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Abstract— Multi-robot systems researchers have been inves-
tigating adaptive coordination methods for improving spatial
coordination in teams. Such methods adapt the coordination
method to the dynamic changes in density of the robots.
Unfortunately, while their empirical success is evident, none
of these methods has been understood in the context of existing
formal work on multi-robot learning. This paper presents
a reinforcement-learning approach to coordination algorithm
selection, which is not only shown to work well in experiments,
but is also analytically grounded. We present a reward function
(Effectiveness Index, El), that reduces time and resources spent
coordinating, and maximizes the time between conflicts that
require coordination. It does this by measuring the resource-
spending velocity. We empirically show its success in simulations
of multi-robot foraging. In addition, we analytically explore
the reasons that El works well. We show that under some
assumptions, spatial coordination opportunities can be modeled
as matrix games in which the payoffs are directly a function of
El estimates. The use of reinforcement learning leads to robots
maximizing their El rewards in equilibrium. This work is a
step towards bridging the gap between the theoretical study of
interactions, and their use in multi-robot coordination.

I. INTRODUCTION

are methods that work well in practice—both in simulations
and with real robots—but the reasons for their success remain
elusive.

This paper presents a reinforcement-learning approach to
coordination algorithm selection, which is not only shown t
work well in experiments, but also explored analyticallizeT
reward function used as the basis for the learning is called
Effectiveness IndekEl). The key idea in El is to reduce
time and resources spent coordinating, and maximize the
time between conflicts that require coordination. It doés th
by measuringthe resource-spending velocifyhe resource
"burn rate"). The use of reinforcement learning minimizes
this velocity.

We empirically and analytically evaluate the use of EIl. We
empirically show that El succeeds in improving multi-robot
coordination in simulated multi-robot foraging. We then
analytically explore the reasons and assumptions underlyi
this success. We formalize foraging as extensive-form game
We show that under some assumptions, these games can be
modeled as matrix games in which the payoffs to the robots
are unknown, but are directly a function of El estimates. The

Multi-robot systems researchers have been investigatinge of reinforcement learning leads to robots maximizing
distributed coordination methods for improving spatiat cotheir El rewards in equilibrium. We believe that this work
ordination in teams [7], [15], [14]. Such methods attemptepresents a step towards bridging the gap between the
to resolve spatial conflicts between team-members, e.g@heoretical study of interactions (via game theory), ararth

by dynamic setting of right-of-way priorities [17], [20],
territorial separation [16], [5], [10], or role-based pities

[12]. It is accepted that no one method is always best [6],

use to explain and inform multi-robot coordination.

II. RELATED WORK

[14], and that all methods reach a point where adding robots Earlier work on adaptation based on coordination effort
to the group (i.e., increasing the density of the robots iis closely related. Vaughan et al. [17] presented a method

space) reduces overall productivity [16], [15].

called aggressionfor dynamic coordination. When robots

There is thus growing interest in adaptive coordinatiomome too close to each other, each of the robots chooses an
approaches, in which each robot adapts the coordinati@ygression level; the robot with the lower level concedgs it
method to the dynamic changes in density. For instancposition, preventing a collision. Later, Zuluaga and Vaamh
Zuluaga and Vaughan adjust the right-away priorities basd#0] have shown that choosing aggression level proportiona
on the amount of local effort (or investment) by team+to the robot’s task investment can further improve overall
members [20]. Rosenfeld et al. [14] advocated allowing eactystem performance. In contrast to this work, our method is
robot to individually switch coordination methods to reduc based on measuring the robot's investment in coordinaltion.
its own estimated resource costs. In general, these adaptaddition, we cast adaptive coordination as a reinforcement
methods have demonstrated much success in multiple dearning problem.

mains of interest.

