

6.1.2. Sandwich Game. The conference size (v) had either no participants (a canceled
conference), 20 participants (a small conference), 30 participants (a medium confer-
ence), 40 participants (a large conference) or 50 participants (a huge conference).

The number of sandwiches prepared by the seller (a) was in {0, 20, 30, 40, 50} as well.
Recall that the seller’s utility function is given by u,(v,0,a) = min{a,v} - ¢ — 6(a). We
set ¢ (the sandwich retail price) to $1. We used three different private types types
(9), which indicate the cost for preparing each possible number of sandwiches. Table I
shows the different private types used.

We considered two different utility functions for the organizer in the sandwich game.
In the first game, ', the system wanted the seller to prepare more sandwiches than
needed, unless the conference had 50 attendees. In I'2 the system wanted the seller
to prepare less sandwiches than needed, unless the conference was canceled (0 atten-
dees). The utility function was chosen such that the utility for the organizer and the
seller will be different and not linearly dependent. The observation table is shown in
Table II. As can be seen in the table, if the organizer observes that the conference will
be canceled, then in fact it will be. In any other case there is an 85% chance that the
organizer will observe the correct state. Even if the state observed is incorrect, the
actual state is not too far off, unless the conference is unexpectedly canceled.

6.2. Human Subjects

In the experiments, subjects were asked to play either the sandwich game or the multi-
attribute road selection game with two-sided uncertainty. As mentioned above, each of
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Table 1. Observation table in the sandwich game

Observation Probability for actual conference size
Canceled Small Medium Large Huge
Canceled 1 0 0 0 0
Small 0.08 0.85 0.06 0.01 0
Medium 0.02 0.06 0.85 0.06 0.01
Large 0.01 0.03 0.06 0.85 0.05
Huge 0.06 0 0.03 0.06 0.85

the games had two different variations which differed in the system utility function.
Each subject played only once. All of our experiments were run using Amazon’s Me-
chanical Turk service (AMT) [Amazon 2013]*. Participation in our study consisted of
713 subjects from the USA: 56.2% females and 43.8% males. The subjects’ ages ranged
from 18 to 74, with a mean of 34 and a standard deviation of 11.3. The subjects partici-
pated in the following experiments:

1
p?

— 173 subjects participated in I'}, which is the first game played in the road selection
game, using GTBA.

— 102 subjects participated in F%, which is the second game played in the road selection
game, using GTBA.

— 119 subjects participated in I’
game, using LUQA.

— 100 subjects participated in I'}, which is the first game played in the sandwich game,
using GTBA.

— 106 subjects participated in I'2, which is the second game played in the sandwich
game, using GTBA.

— 113 subjects participated in I'2, which is the second game played in the sandwich
game, using LUQA.

2
P’

which is the second game played in the road selection

Since the experiment was based on a single multiple-choice question, we were con-
cerned that subjects might not truly attempt to find a good solution. Therefore we
only selected workers with a good reputation; they were required to pass a test before
starting and they received relatively high bonuses proportionate to the monetary util-
ity they gained. We removed 6 answers which were produced in less than 10 seconds
as being unreasonably fast. However, the average time needed to solve our task was 83
seconds. We concluded that the subjects considered our tasks seriously.

6.3. Experimental Results

In both the sandwich game and the multi-attribute road selection game with two-sided
uncertainty, we first let the subjects play with the GTBA agent. This agent computes
the game theory-based policy of I'!, solving the maximization problem presented in
section 4. Note that even though the complexity of solving this problem is high, we were
able to find the optimal policy for the multi-attribute selection games in a reasonable
amount of time.

6.4. Results of the Multi-attribute Road Selection Game with Two-sided Uncertainty

6.4.1. GTBA results. The policy of GTBA using the first settings (F;) included 13 mes-
sages, but 5 of them were generated with a very low probability. Thus, from the 169
subjects that participated in the experiment, most of them (166 subjects) received one
of 8 messages, and 3 of the subjects each received a different message.

4For a comparison between AMT and other recruitment methods see [Paolacci et al. 2010].
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Fig. 1. System utility in road game I'j. The
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Fig. 4. System utility for LUQA in road game
I'2. LUQA performed significantly better when
it received full information (p < 0.05).

Fig. 3. System utility in road game 1",2). The cen-

ter performed significantly better when using
LUQA rather than GTBA (p < 0.05).

