
Learning Teammate Models for Ad Hoc Teamwork

Samuel Barrett
Dept. of Computer Science
The Univ. of Texas at Austin

Austin, TX 78712 USA
sbarrett@cs.utexas.edu

Peter Stone
Dept. of Computer Science
The Univ. of Texas at Austin

Austin, TX 78712 USA
pstone@cs.utexas.edu

Sarit Kraus
Dept. of Computer Science

Bar-Ilan University
Ramat Gan, 52900 Israel

sarit@cs.biu.ac.il

Avi Rosenfeld
Jerusalem College of

Technology
Jerusalem, 91160 Israel

rosenfa@jct.ac.il

ABSTRACT

Robust autonomous agents should be able to cooperate with
new teammates effectively by employing ad hoc teamwork.
Reasoning about ad hoc teamwork allows agents to perform
joint tasks while cooperating with a variety of teammates.
As the teammates may not share a communication or co-
ordination algorithm, the ad hoc team agent adapts to its
teammates just by observing them. Whereas most past work
on ad hoc teamwork considers the case where the ad hoc
team agent has a prior model of its teammate, this paper
is the first to introduce an agent that learns models of its
teammates autonomously. In addition, this paper presents
a new transfer learning algorithm that can be used when the
ad hoc agent only has limited observations about potential
teammates.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligience]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms

Algorithms, Experimentation

Keywords

Ad Hoc Teams, Multiagent Systems, Teamwork

1. INTRODUCTION
For autonomous agents to perform effectively in society,

they should be able cooperate with other agents. One way
for this to happen is for all autonomous agents to share a
communication protocol or a coordination algorithm. How-
ever, agents may be developed by many sources, making it
difficult to ensure that all the agents share the same infor-
mation. In addition, if agents stay deployed for a long time,
it is likely that new agents will come along with new and
different protocols. Therefore, it is important that agents
be capable of adapting to previously unseen teammates to
cooperate in accomplishing their tasks.
For example, after a disaster, robots developed in many

different labs and companies may be deployed to search the

area and rescue victims. As these robots come from mul-
tiple sources, they may not share a coordination protocol.
If there was no need for immediate action, the developers
could program methods for communication or split up the
task into parts by hand. If instead some of the robots are
designed to cooperate with ad hoc teams, they will be able
to quickly adapt to their teammates and swiftly map the
area and rescue victims.

Stone et al. [17] introduced the ad hoc team setting as
a problem in which team coordination strategies cannot be
specified a priori. They presented an algorithm for evaluat-
ing ad hoc team agents based on their ability to cooperate
with a set of teammates to accomplish a set of possible tasks.
They argue that while previous research has focused on the-
oretical results, the ad hoc teamwork problem is “ultimately
an empirical challenge.”

This paper addresses this challenge by introducing an ad
hoc agent that explicitly builds models of its teammates and
plans its behavior using a sample-based method. Then, the
paper evaluates the ad hoc agent’s ability to cooperate with
a wide variety of unknown teammates, showing that ad hoc
agents can learn models for their teammates and evaluate
which models are helpful, despite their current teammates
differing qualitatively from the observed ones. Finally, this
paper introduces a new method for transfer learning that
considers data coming from multiple sources and then evalu-
ates its effectiveness for ad hoc teams when the ad hoc agent
has a small number of observations of the current agent.

2. PROBLEM DESCRIPTION
Consider the case where an ad hoc agent is trying to co-

operate with a set of teammates it has never seen before.
If the ad hoc agent and its teammates share a communica-
tion protocol or a method for coordination, it can directly
cooperate with them. However, if its communication is lim-
ited and there is no pre-arranged coordination method, the
ad hoc agent must observe its teammates and try to adapt
to their behaviors. If the ad hoc agent has previously ob-
served agents similar to its current teammates, it should try
to leverage its prior experiences in order to cooperate with
them more effectively.

To clarify the problem, consider the concrete example of
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a team of robots trying to surround and disable an intruder.
The original team of robots was designed to coordinate their
actions to capture the intruder quickly and reliably, but one
of the original robots has since broken and the others have
been damaged from constant wear and tear. Therefore, a
new robot is deployed to join the team, but it does not know
the specific make and model of its teammates. Fortunately,
the new robot has observed similar teammates in other sit-
uations, so it has some understanding of how to cooperate
with its new teammates. The problem it faces is to quickly
identify which previous observations are applicable to these
teammates and adapt to any differences.