Rosenfeld et al. [14] presented the Combined Coordination

Unfortunately, while their empirical success is evidentCost CCC) method that adapts the selection of coordination
none of these methods have ever been analytically provemethods by robots; however, it ignores the gains accundilate
to work, nor understood in the context of existing formafrom long periods of no coordination needs, in contrast to ou
work on multi-robot learning and adaptation. As a resultwork. Similarly to our work, the adaptation is stateless,, i.

their optimality and the appropriate conditions for theseu

has no mapping from world state to actions/methods. Instead

remain open questions. Put simply, they pose a puzzle: Thebe CCC is estimated at any given point, and once it passes



pre-learned (learned offline) thresholds, it causes dyoambut its primary task, until it is interrupted by an occurring
re-selection of the coordination methods by each indiMiduar potentially-occurring conflict with another robot, whic
robot, attempting to minimize the CCC. In contrast, all oumust be resolved by a coordination algorithm. Each such
learning and adaption is done on-line. interruption is calleda conflict event The event triggers

Most investigations of reinforcement learning in multi-a coordination algorithm to handle the conflict. Once it
robot settings have focused on improving the learning meckuccessfully finishes, the robots involved go back to their
anisms (e.g., modifying the basic Q-learning algorithmmg a primary task.
utilized task-specific reward functions. We briefly discuss There are common themes that run through all these
these below. Two recent surveys are provided in [19], [8]. tasks: (i) loose coordination between the robots (i.e.y onl

Mataric [11] discusses several technigues for using resccasional need for spatial or temporal coordination); i
wards in multi-robot Q-learning: A local performance-bése cooperative task (the robots seek to maximize group utility
reward, a global performance-based reward, and a heuriséind (iii) the task is bound in time. We refer to these tasks as
strategy referred to as shaped reinforcement; it combiné€T tasks(Loose-coordination, Cooperative, Timed tasks).
rewards based on local rewards, global rewards and coordi-Example LCT tasks include multi-robot foraging, search
nation interference of the robots. Balch [2] reports on gsinand exploration, and making deliveries. For instance, in
reinforcement learning in individual robot behavior séil@z.  multi-robot foraging, robots execute their individual esl
The rewards for the selection were carefully selected fohea (seeking pucks and retrieving them) without any a-priori
domain and application, in contrast to our work. In contrastoordination. When they become too close to each other,
to these investigations, we explore a domain-independetitey need to spatially coordinate. The robot all contritiote
reward function, based on minimizing resource use, and utfee team goal, of maximizing the number of pucks retrieved.
them in selecting between coordination methods, rather thdloreover, they have limited time to do this. In multi-
task behaviors. robot exploration, execution follows a similar patternbots

Wolpert et al. [18] developed the COIN reinforcementspread around, avoiding each other or coordinating as deede
learning framework. Each agent’s reward function is base@.g., to decide who is to explore a newly-discovered area);
on wonderful life utility the difference between the groupthey have the goal of completely exploring a new area as
utility with the agent, and without it. Similarly to these quickly as possible.
our study focuses on the reward function, rather than thelLetA={...,qa;,...},1 <i < N be agroup ofV robots,
learning algorithm; and similarly, we focus on functionscooperating on a group task that started at tinfarbitrarily)
that are aligned with global group utility. However, our lasts up-to timel’ (A starts working and stops working on
work differs in several ways. First, we distinguish utility the task together). We denote Gy = {c¢; ;},0 < j < K;
due to coordination, from utility due to task executionthe set of conflict events for robet wherec; ; marks the
Second, our reward function distinguishes also the timatspetime of the beginning of each conflict.
coordinating and time spent executing the task. The time between the beginning of a conflict evgnand
up until the next event, the intervd] ; = [¢; j,¢; j+1), can
be broken into two conceptual periods: Taetive interval

We first cast the problem of selecting coordination algof?; = [c; j,t:,;) (for somec; ; < t; ; < ¢; j+1) in which the
rithms as a reinforcement learning problem (Section lll-A)robot was actively investing resources in coordinatiord an
We then introduce the effective index (EI) reward functiorthe passiveinterval I} ; = [t; ;, ¢; j+1) in which the robot no
in Section I1I-B. longer requires investing in coordination; from its perstpe
the conflict event has been successfully handled, and it is
back to carrying out its task. By definitioh ; = I}, + If,j-

Multilateral coordination prevents and resolves conflict¥Ve define thetotal active timeas® =3, >, I}*; and the
among robots in a multi-robot system (MRS). Such conflicttotal passive timas? =), Zj I;fffj.
can emerge as results for shared resource (e.g., space), d@ur research focuses on a case where the robot has a
as a result of violation of joint decisions by team-membersionempty sef\/ of coordination algorithms to select from.
Many distributed coordination algorithms (protocols) @av The choice of a specific coordination methads M for a
been proposed and explored by MRS researchers [5], [12jiven conflict eventc; ; may effect the active and passive
[16], [17]. Not one method is good for all cases and groumtervals I¢;, I7; (and possibly, other conflicts; see next
sizes [14]. However, deciding on a coordination method fosection). To denote this dependency we mi%;}a(a),lﬁj(a)
use is not a trivial task, as the effectiveness of coordimati as active and passive intervals (respectively), due togusin
methods in a given context is not known in advance. coordination method. Figure 1 illustrates this notation.

