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Abstract
People’s facial expressions, whether made con-
sciously or subconsciously, continuously reveal
their state of mind. This work proposes a method
for predicting people’s strategic decisions based on
their facial expressions. We designed a new ver-
sion of the centipede game that intorduces an incen-
tive for the human participant to hide her facial ex-
pressions. We recorded on video participants who
played several games of our centipede version, and
concurrently logged their decisions throughout the
games. The video snippet of the participants’ faces
prior to their decisions is represented as a fixed-size
vector by estimating the covariance matrix of key
facial points which change over time. This vector
serves as input to a classifier that is trained to pre-
dict the participant’s decision. We compare several
training techniques, all of which are designed to
work with the imbalanced decisions typically made
by the players of the game. Furthermore, we in-
vestigate adaptation of the trained model to each
player individually, while taking into account the
player’s facial expressions in the previous games.
The results show that our method outperforms stan-
dard SVM as well as humans in predicting subjects’
strategic decisions. To the best of our knowledge,
this is the first study to present a methodology for
predicting people’s strategic decisions when there
is an incentive to hide facial expressions.

1 Introduction
When engaging in strategic situations where any piece of in-
formation can be crucial in order to make the best decision,
people enjoy a diverse set of senses at their disposal. One
of the main senses is sight, more specifically the ability to
recognize emotions and facial expressions which may offer
clues to intentions. A computer system that would be able to
exploit this rich information would reap the benefits of a dis-
tinct advantage in a strategic situation. This paper is focused
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on predicting strategic decisions based on facial expressions,
in those scenarios when there is a high incentive to hide them.

The strategic scenario studied in this paper is based on the
centipede game [Rosenthal, 1981]. It is an extensive-form
game in which two players alternately decide whether to take
the larger portion of a continually increasing pot. Specifically,
each player decides whether to stay (or collaborate), and then
the amount in the pot increases, or to leave (or defect), and
then the game ends with that player getting the larger portion
of the pot while the other player gets the smaller portion. In
order to introduce an incentive for the players to hide their
facial expressions, we changed the game so that both players
make their decisions simultaneously.

In our settings, participants are asked to play several games
and are video recorded before making a decision. The video
is analyzed and key facial points are extracted at each time
frame in order to create a sequence of facial points. Those
sequences are used as input to a classifier that is trained to
predict participants’ decisions. While most standard classi-
fiers get a fix length input, the sequences of facial points are
obviously of different lengths. To address this problem we
represent the variable length sequences as a fixed length vec-
tor by estimating the covariance matrix of the facial points
movements over time.

One of the challenges in using facial expressions for pre-
diction is the inherent noise that image processing produces.
Another challenge is the sparse number of training sam-
ples available of a specific person. An intuitive solution for
the sparse data problem is to use samples from other peo-
ple. However, people have different facial proportions and
emotional responses for the same scenario, and there is an
inevitable increase in noise. To address these challenges
we used adapting filtering techniques to reduce the noise
and applied normalization transformation, which positioned
the nose and eyes’ centroids to a fixed position in screen
space. By using these techniques, noisy training samples
from other people were successfully used for predicting in-
dividual strategic decisions.

Another difficulty arises from the way the human partic-
ipants play this game. Game theory predicts that the first
player will choose to leave in the first move and thus both
players will receive a small and equal payoff. Several stud-
ies have demonstrated that this play is rarely observed [Erev
and Roth, 1998]. Instead, players regularly show partial co-



operation, as they choose stay for several moves before they
eventually choose leave. This behavior introduces a real chal-
lenge in predicting their decisions using standard classifica-
tions tools since, statistically speaking, a classifier that con-
stantly predicts stay results in a high classification accuracy.
However, such a classification rule does not serve our goal.
We address this issue by measuring performance by two types
of functions: (i) the geometric mean of the recalls of both
stay and leave and (ii) the area under the receiver operating
characteristic (ROC) curve, and we trained our classifier to
maximize those measurements.

