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Abstract

In this paper we consider an extension of the traditional auction mechanism, the multi-attribute auction, which enables
negotiation on several attributes in addition to the price of the item. In particular, we consider a procurement auction in which
the buyer is the auctioneer and the sellers are the bidders. Such domains include auctions on task allocation, services, etc. We
focus on three auction protocols for the case of multi-attribute items; a variation of the first-price sealed-bid protocol termed
first-score sealed-bid, a variation of the second-price sealed-bid protocol termed second-score sealed-bid, and a variation of the
English auction protocol termed sequential full information revelation. We analyze a specific model for these protocols and we
provide optimal and stable strategies for the auctioneer agent and for the bidder agents participating in multi-attribute auctions.
In addition, we analyze the auctioneer’s/buyer’s expected payoff and suggest an optimal scoring rule to be announced according
to the protocol. Finally, we reveal that the buyer’s expected payoff in all three protocols, the first-score-sealed-bid auction, the
second-score sealed-bid auction and the English auction, differ only by a predefined constant. We prove that the optimal scoring
rule is equal in all three protocols. This result can be interpreted as the extension of the equivalence theory of the single attribute
for the case of multi-attribute items.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction mented in many domains with assorted environments
(e.g., one-to-many, many-to-one, many-to-many, sell-

Auction mechanisms have become very popular er-to-buyers and buyer- to-sellers auctions). To date,
within electronic commerce and have been imple- most of the research on automated auctions considers

models where the price is the unique strategic di-

mension [7,14,23,24,30]. However, in many real
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design mechanisms should be reconsidered and
adjusted.

A multi-attribute item is defined as an item char-
acterized by several negotiable dimensions. For ex-
ample, in the supply chain management domain,
contracts are typically composed of multiple negotia-
ble attributes, such as the supply time, the number of
items delivered, the duration of the product’s warranty
and the price. In a task or resource allocation scenario,
a task might be defined by its size, starting time,
deadline and accuracy level. Finally, in the case of
an Internet portal or video-on-demand supplier, stor-
age capacity may be negotiated depending on capac-
ity, the access rates to the data, the availability time
and the level of security. Currently, complex contracts
such as these are usually finalized using human ne-
gotiation or the non-price dimensions are fixed, and
the auction relates only to the price. In this paper we
suggest an automatic tool based on agent technology
to assist the human user confronting complicated tasks
on a daily basis.

In contrast to the single-attribute auction, where
each side of the auction knows the preferences of the
other side regarding the price (the seller prefers a
higher price and the buyer a lower one), in reverse
multi-attribute auctions, the bidders (sellers) do not
necessarily have any information about the auction-
eer’s (buyer’s) preferences regarding these additional
attributes. To overcome this problem, the auctioneer
can either use a scoring function or explicitly guide
the auction by revealing if a given bid is better than
the best bid yet offered. The scoring function enables
the auctioneer to articulate its preferences regarding
the various attributes which are made public to all
bidders at the beginning of the auction. Sellers use this
scoring function to value specific configurations and
thus can understand how changes to the various attri-
butes will affect the overall desirability of the bid.

Given a scoring function, one may think that the
multi-attribute auction can be mapped into a simple
price only auction. However, this is not the case. The
scoring function announced by the auctioneer, is not
necessarily its real utility function (i.e. the one that
reflects the auctioneer’s actual preferences). The an-
nounced scoring function, is chosen by the auctioneer,
in order to maximize its expected pay-off. Thus, the
scoring function may have a different structure from
the auctioneer’s utility function or a similar structure

but with different weights associated with the various
attributes. Moreover, even when given the scoring
function, it is still non-trivial for the bidders to iden-
tify its optimal bid (as we will show in Section 4.3).

Several interesting questions emerge Wwhen
attempting to analyze the new concept of the multi-
attribute auction, for example,

(1) How can the auctioneer choose the auction
protocol that maximizes its expected payoff?

(2) What should the buyer (auctioneer) reveal at the
start of an auction? Should it include all its
preferences, only part of them, or should differ-
ent modified preferences be revealed?

(3) How should a seller (bidder) formulate its bid
considering the various attributes? What should
the optimal bid of each seller be, given the
protocol, and its beliefs?

(4) Assuming that an English protocol is used, how
can a seller (bidder) suggest a better bid than the
current best bid, if it does not completely know
the buyer’s preferences?

In this paper, we address these issues and propose
ways to handle auctions using automated agents. In
particular we analyze three auction protocols for the
case of multi-attribute items; a variation of the first-
price sealed-bid protocol termed first-score sealed-
bid, a variation of the second-price sealed-bid proto-
col termed first-score sealed-bid, and a variation of
the English auction protocol termed sequential full
information revelation. Another possible protocol is
to have a two-stage protocol. In the first stage the
bidders offer bids using a sealed protocol, then a set of
the best bidders get a second opportunity to compete
in an open cry auction. There might be several such
protocols which differ in the reservation price/initial
bid allowed in the second stage. For example, if this
reservation price is set to the price offered by the
lowest bidder in the winning bidders set then the
strategy in the first stage will be equivalent to the
second-price auction. On the other hand, if the bidders
are allowed to offer bids in the second stage which are
higher than the one they proposed in the first stage
then the bidding strategy of the first stage will be
strategically equivalent to the first price. In any case
by analyzing the three protocols we have suggested
we have been able to cover a wide range of protocols.
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The auction design goal we consider is to maxi-
mize the expected pay-off of the buyer (auctioneer). In
the context of economics or market design, it is more
common to maximize the overall market efficiency
[1,31], however, in the domains that we are interested
in, the buyers (auctioneers) are selfish and seek to
maximize their profit. Given the auction protocols, we
provide the bidder agents with the optimal bidding
strategy, and we also provide the auctioneer agent
with a mechanism to calculate the optimal scoring
function that should be announced, in order to max-
imize its expected payoff.

Given this background, this work advances the
state of the art of the auction in the following ways:

« It provides the bidders with the dominant bidding
strategy and the auctioneer with the optimal auc-
tion design for the three auction protocols; the first-
score sealed-bid, the second-score sealed-bid and
the multi-attribute English auctions with an arbi-
trary number of attributes.

It proves that the buyer’s expected payoff from the
multi-attribute English auction and the second-
score sealed-bid auction are equal with the differ-
ence of a predefined constant.

It proves that the expected payoff of the auctioneer
from the multi-attribute English and first-score
sealed-bid auctions are equal with the difference
of a predefined constant.

The outline of the paper is as follows. In Section 2
we discuss related work and describe the state of the
art in the area of multi-attribute auctions. In Section 3
we describe in detail the model we assume for the
auctions. In Section 4 we describe and analyze a
sealed-bid auction for multi-attribute items. Using
similar methods we analyze a multi-attribute English
auction in Section 5. In Section 6 we first analyze the
second-score sealed bid auction and then we prove the
equivalence between the second score sealed bid and
the English auction for the case of multi-attribute
items. In addition, we prove that the buyer’s expected
payoff in the English auction is equal to the buyer’s
expected payoff from the first-score sealed-bid auc-
tion with the difference of the predefined constant D
that represents the minimal bid increment allowed in
the English protocol. Finally, we discuss the optimal
value for the minimal increment which should be

defined in the multi-attribute English auction. We
present our conclusions and discuss future work in
Section 7.

2. Related work

There are two main maximization goals that are
commonly used for auction mechanism designs
[9,33]: (1) efficiency in terms of the general welfare
of the system (covering both the buyer and the sellers)
and (2) the auctioneer’s expected payoff. The former
captures the case where there is no other solution that
is better for both the auctioneer and the bidders [17].
In terms of efficiency maximization in reverse multi-
attribute auctions, it has been shown that it is optimal
for the auctioneer to announce its true preferences
[9,17]. However in the latter case we prove that this
is not the case with respect to the multi-attribute
English and the sealed-bid auctions. Specifically, we
prove that in some cases lying about the utility func-
tion may result in a better outcome for the auctioneer.
Thus, in order to maximize the auctioneer’s expected
payoff, the auction designer has to choose the optimal
scoring function (as depicted in Sections 4 and 5).

To date, comparatively little theoretical work has
focused on multi-attribute auctions especially in the
case of maximizing the auctioneer’s expected payoff.
In particular, there are two main pieces of related work
and we deal with each of them in turn.

First, Che [8] considered a two-dimensional auc-
tions where a bid is composed of a price and a quality
(i.e. (p, ¢@)). In doing this Che defined three auction
protocols; the “first-score”, “second-score”, and the
“second-preferred-offer”. The first-score is a simple
generalization of the first-price sealed-bid auction,
where each bidder submits a sealed bid, and the
winner is the bidder who achieves the highest score.
The winner is then obliged to produce the goods with
the preffered quality at the offered price. The second
score is a generalization of the second-price sealed-bid
auction where the winner is the bidder who achieves
the highest score but is only required to provide goods
with a combination of attributes (quality, price) that
yields the score of the second highest bid. Another
variation of the second-price auction defined by Che
is the second preferred-offer in which the winner is
required to exactly match the quality-price combina-
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tion of the second highest bid. Given these auction
protocols, Che proposed an optimal design for the
auction protocols, based on an announced scoring
rule.

In this paper, we extend Che’s model for more
realistic electronic commerce applications, where the
reverse auction considers multiple non-price attri-
butes. For this case we analyze the first-score, the
second-score and the English auctions. We do not
consider the second-preferred-offer auction, as we
believe that in such procurement (reverse) auction
environments, the requirement to match the exact
values proposed by another bidder is neither fair nor
realistic and thus it is not appropriate for the scenarios
that we examine.