We focus here on loosely-coupled application scenarios We define the problem of decentralized coordination al-
where coordination is triggered by conflict situations,nide gorithm selection in terms of reinforcement learning. We
tified through some mechanism (we assume that suchaasume each robot tries to maximize its own reward by
mechanism exists, though it may differ between domainsglecting a coordination methad Typically, reward func-
most researchers simply use a pending collision as a tliggetions are given, and indeed most previous work focuses
Thus the normal routine of a robot's operation is to carrpn learning algorithms that use the reward functions as

Il. LIMITING RESOURCESPENDING

A. Coordination Algorithm Selection
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Fig. 1. lllustration of task time-line, from the robots’ ppestive. Task interruptions to the robot's task in order to coordinatesrev
execution is occasionally interrupted by the requiremerspiend resources if short-lived and inexpensive this would delay the robot
on coordination. ! . L
We assume (and the results show) that good coordination
efficiently as possible. Instead, we assume a very Simp%emagnts l_?:d t? Iongt;hdufratlons of n;)n—mtg_rru;t)_ted W?l;]k gy
Q-Learning variant, and instead focus on defining a rewa € robot. Theretore, the Irequency of coordinalion mMewod
- use is not less important than the time spent on conflict
function (see below). . .
resolving. Thus, largef; ; is better.
We thus want to balance the total active coordination cost
- ACC = Ej ACC; ; against the frequency of coordination.
We call the proposed general reward for coordinatioRve want to balance short-lived, infrequent calls to an expen
Effectiveness Indef€l). Its domain independence is basedsive coordination method against somewhat more frequent
on its using three intrinsic (rather than extrinsic) fastar  calls to a cheaper coordination method.
its computation; these factors depend only on internal com- \we therefore define the Effectiveness Index of robot
putation or measurement, rather than environment responsgf conflict j, due to using coordination methed € M as
follows:

B. Effectiveness Index

llI-B.1 The cost of coordinating. The first factor we
consider is the cost of internal resources (other than time) ACC; () I¢5(a) + CF (@)
used by the chosen method. This is especially important in (@) I (a) + 17 () - I () + 17 ()
physical robots, where battery life and power are a concern. . I ] I ] 7 " o
That is, the effectiveness index (El) of a coordination

We denote byCE the total cost of coordination, of robat , _ _ _ o
It can be broken into the costs spent on resolving all cosflicfethoda during this event is the velocity by which it spends

CC = Zj CF] CZCJ is similar to other measures suggested€SOUrces d_uring its egecution, amortized by how_loqg a
previously, but excludes the cost of time and resourcestspdtfrod in which no conflict occurs. Since greater El signifies
before the conflict (unlike [14]), and is limited to only 9réater costs, we typically put a negation sign in front of
considering individual intrinsic resources (unlike [20]) the El, to signify that greater velocity is worse; we seek to

Let us use a cost functionost;(«,t) to represent the minimize resource spendlng- velocny. .
costs due to using coordination methed € M at any In this paper we use the simple single-state Q-learning al-

time ¢ during the lifetime of the robot. The function is not 9orithm to estimate the El values from the robot's individua
perspective. The learning algorithm we use is stateless:

3)

necessarily known to us a-priori (and indeed, in this redear

is ”OF)- ) ] Qi(a) = Qi-1(a) + p(Ri(a) —7Qi-1(a))
Using the functioncost;(,t) we define theCy; of a _ ) _
particular event of robot at time¢; ;: ’ where p is the learning speed factory is a factor of

discounting, ands is an exploration rate.
CCi(a) = [17 costilont) di + [0 costi(on 1) di

e IV. EXPERIMENTS INMULTI-ROBOT FORAGING
= [ cost;(a,t) dt
Cij A

We now turn to briefly survey a subset of experiment
I{es:ults, in simulated foraging, supporting the use of El in
multi-robot team tasks. Due to lack of space, we only provide
representative results.