We ran extensive experiments with 22 people and showed
that, with a relatively small number of examples of a given
subject, our methodology can predict both leave (the minority
class) and stay (the majority class) with almost 70% accuracy,
which is by far a much better prediction of what people do. To
the best of our knowledge this is the first work on predicting
people’s strategic decisions in scenarios where they have an
incentive to hide true emotions.

This paper is organized as follows. In Section 2 we present
previous and related work. In Section 3 we present our variant
of the centipede game and state its subgame perfect equilib-
rium. The formal problem definition is given in Section 4.
Then, we describe the representation of the video signal and
the learning algorithms in Section 5 and Section 6, respec-
tively. Experimental results are presented in Section 7 and
the paper is concluded in Section 8.

2 Related Work
Rossi et al. [2011] described a method for predicting Ulti-
matum game proposals’ acceptance using participants’ facial
video recordings. Our work differs in several ways. First, in
our simultaneous variant of the centipede game, participants
have an incentive to hide their true emotions. Second, in the
Ultimatum game the emotional response was a consequence
of receiving a proposal, as opposed to the centipede where
the facial expressions are precursors of a decision. Using vi-
sual information, both facial expressions and body language,
has been used by Raiman et al. [2011]. The work described a
method for detecting deceptive roles in multi-party conversa-
tions using audio and video clips of the body. We predict de-
cisions that are more strategic than deceptive, and our method
can be used where only facial information is available (e.g.
video chat). In another work, de Melo et al. [2012] used a vir-
tual character that was able to portray emotions when playing
the iterated prisoner’s dilemma. The virtual character’s facial
expressions were used to enhance human decision prediction.
The work did not use the facial expressions of the human
counterparts. Several studies used advanced imaging tech-
niques for measuring brain activity in the Ultimatum game.
Sanfey et al. [2003] used EEG measurments. The work sug-
gested that unfair offers elicited activity in areas related to
emotion. Similarly, Yun et al. [2008] and Yun [2013] sug-
gested that face-to-face interactions induce more emotions
and interpersonal neural synchronization. Finally, Meijering
et al. [2012] used eye movements to distinguish between dif-
ferent reasoning methods. The work described a correlation
between eye movement and thinking processes.

player 2
stay leave

player 1 stay next (0,mr)
leave (mr, 0)

(
mr

2 ,
mr

2

)
Table 1: Repeated Simultaneous Centipede normal form,
wheremr denotes the amount of money in the pot in round r.
When both players choose stay, the game continuous to the
next round and the money is doubled (mr+1 = 2mr).

3 Repeated Simultaneous Centipede Game
We start by presenting our simultaneous version of the cen-
tipede game, which motivates the participants to hide their
intentions. The game begins with a fixed amount of money in
the pot (see Table 1). At each round of the game, each player
has to decide either to stay or leave the game. Both play-
ers announce their decisions simultaneously. If both players
choose stay, the game continues to the next round and the
money in the pot is doubled. If only one of them chooses
leave, this player gets all the money in the pot and the game
ends. If both players choose leave, they split the money and
the game ends. If both players choose stay in all rounds,
the game terminates after 10 rounds and the players split the
money evenly. Overall 15 games are played repeatedly by the
same pair of players.

Like in the the original centipede game, a unique subgame
perfect equilibrium exists where the players choose leave in
the first round. Consider the following scenario where two
players reach the final round of the game. Both players will
choose leave; deviating and choosing stay yields a reward of
zero. Formally, for the last round r, we denotemr as the cash
amount at round r, and Pr as the probability that the second
player will choose leave. The utility Ur of the first player is:

Ur(leave) = Pr ·
mr

2
+ (1− Pr) ·

mr

2
(1)

Ur(stay) = Pr · 0 + (1− Pr) ·
mr

2
(2)

It is clear that Ur(leave) > Ur(stay) for any Pr > 0. There-
fore, choosing leave is a dominant strategy for the last round.
Consequently, each player should choose leave on the next
to last round as well. Formally:

Ur−1(leave) = Pr−1 ·
mr−1

2
+ (1− Pr−1) ·mr−1 (3)

Ur−1(stay) = Pr−1 · 0 + (1− Pr−1) · mr

2
(4)

Given that mr = 2mr−1 we find that Ur−1(leave) >
Ur−1(stay) for any Pr−1 > 0. Therefore, we find that choos-
ing leave on the next to last round is a dominant strategy.
Following this reasoning backwards through the rounds, we
can conclude that the dominant strategy is choosing leave on
the first round. Empirical studies on the original game have
shown, however, that people rarely converge to the subgame
perfect equilibrium, but prefer to stay for several moves be-
fore they eventually choose leave [Erev and Roth, 1998].

4 Problem Definition
Recall that our goal is to predict each player’s decisions based
on her facial expressions. Since both players are symmetrical,



we can analyze both of them in a similar way, and without
loss of generality we will focus on predicting the decision of
a single player.

Let us focus on round r of the game. Denote by v̄r the
video of the player’s face recorded between the previous and
the current decisions. The time stamp of the previous decision
is referred to as the beginning of the current round. The video,
v̄r = (vr(1), . . . ,vr(T )), is a sequence of T images, where
vr(t) is the image at time frame t. We assume here that frame
1 denotes the beginning of the round and frame T denotes the
relative frame at which the decision is made. The length T
is different in each round and for each player, hence it is not
fixed.

The player’s decision in round r is denoted by yr ∈ Y ,
where Y = {stay, leave}. The classes of the set Y are stay
and leave. Given an input video v̄r at round r, our goal is
to predict the player’s decision ŷr, so it would be as close
as possible to the true decision yr. Since it is hard to deal
directly with variable length sequences, we map the video
sequence v̄r to a d-dimensional vector denoted xr ∈ Rd by
a set of transformations, which will be described in the next
section.

We define the prediction function f : Rd → R, that for
a given input vector xr returns a real number, which repre-
sents the confidence of the prediction. The prediction itself
is obtained by comparing the confidence to a threshold in the
following way

ŷr =

{
stay if f(xr) ≥ 0
leave if f(xr) < 0

(5)

We denote the loss function by L(y, ŷ), which represents
the severity of predicting ŷ while the true label is y. One such
loss function can be the standard 0-1 loss function which is
defined as L(y, ŷ) = δ[y 6= ŷ], where δ{π} is an indicator
function and it equals 1 if the predicate π holds and 0 other-
wise. This loss function is widely used in many classification
tasks, but is not always suitable, especially when the classes
are imbalanced, i.e. there are many more decisions of type
stay then of type leave.

Several evaluation measures have been suggested to over-
come the problem of imbalanced decisions. In this work we
focus on two main evaluation measures: (i) the geometric
mean of the recalls of both decision classes, denoted g-mean,
and (ii) the area under the receiver operating characteristic
(ROC) curve, abbreviated as AUC. In the next section we
present the mapping of the video sequence to a fixed-size fea-
ture vector, and present in Section 6 the learning techniques
that aim at maximizing these measures of performance from
the training set of examples.

5 Representation of Facial Expressions
The facial expression representation at each round is based on
a video snippet captured from the beginning of the round until
the time that the player made a decision. Each captured video
is of a different length and the goal of the representation is to
extract the relevant information for the prediction as a fixed-
length vector.

We are interested in a predefined set of points of the
player’s face. We assume that facial expressions can be mod-
eled by analyzing the movements of the points and the in-
teractions between them over time. The points are extracted
after the face is aligned with a face tracker, while the noise in
the tracking is removed by the Kalman filter [Kalman, 1960].
Empirically we found that the noise covariance is diagonal
and we can use the one-dimensional version of the Kalman
filter separately for each axis.