One of the interesting issues analyzed by Che is the
problem of finding the optimal scoring function, with-
in the auction protocols that he considered. He
showed that if the scoring function under-rewards
quality compared to the buyer’s utility function, the
first-score and second-score auctions implement an
optimal mechanism for the auctioneer (i.e. maximiz-
ing the auctioneer’s expected payoff). In this paper we
extend its result in several ways. First, we consider an
arbitrary number of non-price attributes, while Che
considers only one such attribute. Second, Che pro-
poses an additive distortion such that the announced
scoring function is generated by adding a constant to
the real utility function, S=Ultility+7, where r is the
value that obtains an optimal outcome for the auction-
eer. In contrast, we consider a distortion in the an-
nounced weights. That is, given the additive utility
function, Utility:=) . W;-q;, where W;s are the real
weights that the auctioneer associates with each of the
corresponding quality value ¢;, the scoring function
we propose will have the form S:=3", w; - ¢;, where w;
are the optimal calculated weights to be announced in
order to maximize the auctioneer’s payoff. We believe
that our distortion is more intuitive for the bidders and
the auctioneer, because the same structure of the
weighted function is kept. The advantages of the
additive utility function method in a real electronic
commerce domain are clear: functions can be easily
estimated and easily reported, and they reflect the real
buyer’s preferences in many domains.

Moreover, while Che proved that in cases in which
the scoring function equals the buyer’s utility func-
tion, first-score and second score protocols yield the

same expected payoff for the buyer, we prove that for
any given scoring function (even different than the
buyer’s utility function) this equivalence holds and
also applies to the English protocol in addition to the
first-score and second-score protocols.

The second work conducted by Vulkan and Jen-
nings [35] discusses a reverse multi-attribute English
auction (within the business process management
domain). According to their assumptions, the winning
bid relates to the real utility function of the buyer,
whereas in our protocol the winning bid relates to the
scoring function. Consequently, in Vulkan and Jen-
nings’ work the auctioneer’s optimal strategy is to
announce its real utility function. However, as a
consequence of our assumptions about the winning
bid, the auctioneer is motivated to calculate the scor-
ing function that will yield the best result (as we
show in Sections 4.3 and 5.3). In some cases the
scoring function may be similar to the real utility
function of the auctioneer, but in other cases it may
not. Moreover, Vulkan and Jennings refer to the bid-
ding strategy only in a general way; simply to offer a
bid that is better than the previous selected bid. In
contrast, in our work we precisely indicate the method
of choosing the qualities that are optimal for the
bidder and that refer specifically to the auctioneer’s
preferences. In addition, we prove that only the price
should be recalculated in each step (as opposed to
Vulkan and Jennings who assumed the bidder calcu-
lates the bid from scratch each time), which signifi-
cantly reduces the computational burden from the
bidder’s perspective.

More generally speaking, a number of researches
have dealt with multi-attribute auctions, but from the
design goal of efficiency maximization. Branco [6]
extended Che’s work by assuming that the costs of the
bidders are correlated in the sense that their cost
model combines elements of private and common
values. Specifically, Branco considered a governmen-
tal procurement auction in which the main goal is to
maximize the general welfare, which takes into ac-
count the private rents that will be given to the firms.
However in our work, we assume that the costs of
bidders are independent as is commonly assumed in
auction theory. Parkes and Kalagnanam have also
worked in this area and they applied a linear program-
ming based methodology to develop a family of iter-
ative auctions that end with the outcome of a modified
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Vickrey—Clarke—Groves (VCG) mechanism for the
multi-attribute allocation problem [22]. Since they
considered iterative scenarios, because they were
concerned with long term relationships, they chose
the efficiency maximization goal as their guiding
principle. However, they stated that the auctioneer
payoff maximization problem is more appropriate
for one-shot procurement problems (such as ours).

In addition to the above theoretic work, there has
also been some experimental work on multi-attribute
auctions. This work shows that multi-attribute auc-
tions can produce higher gains' for participants be-
cause of the bidding flexibility it offers [5].
Specifically, Bichler [4] found that the utility scores
achieved in multi-attribute auctions were significantly
higher than those of corresponding single attribute
auctions. Similar work was performed by Chen-
Ritzo et al. [9] who also experimentally compared
the multi-attribute auction with the price-only auction
(for multi-attribute items). In order to give the price-
only auction the best chance of success, they calcu-
lated the optimal reserve levels of the non-price attri-
butes to be announced. This calculation is based on
full information about the bidders’ profit functions in
order to provide the most difficult test for the multi-
attribute auction to compete with. In spite of this
handicap, they found that the multi-attribute auction
is still more effective in terms of the buyer utility and
the bidders’ profits. In an additional work [29] a
laboratory experiment was performed to investigate
whether a multi-attribute reverse English and a multi-
attribute reverse Vickrey auction lead to identical out-
comes with respect to the buyer’s (auctioneer’s) util-
ity, the suppliers’ profits and allocation efficiency. The
benchmarking of this experiment is the theoretical
observation that both protocols are equivalent for
the single attribute case, which is extended to the
multi-attribute case (Section 6.1) in this paper. The
results show no significant difference in the suppliers’
profits. However, regarding the buyer’s utility, the
English auction leads to both higher allocatable effi-
ciency and buyer’s utility. These results are explained
by the observation that bidders deviated from the
dominant bidding strategy. With time they learned

! Regarding the price only auction (for multi-attribute items)
outcomes where all the attributes’ values are fixed except for the
price.

and updated their strategies. At that stage the results
were more similar in both auctions. This phenomena,
of bidders not considering the bidding-strategies de-
rived in game-theory while deciding about their bid
has been observed for the single attribute as well [26].

Finally, there are a number of similarities between
combinatorial and multi-attribute auctions. In the for-
mer case [10,15,16,20,27] a set of available goods is
given and each bidder specifies bundles of goods and
the prices it is willing to pay for each specified
bundle. Given the set of bids, the auctioneer’s prob-
lem is then to determine which agents will obtain the
bundles they ask for (since the number of available
goods is limited). Although the instantiation of the
bids can be mapped from the multi-attribute auction to
the combinatorial auction (e.g. by considering the
various attributes as various goods and the attributes’
values as the goods’ quantities), the decision problem
the auctioneer faces in each case is significantly dif-
ferent. In the combinatorial case, the winner determi-
nation is to choose a set of bids that maximizes the
prices (or minimizing the price in a reverse auction)
while ensuring that the quantities of items meet the
supply (or demand in reverse auction). That is, there
will be a set of winners. In contrast, in the multi-
attribute case the auctioneer tries to identify the soli-
tary winner that maximizes its utility.

3. The model

The auction model consists of one buyer agent,
who is the auctioneer, and a fixed number of n seller
agents, who are the bidders. The buyer agent that
needs a particular item (service or product) starts the
auction process. At the beginning of the auction, the
buyer announces its item request (which consists of
the item’s desired characteristics), the auction proto-
col, and a scoring rule describing its preferences
concerning the item properties. A seller agent that
decides to send a bid has to specify the full configu-
ration it offers. In addition we assume the agents to be
rational in a sense that they are trying to maximize
their utility and that they will not do an action that
yields them a negative utility.

The scoring function associates a score with each
proposed offer and the auction protocol dictates that
the winner and the winning bid are based on the
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offers’ scores. The scoring function is used by the
auctioneer as a tool for choosing from a set of
offers, and is used by the bidders to calculate the
optimal bid (as we will show in Section 4.2). Be-
cause the scoring function influences the proposed
bid, the buyer agent tries to derive a scoring function
that maximizes its own expected utility in a given
auction protocol. We assume that each participant
knows its utility function, and time and bidding are
not costly.

In particular, we consider auctions in which the
auctioned item is defined by multiple attributes
which are utility independent. Namely, the utility
of one attribute does not depend on the value of
any other attributes [34]. For example, consider the
utility of attributes such as the delivery time and the
warranty duration, taken from the supply chain
management domain. The manufacturer has prefer-
ences regarding the delivery time (e.g. “the faster the
better”) which are independent of the preference for
the warranty (e.g. “the longer the better”). This as-
sumption is quite common in describing scoring and
utility functions in multi-attribute auctions [5]. An-
other example may be the international Trading
Agent Competition (TAC) which is also designed
in a way that the multi-criteria decision-making
[32] is based on an additive weighting utility func-
tion. Given this assumption, we propose to use the
additive weighting utility function to combine the
different attributes into a decision rule.? In practice,
it is not a trivial task to draw an additive utility
function, however there are numerical methods [19]
and software available that guide users to construct
and design additive utility functions based on their
past experience.

Given this background, the seller agents are char-
acterized by an additive utility function that describes
their private preferences [36]. Specifically, each seller
agent has private information about the costs of im-
proving the quality of the product it sells. Its perfor-
mance is thus articulated in its cost parameter, 0;. As
this parameter increases, the cost to the seller offering
an item of a higher quality also increases, i.c., the
seller is “weaker”. The buyer (auctioneer) only knows

2 Bichler [4] used the same assumptions to experimentally analyze
the multi-attribute auctions.

the distribution function of the sellers’ cost para-
meters, and has no information about the particular
value of 0; of each seller.

Similar to the model described by Che [8], we
assume that 0; is independently and identically dis-
tributed over [0; 0] (0<0<0<) according to a
distribution function F for which a positive, continu-
ously differentiable density function, f, exists (in par-
ticular, we used the uniform distribution). Because of
complete symmetry among agents, the subscript 7 is
omitted in the rest of the paper.

We analyze a case of a multi-attribute auction in
which there is an arbitrary number of attributes
(m+1), which are predefined and known to all the
participants. One of the attributes is the price, p, and
the others are quality attributes for which the pre-
ferences of the buyer and the sellers are opposed (g;
where i[1..m]). We assume that as ¢; increases, the
quality of the item increases. That is, as ¢, increases
the cost to the seller providing it increases (i.e. it is
harder to provide higher quality items). In addition,
the buyer’s utility for a higher quality item
increases.

For example, a multi-attribute service providing a
machine tool, could be characterized by four attri-
butes: the price p, the speed of the machine ¢;, the
accuracy of the machine ¢, and the warranty period
for the machine g3. As the provided qualities increase,
the seller’s cost increases but the buyer’s utility
increases.

There are also cases where the quality increases as
the quality-attribute values decrease. For example, in
the international logistics supply chain domain a ser-
vice is defined as the transportation of a cargo from
one location to another. Some of the attributes that can
characterize such a service are the availability time,
the path length and the price. As the availability time
of the item decreases, and the path length decreases,
the service quality increases. In such domains, we can
denote ¢, to be 1/(Availability Time) and ¢, to be 1/
(PathLength) in order to obtain a positive relation
between the quality attributes ¢, g> and the quality
of the item.