2.1 Pursuit Domain
The pursuit domain is a popular problem in multiagent

systems literature because it requires all of the teammates
to cooperate to capture the prey [18]. The details vary, but
the pursuit domain revolves around a set of agents called
predators trying to capture an agent called the prey in min-
imal time.
In the version of the pursuit domain used in this paper, the

world is a rectangular, toroidal grid, where moving off one
side of the grid brings the agent back on the opposite side.
Four predators attempt to capture the randomly moving
prey by surrounding it on all sides in as few time steps as
possible. At each time step, each agent can select to move in
any of the four cardinal directions or to remain in its current
position. All agents pick their actions simultaneously, and
collisions are handled using priorities that are randomized
at each time step. In addition, each agent is able to observe
the positions of all other agents. A view of the domain is
shown in Figure 1.

Figure 1: A view of the pursuit domain, where the
rectangle is the prey, the ovals are predators, and
the oval with the star is the ad hoc predator being
evaluated.

2.2 Evaluation
Ad hoc team agents must be able to cooperate with a va-

riety of previously unseen teammates to accomplish a task.
To this end, we adopt the evaluation framework proposed by
Stone et al. [17]. This evaluation specifies that the perfor-
mance of an ad hoc agent explicitly depends on the possible
teammates it will encounter as well as the potential tasks
it may face. The evaluation proceeds by sampling a task
and a team from the set of possible tasks and teammates.
Then, it removes one of the agents from the team selected
at random, replaces it with the ad hoc agent, and observes
the performance of the newly created team. The overall per-
formance of the ad hoc agent is averaged over a number of
these samples.

3. METHODS
In order to cooperate effectively with its teammates, the

ad hoc agent chooses its actions by planning about their
long term effects. To do so, the ad hoc agent must have
a model of the domain, the prey, and its teammates. This
paper assumes that the ad hoc agent has a correct model of
the domain and the prey, but must determine how to model
its teammates.

Even if the ad hoc agent has a perfect model of its team-
mates, the planning problem is still difficult. With four
predators and a single prey, the pursuit domain has a branch-
ing factor of 55 = 3125 actions and, in a 20x20 world, there
are (20 ∗ 20)5 ≈ 1013 different states. While it is possible
to reduce the size of the state space using some symmetries
of the world, planning efficiently is important in the pursuit
domain.

3.1 UCT
To plan efficiently, our ad hoc agent uses UCT [13], a

Monte Carlo Tree Search (MCTS) algorithm that employs
upper confidence bounds for controlling the tradeoff between
exploration and exploitation. Previous work has shown that
UCT performs well on domains with high branching factors,
such as Go [8] and large POMDPs [16]. In addition, previous
work has shown that UCT can both compete with optimal
planners on small pursuit problems and scale to larger prob-
lems [2].

At each time step, the ad hoc agent performs a number
of rollouts, where a rollout is the simulation of an episode
starting from the current world state and ending when the
prey is captured. Then, the ad hoc agent uses the time it
takes to capture the prey in each simulation to evaluate the
actions it selected in the rollout. It selects its actions by
choosing the one with the highest upper confidence bound,
causing it to explore when it is unsure of the best action and
exploit its knowledge when it is confident of the results.

3.2 Model Selection
Performing the simulations for the UCT rollouts requires

that the ad hoc agent has a model for how its teammates be-
have. If there is a (presumably correct or approximately cor-
rect) single model for this behavior, the planning is straight-
forward. On the other hand, the problem is more difficult if
the ad hoc agent is given several possible models. Assuming
that the ad hoc agent starts with some prior belief distri-
bution over which model correctly reflects its teammates’
behaviors, the ad hoc agent can update these beliefs by ob-
serving its teammates. Specifically, it can update the models
using Bayes theorem:

P (model|actions) = P (actions|model) ∗ P (model)
P (actions)

If the correct model is in the given set of models, then the
ad hoc agent’s beliefs will converge to this model.