Formally, for each frame t of the video v̄r, that is the image
vr(t), we extract K facial points. Each point pk(t) ∈ N2 is a
pair of absolute coordinates, where 1 ≤ k ≤ K (we omitted
the round index r for the sake of readability). In our setting
we used 66 points (K = 66), where the points are divided
into 9 groups: left eye, right eye, left eyebrow, right eyebrow,
nose, mouth, left cheek, right cheek and chin. An example
of such a set of points in a single video frame can be seen in
Figure 1.

We describe now the steps to transform these sequences of
points into a fixed-size feature vector. In the first step, face
normalization is carried out to overcome effects of different
face proportions and of movements that are not related to fa-
cial expressions. The second set introduces four additional
features that add information about the relative movements
of the facial points over time. The last step converts the se-
quence into a fixed-size vector by representing the sequence
by its covariance matrix.

5.1 Normalization
We describe the transformations used to normalize the facial
points so as to eliminate the effects of different face propor-
tions and general movements of the head, which we do not
consider to be facial expressions. Note that some of the gen-
eral head movements are considered to be facial expressions
(e.g., the movement which means “yes”) are handled in the
next subsection. We use a multi-step transformation function
on every video frame to transform the face such that the nose
is centered, the eyes are fixed in the same positions, the dis-
tance between the eyes is 1 and so is the nose length.

The first transformation, M1, centers the frame around the
nose center. The nose center at frame t, denoted by nc(t) , is
defined as the centroid of all the points in the nose’s group.
The points pk(t) are translated as follows

M1 : pk(t) 7→ pk(t)− nc(t) (6)
The second transformation, M2, rotates all the points so that
the eyes are aligned to the x-coordinate. Denote by re(t) and
le(t) the right and left eyes’ centroids at frame t, respectively.
Define the vector between the eyes’ centroids as eyes(t) =
re(t) − le(t), and denote by êyes(t) its normalized version,
êyes(t) = eyes(t)/‖eyes(t)‖. Similarly, let ec(t) be the
middle point between the eyes, ec(t) = (re(t) + le(t))/2.
Define the nose vector as nose(t) = ec(t) − nc(t), and the
normalized vector as n̂ose(t) = nose(t)/‖nose(t)‖. The ro-
tation is defined as

M2 : pk(t) 7→
(
êyesx(t) êyesy(t)
n̂osex(t) n̂osey(t)

)
·M1 (pk(t)) (7)

The third transformation, M3, stretches the points so that
the distance between the eyes and the nose length will be 1.



Figure 1: A subject’s face before (left) and after the normal-
ization transformation (right). The horizontal arrow repre-
sents the eyes vector, and the vertical arrow represents the
nose vector. The black dots represent the facial points.

Namely,

M3 : pk(t) 7→

(
1

‖eyes(t)‖ 0

0 1
‖nose(t)‖

)
·M2 (pk(t)) (8)

5.2 Movement and Rotation
The transformed data lacks the information about the sub-
ject’s movements, which can signal their intentions. To cap-
ture this information, we define four additional features for
every frame t. The first and second features are defined as the
difference between the position of the subject’s nose’s center
at frame t and t − 1 along the x and y coordinates, respec-
tively. Formally,

q1(t) = ncx(t)− ncx(t− 1) (9)
q2(t) = ncy(t)− ncy(t− 1) (10)

The third feature captures the roll rotation as the nose angle:
q3(t) = arctan(nosey(t)/nosex(t)) (11)

The fourth feature captures the yaw and pitch rotations. In our
two-dimensional face projection, when subjects nod (yaw)
their nose seems to shrink. When subjects turn their head
from side to side (pitch), the distance between the eyes seems
to change. To capture these movements we use the ratio be-
tween the nose length and the distance between the eyes:

q4(t) = ‖nose‖/‖eyes‖. (12)

5.3 Feature Extraction
We now describe how we mapped the sequence of T points
into a fixed-length vector that is used as input for the classi-
fier. Let zr(t) ∈ R2K+4 be the vector composed of the K
normalized points pk(t) in polar coordinates and the four fea-
tures, q1−4(t). Recall that this vector represents the t-th frame
of video captured at round r, and there are T such vectors.