The center received, on average, 0.230 per driver. This result is significantly (p <
0.001) higher than the utility that the center would have received if all of the subjects
were rational (i.e., maximizing u,), which, in expectation, was only 0.105 per driver
(see Figure 1). As can be seen in Figure 2, user performance significantly dropped
from that of fully rational. Another deviation from full rationality was observed by
the correlation between the time to the meeting and the road selection. For a fully
rational player, the longer he has until the meeting, the less likely he is to choose
a toll road. However, this negative correlation between the time to the meeting and
the road selection was as low as —0.015, suggesting that subjects almost ignored the
meeting time. These observations lead to the conclusion that in the multi-attribute
road selection game with two-sided uncertainty, humans tend to concentrate on the
traffic on each road and its toll, but ignore the actual monetary value which supports
our general opponent modeling approach for this domain.

6.4.2. LUQ human model. We tested four different methods of modeling human
decision-making:

(1) Rational, which assumes that humans always choose the road which maximizes
their expected monetary value given in Equation 5. This method is the method
assumed by the GTBA agent and does not require any additional parameters.

(2) QRE (logit quantal response), which assumes that the probability that humans
choose a road is proportionate to the expected monetary value from that road. This
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Table Ill. Mean square error of modeling human decision-making

Modeling Method | Mean Square Error (the lower the better)
Rational 0.89
QRE 0.295
LWU 0.194
LuQ 0.065

method is based on Equation 7, however, it assumes that the drivers base their
utility function on the monetary value (u,.(7, a, 8) given in Equation 5) rather than
using the subjective utility function (,(?, a)) (as assumed by LUQ). Therefore, this
method has a single parameter: \.

(3) LWU (Linear Weighted-Utility), which assumes that humans always choose the
road which gives them the highest subjective utility (using the subjective utility
function @,(7, a) given in Equation 6. This method has 5 parameters.

(4) LUQ, which combines both linear weighted-utility function and logit quantal re-
sponse, given in Equations 6 and 7. This method has 5 parameters.

Table III presents the mean square error for all four methods on the data from F})
using a leave-one-out cross validation (in which for each of the messages, when the
mean square error is evaluated on a messages, the parameters are learned using data
from all other messages). Clearly, LUQ’s prediction outperforms all other methods.

6.4.3. Comparing LUQA and GTBA. Using the settings of the second game, Ff,, we ran
two agents, GTBA and LUQA. We used the results obtained from the 166 subjects that

2
played F}) as the training set data ¥ for LUQA. That is, the as for ﬂf” were learned from
the subjects playing I'},i.e., G = {I''}. LUQA and GTBA each generated 4 messages for
F%. 119 subjects played with LUQA and 102 with GTBA. LUQA performed significantly
better (p < 0.05) than GTBA, gaining an average of 0.431 vs. 0.319 points per driver
(see Figure 3).

We also checked the actual dollars earned by the subjects. Unfortunately, when play-
ing with LUQA the average virtual gain per subject was only $19.00, while when play-
ing with GTBA the average was higher, $21.20. These results differ significantly, hint-
ing that the center’s gain was on account of the driver’s monetary utility. This result
is compatible with our previous result in [Azaria et al. 2012a], where people tend to
perform better when the agent confronting them assumes that they will act rationally.
However, in practice, this issue isn’t of great concern, since, if the center is interested
in the driver receiving a higher utility, it may implicitly add the driver’s utility to its
own utility function and result with a protocol that will be better for both the center
and the driver.

6.4.4. One-sided uncertainty vs. Two-sided uncertainty. In previous work [Azaria et al.
2011] we tested the performance of LUQA in the road selection problem under the
exact same settings, only with full information for the center. Figure 4 shows these
results along with our current results with partial information. As can be seen, when
LUQA has full information, it significantly outperforms LUQA with partial informa-
tion. This is not surprising, since additional information allows the Sender to avoid
mistakes and encourages the Receiver to take actions which are more favorable to the
Sender.

6.5. Sandwich Game Results

6.5.1. GTBA results. The monetary result plays an important role in the sandwich
game. This is because the game is played in an environment a person’s goal is to make
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Fig. 5. User utility in sandwich games. The dif- Fig. 6. System utility in sandwich game T'2.
ference between a fully rational seller and the The difference between the organizer utility
actual human sellers is minor and not statisti- when using LUQA and when using GTBA is mi-
cally significant. nor and not statistically significant.

as high a revenue as possible, which usually results in selling as many sandwiches as
possible while minimizing the number of sandwiches thrown away.

The policy of GTBA in the first settings (I'}) included 5 messages. The organizer
received on average 0.260 per seller (Figure 7). The utility of the organizer was similar
to the expected utility that the organizer would receive if all subjects were rational (i.e.,
maximizing u,), which, in expectation, was 0.299 per seller. We suspect that this is due
to the important role that the monetary value plays in this game. These results differ
from the correspondence results of the road selection game and thus we hypothesis
that LUQA is not needed here and that the GTBA agent will do as well as LUQA in
this domain.