On the other hand, if the correct model is not in the set,
using Bayes rule may drop their posterior probability to 0
for a single wrong prediction. This may punish generally
well-performing models that make one mistake, while leav-
ing poor models that predict nearly randomly. Therefore, it
may be advantageous to update the probabilities more con-
servatively. Research in regret minimization has shown that
updating model probabilities using the polynomial weights
algorithm is near optimal if examples are chosen adversari-
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ally [3]. Since it is expected that the ad hoc agent’s models
are not perfect, the agent updates its beliefs using polyno-
mial weights:

loss = 1− P (actions|model)

P (model|actions) ∝ (1− η ∗ loss) ∗ P (model)

where η = 0.5. This scheme ensures that good models are
not prematurely removed, but it does reduce the rate of con-
vergence. We find that in practice it performs very well as
the observed examples of the teammates may be arbitrarily
unrepresentative of the agent’s overall decision function.
Given the current belief distribution over the models, us-

ing this information, the ad hoc agent can sample teammate
models for planning, choosing one model for each rollout
similarly to the approach adopted by Silver and Veness [16].
Sampling the model once per rollout is desirable compared
to sampling a model at each time step because this resam-
pling can lead to states that no model predicts. Ideally,
a different state-action evaluation would be stored for each
model, but that would require many more rollouts to plan
effectively. Instead, the state-action evaluations from all the
models are combined to improve the generalization of the
planning.

3.3 Learning Models
The previous sections described how the ad hoc agent can

select the correct model and use it for planning, but they did
not specify where these models come from in the first place.
One option is that the ad hoc agent is given a model that was
coded by hand, but another interesting option is when the
ad hoc agent learns the model itself. If the ad hoc agent can
observe representative potential teammates before interact-
ing with them, it can build a model for their behaviors. To
build these models, the ad hoc agent uses the features given
in Table 1, where all positions are relative to the modeled
predator. These features were chosen experimentally using
cross validation on the training set. The ad hoc agent con-
siders the previous actions of the teammate because a few
of potential teammates appeared to keep an internal state
that changed infrequently. In this case, a model is a mapping
from these features to a next action, and a training instance
represents only a single predator’s actions: a trajectory of
length k provides 4k training instances.

Description # Features Values
Predator Number 1 {0, 1, 2, 3}
Prey x position 1 {−10, . . . , 10}
Prey y position 1 {−10, . . . , 10}

Predatori x position 3 {−10, . . . , 10}
Predatori y position 3 {−10, . . . , 10}
Neighboring prey 1 {true,false}
Cell neighboring 4 {true,false}
prey is occupied

Previous two actions 2 {←,→, ↑, ↓, •}

Table 1: Features for predicting a teammate’s ac-
tions.

In some cases, rather than having extensive observations
of its teammates for learning models, the ad hoc agent will
only have a small number of observations of its current team-
mates. It could still build a model from this data, but
it may be able to improve the accuracy of the model by

using information it has about similar teammates through
transfer learning (TL). Following standard TL terminology,
we consider the current teammates to be the target team-
mates: the goal is to improve performance when teamed
with these agents. We call the previously observed team-
mates the source teammates, which can provide knowledge
to transfer to modeling the target teammates. To perform
this transfer, we introduce the TwoStageTransfer algorithm.

TwoStageTransfer was inspired by the TwoStageTrAd-
aBoost algorithm created by Pardoe and Stone [15]. TwoStage-
TrAdaBoost is an algorithm for transfer learning that uses
the source data directly in the target task rather than trans-
ferring derived classifiers. It searches for the optimal weight-
ing of the source data using n-fold cross validation with the
target data. TwoStageTrAdaBoost focuses on transfer for
regression rather than classification and treats all source
data as coming from the same task. In contrast, TwoStage-
Transfer tackles the classification problem and uses the infor-
mation that source data may come from different sources. In
this case, the ad hoc agent has observed many other agents,
some of which are more similar to the target teammate than
others. Therefore, tracking the source of the data may be
important as it allows the ad hoc agent to discount data
coming from agents that are very different from it. Recent
research into transfer learning has shown that such informa-
tion may improve results [20, 11].

TwoStageTransfer’s goal is to find the best possible weight-
ing of each set of source data and create a classifier us-
ing these weights. The full algorithm is described in Al-
gorithm 1. TwoStageTransfer takes in the target data set
T , the set of source data sets S = {S1, . . . , Sn}, a number of
boosting iterations m, a number of folds k for cross valida-
tion, and a maximum number of source data sets to include
b. We use the annotation Sw to mean the data set S taken
with weight w spread over the instances. The base model
learner used in this case is a decision tree learner based on
C4.5 trees that handles weighted instances.