Denote by zir =
(
zir(1), . . . , zir(T )

)
, for 1 ≤ i ≤ (2K+4),

the vector of the i-th feature of zr(t) at round r for all 1 ≤
t ≤ T . We define the covariance matrix, Cr, as

Ci,jr = cov(zir, z
j
r). (13)

This is a symmetric matrix of size (2K + 4)× (2K + 4). We
represent this covariant matrix by the vector cr, built from its
upper triangular and main diagonal. Then, we apply principal
component analysis (PCA) on the vectors cr for all rounds r
of all players. Finally, we generate the feature vector xr by
taking the first 10 principal components of cr.

6 Learning
We turn now to describe the classification techniques used to
predict the players’ decisions. One of the most well known
classification methods is support vector machine (SVM)
[Cortes and Vapnik, 1995]. In its standard form the SVM
minimizes the 0-1 loss function [Vapnik, 1998]. As discussed
in Section 4, this loss function is illogical in our prediction
problem, since the distribution of the classes is imbalanced.

One way to overcome this problem was proposed in
[Veropoulos et al., 1999; Akbani et al., 2004], where the stan-
dard hinge loss is replaced with two hinge losses: one per
each class (stay or leave), and each with his own trade-off
parameter. It is known that the trade-off parameter of SVM
depends on the number of examples [Vapnik, 1998], and it
makes sense to use two trade-off parameters, each normal-
ized with the actual number of examples of that class. We
refer to this method as double-loss SVM.

A different technique to overcome the problem of im-
balanced classes is to try to maximize the area under the
ROC curve (AUC) [Cortes and Mohri, 2004; Keshet et al.,
2009]. Denote by X stay the set of all input vectors for which
y = stay and similarly denote by X leave the set of all in-
put vectors for which y = leave. The ROC is a plot of the
true-positive rate versus the false-positive rate of the predic-
tion function f . The area under the ROC curve (AUC), A,
is equal to the probability that the value of the function f(x)
will rank a randomly chosen input xstay from X stay higher
than a randomly chosen xleave from X leave, that is

A = P
[
f(xstay) > f(xleave)

]
. (14)

Assume that the prediction function is defined with a set of
parameters θ, denoted fθ. We would like to find θ so as to
maximize A,

θ∗ = arg max
θ

P
[
fθ(x

stay) > fθ(x
leave)

]
(15)

= arg max
θ

E
[
δ[fθ(x

stay) > fθ(x
leave)]

]
where the expectation is taken over (x, y), drawn from a fixed
but unknown distribution. We assume that we have n training
examples S = {(xstay1 ,xleave1 ), . . . , (xstayn ,xleaven )}. We
can replace the mean with the average of the training exam-
ples and add regularization function Ω,

θ∗ = arg min
θ

1

n

n∑
i=1

[
δ[fθ(x

stay
i ) < fθ(x

leave
i )]

]
+ λΩ(θ)

where λ is a trade-off parameter between the loss and the reg-
ularization. Since the summand is a combinatorial quantity
which is hard to minimize, a common technique in large mar-
gin classifiers like SVM is to replace it with a convex upper
bound

θ∗=arg min
θ

1

n

n∑
i=1

[
1−δ[fθ(xstayi )+fθ(x

leave
i )]

]
+

+λΩ(θ)

where [π]+ = max{0, π}. In order to train such a classi-
fier we can easily use a standard binary SVM package and
introduce to it a sample version of the training set, where



INPUT: S=pairs (xstay,xleave) from all players excluding
Alice and Bob

INITIALIZE: θ trained on S
FOR r in all rounds and all games

- get Alice’s video xr

- predict ŷr =

{
stay if fθr−1

(xr) ≥ 0
leave if fθr−1(xr) < 0

- update training set: S = S ∪ {xyrr }
- update training set S with Bob’s video and decision
- balance dataset S (see Section 7)
- retraining: train θ on S

Figure 2: Online adaptation.

pairs (xstay,xleave) are randomly drawn, as described in
Section 7. We refer to this method as max AUC SVM.

