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Abstract. This paper presents some of the key techniques for reaching
agreements in multi-agent environments. It discusses game-theory and
economics based techniques: strategic negotiation, auctions, coalition for-
mation, market-oriented programming and contracting. It also presents
logical based mechanisms for argumentations. The focus of the survey is
on negotiation of self-interested agents, but several mechanisms for co-
operative agents who need to resolve conflicts that arise from conflicting
beliefs about different aspects of their environment are also mentioned.
For space reasons, we couldn’t cover all the relevant works, and the pa-
pers that are mentioned only demonstrate the possible approaches. We
present some of the properties of the approaches using our own previous
work.

1 Introduction

Negotiation has been a subject of central interest in multi-agent systems, as it
has been in economics and political science. The word has been used in a vari-
ety of ways, though in general it refers to communication processes that further
coordination and cooperation. Negotiations can be used to resolve conflicts in a
wide variety of multi-agent domains [28]. Examples of such applications include
conflicts over the usage of joint resources or task assignments, conflicts concern-
ing document allocation in multi-server environments and conflicts between a
buyer and a seller in electronic commerce.

When building an autonomous agent which is capable of flexible and sophis-
ticated negotiation, the main questions that should be considered are: (i) what
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negotiation protocol will be used? (ii) what reasoning model, decision making
procedures and strategies will the agents employ?

Several protocols for auctions, strategic negotiation and coalition formation
are considered and we discuss their applicability in various multi-agent domains.
We will present formal models for agent reasoning and we will discuss methods
for identifying strategies for agents interacting using a specific protocol.

Evaluation of the results of multi-agent protocols is not an easy task. Since
the agents are self-interested, when saying, for example, a “negotiation was suc-
cessful” the question “successful for whom?” must be asked, since each agent is
concerned only about its own benefits or losses from the resolution of the nego-
tiation. Nevertheless, there are certain parameters that can be used to evaluate
different protocols.

Negotiation Time: Negotiations which end without delay are preferred over
negotiations which are time-consuming.
It is assumed that a delay in reaching an agreement causes an increase in
the cost of communication and computation time spent on the negotiation.
We want to prevent the agents from spending too much time on negotiations
resulting in deviation from their timetables for satisfying their goals.

Efficiency: An efficient outcome of the negotiations is preferred. In other words,
an outcome that increases the number of agents which will be satisfied by the
negotiation results and the agents’ satisfaction levels from the negotiation
results.
Thus, it is preferred that the agents reach Pareto optimal agreements1 In
addition, if there is an agreement that is better for all the agents than opting
out, then it is preferred that the negotiations will end with an agreement.

Simplicity: Negotiation processes that are simple and efficient are better than
complex processes. Being a “simple strategy” means that it is feasible to
build it into an automated agent. A “simple strategy” also presumes that an
agent will be able to compute the strategy in a reasonable amount of time.

Stability: A set of negotiation strategies are stable if, given that all the other
agents included in the set are following their strategies, it is beneficial to
an agent to follow its strategy too. Negotiation protocols which have stable
strategies are more useful in multiagent environments than protocols which
are unstable. If there are stable strategies, we can recommend to all agent
designers to build the relevant strategies into their agents. No designer will
benefit by building agents that use any other strategy.

Money transfer: Money transfer may be used to resolve conflicts. For exam-
ple, a server may “sell” a data item to another server when relocating this
item. This can be done by providing the agents with a monetary system
and with a mechanism for secure payments. Since maintaining such a mone-
tary system requires resources and efforts, negotiation protocols that do not
require money transfers are preferred.

1 An agreement is Pareto optimal if there is no other agreement that dominates it,
i.e., there is no other agreement that is better for some of the agents and not worse
for the others.
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The remainder of this paper is structured as follows. In the next section we
will present a short survey of negotiation approaches in Distributed Artificial
Intelligence (DAI) and in social sciences. Then we will discuss the strategic-
negotiation model (section 2.3) which is based on the game-theory model of bar-
gaining with alternating offers. Auctions are discussed in section 3, and market-
oriented programming is briefly discussed in section 4. Agents can also cooperate
by forming coalitions. This form of cooperation is presented in section 5. Con-
tracting which is another form of reaching cooperation is surveyed in section 6.
Finally, logical approaches to negotiation are presented in section 7.

2 Negotiation Models

We will first present a short survey of various negotiation approaches in Dis-
tributed Artificial Intelligence. Then, we will describe the two main approaches
to negotiations in the social sciences and will demonstrate the application of one
of the approaches to multiagent systems.