Ideally, TwoStageTransfer would try every combination of
weightings, but this proves to be computationally expensive
as transferring from n source data sets and considering m
different weight levels leads to mn possible combinations. In
our case, we have n = 28 data sets and m = 10 weightings
(as discussed in Section 4), which leads to 1028 combinations.
These data sets are discussed in more depth in Section 4.3.
Rather than try all of them, TwoStageTransfer first evalu-
ates each data source independently, as if it were the only
source data set, and calculates the ideal weight of that data
source as specified in Algorithm 1. Then, it adds the data
sources in decreasing order of the calculated weights. As it
adds each data set, it finds the optimal weighting of that set
with the data that has already been added. Finally, it adds
the data with the optimal weight and repeats the procedure
with the next data set. Note that this algorithm requires
only nm+nm = 2nm combinations to be evaluated, nm for
the initial evaluations and then m when adding each n data
sets. In this case, it requires only 2 ∗ 10 ∗ 28 = 560 com-
binations to be evaluated. However, this greedy approach
may not find the optimal weights. In addition, it is possible
to limit the number of data sets used in the final transfer,
which is desirable in our setting as training with all 50,000
instances from each of the 28 available source data sets (see
Section 4) of the source data sets can exceed 4 GB of RAM
usage.
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Algorithm 1 Transfer learning with multiple sources

TwoStageTransfer (T, S,m, k, b)
for all Si in S: do

wi ← CalculateOptimalWeight(T, ∅, Si,m, k)
end for
Sort S in decreasing order of wi’s
F ← ∅
for i from 1 to b do

w ← CalculateOptimalWeight(T,F, Si,m, k)
F ← F ∪ Sw

i

end for
Train classifier c on T ∪ F
return c

end
CalculateOptimalWeight(T, F, S,m, k):
for i from 1 to m do

wi =
|T |

|T |+|S| (1−
i

m−1 )
Use k-fold cross validation on T
Calculate erri from k-fold cross validation on T using
F and Swi as additional training data

end for
return wj such that j = argmax

i
(erri)

end

4. RESULTS
This section evaluates a number of ad hoc agents that vary

in the type and amount of information they have about their
teammates. If it has access to the true model, the ad hoc
agent can plan to cooperate with its teammates optimally,
as approximated by UCT(True), or use the same behavior
as the missing teammate (Match(True)). However, in the
fully general ad hoc teamwork scenario, such a model is not
generally available. Thus, this paper instead focuses on the
case in which the ad hoc agent must learn a model of its
teammates by observing them. In this section, the amount
of available information available to the ad hoc agent varies,
ranging from observing its current teammates to only ob-
serving teammates that may differ greatly from the current
ones. Additional results focus on the case in which the ad
hoc agent has a small number of observations of the current
teammates and must transfer information learned from prior
observations of similar teammates.
To properly evaluate an ad hoc team agent, it is impor-

tant to test it with a variety of possible teammates. To
prevent any bias in the development of these teammates, we
collected 31 agents created by undergraduate and graduate
computer science students. These agents were created for an
assignment in a workshop on agent design with no discussion
of ad hoc teams. The students were asked to create a team
of predators that captured the prey as quickly as possible.
The agents produced varied wildly in their approaches as
well as their effectiveness. While almost all of the agents
performed well, two agents were removed due to their low
performance, leaving 29 agents. In Sections 4.1 and 4.3, the
teammates come from this set of 29 students, but for Sec-
tion 4.2, the teammates come from the set of 12 students
used by Barrett et al. [2] to prevent any bias in the selection
of the unknown teammates.
For these evaluations, a random team is selected, a sin-

gle agent is replaced by the ad hoc agent, and the team is
evaluated based on its time to capture the prey. Through-

out this paper, we refer to a teammate type as its behavior
function, meaning that agents coming from different stu-
dents have different types. To simulate wear and tear on
the teammates, agents of the same type may further vary
based on their speed. This speed is controlled by giving
each agent a random chance to stay still rather than taking
their desired action, which can be thought of as the gears
on a robot slipping. The chance of staying still is randomly
sampled independently for each agent from [0, 0.2], but in
training all teammates are observed with a 0.1 probability
of staying still. Results are averaged over 1,000 episodes
where a random student’s team is selected for each episode.
The random teams, probabilities of agents staying still, and
starting positions are fixed across the ad hoc agents to al-
low for paired statistical analysis, and all statistical tests are
performed as paired Student-T tests with p = 0.05.