Consider the cost functions of the sellers. We
assume that there are fixed coefficients for each of
the quality dimensions which are identical for all the
sellers. Namely, a; is the coefficient of ¢, and a, is
the coefficient of g, and similarly a; is the coeffi-
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cient of quality attribute ¢;. The extension, in the
sense of having a vector of cost parameters per
bidder that indicates the cost parameter for each
quality attribute, is possible as we showed in Ref.
[13] for a particular protocol. However, this assump-
tion complicates the calculations and limits us from
deriving advanced results. Consequently, in this
paper we assume that each bidder is characterized
by one cost parameter.
The seller’s cost function is:

Cs(Ql,---,Qm;e):9<§:ai'qi> (1)
=0

where a;>0.
Based on the cost function, the quasi-linear seller’s
utility function is:

Us(pa‘hwu:meg):P_g'(Z%"%’) (2)
i=0

Notice that the utility function of the seller is the
difference between the price it obtains and the cost of
producing the proposed qualities’ values. Consequent-
ly, as the payment it obtains increases, the utility also
increases.

The influence of ¢; is assumed to be independent
and linear; as ¢; increases by one unit, the cost of the
seller will increase by 0 - a;.

We assume that the utility function of the buyer
agent (the auctioneer) for an item or service is as
follows:

Ubuyer(paQIa-"y qm) = —p+ Z I/Vl\/a (3)
i=1

where W; are the weights the buyer associated with ¢,
respectively (i.e. a quasi-linear utility function). In fact
as the price decreases, the buyer’s utility increases. It
is clear that as ¢; increases, the utility of the buyer
increases. We assume that ¢; where i€[l..m] are
independent but not linear; as ¢; increases, the influ-
ence of one additional unit of ¢; becomes smaller.
This assumption is valid in many domains. For exam-
ple, enlarging the speed of a processor from 100 to
200 Mhz will have a stronger influence than enlarging
the speed from 200 to 300 Mhz. The affect of ¢; is
weighted by I;, respectively, where WW; can be smaller
or larger than 1. As W; increases, the importance of

attribute ¢, to the buyer increases with respect to the
price and other attributes.

Given the buyer’s utility function, the buyer will
announce a scoring function, which is used for choos-
ing among bids. The scoring function of the buyer
may be different from its real utility function in the
sense that the announced weights w; may be different
than the actual weights ;. In particular, the scoring
function is of the form:

S(l%‘]laa‘]m): _p+ Zwl\/a (4)
i=1

where w; are the weights that the buyer assigns to g;.
From the scoring function we infer that the announced
bid’s value for the buyer is:

V(g qm) = iww\/cﬁ (5)
i=1

The announced values of the weights w; can be
equal to or different from the real values of the
weights W;. For example, if w;<W, then for some
reason the buyer declares a lower utility derived from
each unit of ¢, than its actual utility from ¢;. In
Sections 4.3 and 5.3 we will show how optimal
announced weights can be determined.

4. First-score sealed-bid auction

In this section, we study an extension of the first-
price sealed-bid auction, which considers a multi-
attribute auction. This protocol which was developed
by Che [8], is called the first-score sealed-bid auc-
tion protocol. This type of protocol for the single-
attribute case is widely used in commercial and
governmental auctions because of its simplicity. It
does not require a long process such as the English
protocol, and it does not oblige the auctioneer to
reveal the bids it obtained, as in the second price
sealed bid auction.

According to the first-price sealed-bid auction pro-
tocol for one attribute of one seller and several buyers,
the bid with the highest price wins and the buyer is
committed to its bid.

We assume that the auctioneer is committed to its
scoring function and the winner agent is required to
provide an item with the exact values of the bid it
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offered (e.g., the exact price, quality, delivery date,
etc.).We analyze the auction protocol where our main
goal is to maximize the auctioneer expected payoff
given that the each bidder also bids in a way that
maximizes its (of the bidder) utility assuming the
model described in Section 3.

4.1. Protocol’s description

According to the first-score sealed-bid auction
protocol, at the beginning of the auction the buyer
(auctioneer) announces the requirement of the desired
item including the scoring function. At the next step,
each seller (bidder) submits a sealed bid that includes
the details of the product it suggests to supply. Finally,
the winner agent is the seller (bidder) that receives the
highest score for his bid, according to the pre-an-
nounced scoring rule. And the winner should provide
the bid it offered.

4.2. Bidder agents’ strategies

In the single attribute auction protocol, in which
the price is the only bidding strategy, the bidder
should decide only about the price to bid consider-
ing its beliefs about the other competitors. However,
in the case of the multi-attribute auction the bidder
has to decide about the values of all the quality
attributes in addition to the price. One may think
that the decision about these values should also be
influenced by the bidder’s beliefs about the other
competitors. But, as we will see in the following
lemma, the values of the qualities’ attributes are
determined by the bidder, independent of its beliefs
about the other competitors. Thus, the only compo-
nents that influence this decision are the bidder’s
cost parameter and the announced scoring rule. In
the following lemma, we specify how each seller
will choose the values of ¢;, given its type, and
given a particular scoring rule. Che [8] proved a
similar lemma for the case of one quality dimension
and we show that it holds also for the case of
multiple dimensions.

Lemma 1. Given the scoring rule and the sellers
utility function, the optimal quality attributes q; that
maximize the seller's utility in a multi-attribute auc-
tion protocol, are chosen independently of the price

and the seller's beliefs about the other participants, at
q¥(0) for all 0<[6,0], where,

qf(0) = argmax {V(q1,...,qm) — Cs(q1--ey G, 0) }.
q1

(6)

Proof. Suppose on the contrary, that for one seller
with a cost parameter 6 where 0 <0, the seller’s
utility is higher from another bid (p, ¢, ..., ¢,,) In
which g; #¢¥ for at least one quality dimension. A
contradiction is derived by showing that the bid

(p, 41, ---, q,n) 1s dominated by an alternative bid
P, 94, ..., ¢q'n) where q;=qg¥, and p' =p—V
(G1s-- s @) V(G - s @)

Notice that S(p, ¢;»-qm)=SP, ¢1,- -5 @)

using the scoring rule

S(l’a‘]lw-,‘]m) = _p+ V(q|a7qm)
Now, we will show that

Us(Pyq1yeees Qs NSUs (P’ G150 @', 0).
Us(P' 4" @'m: 0) =p" — Cs(q",-+q'm: 0)
=p=V(q1ssqm) + V(@150 q'm)
= Cs(q"s @' 0)2p — V(g1 )
+V(q1sesqm) = Cs(q15-, G, 0)

:p_Cs(ql7"-aqm50):Us(p7q17'-'7qm79) O

Lemma 1 describes how each bidder will decide
about the quality dimensions of a bid, given the
announced scoring rule, and given the bidder’s beliefs
about its cost parameter. The proof is similar to that of
Che [8], but it considers the additional dimensions of
¢ Notice that this proof holds for any multi-attribute
auction protocol.

From Lemma 1, we can infer that there is no loss of
generality in restricting attention to (g7 (0), . ..,q.5(0))
when searching for an equilibrium. The following
lemma explicitly finds the values of the price and
the qualities dimensions, bid=(p, ¢5(0), ..., g}(0)),
in a proposed bid, assuming participation in an auc-
tion that follows the first score sealed-bid protocol,
given the announced scoring rule and the model de-
scribed in Section 3. We used the general equation
developed by Che for optimal price to be offered by a
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bidder in the first-score sealed bid auction with one
quality dimension and we adjusted it to fit our model
of multiple quality dimensions.

Lemma 2. Considering a first-score sealed-bid-auc-
tion protocol of one buyer and n sellers with types
independently and identically distributed over [0,0]
and assuming the model described in Section 3, the
dominant strategy for a seller is to bid:

0= (325 ) )

where i€[1..m] and

) i w?
p*(0) = ‘
P} 4 “a;

1 L -0
<9+(é—0)“/@ ; dt) v

Proof. The values of ¢(0) can be immediately
derived from Lemma 1. The price p* is calcu-
lated by following Che’s method [8]. Assume
W = C',(0), then according to Che:

p*(0) = Cs(q1(0),...,45(0), 0)

0
+ / (c; (0)(qF(1).... (1), 0)
1—F() \"!
'(1—F<e>> )‘”

x—20
F(x) =——
(x) 50

The first component of the integral is the differen-
tial of the seller’s cost function by 6 where the optimal
values of ¢g; (g%) are assigned. That is:

Resulting with:

The seller agent will decide about its bid according
to its private cost parameter, the scoring rule, and its
beliefs about the other sellers. We can see from
Lemma 2 that its beliefs about other agents will
only influence the price it will suggest. For example,
as there are more bidders its price will decrease since
the competition increases among the sellers/bidders.
Therefore the price that each seller demands decreases
following the principle of supply and demand. As the
supply increases and the demand is constant the prices
decrease.

As the announced weights w; where i€[1..m] in-
crease, the quality of the proposed item, concerning
q;, increases, and the price p* of the bid will increase
too. As the private cost parameter 6 increases, that is,
the seller’s efficiency decreases, it will suggest lower
quality items. This can be inferred from the formulas
of ¢¥ and p*: as 0 increases (less efficient seller), the
denominators of ¢¥ increase, so the values of ¢F
decrease. However, since a given seller has to com-
pete with other sellers, it will also suggest lower prices
(lower value of p*) when the quality of its item is
lower.

To illustrate the proposed bidding strategy we use
the following three-sellers and one buyer example
bellow.