Foraging is a canonical task in multi-robot systems re-
search. Here, robots locate target items (pucks) within the
[11-B.2 The time spent coordinating. The main goal of work area, and deliver them to a goal region. As was the
a coordination algorithm is to reach a (joint) decision thatase in Rosenfeld et al.'s work [14], we used the TeamBots
allows all involved robots to continue their primary adiyvi simulator [1] to run experiments. Teambots simulated the
Therefore, the sooner the robot returns to its main task, tletivity of groups of Nomad N150 robots in a foraging
less time is spent on coordination, and likely, the robot caarea that measured approximately 5 by 5 meters. We used
finish its task more quickly. Thus, smalléf is better. Note a total of 40 target pucks, 20 of which were stationary
that this is true regardless of the use of other resourceglfwh within the search area, and 20 moved randomly. For each
are measured by’“). Even if somehow other resourcesgroup, we measured how many pucks were delivered to the
were free, effective coordination would minimize conflict-goal region by groups of 3,5,15,25,35,39 robots within 10
resolution time. and 20 minutes. We averaged the results of 16-30 trials in

We thus define théctive Coordination CosfACC) func-  each group-size configuration with the robots being plated a
tion for roboti and methody at timec; ;, that considers the random initial positions for each run. Thus, each experimen

Cf] is defined as the cost of applying the coordinatio
algorithm during the active intervét; ;, ¢; ;) and the passive
interval [¢; ;, ¢; j+1). However, the coordination costs during
the passive interval are zero by definition.



simulated for each method a total of about 100 trials of 18. LCT Tasks as Extensive-Form Games
and 20 minute intervals.

We compare the El method with random coordinatio
algorithm selectior_1 (RND), anq o the method of Rosenfellgs task execution is occasionally interrupted, requirthg
et al. (ACIM) (which uses offline learning [14]). Each Ofa plication of some coordination method in order to resolve
thesg selection methods sglects betvyeen three _types G.f co rspatial conflict, to get back to task execution. Assume for
dination methodsd), described also in [14]: Noise (which simplicity of the discussion that we limit ourselves to two

essentially allows the robots to collide, but increasesr therobots, and that whenever they are in conflict, they are both

motion uncertainty to try to escape collisions), AgOressio 5 are of it, and they both enter the conflict at the same time.

[17] (where one robot backs away, while the other MOVeShis is a strong assumption, as in actuality, most often LCT

fqrward), and Rfepel, !n wh|ch robot; _move away (Va”abl?asks often involve more than two robots. We address this
distance) to avoid an impending collision. assumption later in this section

Flgurei %[(rla)—Z(c) Sh.OW a S(;J?;etYOf r'esults.klntr;all, thebx At first glance, it may seem possible to model LCT tasks
axis marks the group size, and the ¥ axis marks the NUmMDgL . «qies of single-shot games (i.e., repeating gamesjewh

of pucks collected. Figure 2(a) shows that given no resour it each game the actions available to each robot consiseof th

limitations, the El method is as good as ACIM (and Repell oordination methods available to it. The joint selectidn o

which provides the best results, though it has not used P'ethods by the two robots creates a combination of methods

Zféll:\r/lle Iiarning. Figure 2(?) sh0\|/vs t:e advahntagAeccﬁwEirokv Swhich solves the conflict (at least temporarily). The payoff
when resource costs apply. Hiere, when aKe¥or the two robots include the pucks collected in the time

fuel costs into account, it performs well. But when it deretween games, minus the cost of resources (including time)

not, its performance is very low. On the other hand, E pent making and executing the selected methods. The fact

with fuel costs and without perform well. Finally, FIgUre yhat there exists a time limit to the LCT task in question can
2(c) shows how ACIM and EI respond to unknown COStSy . modeled as a given finite horizon