2.1 Negotiation Models in DAI

Negotiations were used in DAI both in Distributed Problem Solving (DPS) where
the agents are cooperative and in Multiagent Systems (MA) where the agents are
self-interested. Several works in DPS use negotiation for distributed planning and
distributed search for possible solutions for hard problems. For example, Conry
et al. [10] suggest multi-stage negotiation to solve distributed constraint satis-
faction problems when no central planner exists. Moehlman and Lesser [52] use
negotiation as a tool for distributed planning: each agent has certain important
constraints, and it tries to find a feasible solution using a negotiation process.
They applied this approach in the Phoenix fireman array. Lander and Lesser
[44] use a negotiation search, which is a multi-stage negotiation as a means of
cooperation while searching and solving conflicts among the agents.

For the MA environments, Rosenschein and Zlotkin [73] identified three dis-
tinct domains where negotiation is applicable and found a different strategy
for each domain: (i) Task-Oriented Domain: Finding ways in which agents can
negotiate to come to an agreement, and allocating their tasks in a way that is
beneficial to everyone; (ii) State-Oriented Domain: Finding actions which change
the state of the “world” and serve the agents’ goals; and (iii) Worth-Oriented
Domain: Same as (ii) above, but, in this domain, the decision is taken according
to the maximum utility the agents gain from the states.

Sycara [100,99] presented a model of negotiation that combines case-based
reasoning and optimization of multi-attribute utilities. In her work agents try
to influence the goals and intentions of their opponents. Kraus and Lehmann
[39] developed an automated Diplomacy player that negotiates and plays well
in actual games against human players. Sierra et al. [94] present a model of
negotiation for autonomous agents to reach agreements about the provision of
service by one agent to another. Their model defines a range of strategies and
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tactics, distilled from intuition about good behavioral practice in human nego-
tiation, that agents can employ to generate offers and evaluate proposals. Zeng
and Sycara [116] consider negotiation in a marketing environment with a learn-
ing process in which the buyer and the seller update their beliefs about the
opponent’s reservation price2 using the Bayesian rule. Sandholm and Lesser [85]
discuss issues, such as levels of commitment, that arise in automated negotia-
tion among self-interested agents whose rationality is bounded by computational
complexity.

2.2 Negotiation Approaches in the Social Sciences

In social sciences there are two main approaches to the development of theories
relating to negotiation. The first approach is the formal theory of bargaining
e.g., [75,62], constituting a formal, game-theoretic approach that provides clear
analyses of various situations and precise results concerning the strategy a nego-
tiator should choose. However, this approach can only be applied to situations
satisfying very restricted assumptions. In particular, this approach assumes that
the agents are acting rationally, have large computation capabilities and follow
strict negotiation protocols.

The second approach, which we refer to as the negotiation guides approach,
comprises informal theories which attempt to identify possible general beneficial
strategies for a negotiator. The works based on this approach advise a negotiator
how to behave in order to reach beneficial results in a negotiation (see, for exam-
ple, [68,13,11,32,29,22]). These negotiation guides do not presuppose the strong
restrictions and assumptions presented in the game-theoretic models. Applying
these methods to automated systems is more difficult than using the first ap-
proach, since there are neither formal theories nor strategies that can be used.3

In the next section we demonstrate the application of the formal approach to
multiagent systems.

2.3 Strategic Negotiation

The strategic-negotiation model is based on Rubinstein’s model of alternating
offers [77]. In the strategic model there are N agents, Agents = {A1, ..., AN}.
The agents need to reach an agreement on a given issue. It is assumed that
the agents can take actions in the negotiation only at certain times in the set
T = {0, 1, 2...} that are determined in advance and are known to the agents.

In each period t ∈ T of the negotiation, if the negotiation has not terminated
earlier, an agent whose turn it is to make an offer at time t, will suggest a possible
2 The reservation price of the seller is the price below which the seller refuses to sell.
The reservation price of the buyer is the price above which the buyer refuses to buy.

3 These methods can be used in domains where people interact with each other and
with automated systems, and situations where automated systems interact in envi-
ronments without predefined regulations. These informal models can serve as guides
for the development of negotiation heuristics [39] or as a basis for the development
of a logical negotiation model [40].
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agreement (with respect to the specific negotiation issue), and each of the other
agents may either accept the offer (choose Yes), reject it (choose No), or opt out
of the negotiation (choose Opt). If an offer is accepted by all the agents (i.e., all
of them choose Yes), then the negotiation ends, and this offer is implemented.
If at least one of the agents opts out of the negotiation, then the negotiation
ends and a conflictual outcome results. If no agent has chosen “Opt,” but at
least one of the agents has rejected the offer, the negotiation proceeds to period
t + 1, and the next agent makes a counteroffer, the other agents respond, and
so on. We assume that an agent responding to an offer is not informed of the
other responses during the current negotiation period. We call this protocol a
simultaneous response protocol.4 j(t) will denote the agent that makes an offer
at time period t. The following example demonstrate these notions.

Example 1 (Data Allocation in Large Databases). There are several information
servers, in different geographical areas. Each server stores data, which has to
be accessible by clients not only from its geographical area but also from other
areas. The topics of interest of each client change dynamically over time, and
the set of clients may also change over time. Periodically, new data arrive at the
system, and have to be located at one of the servers in the distributed system.