Recall that according to the unique subgame perfect equi-
librium, the best strategy of a player is to leave in the first
round. Nevertheless, empirical evidence shows that most
players prefer to choose stay. Hence, in predicting the
player’s decisions we would like to take advantage of her de-
cisions in previous rounds and games. We do that in an online
learning fashion in the following way.

Consider two players: Alice and Bob. Assume that we
would like to predict the decisions of Alice. Let S be the set
of examples of all players excluding Alice and Bob. We start
by training a model from S and produce the set of parameters
θ. We would like to adapt the model to the decisions made by
Alice over time. At each round r the algorithm gets as input
Alice’s facial expression xr and makes a prediction ŷr. Then
the algorithm gets Alice’s decision for this round, yr. Alice
and Bob’s videos and decisions are added to S, which can be
used to train subsequent models. The algorithm now trains
a new model with parameters θ based on examples from all
players and examples of Alice and Bob up until round r. A
pseudo code of the algorithm is given in Figure 2.

7 Experimental Results
In this section we demonstrate the efficacy of our prediction
method. We recruited 22 subjects, all of whom were Com-
puter Science students. Most subjects were males (64%),
with ages varying between 18-32. Subjects received an iden-
tical tutorial and needed to answer a series of basic compre-
hension questions about the game before being allowed to
play1. Each participant played 15 games with another par-
ticipant, and overall the players participated in 1858 rounds.
The participants could see each other via a web camera, but
were not able to talk. The games were recorded using the
web cameras. After each game ended, the videos were pro-
cessed and divided to get a separate video for each round and
player. The identities of the participants were not disclosed.
The reported significance in this section was measured using
the Wilcoxon signed-rank test (p < 10−3).

We compared several training techniques that should be
suitable to predict the participants’ decisions: standard SVM,

1The tutorial can be found at this link: http://u.cs.biu.
ac.il/~sarit/Centipede/tutorial.html

double-loss SVM, and max AUC SVM with and without the
samples from the predicted subject’s previous rounds. For
brevity, we define the term history as the video snippets of
the player from previous rounds and games, and define the
history length as the number of those rounds. We will present
the sampling technique used to create the training set for the
max AUC SVM, and will show the importance of the pre-
dicted subject’s history.

Table 2 summarizes the results of the training methods,
where for each training technique we present the results in
terms of AUC, g-mean and the recall of both the stay class
and the leave class. The results are reported using cross-
validation over the subjects (“leave-one-subject-out”).

More specifically, the standard SVM was trained over all
training examples. We used a Gaussian kernel with parameter
σ and trade-off parameter C that were tuned on a held out
set. Without any enhancements, the standard SVM almost
always predicted the decision as stay, resulting with an AUC
of 0.535 and g-mean of 0.00.

In order to address the imbalance problem, we trained the
double-loss SVM. For each subject, we trained a model us-
ing training examples from all of the other subjects, except
for her opponent. Then, the resulted model was used as an
initialization to train a new online model over the subject’s
records. We tuned the double-loss ratio, C+/C−, to be the
ratio between the stay and leave frequencies (around 9). The
results with a AUC of 0.574 and g-mean of 0.502 were better
than standard SVM.

We also tried to address the imbalance problem using the
max AUC SVM classifier. The training set used to train this
classifier is composed of pairs of the form (xstayi ,xleavei ),
rather than the standard pairs (xi, yi) which were used in the
standard SVM and the double-loss SVM. Those pairs were
generated by re-sampling the minor class leave and creating
a balanced number of stay and leave samples. Using this
approach, there was a slight increase in the AUC with a value
of 0.586, and a significant improvement of g-mean with a
value of 0.564. Moreover, unlike the previous method, stay
and leave accuracies were almost identical, 0.576 and 0.553
respectively.