Here, both El and ACIM take fuel costs into account, but the - . .
However, finite-horizon repeating games are not a good

ggtr?(iln:l;ilcgoiihirseegsrzzgﬁ;SE(llﬂg;gze:t;ISing'ggg;l;tdnet model for ITCT tasks_. In pa_lrticular, the methods selected by
T ’ the robots in one point in time affect the payoffs (and costs)

at a later point in time. First, the choice of coordination

V. WHY DOESEI WoORK? methods at time affects the time of the next conflict. One

We now turn to discuss the use of El as a reward functioffo0rdination method may be very costly, yet reduce the
from an analytical perspective. We are interested in eiqjor likelihood that the robots get into conflict again; anoth_er
the conditions under-which we expect El to be effectivelethod may be cheap, but cause the robots to come into
There are common themes that run through all the task@nflict often. Second, the robots change the environment in
in which EI has been successful: (i) loose coordinatio¥hich they operate during the time they are carrying outthei
between the robots (i.e., only occasional need for spatif#Sks, and thus change future payoffs. For instance, robots
coordination); (i) a cooperative task (the robots seek tgOllect pucks during their task execution time, and often
maximize group utility); and (iii) the task is bound in time. collect those nearest the goal area first. Thus their payoff (

We refer to these tasks a<CT tasks(Loose-coordination, terms of pucks collected) from games later in the sequence
Cooperative, Timed tasks). is lower than from games earlier on.

For instance, in foraging, we see that robots execute their W& thus utilize a model of LCT tasks as extensive-form
individual roles (seeking pucks and retrieving them) esse§j@mes. The initial node of the game tree lies at the time of
tially without any a-priori coordination. When they becomethe first conflict,c; 1, and the choices of the first robot at
too close to each other, they need to spatially coordinatgl's time lead to chlldren_of this node. As the two robots act
The robot all contribute to the team goal, of maximizing théimultaneously, these children also occur at tirme. Also,
number of pucks retrieved. Moreover, they have limited tim@0te that the selections of the robots are not observable to
to do this. Incidentally, they also have finite number of mjck €ach othef. The game tree is illustrated in in Figure 3.
which break some of the assumptions we make below. We Following each simultaneous choice of methods by the
shall come back to this. robots, the chosen combination of coordination methods is

Computing optimal plans of execution for tasks such agxecuted (during coordination tinf¢;), and this is followed
foraging is purely a theoretical exercise in the currertestd DY @ period of task executioff ;. The game ends when total
the art. In practice, determining detailed trajectorigsnfall- ~ ime 7' runs out. The payoffs to the robots are then given as
tiple robots in continuous space, with all of the uncertamt the number of pucks retrieved, minus the cost of resources
involved (e.g., pucks slipping from robots’ grips, motianda SPent on the task. Terminal nodes may appear anywhere in
sensing uncertainty), is infeasible. Much more so, when we
add the a-priori selection of coordination methods in déffe 1This is true in all communication-less coordination methodsgduin

oints in time. We therefore seek alternative models Witﬁ(r)evious work [17], [14]. When used with communication-basedrdina-
p . ‘o n method, this restriction may be removed. It might also besipées to
which to analytically explore LCT tasks. relax this restriction if robots could infer each othersbitfes post-factum.

We turn to game theory to represent LCT tasks. As we
ave already noted, each individual robot’s perspectitiedt
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Fig. 2. Results from the TeamBots foraging domain.
Robot 1 where they occur. In other words, we assume that the joint
(at ime c, ) execution of a specific combination of selected coordimatio

methods will always cost the same (in time and resources),

regardless of the time in which the conflict occurred. More-
obot2 over, the assumption also implies that we assume that the
(attime c,) task-execution time (and associated gains)—which depends
on the methods selected—uwill also remain fixed. We state

this formally:

Assumption 1.Let o be a coordination method, selected by
roboti. We assume that for any < j, k < K, these hold:

Robot 1
Selection

e I2(0) = If(a), IP;(0) = If)(a), Cfj(a) = Cfy(a)

This strong assumption achieves a key reduction in the
complexity of the model, but gets us farther from the reality
Selocion of LCT multi-robot tasks. However, the resulting model
fetimesy) provides an intuition as to why and when EI works. In
Section V-D we examine the assumptions of the model and
their relation to the reality of the experiments.
The duration of coordination method executidit)( and
the duration of the subsequent conflict-free task-exeoutio
Fig. 3. An illustration of the extensive-form game tree forla@T task.  (I7'), are fixed; they now depend only on the method selected,
Conflict times are denoted in the nodes. Terminal nodes (tiote=") are  rather than also on the time of the selection. Thus a path
dark. Note that the second confligt, may occur at different absolute times through the game tree can now be compressed. For each

depending on the choices of the robots at ticg . 2 | . . .
combination of selected coordination method, we can simply

the game tree, as some selections of the robots lead 10 Ieg§itiply the costs and gains from using this combination, by
conflicts, and thus greater opportunity for task execution. he number of conflicts that will take place if it is selected.