Each server is independent and has its own commercial interests. The servers
would like to cooperate with each other in order to make more information
available to their clients. Since each server has its own preferences regarding
possible data allocations, its interests may conflict with the interests of some of
the other servers.

A specific example of a distributed information system is the Data and Infor-
mation System component of the Earth Observing System (EOSDIS) of NASA
[56]. It is a distributed system which supports archival data and distribution of
data at multiple and independent data centers (called DAACs). The current pol-
icy for data allocation in NASA is static: each DAAC specializes in some topics.
When new data arrive at a DAAC, the DAAC checks if the data is relevant to
one of its topics, and, if so, it uses criteria, such as storage cost, to determine
whether or not to accept the data and store them in its database. The DAAC
communicates with other DAACs in those instances in which the data item en-
compasses the topics of multiple DAACs, or when a data item presented to one
DAAC is clearly in the jurisdiction of another DAAC, and then a discussion
takes place among the relevant DAAC managers. However, this approach does
not take into consideration the location of the information clients, and this may
cause delays and transmission costs if data items are stored far from their po-
tential users. Moreover, this method can cause rejection of data items if they do
not fall within the criteria of any DAAC, or if they fall under the criteria of a
DAAC which cannot support this new product because of budgetary problems.

In this example the agents negotiate to reach an agreement that specifies the
location of all the relevant data items. In the first time period, the first server
4 A sequential protocol is considered in [14]. In this protocol an agent responding to an
offer is informed of the responses of the preceding agents (assuming that the agents
are arranged in a specific order).
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offers an allocation, and the other agents either accept the offer, reject it or
opt out of the negotiation. If an offer is accepted by all the agents, then the
negotiation ends and the proposed allocation is implemented. If at least one of
the agents opts out of the negotiation, then a predefined conflict allocation is
implemented, as described in [87]. If no agent has chosen “Opt,” but at least one
of the agents has rejected the offer, the negotiation proceeds to the next time
period and another agent proposes an allocation, the other agents respond, and
so on.

In the strategic-negotiation model there are no rules which bind the agents
to any specific strategy. We do not make any assumptions about the offers the
agents make during the negotiation. In particular, the agents are not bound to
any previous offers that have been made. After an offer is rejected, an agent
whose turn it is to suggest a new offer can decide whether to make the same
offer again, or to propose a new offer. The protocol only provides a framework
for the negotiation process and specifies the termination condition, but there is
no limit on the number of periods.

A fair and reasonable method for deciding on the order in which agents will
make offers is to arrange them randomly in a specific order before the negotiation
begins.5 That is, the agents will be denoted randomly A1, .., AN . At each time
t, j(t) will be Ai where i is equal to (t mod N) + 1.

The set of possible agreements is denoted S. An outcome of the negotiation
may be that an agreement s ∈ S will be reached at time t ∈ T . This outcome
is denoted by a pair (s, t). When one of the agents opts out of the negotiations
at time period t ∈ T , the outcome is denoted (Opt, t). For example, in the data
allocation scenario (example 1), an agreement is an allocation which assigns
each data item to one of the servers. In this case S is the set of all possible
allocations. The symbolDisagreement indicates a perpetual disagreement, i.e.,
the negotiation continues forever without reaching an agreement and without any
of the agents opting out.

The agents’ time preferences and the preferences between agreements and
opting out are the driving force of the model. They will influence the outcome of
the negotiation. In particular, agents will not reach an agreement which is not
at least as good as opting out for all of them. Otherwise, the agent which prefers
opting out over the agreement, will opt out.

Negotiation Strategies An agent’s negotiation strategy specifies for the agent
what to do next, for each sequence of offers s0, s2, s3, ..., st. In other words, for
the agent whose turn it is to make an offer, it specifies which offer to make next.
That is, it indicates to the agent which offer to make at t + 1, if in periods 0
until t the offers s0, ..., st had been made and were rejected by at least one of
the agents, but none of them has opted out. Similarly, in time periods when it is
the agent’s turn to respond to an offer, the strategy specifies whether to accept

5 A distributed algorithm for randomly ordering the agents can be based on the meth-
ods of [6].
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the offer, reject it or opt out of the negotiation. A strategy profile is a collection
of strategies, one for each agent [63].

Subgame Perfect Equilibria The main question is how a rational agent will
choose its negotiation strategy. A useful notion is the Nash Equilibrium [57,47]
which is defined as follows:

Definition 1 (Nash Equilibrium). A strategy profile F = {f1, ..., fN} is a
Nash equilibrium of a model of alternating offers, if each agent Ai does not have
a different strategy yielding an outcome that it prefers to that generated when
it chooses fi, given that every other agent Aj chooses fj. Briefly, no agent can
profitably deviate, given the actions of the other agents.