To further improve the prediction accuracy, we added the
history of the decisions of the subject in previous rounds (in
the current game and the previous games), as well as her op-
ponent’s history. The same re-sampling technique described
above was used to balance the history. Results with history
are reported using cross-validation over the samples (“leave-
one-sample-out”). With this method we got AUC of 0.583
and g-mean of 0.564. As we will see shortly, the performance
constantly increases as there is more history available for
training. We were able to reach a similar prediction accuracy
with significantly less training samples by under-sampling the
stay class of other players (instead of re-sampling the leave
class), that is, the number of pairs (xstay,xleave) is the same
as the number of examples labeled as leave. The same re-
sampling technique described above was used to balance the
history. With this technique, denoted as “under-sampling” in
the table we got AUC of 0.595 and g-mean of 0.572. We com-
pare results with yet another re-sampling technique known
as Synthetic Minority Over-sampling Technique (SMOTE)



AUC g-mean stay leave
standard SVM 0.535 0.00 1.00 0.00
double-loss SVM 0.574 0.502 0.656 0.384
max AUC SVM 0.586 0.564 0.576 0.553
+ with history 0.583 0.564 0.58 0.547
+ under sampling 0.595 0.572 0.61 0.536
+ SMOTE 0.600 0.562 0.596 0.531

Table 2: Accuracy of different training methods.

[Chawla et al., 2011]. This technique generates new syn-
thetic samples via a combination of the minority class k near-
est neighbors. We got almost the same performance as before
with AUC of 0.600 and g-mean of 0.562.

We now turn to analyze the effect of the samples from pre-
vious rounds available for training. In Figure 3 we present the
accuracy of the max AUC SVM algorithm for different his-
tory lengths, where the accuracy is given in terms of g-mean,
the recall of stay and the recall of leave. First, we can see
that adding history generally improves accuracy. This is true
until the history length of about 85; after that point the data
was very sparse. Moreover, from a history length of 40 and
on there is a dramatic improvement in the recall of the leave
class, due to the increasing occurrence of examples of this
class.

Figure 3: Max AUC SVM with history and under-sampling
accuracy for different history lengths.

AUC g-mean stay leave
standard SVM 0.513 0.00 1.00 0.00
double-loss SVM∗ 0.615 0.414 0.753 0.228
max AUC SVM∗ 0.695 0.64 0.652 0.628
+ with history∗ 0.726 0.684 0.67 0.7
+ under-sampling 0.727 0.687 0.699 0.674
+ SMOTE 0.723 0.687 0.677 0.698

Table 3: Accuracy of different balancing methods for records
with a history length of at least 70. Note that ∗ indicates a
significant improvement over the previous method.

Figure 4: ROC curves for different balancing methods for
records with a history length of at least 70.

In Table 3 we present results of all training methods with
a minimum history length of 70. We can see that all accu-
racy measurements, i.e., AUC, g-mean and recalls, improve
drastically. To conclude, the ROC curves for those training
methods with a minimum history length of 70 are given in
Figure 4.

We conclude this section by comparing the automatic pre-
dictions to the prediction that can be made by humans. Three
people, who were not any of the players, carefully observed
the videos of all players’ rounds and were asked to sequen-
tially predict the players’ decisions. The viewer who got the
best results succeeded to predict stay samples with a recall
of 0.94, but was wrong in most of leave samples with a recall
of 0.24. The g-mean was 0.47, very close to the prediction of
the standard SVM, and significantly worse than the g-mean
of 0.687 in our classification method.

8 Conclusion
This paper presents an innovative methodology for predict-
ing human strategic decisions using facial expressions, when
there is an incentive to hide true emotions. We showed that
the results are far better than chance level at around 70% re-
call for both leave and stay, and significantly better than the
predictions made by humans. We also found that using sam-
ples from previous rounds plays important role in getting high
accuracy.

We used a covariance matrix to represent the variable
length video snippet as a fixed-length feature vector. It is in-
teresting to note that we were able to make good predictions
from the correlations of the position of the facial points over
time, without using the positions themselves.
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