Under ideal—and purely theoretical—conditions the Thus we can reduce the game tree into a matrix game,
robots would know the payoffs awaiting them in each terMiyhere &, ; is the number of conflicts occurring within total
nal node, and would thus be able to, in principle, computgme 7 that results from the first robot selecting, and the

a game-playing strategy that would maximize the team'secong robot selecting;. U; ; is the utility gained from this
utility. To do this, the robots would need to know the timeshoice. This utility is defined as:

spent resolving conflicts and executing the task, and would

also need to know (in advance) the gains achieved during Uij= lgain(If () +gam([§)(aj))]

each task-execution period. Even ignoring the gains, and c c

assuming that maximizing task-execution titng > 17 is G (ea) + € ()] “)

sufficient, the robots would be required to know all conflict;nere we use (for robot) the notationgain(I”(a;)) to

resolution times in advance. This is clearly impractica, ajaenote the gains achieved by robauring the tasll< execution

it requires predicting all possible conflicts (hundreds in &0 I”(a;). Note that we treat these gains as being a

typical foraging task), their durations and effects. function of a time duration only, rather than the method

«, which only affect the time duration. Underlying this is

an assumption that the coordination method choice affect
We thus make a simplifying assumption, that all effects oftility (e.g., the pucks acquired) only indirectly, by affeng

coordination method selections remain fixed, regardless tfe time available for task execution. We assume further tha

B. Modeling LCT Tasks as a Matrix Game



gains monotonically increase with time. Maximizing thed¢im individual El payoffs, and assuming that their equilibrium

available, maximizes the gains. is Hicks optimal (i.e., the sum of payoffs is maximal), then
Table | is an example matrix game for two robots, eacbBolving this game matrix is equivalent to maximizing group

selecting between two coordination methods. Note howevaetility.

that in general, there af® robots and M | methods available

to each. a? a3
o1 | —EL(a1), —El(ai) | —EL(a), —Elx(a3)
of a3 ob | —EL (o), —EL(a3) | —EL(od), —EI(a3)

ar | KiaUiq | Ki2Ui2
ag | K21Uz1 | Ko2Usp
TABLE |

LCT TASK AS A MATRIX GAME , REDUCED FROM THELCT GAME TREE
BY ASSUMPTIONL. ENTRIES HOLD TEAM PAYOFFS C. Learning Payoffs in LCT Matrix Games

Unfortunately, when the robots first begin their task, they
Note that the robots do not have access to the selectiofié not know the payoffs, and thus rely on the reinforcement
of the other robots, and thus for them, the game matrix doésarning framework to converge to appropriate El values. Of
not have a single common payoff, but individual payoffscourse, it is known that Q-learning does not, in the general
These are represented in each cell by rewritiog;U; ; as  case, converge to equilibrium in 2-player repeated ganies [3
K; ju;(0y), K; juj(a;), where [19], [8]. However, there are a number of features that hold
for the EI game matrixn the domains we studwhich makes
the specific situation special.

TABLE Il
LCT TASK AS AN El MATRIX GAME .

uk (o) = gain(I} (ar)) — CF (o).

This results in the revised matrix game (Table II). Most importantly, the games that take place hererare
) ) between two players. Rather, the process is more akin to
. . . , : 22 , randomized anonymous matching in economics and evolu-
a | Kiau(a), Kiau(ar) | Kigui(o), Kisuz(az) tionary game theory. In this process, pairs of players are
as | K3 jua(as), Kiui(ad) | Kiqua(as), K3 us(a3) : )
A 2 22,1 L : 12222 randomly selected, and they do not know their opponents
TABLE I identity (and thus do not know whether they have met the
AN LCT TASK AS A MATRIX GAME , WITH INDIVIDUAL PAYOFFS. same opponents before).