This means, that if all the agents use the strategies specified for them in
the strategy profile of the Nash equilibrium, then no agent has a motivation
to deviate and use another strategy. However, the use of Nash equilibrium in a
model of alternating-offers leads to an absurd Nash equilibria [102]: an agent may
use a threat that would not be carried out if the agent were put in the position to
do so, since the threat move would give the agent lower payoff than it would get
by not taking the threatened action. This is because Nash equilibrium strategies
may be in equilibrium only in the beginning of the negotiation, but may be
unstable in intermediate stages. The concept of subgame perfect equilibrium
(SPE) [63], which is a stronger concept, is defined in the following definition and
will be used in order to analyze the negotiation.

Definition 2 (Subgame perfect equilibrium:). A strategy profile is a sub-
game perfect equilibrium of a model of alternating offers if the strategy profile
induced in every subgame is a Nash equilibrium of that subgame.

This means that at any step of the negotiation process, no matter what the
history is, no agent has a motivation to deviate and use any strategy other than
that defined in the strategy profile.

In situations of incomplete information there is no proper subgame. The se-
quential equilibrium [42], which takes the beliefs of the agents into consideration,
can be used in the incomplete information situations.

Example 2. The application of the strategic-negotiation model to the data allo-
cation problem of example 1 was presented in [3] . Using this model, the servers
have simple and stable negotiation strategies that result in efficient agreements
without delays. It was shown that these methods yield better results than the
static allocation policy currently used in EOSDIS (see Example 1).

In particular, it was shown that when servers negotiate to reach an agreement
on the allocation of data items and they have complete information various
agreements can be reached. It was proved that for any possible allocation of the
data items that is not worse for any of the agents than opting out, there is a
set of stable strategies (one for each server) which leads to this outcome. That
is, suppose alloc is a specific allocation which all the servers prefer than opting
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out of the negotiation. A strategy for each of the servers can be designed such
that the strategy profile will be an equilibrium. If the servers use this strategy
profile, the negotiations will end at the first time period of the negotiation with
the agreement alloc.

The details of the allocations that are not worse for any of the agents over
opting out depend on the specific settings of the environment in a given negoti-
ation session. Thus, there is no way to identify these allocations in advance. In
addition, there are usually several allocations which are not worse for any of the
agents than opting out. Finding all these allocations is intractable. In addition,
after identifying these allocations the servers should agree upon one of them as
the basis for the negotiation.6 Of course, each of the servers may prefer a differ-
ent allocation because it may yield a higher utility. A mechanism by which the
servers can choose one of these profiles of stable strategies is presented. It leads
to satisfactory results for all of the servers. In this mechanism each server pro-
poses an allocation and the one which maximizes a social welfare criterion (e.g.,
the sum of the servers’ utilities) is selected. Several heuristic search algorithms
to be used by the servers to find such allocations were proposed.

There are situations where the servers have incomplete information about
each other. For such situations a preliminary step was added to the strategic
negotiation where the servers reveal some of their private information. When the
servers use the revelation mechanism, it is beneficial for them to truthfully report
their private information. After the preliminary step, the negotiation continues
as in the complete information case and yields better results for all the servers
than the static allocation policy currently used in EOSDIS. Thus, the overall
process in this case is: First, each server broadcasts its private information. If
a lie is detected, then the liar is punished by the group. In the next step each
server searches for an allocation and then simultaneously each of them proposes
one. The allocation which maximizes the pre-defined social-welfare criterion is
selected. Then, the servers construct the equilibrium strategies based on the
chosen allocation and they start the negotiation using the alternating offers
protocol. In the first step of negotiations, the first agent proposes the selected
allocation, and the others accept it.

In addition to the theoretical results, simulation results which demonstrate
the effect of different parameters of the environment on the negotiation results
are also presented. For example, when the servers are more willing to store data
locally, better agreements can be reached. The reason for this is that in such
situations there are less constraints on finding agreements which are better for
all the servers than opting out, and it is easier to find a beneficial compromise.
The servers are more willing to store data locally when the storage costs and the
cost of delivery of documents stored locally to other servers is low.

In summary, the strategic negotiation model provides a unified solution to
a wide range of problems. It is appropriate for dynamic real-world domains.

6 In game-theory terminology, the game has multiple equilibria and the problem of
the players is to convert into one of them.
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In addition to the application of the strategic-negotiation model to data allo-
cation problems in information servers, it was applied to resource allocation
and task distribution problems, and the pollution allocation problem [38]. In
all these domains the strategic-negotiation model provides the negotiators with
ways to reach mutually beneficial agreements without delay. The application of
the strategic-negotiation model to human high pressure crisis negotiations was
also studied [113,41].

In the next section we will discuss using auctions, another game-theory based
technique, for reaching agreements in multiagent environments.