Example 1. Consider a situation where a big com-
pany (e.g., a supermarket or a university) is trying
to build a homepage. To do so, this company needs
to have a certain data storage space which will have
an adequate level of response speed. Consequently,
this company may conduct a reverse auction against
the potential web hosting (e.g., StreamlineNet [28],
netfirms [21]). Assume we have one company that
needs a service from a web host who becomes the
auctioneer (buyer) and assume there are three com-
peting web hosts who play as the bidders (sq, s»,
and s3). The attributes which the auction considers
are the data storage space ¢, and respond speed ¢5.
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Assume the utility functions of the participants are
as follow:

Upwyer (21 q1,92) = —p+3-Vq1 +5V/q2
Us (q1,q2) =p—02-q1 — 0.4- ¢
Us (q1,q2) =p —0.4-q1 — 0.8 ¢
Uy(q1,92) =p—0.6-g1 — 1.2-¢q2

Since we prove that the bidders decide about their
bids based on the scoring function let us assume the
following scoring function:

S(pyq1,q2) = —p+2-/qi +4- /a2

Notice that the weights in the scoring function (2,4)
are different than the real weights appearing in the
buyer utility function (3,5). Given this information,
based on Lemma 2 the three sellers will propose the
following bids in the first-score sealed-bid auction.

BID; = (p = 22.5,q1 = 25,¢> = 25)
BID, = (p = 9.7285,4;, = 6.25,¢ = 6.25)

BID; = (p = 5.8440, ¢, = 2.7778, ¢, = 2.7778)

So we can see that there are bidders that will offer
high qualities but will require high prices and other
sellers propose lower quality values for much lower
prices. The winner in this case will be seller s; who
obtains a score equal to 7.5.

4.3. Optimal buyer’s strategy and the auction result

The main goal of the following analysis is to find
the optimal scoring rule that yields the best results for
the buyer agent. The motivation to search for an
optimal scoring rule evolves from the fact that there
are situations in which the competition among the
seller agents is not strong enough and therefore some
sellers can utilize these situations and offer bids which
yield a high profit for them. In these cases the buyer
can increase its gains by manipulating its scoring rule.

In order to find the optimal scoring rule we should
first calculate the buyer’s expected payoff as a func-
tion of the environment parameters, and then find the
value of the announced weights of the scoring rule
that maximizes the buyer’s expected payoft.

Given the optimal bid to be placed by each bidder,
and given the buyer’s beliefs about the range of the
bidders’ types, the expected payoff of the buyer can
be evaluated. In Definition 1, we define the method of
calculating the buyer’s expected payoff of the first-
score sealed-bid auction, EP' in the general case with
no restriction to a specific model.

Definition 1. Given the scoring rule, the utility func-
tions of the buyer and the sellers, the number of sellers
(n) and the distribution of the sellers’ types, the
buyer’s expected payoff in a first-score sealed-bid
auction EP' is as follows:

EPI(Qé)—/éU (p*(t), 4t ;
U, = buyer (P (t)aql (t)a-wCIm(t))
0
(L= F(0)" n-f(t)de. ©)

The buyer’s expected payoff EP' is the actual
expected payoff (utility) value of the highest possible
bid among the n participating sellers. This can be
found by calculating the average utility of the buyer
from each possible winning bid which is based on
the bidders’ private cost parameters, 0<[0,0],
weighted by the probability of each bidder’s cost
parameter.

Suppose that the winning bidder is of type ¢. In this
case, the winning bid will be (p*(¢),g%(?),. . ..qg% (1)),
and the utility of the buyer from this bid will be

Ubuyer(P*(t)a q’f(t),..., gn(t))

The probability of a particular bidder to be of type ¢
is f(¢), while the probability of this bidder to win is
(1—F(#))" "', which is the probability for the other
bidders to have lower types (and thus, to suggest bids
with lower scoring values). Since each of the » bidders
may be of type ¢ and therefore be the winner, we
multiply the probability of the winner bidder to be of
type ¢ by n. Thus, the probability of the winning bid to
be (p*(©), g1, ..., g5 ©) is (1 =F@)" ~" -n - fi).

Considering all possible values of ¢, from 0 to 0,
we obtain the expression EP'.

Based on the above definition, we will proceed to
define EP' as a function of the buyer’s utility function,
the scoring function, and the beliefs about the bidders’
distribution. Using the explicit formulation of EP', we
will be able to proceed and find its behavior and the
optimal strategy for the auctioneer.
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Definition 2. Given the scoring rule (including the
announced weights w;, where i<[1..m]), the utility
functions of the buyer (including the actual weights
W;, where i€[1..m]), the number of sellers (n) and
that the cost parameters of the sellers are independent-
ly and identically distributed over (0<[0,0]; the
buyer’s expected payoff in a first-score sealed-bid
auction EP' is:

EPl(ﬁ;g) w:%(irz)

0 t

Eq. (10) is induced from Eq. (9) by substituting
(p*@), qf@), ..., ¢%()) with the explicit bid of a
bidder with a cost parameter ¢, as stated in Lemma
2. Next, the values of f(¢) and F(¢) are substituted,
where F(t) = (;:% and /(1) = 715

After the assignment of the full function in EP', the
buyer’s expected payoff in the first-score sealed-bid
auction in our model results in:

EP! (Q,é) z(%g)n ' <i4wjz>

The values of a; where i<[1..m] influence the EP'
such that when ¢, increases, the expected payoff of the

buyer decreases. Intuitively, the reason stems from the
fact that as the costs of the sellers increase, they will
suggest worse bids, and the utility of the buyer from
the winning bid will decrease.

By observing Eq. (10) of the EP' one can infer that
the influence of the announced weights w; has mixed
directions. Thus, the optimal values of w; where
ie[1..m] can be calculated as a function of the other
parameters. Consider Example 1, which we presented
in Section 4.2 to illustrate the effect of different
weights (i.e., different scoring functions) on the result-
ing expected payoff.

Example 2. Consider the following scoring functions:

(1) A scoring function which is equal to the buyer’s
utility function (no lying):

S1=Ubwyer(P,91,92) = =P+ 3" Vq1 + 542

(2) A scoring function with modified weights (de-
fined in Example 1 in Section 4.2):

SZ(PaCIIaQZ) - _p+2\/q_1+4\/q_2

(3) A scoring function with the optimal weights
(i.e., the ones that maximize the buyer’s

expected-payoff):
S3(p,q1,q2) = —p +2.0419- /g7 + 3.4032
Va2

For each of these scoring functions we derived the
buyer’s expected payoffusing Eq. (10) of Definition 2:

(1) S;=EP'=11.7118
(2) S,=EP'=14.7474
(3) S:=EP'=15.0186

From these results one can realize, that not telling
the truth about the buyer’s preferences may yield
better outcomes for the buyer (the results of S, and
S5 are better than the results yielded by S, the real
utility function). Consequently, we conclude that the
auctioneer should be interested in manipulating the
scoring function since it is one of its control factors as
it has a significant effect on the results. In the follow-
ing theorem we specify a method for calculating the
optimal scoring function by the auctioneer given the
bidder’s cost parameters’ distribution range and the
number of participating bidders.
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Theorem 1. Given the model described in Section 3,
the optimal values of the announced weights, w; where
ie[l..m], for the buyer in a first-score sealed-bid
auction are:

wi(é,ﬁ)

/A n—1
[an,
0 t

(/ud //udzd) |
_ _ (11)

Proof. In order to find the optimal weights of the
scoring rule that maximize the buyer’s expected pay-
off, we first find the differential of EP' with respect to
the weights (notice that the weights are symmetric and
independent, therefore the calculation of the optimal
weights are identical):

= W

OEP'(0.0)  —n-  w [ (0-0)"" N
aw,- n (éfg)n 2'(1,’ /Q t
0 0 0—_ n—1
+/ / 0= dzdt)
o S 2
noow )"
L A dr.
+ (O—Q)n 2'611' 0 t !

By comparing the differential of EP' to zero the
maximum value of w; is identified

OEP'(0,0)  —n- W
aWi a (O_—Q)n 2'(1,‘
0 N n—1
X (/ (6 t) dt
0 t
0 0 3 n—1
[ )
0 Ji z
R R
(e‘_g)” 2-aq;

=i (0.0)

b /7 n—1 ] b /7 n—1
=w; /6 -9 dr + /6 /6 =27 dzdt
l 0 t 0 Ji 22
~ n—1

i (i
:W/ ="y
0 t

=W

)

O

Based on the above results, if the number of
sellers, the distribution of 6, and the sellers’ optimal
strategies are known to the buyer, the buyer can
announce the optimal scoring function that will op-
timize its expected payoff from the auction. Given
all the parameters’ values the auctioneer can imme-
diately find the optimal values by solving the equa-
tion or by using a mathematical tool such as Mapel
or Matlab.

Notice that the ratio between w; and w; remains
the same as the ratio between W; and W;. Due to
this property, for each bid, the ratio of g; and ¢,
remains equal to their ratio given the actual
weights (according to Lemma 2). The only differ-
ence is in the prices with regard to the qualities. If
w;<W;, the price will be lower than the price given
the actual weights. Similarly, the qualities will be
lower and vice versa.

Fig. 1 demonstrates the influence of n on w;, where
W;=1, and the values of 0 are between 0.5 and 1. It
can be shown that as n increases, the ratio w;/W;
increases, and it approaches 1 for higher values of
n, i.e., as the number of bidders increases, the buyer is
more motivated to announce a scoring function closer
to its real utility function. _

The relation between 0/0 also influences the
announced weights. As the relation increases the
rate in which the scoring function converges to
the real utility function decreases. That is, when
the weights w; start with lower values, the conver-
gence to W; is slower.
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0.96

2 4 6 8 10 12 14 16 18 20
n

Fig. 1. w;/W; as a function of the number of bidders when the
sellers’ cost parameters are in the range of (0.5, 1).

For example, in Fig. 1, the relation between 0/0
([0.5, 1]) is 2 while in Fig. 2 the relation between 0/6
([0.1, 0.5]) is 5. Notice that the values of w; in Fig. 1
are closer to 1, i.e. to the value of W¥;, than the values
in Fig. 2. In Fig. 3 we demonstrate the influence of the
relation between 0/0, on w;. The parameters were set
to n=4, =1, W;=1, while the value of  varied from
2 to 20.

The relation between 0/0 is actually a measurement
of the relative distribution of the sellers’ types. That is,
if the value of the relative distribution is low the
sellers are homogenous which means that the compe-
tition is very high and there is no need to manipulate
the utility function. Thus, the buyer is motivated to tell
the truth (the relation between w; and W; approaches

0.95

09}

0.75f

0.7

2 4 6 8 10 12 14 16 18 20
n

Fig. 2. w;/W; as a function of the number of bidders when the
sellers’ cost parameters are in the range of (0.2, 1).