Indeed, this last quality is crucial in understanding why
The number of conflictdy; ; is really the total timel’, our use of EI works. It turns out that there exists work in
divided by the duration of each conflict cycle, i.€5 + economics that shows that under such settings, using simple
IP. Thus the individual payoff entries for robétselecting reinforcement learning techniques (in our case, stat€less

methodk can be rewritten amul. learning) causeshe populationto converge to Nash equi-
Let us now consider these individual payoffs. The payoffibrium, even if mixed [9]. Thus rather than having any
for an individual robotl which selectedy is: individual agent converge to the mixed Nash equilibrium,
Tlgain(IF(a)) — c(If ()] IF(a) — c(If(a)) the population as a whole.c.onve.rges. to it, i.e._, the numbgr
I#(a) + I () I7(a) + 1P () 5)  of agents selecting a specific policy is proportional to rthei

) ) i ) . target probabilities under the mixed Nash equilibrium.

This step require some explanation. First, of course, sinCe there remains the question of why do agents converge to
for all entries in the matrixl" is constant, dividing byI" e maximal payoff Nash equilibrium. We again turn to eco-
maintains the proportionality. Furthermore, the promorti ,mics jiterature, which shows that for coordination games
will hold only under certain restrictions on the nature o th including even the difficult Prisoner's Dilemma game—
function gain(), but we believe these restrictions hold foragents in repeated randomized matching settings tend to
many gain functions in practice. For instance, the stepsholcéonverge to the Pareto-efficient solution [4], [13]. Howeve
whenevergain() is linear with a coefficient greater than 1.;nase works typically assume public knowledge of some
Now: kind, which is absent in our domain. Thus we leave this

as a conjecture.
I (a) — c(If(@) _ If(e) + [I(a) — I ()] — c(If(a))

I7(a) + IP() I5(a) + I'(a) D. Reuvisiting the El Experiments
(6) Armed with the analytically-motivated intuition as to why
=1-EI(a) (7) El works, we now go back to re-examine the experiment
results. In general, there are of course differences betwee
x —ET (@) (8)

the analytical intuitions and assumptions and the use of El i
Thus the game matrix above (Table Il) is analyticallya reinforcement learning context: (i) the values learned ou
shown to be equivalent to the following matrix (Table Il1). approximations of the El values, which cannot be known
Here, each robot seeks to minimize its own individual Ewith certainty; (ii) the assumptions allowing reduction of
payoff (maximize its -El payoff). If robots minimize their the LCT extensive-form game tree to a game matrix do not



hold in practice; and (iii) even the assumptions underlying|3]
the extensive-form game tree (e.g., that robots start their

conflict at the same time, or that their gains depend only on

time available for task execution) are incorrect. We examin [4]
specific lessons below.

We begin with the teambots simulation experiments, wherefs]
El was highly successful, and was also demonstrated to be
robust to unknown costs. Despite the fact that the domairf!
cannot be reduced to the matrix game form, it turns out tha;
some of the assumptions are approximately satisfied, which
explain the success of El here.

First, the fact that about half the pucks moved randomly8]
helped spread them around the arena even after many pucks
were collected. Thus the gains expected later in the task
were closer to the gains at the beginning to the task, than it
would have been had all pucks been immobile (in which case
pucks closer to base are collected first, resulting in highef°!
productivity in the beginning). [10]

Second, the size of the arena, compared to the size
of the robots, was such that the robots did not need 1!
converge to one optimal combination of selection methods;,,
Different zones in the arena required different combirretio
In principle, this should have challenged the approachhas t[13]
stateless learning algorithm cannot reason about the sobot
being in different states (zones). However, as the robots4]
moved between areas fairly slowly, they were able to adapt
to the conditions in new zones, essentially forgettingiearl ;5
El values. This is a benefit of the stateless algorithm.

VI. SUMMARY
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This paper examined in depth a novel reward functio%6
for cooperative settings, called Effectiveness Index.(El)
estimates the resource spending velocity of a robot, dus to '17]
efforts spent on coordination. By minimizing El, robots ded
cate more time to the task, and are thus capable of improving
their team utility. We used El as a reward function for[18
selecting between coordination methods, by reinforcement
learning. This technique was shown to work well in twol19]
foraging domains. The experiments explore the scope of the
technique, its successes and limitations. In addition, axeh [20]
formally explored multi-robot tasks for which El is intertie
We have shown that under some assumptions, ElI emerges
analytically from a game-theoretic look at the coordinatio
in these tasks. We believe that this work represents a step
towards bridging the gap between theoretical investigatio
of interactions, and their use to inform real-world multi-
robot system design. Improved results can be achieved by
extending both the theory underlying the use of El, and the
learning algorithms in which it is used.
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