3 Auctions for Resolving Conflicts

In many domains agreements should be reached by the agents concerning the
distribution of a set of items. For example, in the information server environment,
the agents need to decide on the allocation of datasets, i.e., the items under
consideration are datasets. In resolving conflicts on the scheduling of the usage
of a resource, an agreement should be reached on the time slots to be assigned
to each agent. When the agents need to decide on task assignments, then the
items are the tasks and a decision should be made on which agent will carry
out a given task. Most of these conflicts can be resolved efficiently by providing
the agents with a monetary system, modeling them as buyers and sellers, and
resolving the conflicts using a money transfer [71]. For example, a server may
“sell” a dataset to another server when relocating this dataset; a subcontractor
may be paid in order to carry out a task.

Auctions have become an area of increased interest since a huge volume of
economic transactions is conducted through these public sales. The formation of
virtual electronic auction houses on the Internet [21] such as eBay [12] has even
increased the interest in auctions.

There are two patterns of interactions in auctions. The most common are
one-to-many auction protocols [79,1,17] where one agent initiates an auction
and a number of other agents can bid in the auction, or many-to-many auction
protocols [115] where several agents initiate an auction and several other agents
can bid in the auction. Given the pattern of interaction, the first issue to deter-
mine is the type of protocols to use in the auction [34]. Given the protocol, the
agents need to decide on their bidding strategy.

There are several types of one-to-many auctions which are used, including the
English auction, first-price sealed-bid auction, second-price sealed-bid (Vickery
auction), and the Dutch auction. The English auction is an ascending auction
in which the price is successively raised until only one bidder remains, and that
bidder wins the item at the finial price. In one variant of the English auction the
auctioneer calls higher prices successively until only one willing bidder remains,
and the number of active bidders is publicly known at all times. In other variants
the bidders call out prices themselves, or have the bids submitted electronically
and the best current bid is posted. The first-price sealed bid auction is a sealed-
bid auction in which the buyer making the highest bid claims the object and
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pays the amount he has bid. The second-price auction is a sealed-bid auction
in which the buyer making the highest bid claims the object, but pays only
the amount of the second highest bid. In the Dutch auction, the auctioneer
begins by naming a very high price and then lowers it continuously until some
bidder stops the auction and claims the object for that price. In real world
situations, each auction has its advantages and drawbacks [34,53]. In order to
test various auction protocols in and to compare bidding strategies, a series
of open-invitation events are conducted. These events are featuring software
agents from all over the world competing in a market game. The agents need to
bid to obtain travel packages for their clients [111]. Sandholm [83] surveys the
existing auction protocols, and discusses certain known and new limitations of
the protocol for multiagent systems, such as the possibility of bidder collusion
and a lying auctioneer.

The Vickrey auction [107] is widely used in DAI [72,26,88,105,104] and in
research on electronic commerce [105,104] for the case of one-to-many auctions.
Under various assumptions, this protocol is incentive compatible, which means
that each bidder has incentives to bid truthfully.

We demonstrate the application of the Vickery auction in the data-allocation
problem.

Example 3. An auction protocol can be applied to the data-allocation problem
discussed in examples 1 and 2 when a server is concerned with the data stored
locally, but does not have preferences concerning the exact storage location of
data stored in remote servers. For example, when each server provides informa-
tion directly to a client which requires it, and obtains payments directly from
this client.7 According to this approach, the location of each data unit will be
determined using an auction protocol, where the server bidding the highest price
for obtaining the data will actually obtain it, but will pay the second-highest
bid. This approach yields an efficient and fair solution [88], its implementation
is simple, and the servers are motivated to offer prices which really reflect their
utility.

There are situations in which the value of some items to a bidder depends
upon which other items he or she wins. In such cases, bidders may want to submit
bids for combinations of items. Such auctions are called combinatorial auctions.
The main problem in combinatorial auctions is to determine the revenue maxi-
mizing set of non-conflicting bids. The general problem is NP-complete. Several
researchers have been trying to develop polynomial algorithms, either for spe-
cific cases (e.g., [76]) or for finding sub-optimal solutions (e.g., [46,15,27].) Nisan
[58] considers bidding languages and the allocation algorithm for combinatorial
auctions.

7 Note that the auction mechanism is not applicable in the environments that are
considered in examples 1 and 2 where each server is concerned with the exact location
of each dataset. In the auction mechanism if a server would like to store a dataset it
can make a high bid, however, there is no way for a server to influence the location
of datasets which are not stored locally.
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Double auction is the most known auction protocol for many-to-many auc-
tions. In a double auction, buyers and sellers are treated symmetrically with
buyers submitting bids and sellers submitting minimal prices [114]. There are
several algorithms used for matching buyers and sellers and for determining the
transaction price. Preferably, the protocol will be incentive compatible, individual
rational and Pareto optimal [115]. As mentioned above, an auction is incentive
compatible if the agents optimize their expected utilities by bidding their true
valuations of the goods. An auction is individual rational if participating in an
auction does not make an agent worse off than not participating.