0.9

0.85}

0.8}

Wi/Wi

0.75f

0.7}

0.65 —
2 10 12 14 16 18 20
0/8

4 6 8
Fig. 3. The influence of the relation (/0 on w,/W;.

1) (see Fig. 3). However, when the relative distribu-
tion is high the sellers are heterogeneous. In this case
the strong seller/s can utilize this situation and in-
crease its/their profit. Consequently, the buyer is
motivated to modify the real weights. Notice that
the specific values of 0 and 0 have no affect on the
expected value and the scoring rule. Only the rela-

tion between 6 and 6 affects the auction design.

5. Multi-attribute English auction

Recently, the English auction has become a very
popular mechanism for purchasing items on the Inter-
net. The most substantial reason that makes this auc-
tion so popular is the fact that users feel comfortable
participating in it since they do not have to speculate
nor estimate the bids of the other competitors. Addi-
tional advantages of the English auction protocol over
other existing protocols (e.g. first price sealed bid
auction, Dutch auction), are: (a) It is an incentive
compatible protocol, i.e., the bidders will have no
motivation to manipulate and change bids according
to their beliefs about the other agents. (b) The English
auction is the best-preferred protocol if the valuation
problems of the agent are difficult [11]. In the rest of
this section, we analyze the model given in Section 3
for the English protocol. We first show the optimal
bids to be suggested by each bidder, and then we
prove which bidder and which of its bids will win.
We proceed by analyzing the expected payoff of the
auctioneer and its optimal scoring rule, and finally, we
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compare the buyer’s expected payoff from the first
score sealed-bid auction and the English auction.

5.1. Protocol s description

We consider one of the variations of a multi-attri-
bute English auction protocol discussed in [12]. In
particular, we consider the Sequential Full-Informa-
tion-Revelation protocol. According to this protocol,
the buyer agent announces (1) a scoring-rule function
that describes the required item, (2) the closing inter-
val, which is the length of the time interval, where if no
new bid is made the auction is closed, and (3) the
minimal increment allowed, D. We assume that the
bids must be in increments of D, otherwise, the auction
can theoretically proceed to infinity since the score and
the qualities’ values are continuous dimensions.

In the Sequential Full-Information-Revelation pro-
tocol each participating seller agent receives a serial
number that defines the order of the bidding among the
agents. In contrast to the traditional English protocol
we allow bidders to place a bid which is equal to the
current best bid. Specifically, in each step that a bid is
proposed any seller agent that wants to place a bid,
which yields the same score, can do so at a predefined
interval of time. In general, in each step, the seller
whose turn it is to bid may place a bid (it does not
have to submit a bid), which should be better than or
equal to the previous proposed bid by at least the
minimal increment of D with regard to the scoring
rule function.

We allow this feature in order to restrict the effect
of the bidding order. The buyer chooses one of the
bids that yields the same score randomly. Note that
this option of bidding equal bids does not appear in
the classic auction protocols. However it was also
introduced in the Yankee protocol (English auction
for multi-unit cases) to which we refer in more detail
in Section 6.2.

5.2. Bidder agent’s strategies in the English auction

We start by considering the optimal bid to be
offered by each bidder in each step. First, as shown
in Lemma 1 and Lemma 2, the optimal qualities’
values are chosen independently of the auction proto-
col. Also, the price to be chosen and the beliefs about
the other participants are also independent of the

current selected bid. Therefore, we begin by directly
finding the optimal price to be offered in each step of
the auction, given the bidder’s properties and given
the current selected bid.

In Lemma 3 we specifically define the bid’s exact
value, given the seller’s type, the seller’s utility func-
tion, the scoring rule, the minimal increment of D and
the score of the current best bid which is termed the
selected bid.

Lemma 3. Given the model described inSection 3, in
a sequential full-information revelation English auc-
tion, and given the last selected bid that was placed by
another seller, the seller’s dominant strategy is:

(1) Bid a higher score bid (S(selected) — D) while

the seller's utility is positive or zero, that is:

m

2
p*(0, selected) = 22 i i
4

— S(selected) — D
i=1

(12)

0= (325) (13)

where i €[1..m].
(2) Otherwise, bid an equal score bid S(selected)
while the seller’s utility is positive or zero, that is:

m 2

w*
p*(0,selected) = !
; 2 a;- 0

— S(selected) (14)

0= (325) (15)

(3) Otherwise, quit the auction.

Proof. If the selected bid was offered by the seller we
consider then the dominant strategy is not to bid
(trivial) since this seller may unnecessarily reduce its
utility by any other legal action. However, if the se-
lected bid does not belong to the seller we consider,
then the seller should try (while its utility is positive or
equal to zero) to place the minimum bid which will
maximize its probability to win. That is targeting the
score of the bid to be higher than the score of the
current selected bid plus the minimal increment D. If
the seller can allow himself to bid accordingly then by
offering an equal bid it reduces its probability of
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winning by at least 50%. Specifically, the seller will
propose the optimal qualities’ values as specified in
Lemma 2 and determine the price that will achieve the
total bid of the desired score (S(selected)+D):

S(p*,qf,....q%) = S(selected) 4+ D

2
= __ =
p*+ ZW, (2 e 0) S(selected) + D
=1

However, if by using the above option the seller
yields a negative utility, the second option is to bid an
equal bid that still yields a non-negative utility, which
increases its winning probability (from zero to a pos-
itive value). In this case the qualities again are the
optimal ones, as derived in Lemma 2, and the price is
set to meet the current score of the selected bid:

r =Y

If the second option also yields a negative utility,
then according to the protocol no other action that
yields a non-negative utility can be made. Therefore
the seller is advised to quit the auction. O

— S(selected) —

l

— S(selected)

l

In Lemma 3 we specify the bidding strategy in the
sequential full-information-revelation English auc-
tion. Notice that in the sequential full-information-
revelation auction the strategy of choosing the price
to offer does not require any beliefs about the cost
parameters nor the number of other participating
agents. In contrast, in the first-score sealed-bid auc-
tion the beliefs about the other seller’s cost para-
meters are considered in the process of determining
the bid’s price value.

To demonstrate the sequential multi-attribute
English auction’s process lets review the three
sellers’ example that we first describe in Example
1 in Section 4.2:

Example 3. Given the utility functions of the partici-
pants and the announced scoring function:

P3NV SV
=p—02-q,—-04-q

Ubuyer(p7 qi1, C]z) =
Us,(91,92)

USz(qlvq2) :p—0.4'q1 —O.S’qz
Us(q1,92) =p—0.6-q1 — 1.2 ¢
S(p.q1,q2) = —p+2-\/q,+4 Va,

Assume that seller s; is given serial number 1,
seller s, is given serial number 2, and seller s3 is
given serial number 3. Moreover, assume that the
minimal bid increment allowed is D=0.5.

Before beginning the auction simulation process,
first we have to calculate the limitation of the
bidders in the sense of the best bid they can offer,
(a successive bid with a higher score will result in a
negative utility for the bidder). Namely, we calculate
the best bid that yields a zero utility for the seller
where the optimal qualities are assumed (as speci-
fied in Eq. (13)). In other words we will calculate the
minimum price a seller can bid without causing a loss

for himself:
2
(Za’ (2 “a;0 ) )

w2
= 0= pzeroUtility = <4 .;i0> (16)

Us(p7q>1k;-~~ana -

Given the optimal qualities and the minimum
price we can calculate the highest score termed the
MaxScore(s;) that a seller is able to receive in the
auction (assuming that an agent is rational and does
not bid something that yields him a negative utility).

MaxScore(s;(0)) = — iu (4 a0 ) i (2 ai 9)

=MaxScore (Si (pZeroUtilitw qis-- dim 9) )

. z:nl: (4@9) (17)

Given this background, we calculate the MaxScor-
e(s;) for each of the sellers:

MaxScore(s;) = 15
MaxScore(sz) = 7.5
5

MaxScore(s3) =
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At this point we are ready to start the auction where
the reservation price of the buyer (auctioneer) is as-
sumed to be zero.

Stage 1:
Seller s, proposes (p=29.5, q1=25, q,=25) (which

yields score=0.5).

Stage 2:
Seller s, proposes (p=14; g;=6.25, g,=6.25) (which
yields score=1).

Stage 3:
Seller s3 proposes (p=8.5, q1=2.7778, q,=2.7778)
(which yields score=1.5).

Stage 12:
It is seller s3’s turn to bid, but the current score of
the last proposed bid is 5.5, whereas Max-
Score(s3)=5. Therefore, at this point seller s; quits
the auction.

Stage 15:
Seller s, proposes (p=23, q;=25, g>,=25) (which
yields score=7).

Stage 16:
Seller s, proposes (p=7:5, ¢1=6:25, ¢,=6:25)
(which yields score=7:5).

Stage 17:
Seller s, proposes (p=22; q,=25; g>=25) (which
yields score=38).

Stage 18:
Atthis stage it is seller s,’s turn to bid. The current score
is 8 but MaxScore(s,)=7:5. Therefore, at this point
seller s, quits the auction. Consequently, the auction
terminates with seller s; providing the winning bid.

END

This example shows that the bid increment is one
of the factors the auctioneer can control. In Section
6.2 we discuss this issue in more details.

The next question is, given the utility functions’
form of the auction participants, the range of the
sellers types (i.e. [0,0]), the announced scoring rule
and the sellers optimal bidding strategy, (1) can the
buyer agent estimate which of the sellers will win and
(2) can it estimate its expected payoff?

We will start by answering the first question. In
Lemma 4 we will show that the winning seller is the
seller with the lowest cost parameter (. The intuition

of this property (Lemma 4) is that for any bid
offered by another seller, the seller with the lowest
cost parameter can offer a better bid with regard to
the scoring rule. That is, the seller with the lowest
cost parameter can overcome any of the other sellers
throughout the English auction process. In the first-
score sealed-bid auction, the stronger bidder does not
necessarily win since the result will depend on the
beliefs that the bidders have about their competitors.
If all the bidders have exactly the same belief (dis-
tribution function and range) then the strongest bid-
der will win the auction also in the first-score sealed-
bid auction.