When the ad hoc agent observes its potential teammates,
it watches a team of four predators for 50,000 steps, result-
ing in a total of 200,000 training instances. These predators
have a 0.1 probability of staying still. With this informa-
tion, the ad hoc agent learns a decision tree using a learn-
ing algorithm based on C4.5 trees that handles weighted in-
stances. Several other classifiers were tried including SVMs,
naive Bayes, and decision lists as well as boosted versions
of these classifiers, but decision trees tended to outperform
these methods in a combination of prediction accuracy and
training time. All model learning is performed offline, but
the ad hoc agent updates its belief over the models online.

The behaviors tested are listed below, with ad hoc agents
planning with the learned models compared to agents given
either the true model or a set of representative, hand-coded
models:

• Match(True): Match teammates’ behavior. The ad
hoc agent knows the true model of its teammates, and
behaves as the agent it is replacing would.

• UCT(True): Plan with the true model. The ad hoc
agent knows the true model of its teammates and plans
with this model.

• UCT(HC): Plan with hand-coded models. The ad
hoc agent is given a set of hand-coded models to plan
with.

• UCT(DTcor): Plan with correct decision tree. The
ad hoc agent knows the type of teammates it is coop-
erating with and has observed this type before.

• UCT(DTall): Plan with all decision trees. The ad
hoc agent does not know the type of teammates it is
cooperating with, but it has observed several types of
possible teammates, including the current teammate
type.

• UCT(DToth): Plan with other decision trees. The
ad hoc agent does not know the type of teammates it
is cooperating with, and it has observed several types
of possible teammates, but not the current teammate
type.

• UCT(DTtra): Plan with a decision tree created us-
ing transfer learning. The ad hoc agent knows the type
of teammates it is cooperating with and has briefly ob-
served this type, but it has also observed several other
types of teammates for longer periods of time.

For the DTcor, DTall, and DToth models, the ad hoc
agent builds a separate decision tree for each of the 29 types
of teammates it has observed. In the UCT(DTcor) behavior,
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the ad hoc agent knows the type of its current teammate and
only uses its model of that type for planning, while in the
UCT(DTall) and UCT(DToth) behaviors it uses all avail-
able models. However, in the UCT(DToth) behavior, the
true teammates are not drawn from the set of known team-
mate types. Finally, to create the DTtra models, the ad hoc
agent observes the full 50,000 steps of 28 teammate types,
but only 1,000 steps of the type it is currently cooperat-
ing with. Therefore, it uses transfer learning in the form
of TwoStageTransfer to reuse knowledge learned from the
other 28 teammate types to create the DTtra models, using
the same decision tree learner as the base learner.
This section compares the performance of ad hoc agents

to the unrealistic behaviors of Match(True) and UCT(True)
and the previous best result of UCT(HC), leading to three
main results. As described in Section 4.1, the first result
is that learning models from known teammate types out-
performs previous techniques. Then, Section 4.2 presents
the second result, showing that these learned models still
perform well for teammates of previously unseen types. Fi-
nally, Section 4.3 shows that transfer learning can improve
the performance of the ad hoc agent if only a small amount
of data on the current teammates is available.

4.1 Known Teammate Types
This section compares the performance of ad hoc agents

that learn models of their teammates to agents that have
access to true models of their teammates. Given the true
behavior model of its teammates, the ad hoc agent can ei-
ther behave as the missing teammate would (Match(True)),
or it can plan using this true model (UCT(True)). If the
teammates are optimal, Match(True) is also optimal, but
regardless of the teammates’ behaviors, UCT(True) should
be close to optimal, with any loss caused by the approxima-
tions of the planning algorithm. Therefore, these two behav-
iors serve as baselines and UCT(HC) represents the current
state of the art behavior [2]. The hand-coded models given
to the ad hoc agent are chosen to be representative of the
space of behaviors in the pursuit domain, but they may be
only coarse approximations of the true teammate behavior.
In addition, they may require a significant amount of time
and effort on the behalf of the designer to create.
Compared to these behaviors, we introduce two new be-