In the next section we will discuss an economic-based mechanism for dis-
tributed allocation which consists of auctions.

4 Market-Oriented Programming

Market-oriented programming is an approach to distributed computation based
on market price mechanisms [109,112,16].

The idea of market-oriented programming is to exploit the institution of
markets and models of them, and to build computational economies to solve
particular problems of distributed resource allocation. This is inspired in part
by economists’ metaphors of market systems ”computing” the activities of the
agents involved. The modules, or agents, interact in a very restricted manner–by
offering to buy or sell quantities of commodities at fixed unit prices. When this
system reaches equilibrium, the computational market has indeed computed the
allocation of resources throughout the system, and dictates the activities and
consumptions of the various modules
(http://ai.eecs.umich.edu/people/wellman/MOP.html). Note that this approach
does not necessarily require money transfer and it is applicable when there is
incomplete information. However, it is applicable only when there are several
units of each kind of goods and when the number of agents is large. Otherwise,
it is not rational for the agents to ignore the effect of their behavior on the
prices when they actually have an influence. Another issue is that there are
situations in which reaching an equilibrium may be time consuming, and the
system may not even converge [112]. It also requires some mechanism to manage
the auctions, (possibly, a distributed mechanism, one for each type of goods.)
A survey and a general discussion on the market-programming approach can be
found in [112,110]. http://www2.elec.qmw.ac.uk/˜mikeg/text.html is a market
based multi agent systems resource page.

5 Coalition Formation

Another important way for agents to cooperate is by creating coalitions [86,91,92].
The formation of coalitions for executing tasks is useful both in Multi-Agent Sys-
tems (MA) and Distributed Problem Solving (DPS) environments. However, in
DPS, there is usually no need to motivate the individual agent to join a coali-
tion. The agents can be built to try to maximize the overall performance of
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the system. Thus, only the problem of which coalitions should be formed (i.e.,
the structure of the coalitions) for maximizing the overall expected utility of
the agents should be considered. However, finding the coalition structure that
maximizes the overall utility of the system is NP-complete.

In Multi-Agent Systems (MA) of self-interested agents, an agent will join a
coalition only if it gains more if it joins the coalition than it could gain previously.
Thus, in addition to the issue of the coalition structure, the problem of the
division of the coalition’s joint utility is very important. Game theory techniques
for coalition formation can be applied for solving this problem. Work in game
theory such as [69,93,108,117] describes which coalitions will form in N-person
games under different settings and how the players will distribute the benefits
of the cooperation among themselves. This is done by applying several related
stability notions such as the core, Shapley value and the kernel [30]. Each of the
stability notions is motivated by a different method of measuring the relative
strengths of the participating agents. However, the game-theory solutions to the
coalition formation problem do not take into consideration the constraints of a
multiagent environment, such as communication costs and limited computation
time, and do not present algorithms for coalition formation.

The coalition formation of self-interested agents in order to satisfy goals is
considered in [92]. Both the coalition structure and the division of the utility
problems are handled. An anytime algorithm for forming coalitions that sat-
isfy a certain stability based on the kernel stability criteria is developed. The
properties of this algorithm were examined via simulations which showed the
model increases the benefits of the agents within a reasonable time period, and
more coalition formations provide more benefits to the agents. These results were
applied to the formation of coalitions among information agents [35].

Sandholm et al. [80] focused on establishing the worst case bound on the
coalition structure quality while only searching a small fraction of the coalition
structures. They show that there is a minimal number of structures that should
be searched in order to establish a bound. They present an anytime algorithm
that establishes a tight bound within this minimal amount of search. If the
algorithm is allowed to search further, it can establish a lower bound.

Sandholm and Lesser [84] developed a coalition formation model for bounded
rational agents and present a general classification of coalition games. They
concentrate on the problem of computing the value of a coalition and in their
model this value depends on the computation time available to the agents.

Zlotkin and Rosenschein [118] study the problem of the utility division in
Subadditive Task Oriented Domains that is a subset of the Task-Oriented Do-
mains (see section 2.1). They consider only the grand coalition structure where
all the agents belong to the same coalition and provide a linear algorithm that
guarantees each agent an expected utility that is equal to its Shapley value.
Ketchpel [33] presents a utility distribution mechanism designed to perform in
similar situations where there is uncertainty in the utility that a coalition ob-
tains.
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Coalition formation in DPS environments in order to perform tasks is con-
sidered in [91]. In this case, only the coalition structure problem is considered.
Efficient distributed algorithms with low ratio bounds and with low computa-
tional complexities are presented. Both agent coalition formation where each
agent must be a member of only one coalition and overlapping coalitions are
considered.

6 Contracting

An agent may try to contract out some of the tasks that it cannot perform
by itself, or that may be performed more efficiently by other agents. One self-
interested agent may convince another self-interested agent to help it with its
task, by promises of rewards.