5.3. Optimal buyers strategy and auction results

The assumption in an English auction is that a
seller bids while its profit is non-negative. Suppose
that seller s; is the seller with the lowest cost para-
meter 0;, and seller s; is the seller with cost parameter
0; that is the second lowest cost parameter among the
set of bidders. Then, seller s; actually competes with
seller s;, which is its strongest competitor. Therefore,
the prices that seller s; will offer will decrease until
seller s; quits the auction and this happens when its
utility becomes non-positive. From this point on,
seller s; has to reduce the price in such a way that
will increase its score in D which is the minimal
increment allowed in the auction protocol we discuss.
In Lemma 4 we define the winning bid considering
these assumptions.

Lemma 4. Denote by s; the seller with the lowest
value of 0, and by s; the seller with the second lowest
0. In the sequential full-information revelation En-
glish auction protocol, seller s; is the winner of the

2
. L1 1.y Wi .
auction whenever D<7 - | ¢ 7 > Is:

=1 q
2w 1 1
= (f=—-——)=bD:
{p ZZ-a, (9, 291> L
2
Wy

= h 1.. . 1
(2'at'6i> , where, t€| m]} (18)

Proof. See Appendix.

The qualities of the winning bid are defined in
Lemma 4. However, the price depends implicitly on
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the cost function of the second best seller, denoted by
j. In particular, as the expenses of the second best
seller increase, i.e., 0; increases, (that is the second
best seller is less efficient) the winning price offered
by seller s; (the strongest seller) increases. Intuitively,
the reason for this result is that as 6; increases (the
seller becomes less efficient) and the qualities ¢,(0;)
where t=[1..m] decrease. Therefore, the seller must
compensate this by suggesting a lower price in order
to compete with the other bidders. In addition, as 0,
decreases, the second best bidder is stronger, so seller
s; must suggest a more competitive price in order to
win against agent j, and thus, the winning price
decreases.

Given the information about the auction, we can
try to analyze it from the auctioneer’s (buyer’s) point
of view. That is, to calculate the buyer’s expected
payoff given the environment details. In order to
estimate the buyer’s expected payoff, we actually
have to estimate the best bid and with which proba-
bility the buyer may receive it. This brings us to the
following lemma that explicitly calculates the buyer’s
expected payoff EP® (Expected Payoff for the version
of an English auction).

Lemma 5. In a sequential full-information revelation
auction protocol of one buyer and n sellers with types
independently and identically distributed over [0,0],
given the minimal increment of D defined inLemma 4,
and given the real weights W, where t<[1..m] of the
buyer'’s utility and the announced weights wt where
tef[l..m] of the scoring rule, the buyer’s expected

payoff EP* is:

Proof. The expected payoff is calculated by:

o (0
/ l/ (Ubuyer(winning bid) - (1 — F(Qj))”*z
0 0

() £(0)n-(n - 1))(19,] )

The expected payoff actually calculates the average
utility of the buyer from each possible winning bid
weighted by the probability of this winning bid, where
the winning bid is the bid calculated in Lemma 4. In
this double integral we cover all the probabilities of
the lowest cost parameter 6;, and all the probabilities
of the second lowest cost parameter 0;, multiplied by
the buyer’s utility from the best bid of the given cost
parameters. The probability of a certain lowest cost
parameter 0; and of a certain second lowest cost
parameter 0; is actually the probability that all the
other n — 2 sellers have higher cost parameters than 0,
multiplied by the probability of having one seller of
cost parameter 0; and multiplied by the probability of
having another seller with cost parameter 0;. This
multiplication is multiplied by n(rn — 1) which is the
number of possibilities () for the specific seller to be
of cost parameter 0; multiplied by (n — 1) the number
of possibilities for a seller to be of cost parameter 0;.

By substituting all the explicit functions we
receive:

[ (S50
0 0; P 2 “dy 2 Hj 0,‘

m 2 0‘ 0 n=2
Wy —Uj
W D || =
+; ’ (2.a,.0i> * (0-@)

1 1
—_— " = ‘n- 71 d@d@l
0—0 0-0 n-(n ) j

By opening the parenthesis and simplifying the
equation we obtain the buyer’s expected payoff. O

Notice that the only information that the buyer
should obtain is the range of the sellers cost para-
meters’, the forms of the sellers’ utility functions, and
the number of sellers, in order to estimate its expected
payoff. It is interesting to note that if we multiply 6
and 0 by a given value, and we divide at where
te[1..m] by the same value, the result of EP® remains
the same. This means that the buyer’s expected payoff
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does not depend on the exact values of the parameters,
but only on the relations between them.

The ability of predicting the buyer’s expected pay-
off leads to the most interesting phase of the auction
design, which is searching for the optimal scoring rule
that will maximize the buyer’s expected payoff. In
other words, this leads to finding the optimal weights
w, where t[1..m] to be announced. These optimal
values of the scoring function can be found by differ-
entiating the buyer’s expected payoff function each
time by one of the weights w, where t=[1..m] since
they are independent.

Let us consider the example we use throughout the
paper and calculate the EP® regarding the three dif-
ferent scoring functions we defined in Example 2 in
Section 4.3:

Example 4. Consider the following scoring functions:

2) $(p.q1,92) = —p+2- /@1 +4 /a2
() S3(p,q1,92) = —p +2.0419- /g7 + 3.4032 -

Va2

For each of these scoring functions we derive
the buyer’s expected payoff using Eq. (10) of Def-
inition 2:

(1) S=EP'=12.2118

(2) S;=EP'=15.2474

(3) Ss=~EP'=15.5186

The results demonstrate again (Example 2 in Sec-
tion 4.3) that some optimal weights to be announced
in the scoring function exist, as we specify in the
following theorem.

Theorem 2. Given a sequential full-information revela-
tion auction protocol of one buyer and n sellers with types
independently and identically distributed over [0,0] and
given the real weights, W, where t[1..m], of the buyer
utility function, the optimal values of the announced
weights, w, where t[1..m], of the scoring rule are:

w; =W,
Jo & [y (0-0,)"do;do;

g g~ -2 g 0 (0-0)""
2"]70 (% ’ .]0[ (0_ Oj) d()jdoi_.]gz -/(h ( [{,) d0;d0;

(20)
where i € [1..m].

Proof. In order to find the announced weights, w;,
where t=[1..m], of the scoring rule that maximize
the buyer’s expected payoff EPY, we differentiate
the function EP® by w, where r<[l..m]. That is:

OEP®(0,0) 1 2w,
B, = (éfﬁ)" (n—=1)'n (|:_2‘a,+

.VVz ' 0 1.'{7__.}172 ‘ A
2}/0(9 [(-0r-a0)an
2'Wt . 0 0 (0_— Hj)’172

/9( [0 )ao

By comparing the differentiation of EP* to zero the
maximum value of w, is identifed.

=w, =W,

B [ (0= 0;)" d0do,

G 0 a00 - [ D g4
Jo a5, (0—0;)" "d0;d0; — [ [y, ~—5— d0;d0;

- O

In conclusion for both auction protocols we con-
sider (the first-score sealed bid auction and the En-
glish auction), we provide the auctioneer agent with a
function that calculates the optimal weights to be
announced in the scoring function, given the number
of participating sellers (bidders) and the range of
sellers’ cost parameters [0,0] in the model we consid-
er. Given all the parameters values the auctioneer can
immediately find the optimal values by calculating the
equation or by using a mathematical tool such as
Mapel or Matlab.

By observing the behavior of the values of the
optimal weights as a function of different parameters,
one can observe that even though the formulas of the
optimal weights in both cases, the first-score sealed
bid auction and the English auction, seem different,
they behave in the same manner. This observation
motivated us to analyze the relation between the
results of the two protocols. By applying this result
on our on-going example the optimal weights for the
multi-attribute English auction are:

(w) = 2.0419, w, = 3.4032)

which are exactly the optimal weights that where
calculated for the first-score sealed-bid auction
based on Theorem 1.
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And indeed, in the following section we provide
the most interesting result of our research in the area
of multi-attribute auctions. We prove that the
expected payoff for the auctioneer in the first score
sealed bid auction EP' is equal (with the difference
of a minor constant) to the expected payoff of the
multi-attribute English auction EP®. This means that
the equivalence theorem holds in our model: the
buyer will be indifferent to using both auction pro-
tocols, whenever D is small enough, and the
assumptions of our model hold. That is, this result
is actually an extension of the payoff equivalence of
the single attribute case [18].

Che [8] proved that the first-score sealed-bid auc-
tion is equal to the second-score sealed-bid auction
(which is strategically equal to the English protocol)
for the case the auctioneer announces its true utility
function as the scoring rule. However, we prove that
for each given scoring rule both protocols yield the
same expected payoff for the auctioneer (the buyer). In
addition we build an optimal scoring function that
keeps the form of the real utility function which is an
SAW function. Che, on the other hand, discussed the
optimal scoring function for the general case of a utility
function and considered the optimal scoring function
to be the real utility function plus a certain increment.

6. Payoff equivalence theory

In Section 6.1 the second-score sealed-bid auction is defined and analyzed. The analysis results show that,
similar to the case of single attribute, the second-score sealed-bid and the multi-attribute English are equivalent
with the difference of a constant D, in the sense that the outcomes of both protocols are equal with the difference of
a constant D (the minimal increment). Moreover, in Section 6.2 we prove that the expected payoff from the first-
score sealed-bid and the multi-attribute English auctions are equal with the difference of the constant D. In other
words, we provide an extension of the equivalence theory of the single attribute to the case of the multi-attribute
items. As a consequence of the above results, one can observe that the minimal bid increment is one of the
manipulating factors that the auctioneer can adjust to yield the optimal results. A discussion on this optimal bid
increment for the multi-attribute case is provided in Section 6.3.