haviors in which the ad hoc agent learns a model of its team-
mates. Both create models for each of the 29 types of agents
it has observed, but the UCT(DTcor) agent also knows the
type of its current teammates. More reflective of the fully
general ad hoc teamwork scenario is the UCT(DTall) be-
havior, whereby the ad hoc agent does not know the type
of its current teammates and must track its beliefs over the
learned models by observing its teammates.
Figure 2 shows how an ad hoc agent planning with the

learned models compares to planning with the true model
or a set of hand-coded models. Unsurprisingly, the ad hoc
agent performs best when planning using the True model,
as it should be optimal given an optimal planning algo-
rithm. Though conventional wisdom suggests that match-
ing the teammates behavior would be fairly effective, this
performs poorly as shown by the Match(True) bar because
the teammates may be arbitrarily far from optimal. The
difference between UCT(DTcor) and UCT(HC) is statis-
tically significant as is the difference between UCT(HC)
and Match(True). The differences between UCT(True) and
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Figure 2: Interacting with observed student team-
mates

UCT(DTall) as well as the differences between UCT(DTall)
and UCT(DTcor) are not statistically significant.

If the ad hoc agent plans with the DTcor or DTall models,
it outperforms an ad hoc agent that plans using the HC mod-
els, showing that learning a model of the teammates is effec-
tive. In addition, if the ad hoc agent plans with the DTcor
models, its performance is very close to the gold standard of
planning with True models. However, using the DTall mod-
els allows the ad hoc agent to outperform an agent planning
with the DTcor models, which is surprising given selecting
from the set of DTall models should increase the difficulty
of the problem. We hypothesize that this difference occurs
from imperfections in learning the models. Some student
agents are fairly stochastic and it is possible and likely that
the learned decision trees overfit this data. By using a set
of models of all the agents, the ad hoc agent plans about
a broader range of possible teammates and better accounts
for this randomness.

4.2 Unknown Teammate Types
While the previous section focused on the case where the

ad hoc agent encounters teammates of a type it has previ-
ously observed, the ad hoc agent may not always be that
lucky. Instead, it may have to cooperate with teammates
that are fairly different from any it has seen before. The ad
hoc agent therefore plans with its 29 learned models, but
encounters a 30th type of teammate drawn from a set of 12
student agents described in the work by Barrett et al. [2].
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Figure 3: Interacting with the 12 unobserved stu-
dent teammates from Barrett et al.

Figure 3 shows that having the ad hoc agent plan using the
HC models works very well for these teammates. Planning
using the DToth models performs slightly worse than the
HC models due to differences between the learned models
and the encountered teammates. The performance differ-
ence is statistically significant. However, the difference is
small, and may be reduced by using a larger, more varied
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set of training agents. On the other hand, planning using
the DToth models still far outperforms the Match(True) be-
havior, showing that the DToth models are still effective for
planning.

4.3 Teammates with Limited Observations
The previous section discussed the case in which the ad

hoc agent had no previous observations of its current team-
mates. However, this is the worst case scenario; in many
cases, the ad hoc agent may build up a small number of ob-
servations of the current teammate model. Then, it can use
transfer learning to reuse its observations of other agents to
improve the performance of this model. In this case, the ad
hoc agent has 50,000 training steps of each of the other 28
teammate types, but only 1,000 training steps of the cur-
rent type of teammate. The teammates used for these tests
are the same as those in Section 4.1, specifically, the set 29
teammates generated by the students.
The model learned using transfer learning is compared

to the upper limit of UCT(DTall) where the ad hoc agent
has 50,000 training instances of the current type of team-
mate, though observed with a different amount of noise.
The lower limit is given by only using the 1,000 training
steps of the current teammate type and not performing any
transfer (DTtarget). Figure 4 shows that using TwoStage-
Transfer to perform transfer learning is helpful in this case.
However, analysis of the UCT(DTtra) results shows that
there are a small number of very long episodes caused by
inaccuracies in the learned models, but this happens less
frequently when planning with the DTtarget models. There-
fore, it is desirable for the ad hoc agent to use both models,
which outperforms using either one individually as shown by
the UCT(DTtra + DTtarget)bar. For all uses of TwoStage-
Transfer, a value of m = 10 was experically determined to
be most effective. DTtra is built using TwoStageTransfer
where b = 5, meaning that the ad hoc agent is transferring
information from the five most helpful source agents. Five
was chosen as it provides a good tradeoff between perfor-
mance and training time. On the other hand, the ad hoc
agent could merely take the one step greedy approach by
performing TwoStageTransfer where b = 1. If it also plans
using the model learned from the target data, the ad hoc
agent’s performance is shown in DTtra* + DTtarget. The
differences from the UCT(DTtarget) behavior to each other
behavior is significant, but the differences among the behav-
iors planning with the other learned models are not.
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Figure 4: Interacting with partially observed stu-
dent teammates