The main question in such a setting is how one agent can convince another
agent to do something for it when the agents do not share a global task and
the agents are self-interested. Furthermore, if the contractor-agent can choose
different levels of effort when carrying out the task, how can the manager-agent
convince the contractor-agent to carry out the task with the level of effort that
the manager prefers without the need of the manager’s close observation.

The issue of incentive contracting has been investigated in economics and
game theory during the last three decades (e.g., [2,74,70,18,25,43]) These works
in economics and game theory consider different types of contracts for different
applications. Examples of these are contracts between a firm and an employer
or employers (e.g., [55,4,5,48]); a government and taxpayers (e.g., [9]); a land-
lord and a tenant (e.g., [2]); an insurance company and a policy holder (e.g.,
[78,24,98,45]); a buyer and a seller (e.g., [50,54]); a government and firms (e.g.,
[51]); stockholders and managements (e.g., [2]); a professional and a client [90],
etc. In these situations two parties usually exist. The first party (called “the
agent” in economics literature) must choose an action or a level of effort from
a number of possibilities, thereby affecting the outcome of both parties. The
second party (named “the principal”) has the additional function of prescribing
payoff rules. Before the first party (i.e., the agent) chooses the action, the prin-
cipal determines a rule (i.e., a contract) that specifies the fee to be paid to the
other party as a function of the principal’s observations. Despite the similarity
of the above applications, they differ in several aspects, such as the amount of
information that is available to the parties, the observations that are made by
the principal, and the number of agents. Several concepts and techniques are ap-
plied to the principal-agent paradigm in the relevant economics and game theory
literature.

A well-known framework for automated contracting is the Contract Net pro-
tocol. It was developed for DPS environments where all the agents work on the
same goal. In the Contract Net protocol a contract is an explicit agreement be-
tween an agent that generates a task (the manager) and an agent that is willing
to execute the task (the contractor). The manager is responsible for monitoring
the execution of a task and processing the results of its execution, whereas the
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contractor is responsible for the actual execution of the task. The manager of a
task announces the task’s existence to other agents. Available agents (potential
contractors) then evaluate the task announcements made by several managers
and submit bids for the tasks they are suited to perform. Since all the agents
have a common goal and are designed to help one another, there is no need to
motivate an agent to bid for tasks or to do its best in executing them if its bid
is chosen. The main problems addressed by [95,97,96] are task decomposition,
sub-tasks distribution, and synthesis of the overall solution.

The Contract Net was used in various domains [65,60,49,89]. For example,
a modified version of the Contract Net protocol for competitive agents in the
transportation domain was presented in [79]. It provides a formalization of the
bidding and the decision awarding processes, based on marginal cost calcula-
tions according to local agent criteria. More important, an agent will submit
a bid for a set of delivery tasks only if the maximum price mentioned in the
tasks’ announcement is greater than what the deliveries will cost that agent. A
simple motivation technique is presented to convince agents to make bids; the
actual price of a contract is half way between the price mentioned in the task
announcement and the bid price.

Contracting in various situations of automated agent environments is consid-
ered in [37] . These situations include certainty vs. uncertainty, full information
vs. partial information, symmetric information vs. asymmetric information and
bilateral situations vs. situations where there are more than two automated
agents in the environment. For each of these situations appropriate economic
mechanisms and techniques that can be used for contracting in automated agents
environments are fitted from the game theory or economics literature. In all the
situations that are considered, the agent that designs the contract is provided
with techniques to maximize its personal expected utilities, given the constraints
of the other agent(s).

Sandholm and his colleagues [81,82] developed a backtracking method called
leveled commitment contract where each party can unilaterally decommit to a
contract by paying a predetermined penalty. They show that such contracts
improve expected social welfare even when the agents decommit strategically in
Nash equilibrium.

7 Logical Approaches to Argumentation

Several researchers developed frameworks for negotiation through argumentation
in which agents exchange proposals and counter-proposals backed by arguments
that summarize the reasons why the proposal should be accepted. The argumen-
tation is persuasive because the exchanges are able to alter the mental state of
the agents involved.

Most of these framework are based on logical models of the mental states
of the agents representing, for example, their beliefs, desires, intentions, and
goals. The formal models are used in two manners. One use is as a specification
for agent design [19]. In this role, the model constrains certain planning and
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negotiation processes. It can also be used to check the agents’ behavior. Another
use of the model is by the agents themselves.

Parsons and Jennings [64] drew upon a logic of argumentation to devise a
system of argumentation and use it to implement a form of dialectic negotiation.
In their context, an argument is a sequence of logical steps indicating support or
doubt of a proposition. They have a function of flattening, which can measure
the set of arguments into some metric of how favored the proposition is, by
determining which class of acceptability the arguments belong to.