6.5.2. LUQA and the LUQ human model. The learning phase for LUQA, which was based
on the subjects which participated in I'}, found the following parameters in the sub-
jective utility function: ay, which is the amount gained by each sandwich sold, is
0.087, and as, which is the amount lost by each sandwich thrown away was —0.103.
On average (depending on the private type w), if maximizing expected monetary val-
ues, people should have been neutral between missing a sandwich and preparing one
too many sandwiches, however, it seems that people were a little risk averse since
| —0.103| > |0.087], but still the numbers are very close. When testing the MSE of LUQ,
we get a result similar to that of QRE (quantal response under expected monetary out-
come), both yielding 0.07. The similar performance for both LUQ and MSE indicates
that people performed nearly rationally, which nearly obviates the usage of LUQ.

6.5.3. Comparing LUQA and GTBA. The comparison was done under the second settings
(I'?), and both GTBA and LUQA used 4 messages. The organizer received on average
0.715 when using GTBA, and 0.728 when using LUQA (Figure 6). Although LUQA did
perform slightly better, these results do not differ significantly. This is not surprising
since, as mentioned above, the subjects’ subjective utility was very close to the expected
monetary value and thus the GTBA’s assumptions were correct. We suggest that the
slight improvement shown was given from the logit quantal response assumption.

6.6. Deciding between LUQA and GTBA

As demonstrated in the above two games, there are situations where LUQA outper-
forms GTBA, but in some situations they yield similar results. One may recommend to
always use LUQA since it is always as good as GTBA and sometimes even better. How-
ever, LUQA requires collecting data to learn the human utility function. Therefore, we
recommend to first collect some data using GTBA and compare the agent’s results and
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Fig. 7. System utility in sandwich game. The difference in the organizer’s utility between actual users and
the utility it would have gained if all of the users were rational is minor and not statistically significant.

the human behavior to the rational behavior. If the GTBA’s results are significantly
different from the expected results that it would have received if people would have
followed a rational decision-making process, then it is worthwhile to collect more data
and use LUQA. Otherwise, using GTBA seems to be a good enough heuristic. It is
important to note that in the road selection game it was enough to use 10 subjects
in order to obtain a significant difference between GTBA and the expected utility if
people would have followed rational behavior. In the sandwich game, we didn’t obtain
significant results even with 100 subjects. So collecting 20 — 25 data points for making
a decision whether to use LUQA or GTBA seems reasonable.

7. CONCLUSIONS

In this paper we consider information disclosure games with two-sided uncertainty in
which an agent tries to lead a person to take an action that is beneficial to the agent
by providing him with truthful, but possibly partial, information relevant to the action
selection. We first provide an algorithm to compute the optimal policy for information
disclosure games with two-sided uncertainty, assuming that the human is fully ra-
tional. We also provide an innovative machine learning-based model that effectively
predicts people’s behavior in these games. The model we provide assumes that people
use a subjective utility function which is a linear combination for all given attributes.
The model also assumes that while people use this function as a guideline, they do not
always choose the action with the greatest utility value, however, the higher an action’s
utility value is, the more likely they are to choose that action. We integrate this model
into our persuasion model in order to yield an innovative method of human behavior
manipulation. Extensive empirical study in multi-attribute road selection games with
two-sided uncertainty confirms the advantage of the proposed model in that game.
However, in another domain we tested, the Sandwich game, there is no significant ad-
vantage to the machine learning-based model, and using the game theory-based agent
which assumes that people maximize their expected monetary values is beneficial. We
propose a methodology of how to choose between the two options. We argue that, de-
pending on the domain, people’s decision-making process may vary and thus where
in one domain modeling humans as rational may be good enough, in another domain
this model is too far from their actual behavior and therefore an agent that assumes
perfectly rational behavior may fall far behind.
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A. PROOFS OF THEOREMS REGARDING THE MESSAGE SPACE
A.1. Proof of Theorem 4.1

PROOF.

Let (7w, M) be an optimal solution to the game so that |M| > || = n. We will first
show that certain transformations of = produce a left stochastic matrix structure (in
which the rows correspond to messages and the columns to observations) with at least
one zero row, i.e. produce disclosure rules that use less messages than the original
m. We will then show a specific transformation of 7 that, while reducing the number
of used messages, preserves the utility gained. We will thus obtain a new optimal
disclosure rule with fewer messages. Since |M| < oo, iterative application of the above

process would lead to an optimal (7, M), where | M| <= n as required.

Notice again that zero rows in 7 correspond to the messages that are never sent,
and we would be able to reduce the size of M without changing the utility in any
way. Assume that after the elimination of zero rows, we still have the set of messages
greater than || or there never were any.