In the current setup, the ad hoc agent is given observa-
tions of 1,000 steps of the target teammate performing the
task. However, the amount of target data may vary, and

it is important to understand how the performance of the
transfer learning algorithms react to this variable. Figure 5
shows how the performance of the agent drops off given de-
creasing amounts of data about the current teammate type.
In the tests where only 10 and 100 steps of the target agent
were observed, episodes did not complete with the capture
of the prey within 10,000 steps in 13 and 12 episodes respec-
tively out of the 1,000 episodes. These episodes are excluded
from the graph as it is unclear what value they should take,
but it is clear that they indicate poor performance in these
settings.
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Figure 5: Varying the number of observations of the
current teammate type.

5. RELATEDWORK
This formulation of the ad hoc teamwork problem and the

evaluation framework were proposed by Stone et al. [17].
Barrett and Stone [1] analyze current research on ad hoc
teams and present several dimensions for describing ad hoc
team problems. One line of early research on ad hoc teams
involves an agent attempting to teach a novice agent while
performing a repeated joint task [5]. Other research includes
Jones et al.’s [12] research on pickup teams cooperating to
accomplish a treasure hunt. In the area of robot soccer,
Liemhetcharat and Veloso [14] explore ad hoc teamwork for
role-based teams, and Bowling and McCraken [4] consider
the case where the ad hoc agent is given a different playbook
from its teammates. Further work into ad hoc teams using
stage games and biased adaptive play was performed by Wu
et al. [19], while Han et al. [10] explore how a single agent can
affect the collective behavior of a large, multi-agent system.

The problem of opponent modeling is closely related to
the problem of ad hoc teams. Where opponent modeling
focuses on modeling opponents and considers the worst case
scenarios for their actions, ad hoc teamwork instead focuses
on cooperating with teammates and can make stronger as-
sumptions about their actions. Important work on oppo-
nent modeling is regularly presented at the Workshop on
Plan, Activity, and Intent Recognition (PAIR) as well as the
Workshop on Applied Adversarial Reasoning and Risk Mod-
eling (AARM). One interesting approach is the AWESOME
algorithm [6] which achieves convergence and rationality in
repeated games. Another approach is to explicitly model
and reason about other agents’ beliefs such as the work on
I-POMDPs [9] and I-DIDs [7]. However, modeling other
agents’ beliefs greatly expands the space for planning, and
these approaches do not currently scale to larger problems.
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6. CONCLUSION
Most existing research on ad hoc teamwork focuses on the

case in which the ad hoc agent has access to a correct model
of its teammates. This paper is the first to have the ad hoc
agent learn models of its teammates autonomously. Plan-
ning with these learned models allows the ad hoc agent to
cooperate with its teammates effectively even when its team-
mates were not observed during the model learning. This
paper also presents a transfer learning algorithm, TwoStage-
Transfer, that can significantly improve results when the ad
hoc agent has a limited number of observations of its team-
mates.
While this paper answers questions about the variety of

teammates that ad hoc team agents can effectively cooper-
ate with, it also raises new questions that should be explored
in future research. One possible research avenue is into com-
munication between ad hoc teams. Wireless connectivity is
becoming more and more common, and approaches such as
the Robot Operating System (ROS) are standardizing com-
munication protocols. Therefore, it is likely that ad hoc
team agents may be able to communicate with their team-
mates, although this communication may be limited by what
their teammates were developed to understand. All results
in this paper are reported the pursuit domain, but future re-
search should test whether similar algorithms perform well
on other domains. In addition, this work focuses on agents
that follow mostly fixed behaviors, with little adaptation to
the ad hoc agent’s behaviors; handling adaptive teammates
is a complicated, but exciting area for future research.
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