6.1. Equivalence of the second-score sealed-bid and the multi-attribute English auctions

The second-score auction is a variation of the second price auction which begins with the auctioneer announcing
a scoring function, then the bidders send sealed bids (including the quality values and the price). The winner is the
bidder that achieves the highest score regarding the scoring function, and he is committed to offer a bid that achieves
a score that is equal to the second highest scored bid. The dominant bidding strategy is provided next:

Lemma 6. Given the model described in Section 3, the dominant bidding strategy in a second-score sealed-bid
auction is to bid the optimal qualities as described in Lemma 1 and to set the price such that yields the bidder zero
utility. That is, seller s;’s bid is:

= iwitz = (- 2 here, r=[1..m| (21)
P = 4'61['0[’ qr = 2’at0i 3 W 5 ..m

t=1

Proof. We need to prove only that the offered price will achieve the dominant strategy since the optimality of the
quality values was proved in Lemma | independently of the auction protocol. In order to prove that the strategy for
choosing the price in the second-score is dominant, suppose that the agent seller does not use the proposed
strategy. Then we will attempt to derive a contradiction. That is, supposes the seller agent s; chooses a price using
one of the following complementary strategies:

(1) Choosing a price that yields (with regard to the optimal qualities) the seller a utility value less than zero.
(2) Choosing a price that yields (with regard to the optimal qualities) the seller a utility value greater than zero.



546 E. David et al. / Decision Support Systems 42 (2006) 527-556

Consider the first option where seller s, offers a price that yields him a negative utility, Since we assume the
sellers agents are rational (Section 3), a contradiction is derived. On the other hand, when considering the second
option of choosing the price in a way that yields a positive (greater than zero) utility for the seller, then the seller
offers a higher price. Since we consider a reverse auction it means that the auction decreases its probability to win
with regard to the price suggested in the lemma. However, since the winner’s determination is not included in the
winning bid criteria, the seller decreases his probability to win. Nonetheless, the bid he will have to provide in case
he wins remains the same as in the case he proposes the price in the lemma. In conclusion, offering the price that
yields a zero utility for the seller is better for the seller than choosing the price according to option 2.

The price satisfying the condition of yielding a zero utility using the optimal qualities is:

1 2
Uslp gt 0) =p = 00 a5, —0=p = W O
S 9 IARRS) I = 2'a[0i 4'ai9i

Lemma 7. Given the model described in Section 3 and given that the highest score bidder is s; and the second
highest score is s;, the winning bid in a second-score sealed-bid auction is:

=W 1 1 B Wy 2
{p ;2.% <0i —2.@), qr = <2dt91) , where, te[l..m]} (22)

Proof. The quality attributes’ values are determined based on Eq. (13). Regarding the price, in Lemma 6 we
proved that the dominant strategy in the second-score auction is to bid the optimal qualities and to choose the price
that achieves a zero utility for the seller (see Eq. (16)). That is seller s; will propose

2 2
Wi _ Wy
{<4’at0j>7 qr = (2.at.0j> ,  Wwhere, te[l..m]}

According to the second-score auction the seller that achieves the highest score (defined by the lowest cost
parameter) s; will have to offer a bid that achieves a score equal to the score achieved by the bid of seller s;. Since the
qualities being offered are determined by Eq. (13), the value of the price will have to be calculated as follows:

2
i

i w 2 w? z w?
_p+ ; (2'61,’9,’) - Z <4~ai9j> + Z (2'ai0j>

i=1 i=1

w 1 1
= M - D
p ;2-@ <0, 2@)

Corollary 1. The winning bid in a second-score sealed-bid is equal to the winning bid in a multi-attribute English
auction with the difference of a constant D (bid increment).

Proof. Can be derived directly from Lemmas 4 and 7. |

Corollary 1 actually proves that both auction protocols, the second-score and the multi-attribute are equivalent
from the outcome point of view. This result extends the equivalence that exists between the second-price and the
English auctions in the single-attribute case. Moreover, we can derive from this result that the expected payoff
from the second-score and the multi-attribute English are equal and consequently the optimal weights to be
announced by the auctioneer in both protocols are equal.
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Table 1
A comparison of the expected payoff in the first-score and the English auctions of the on-going example
EP' EP® EP' —EP®
S 11.7118 12.2118 0.5
Sh 14.7474 15.2474 0.5
S; 15.0186 15.5186 0.5

6.2. Equivalence payoff between the first-score sealed-bid and the multi-attribute English auctions

By observing the expected payoff of the first-score sealed-bid and the multi-attribute English auctions in our on-
going example (Table 1), one may notice that they are equal with the difference of the bid increment which was set to
0.5. This observation inspired us to prove the following theorem about the equivalence between the first-score and the
multi-attribute auctions.

Theorem 3. For each set Of pammeters Jor the model described in Section 3, if D<+ - (9L — HL) DY Z—’z, then
the difference between EP® and EP' is equal to D. '

Proof. Recall that

and

=1

+2’”:(V§,:t>>/:01/(0 0;)" 7 d6;d0; +D.//016 0)" d9d6>

From Proposition 1 (in the Appendix)
If

and

_ (” 2)4:
B:=m-1) / f’ dr,

then A=B.
Denote G to be:
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So by substituting the expressions of 4, B, and G in EP* and EP' we attain:

S (o [ [ ) 505 ) -

(ﬂ 1)

e =)

and

m W2 B _
()3
= a; 2

EPF = - +D-G

We would like to show that EP=EP'+D. From Proposition 2 (Appendix), G=1. Thus, it is sufficient to show
that EP* — D=EP'.
Since we found that A=B, we only have to show that:

() (o [ [ ) - S ()

By dividing both sides of the equation by

m <Wt2 )
=1 \

We only have to show that

1 0 é(g_z)(n—U B (n—1) 0 é(g_z)(n—Z)
7 _A_/g/,zdedt =l 3+ /e/zfdmt

Substituting B with 4 and changing sides we only have to prove that

- (n—1) 5 oa = (n—2) 0 (0 (n—=1)

1 /9/9 (6—2) (n—1) /9/9 (6-2) A / (6-z)

—- dzdr + . -~ dzdt =—>= ~—dzdt+(n— 1
4 0 Jt Z2 4 0 Ji z 4 0 i ¢ 22 ( )

(n=2)

S -

This can also be written as

_ _ = (n—2) 9
6 6 (0 —z (n—24%
/ / (0 -2z) ( z)dzdt:
0 Jt z

The left side of the equation is the exact expression denoted by F' in Proposition 3 (Appendix) and there we prove
that F=A. Thus, both sides of the equation are actually equal, so the original values of EP' and EP¥ — D are also
equal. O
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In Theorem 3 we prove that the expected payoff in the first-score sealed-bid protocol auction and the English
auction are equal with the difference of the constant D. Accordingly, the optimal scoring rule is also equal in these
two auction protocols since the optimal scoring rule is derived by solving a maximization problem of the expected
payoff with regards to the announced weights w;,.

At the end of an English auction the bidders and the auctioneer have information about the bidders cost
parameters, which is based on the order in which the bidders quit the auction. That is, the bidders and the
auctioneer assume that the first bidder that quit is the weakest bidder and that the winner is actually the strongest
bidder. However in a first-score sealed bid auction the bidders cannot reveal any information about the other
participants except to the winner since the bids are not a part of public information. Only the auctioneer in the first-
score sealed-bid auction can learn about the bidders’ private information. As a consequence, given the equivalence
between the first-score and the English protocols for multi-attribute items, strong bidders are motivated to
participate in an English auction in order to reveal their power and to deter the weaker bidders from participating
in other auctions in the future, in which they will take part. Another observation is that weak sellers will be more
comfortable participating in sealed auctions in order to keep their private information hidden. Therefore, it seems
that from the auctioneer’s (buyer) point of view using an English protocol encourages strong bidders’ participation
and therefore it may increase its payoff. There are more aspects which should be discussed and perhaps a more in-
depth research is required to learn about the long-term influence of participation in a certain auction. In the
following subsection we discuss the method for determining the value of the minimal increment allowed D.

6.3. Determining the Optimal Bid Increment

From the above subsections the importance of D’s value is realized as it directly influences the auctioneer’s
expected payoff. In Theorem 3 we prove that the difference of the first-score sealed-bid and the multi-attribute
English auctions’ expected payoff is equal to D, which is the minimal bid increment allowed in the English
auction. That is, the greater the bid increment set by the auctioneer in the multi-attribute English auction, the
greater the expected payoff. However, the assumptions of Theorem 3 bound D by:

1 1 1 7 w2
<D<—(— —— ] Y 2. 2
0 4 (0, 91> ; a; ( 3)

Consequently, the optimal value of D should have been the upper bound.

Notice that the upper limit set for the minimal increment is to allow the best bidder (with the lowest cost
parameter) to win. Otherwise, the determination of the winner depends on the bidding order which is an undesired
feature, since it causes the bidders to speculate on the bids of the other bidders in order to bid a winning bid, and
hence making the protocol non-incentive compatible.

The above discussion provides the optimal value of D where the cost parameters of the best sellers are known.
Since this assumption is unrealistic in the real world (the auctioneer knowing the cost parameters of the best
bidders at the beginning of the auction) this result does not provide the auctioneer with a tool to calculate the
optimal value of the bid increment. Further research should be conducted on this open question.

Our conclusion with regards to the optimal bid increment, which is recommended to be higher than zero,
contradicts the traditional assumption that the continuous bid (i.e., allowing the minimal unit possible, theoretically
it is some small ¢) is optimal for the auctioneer in the single-attribute English auction [25].

Next we explain the correlation of concepts used in the single and the multi-attribute auctions. In the single
attribute auction each bidder is characterized by its “valuation” which is the bidder’s monetary value of the item.
According to the classic auction theory a bidder will never propose a price higher than its valuation in an auction
(or a lower price in a reverse auction). The corresponding concept for the multi-attribute case is the bidder’s
MaxScore(s;) (defined in Eq. (17)). The MaxScore is actually the maximum score for any bid the seller will offer
that yields a non-negative utility value for the seller. In other words in order to achieve a higher score than that the
agent will propose an offer that yields him a negative utility. But since the agents are assumed to be rational, such
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Fig. 4. The histogram of 0 in the range (0.1, 1) where the number of attributes is set to 2, w;=2, wy=4, a;=1, a,=2.

an action is unfeasible. Consequently, the maximum score is the bidding limit similar to the way the valuation is
the bidder’s limit in the single attribute case.