Since 7 is a stochastic matrix, there can be no more than n elements in it equal
to 1. If all are present, the rest of the rows are zero, and we can reduce M to have
only n elements without changing 7, hence obtaining the necessary optimal solution
properties. If this does not occur, i.e. there are less than n elements in 7 equal to 1, we
can proceed with the following reasoning.

Denote 7, the m’th row of 7. It holds }_ =, = ff, where 1, is a column vector in

meM
R™ with all elements equal to 1. Since there are at least n + 1 rows in «, but only n
columns, 7 has a non-trivial kernel space of left multiplication vectors. Hence, there is
a non-trivial row vector o = (v )men S0 that ¢ = ar = 6,TL, and for all m € M |a,,| <1
and for some m; € M «,,, = 1. This can be achieved by taking an arbitrary non-trivial
kernel row vector and scaling it appropriately.

Clearly, 7, (w) < 1 for all w € Q. Otherwise, for some & € V m,,(@) = 0 for all
m # my, and ¢(@0) = a,, = 1 # 0, hence contradicting ¢ = 0.

Denote 7 a matrix with rows defined by 7,,, = (1 — ., )m,,. Notice that all elements
of 7 are non-negative. Furthermore, they are not greater than 1, due to the following:

1T _ E _ 1T
177, = T — 1|]W|7T
meM

0, = ar

Since all elements of (T\TM| — «) are non-negative, and so are elements of 7, the last

equation means that elements of 7 are bounded by 1, and the sum of rows is TZ.
Hence 7 is also a valid solution to the game. Furthermore, it uses less messages

since a,,, = 1 and 7y, = (1 — i, )Ty = Ojag)-
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Applying the above reasoning in an iterative fashion, we can reduce the number of

non-zero rows in 7 to n. Denote M to be the subset of M that corresponds to those
rows, this will be the new set of messages.

We will now show that 7 has the same utility as 7, hence (7, M) will be an optimal

disclosure rule with |J\~4 | = n, concluding the proof.
Denote UM[r,,] = S Y 3 us(v,a)py (v)palalp)pa(w|v)r(mlw), then Ulr] =
vEV a€A weN
> UMir,,]. Notice that UM [yr,,] = YyUM|[r,,], since p}? is insensitive to scaling of

meM
T

Let us now compute U,[7], where 7 was computed using a vector ya with v € R.
U7l = > UM [Fn]

meM

= Z UsM[%m}
meM

= 3 UM(1 — yam)ma)
meM

= Z (1- 'VO‘m)UsM[Wm]
meM

= Ugln] — v Z UM [1,]

meM
= Uslr] = v+ Udis

If Ugipy # 0, then for 7 computed for v = sign(Uy;;s) we have that Us[w] > Us[n],
hence contradicting the optlmahty of 7. Therefore, Uy;ry = 0 and (setting gy = 1) we
have U,[7] = U,[r], making (7, M) an alternative optimal solution with [M| = |9, as
required.

O

A.2. Proof of Theorem 4.2

PRrROOF. The following proofis stated for a countable infinity of messages. However,
since the space of all possible conditional message probabilities w,, is compact, it is
easy to recast it for continuous message indices.

Let (w, M) be an optimal solution to the problem, so that |[M| = oo, and further-
more for an infinite number of messages m,,py > 0. In other words there is an in-
finite number of messages that have a non-zero probability to appear, w.l.g. assume
that all messages are such. Notice also that w.l.g. we can assume that u,(v,a) > 0

for all @« € A and v € V. Denote v = inf E[us(v,a)] > 0, and notice that
p(v,a)EA(VXA)
UM[r,,] > u™™" for any 7,,. Similarly notice that u™** = sup E[us(v,a)] < 0o

p(v,a)EA(V XA)
and that UM [r,,,] < u™2®,
Since the sum of all message probabilities is equal to 1, and all utilities are
t
strictly positive, the sequence of partial sums Y UM [T1m,] is monotonic increasing
i=0

and bounded, hence U,[r] = . UM[r,,,] < oo and is well defined. Furthermore, for
i=0
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any € > 0 exists T < oo so that > UM[r,,,] < e. Consider setting ¢ = v and set
i=T+1
7 {”"ﬁ; m=mi i €0:T] 1y ds that UM[Fm] > umn > 3> UM[m,].
Zi:T-}-l Tm; M =M i=T+1
Therefore, U,[n] < Us[7], and (7, M) is a finite disclosure rule with a utility at least as
good as the original solution (7, M). Hence, if the optimal U, is obtainable, then there
is a finite disclosure rule that achieves it. O

Tm —
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