Looking more closely at the multi-attribute English auction defined in this paper, to understand the contradic-
tion with the single attribute auction, notice that in our protocol bidders are allowed to submit equal bids.’
However according to the traditional single-attribute English auction each proposed bid should be higher than
the previously placed bid and equal bids are therefore unacceptable. As a consequence in the single traditional
English auction the winning bid depends on the bidding order and the auctioneer cannot control the auction in the
sense that it cannot ensure the winning of the highest bidder. In contrast, in the multi-attribute auction where equal
bids are allowed, by defining the increment D to be lower than the upper bound specified in Eq. (23), the
auctioneer ensures the winning of the highest bidder. If we would have allowed equal bids in the traditional
English auction then we would have been able to calculate (using a method similar to the one presented in this
paper) the optimal discrete value which will ensure that the highest bidder wins and pays his valuation.

In addition, in the single attribute case it is assumed that the continuous bid (very small increment) is the
optimal strategy given that the valuations of the bidders are distributed uniformly [25]. However this result does
not apply to the multi-attribute settings of this paper. Even though the bidders’ cost parameters are uniformly
distributed, since the bidders’ MaxScores are not uniformly distributed, the results of the single case cannot be
easily applied to the multi-attribute case. To understand the reason that the MaxScore is not uniformly distributed

recall from Eq. (17) that MaxScore(s;(0)) = > (%) In Fig. 4 we illustrate the histogram of 6 which is

i=1
uniformly distributed in the range (0.1, 1) and the histogram of the corresponding MaxScores is presented in Fig.
5. As we can see there are many sellers with low MaxScores and very few sellers with high MaxScores.

Alternatively, where only the distribution of the sellers’ cost parameters is available, the optimal bid may be
estimated using the distributions of the cost the parameters of the two highest sellers’ cost parameters and the upper
bound defined in Eq. (23). We leave this task for future work.

However we are not the first to demonstrate that a discrete bid increment is better than the continuous one in a
given setting. There are several cases where the discrete bid increment is better [2,3]. For instance in the Yankee
auction considered in Bapna et al. [3] multiple identical units of an item are sold to multiple buyers using an
ascending and open auction mechanism. Similar to our work they analyzed the auction from the auctioneer’s point
of view and attempted to identify the control factors that the auctioneer can manipulate in order to maximize its
expected payoff. In the Yankee auction equal bids are allowed since there are multiple items. Bapna et al. [3]
obtained the optimal bid increment as a function of the number of items N, and the uniform distribution range of

3 Such equal bids are allowed in order to limit the effect of the bidding order on the auction results.
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Fig. 5. The histogram of MaxScore where 0 is uniformly distributed in the range (0.1, 1) where the number of attributes is set to 2, w;=2,
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the highest N bidders. They concluded that the optimal bid increment decreases as the number of items increases.
That is, for a small number of items for sale a discrete bid increment is better than the continuous one. However
this result cannot be applied to our case since again they assume a uniform distribution of the bidders’ valuations.

Another interesting work conducted by Bapna et al. [2] considers the multi-unit English auction. They faced the
problem of auction design without making any distributional assumption regarding the bidders’ valuations. They
concluded that the auctioneer can control the bounds of its payoff by manipulating the bid increment, since the
range between the upper and the lower bounds of the auctioneer’s payoff is the number of items for sale, multiplied
by the bid increment. So, for the case where there is only one item for sale the range will be equal to the bid
increment. Thus, as the auctioneer is risk seeking, it will increase this value. In contrast, as the auctioneer’s risk

averseness increases the bid increment decreases.

7. Conclusion and future work

In this paper, we consider multi-attribute auction
protocols in which the auctioned item is characterized
by several negotiable dimensions. Specifically, we
analyze the first-score sealed-bid, the second-score
sealed-bid and a variation of a multi-attribute English
protocol, termed sequential full information revelation
considering the perspectives of both the bidders and
the auctioneer. For each protocol, we provide the
bidder agent with the optimal bidding strategy, and
the auctioneer with the optimal auction design. The
optimal auction design in our context involves com-
posing the optimal scoring function that will yield the
optimal payoff to the auctioneer. We prove and dem-
onstrate the result, that under the assumptions of the
model, the three protocols yield identical results with
the exception of a small constant, D.

Moreover, we show that as the number of bid-
ders increases the expected pay-off for the auction-

eer increases. Accordingly the auctioneer is
motivated to encourage the bidder to participate
in the auction. In addition, as the number of
bidders increases the need for modification of the
real preferences to be announced decreases. That
is, if the number of bidders is large enough, the
auctioneer can announce its true preferences (i.e. its
actual utility function) and still expect the optimal
payoft.

In future work we intend to identify more proper-
ties regarding the bid increment in multi-attribute
auctions. Furthermore it will be interesting to analyze
the effect of multi-attribute bidding strategy in more
complex auction protocols such as multi-sourcing
multi-attribute (allowing more than one winner) [5],
combinatorial, double and simultaneous-multiple auc-
tions. Currently, all these strategies mainly deal with
the case of a single attribute. However as we have
outlined in this paper there is an increasing need to
handle multi-attribute contracts.
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Appendix A

Lemma 4. Denote by s; the seller with the lowest
value of 0, and by s; the seller with the second lowest
0. In the sequential full-information revelation En-
glish auction protocol, seller g is the winner af the
auction whenever DS% ) Zt 1 a, is

0;

&we (11 o ow Y
{p_z;Z'a, (0, 20]> D, qt_(2~at-0i> ’

where, te[l..m}}

Proof. Suppose that s; is the seller with the lowest
cost parameter 0;. Suppose on the contrary that an-
other seller s; with a higher cost parameter 0; wins.
Suppose that seller s; offers a bid (p(0,), ¢1(0)), ...,
qm(0))) in a given step of the auction. If seller s; wants
to improve this bid its new bid (p(0;), ¢1(0)), ...,
q.,(0;)) must satisfy:

S(p(0:),q1(0:);-- gm(0:))
=S(p(0)),41(0)) - an (6)) + D-

By using the announced scoring rule we obtain:

+Zwl\/_t

t=1

m

> (wva,(0) +D

t=1

= —r(6) +

Substituting the values of the optimal offered
qualities:

{111 7 cqm 01),q1(0;)77qm(9/)}

according to Lemma 3 results in:
m Wt
— (6 ot
p0)+ Y (g )
Wi
= () + 3 (g

t=1

D
9j>+

The best bid that seller s; can offer is a bid which
will yield for s; a utility equal to zero:

0] Z a; CIt =0
t=1
=
m w 2
. ‘ p—
p(0) 6 z( (5 91))0
=

This value of the price is the best price that seller s;
can offer without a loss. We will term it p*(0;). That
is, by bidding a lowest price seller s; loses. So assum-
ing that seller s; offers its best bid including the lowest
price then it can bid p*(0;). We will see if seller s; can
compete with him. By substituting p(0;) with p*(0;)
we attain:

This means that by offering the price as specified
in Eq. (2) seller s; beats seller s;. However, this price
is valid and possible from seller s;’s point of view
only if it fulfills the condition that this price is higher
than or equal to the minimum price that seller s; can
allow itself to offer similar to Eq. (1).

This condition actually defines the higher bound
of the incremental value of D, in which the seller
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with the lowest cost parameter can win. Otherwise,
the determination of the winner depends on the
bidding order which is an undesired feature, since
it causes the bidders to speculate on the bids of the
other bidders in order to bid a winning bid.

Accordingly the winning bid of the winning seller
s;, based on Lemma 3 and Eq. (25), is:

(L YN o (wm Y
p_t:I 2'61; 0,’ 29] 4= 2'at'9i

where, te[l..m}} O

Next we prove three auxiliary propositions (for the
proof of Theorem 3).

Proposition 1.

(DN
_/0 ~——d, B=(n-1)

t

R N
-/Gf’(e_z) o =a=3
0 t

Proof. Consider the internal integral of B:

0
[o-2"e
t

By substitution of:

However, the integral on the right side of the
equation can be easily solved and the solution is:

(n=1)
— /x<”_2>dx= _
(n—1)

=1 5_ 0
:/f(é—z)m)dzz - (e(x)l)
:%: / N
- (9_(;0(1")‘”:3 =(n—1)
/95 (é(ntj(:)w df:/: (-9"" dr
_4 ]

Proposition 2. Denote G to be:

o B} (02" gzt
G=n(n—-1) — 0

(6-0)'

Then G=1.

Proof. First we will ((:onzs>ider the internal integral of G
. . ~ n— . ..
which is: ftg (9 — z) dz. According to Proposition

1 this equals:

By substituting the solution of the integral in G we
receive: So we proved that G=I. m|
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Proposition 3. Denote F to be:

_ _ = (n—2) g
6 6 (0—z \n—2+4+72
F:/ / (-2 ( Z)dzdt
0 Ji z

Then F=A.

Proof. Consider first the internal integral of /* which
can be written as a sum of two sub-integrals:

/(5 (0_72)(”72)'(11—2+§) &

z
i (p (n=2)

_ /" (0-2)

(-2)

First we will solve the second sub-integral by
integration of parts: [u - dv=u - v - [dv - u.
Denote u and v to be:

u= (0_—2)("72), dv:L=>du: —(n—-2)

By using the above rule we obtain:

[wtmune fam [
:(é_z)<"2>.(_§>
_/‘5 (n=2)(0-2)""

z

Now we will substitute the second internal integral
of F' with the above equation:

/é (6_—2)(”_2)~<n—2+§) &

+

g
(

0
=\/
t
0

/6' (0-2)"""0

72

(

dz

_ = (n—2) 9
0—z (n—24%
)1 (nm2d)
z
3 /= (n—2). . B
-9,
z
g2 (L
(9—2) < z>

) /é (n—2)- (-

and

(nfz).<n_2+§)dz

i (0-z)
/ :

i-2)"" (n-2)

:/t(

(n-3)
2) dZ)
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I
—
>
|
~

(0— - [)<n71)

= (n—2) ) 9_
) :

Z(G—t —1+7 =

Until now we only considered the internal integral
of F and we simplified it. Now we will add the main
integral to this expression and terminate the proof by
showing that F is equal to 4. O
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