Qiu and Tambe [67] focus on negotiations between team members to re-
solve conflicts that arise from conflicting beliefs about different aspects of their
environment, about resource availability, and about their own or teammates’
capabilities and performance. The basis of such negotiations is inter-agent argu-
mentation where agents assert their beliefs to others, with supporting arguments.
Their approach is implemented in a system called CONSA (COllaborative Ne-
gotiation System based on Argumentation).

In [40] a logic is used in the above two ways. Using categories identified in
human multi-agent negotiation, demonstrate how the logic can be used to specify
argument formulation and evaluation. Furthermore, [40] presents a general Au-
tomated Negotiation Agent which was implemented, based on the logical model.
Using this system, a user can analyze and explore different methods to negotiate
and argue in a non-cooperative environment where no centralized mechanism
for coordination exists. The development of negotiating agents in the framework
of the Automated Negotiation Agent is illustrated with an example where the
agents plan, act, and resolve conflicts via negotiation in a Blocks World environ-
ment.

The formal model of [40] consists of a set of agents, not necessarily coopera-
tive, with the ability to exchange messages. Their mental states are characterized
by using the notions of beliefs, goals, desires, intentions, and local preferences.
Each agent has a set of desires. The agent’s activities are motivated by the will to
fulfill these desires. At any given time, an agent selects a consistent subset of its
desires. This serves as its set of current goals. An agent ascribes different degrees
of importance to different goals. It prefers to fulfill goals of higher importance.
The set of goals motivate the agent’s planning process.

The planning process may generate several intentions. Some of these are
in what we would like to classify as the “intend-to-do” category and refer to
actions that are within the direct control of the agent. Others are among the
“intend-that” category [8,19,20,106]. These are propositions not directly within
the agent’s realm of control, that it must rely on other agents for satisfying.8

Often, there is room for argumentation when intend-that actions are part of a
plan. Argumentation is the means by which an agent, the persuader, attempts
to modify the intention structure of another agent, the persuadee, to include

8 The proposition may include a negation. When fulfillment of the proposition is be-
yond the control of the agent, it can be achieved by convincing another agent to
abandon a relevant intention, or by convincing it to take an action that will make
the proposition true.



Automated Negotiation and Decision Making in Multiagent Environments 165

the actions the persuader wants it to do. While an agent tries to influence the
intentions of other agents, other agents may try to convince it as well. The role
of persuader and persuadee is not fixed, but dynamically assumed during the
agent interactions. Thus, during a negotiation process, each agent may update
its intentions and goals after receiving a message from another agent. If the argu-
mentation happens to fail, the agent which sent it must revise its arguments, its
plans, and/or seek other sources of satisfying the portion of its plan in question.

An agent’s belief set includes beliefs concerning the world and beliefs con-
cerning mental states of other agents. An agent may be mistaken in both kinds
of beliefs. It may update its beliefs by observing the world and after receiving
messages from other agents. Each agent’s actions are based upon its mental
model of other agents.

Arguments serve either to add an intention to the persuadee’s set or to retract
an intention or to change the preferences of the persuadee. Below we present a list
of several argument types. These argument types are not meant to constitute an
exhaustive typology of arguments. Indeed, it has been pointed out [103] that it is
not possible to present such an authoritative classification, since arguments must
be interpreted and are effective within a particular context and domain. The six
argument types that we present are ones that are commonly thought to have
persuasive force in human negotiations [61,31,66]. Argumentations which were
shown to be successful in human negotiation, may be also successful in automated
agents’ negotiations. Furthermore, we want our agents to be able to negotiate
with humans, and therefore they need to be able to at least understand human
argumentation. Moreover, the designers of the agents can follow the negotiation
of the agents, if it is similar to human negotiation. The argument types we
present are:

1. Threats to produce goal adoption or goal abandonment on the part of the
persuadee.

2. Enticing the persuadee with a promise of a future reward.
3. Appeal to past reward.
4. Appeal to precedents as counterexamples to convey to the persuadee a con-

tradiction between what she/he says and past actions.
5. Appeal to “prevailing practice” to convey to the persuadee that the proposed

action will further his/her goals since it has furthered others’ goals in the
past.

6. Appeal to self-interest to convince a persuadee that taking this action will
enable achievement of a high-importance goal.

Threats and promises are the most common arguments used in human nego-
tiations [7]. An appeal to prevailing practice is the most common argument used
in the legal system. Furthermore, it was found that presenting example instances
(prevailing practice cases) is much more persuasive than presenting statistical
summaries [36,101,59,23]. An “appeal to past promise” is supported by the cog-
nitive dissonance theory [61] that assumes that a person seeks to maximize the
internal psychological consistency of his/her cognition, and thus will be willing to
keep his/her promises. This argument is also important in repeated interactions
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since agents prefer to maintain their credibility. The other two arguments, “an
appeal to self interest” and “a counter example” are examples of arguments use-
ful to persuade bounded rational agents which have limited inferential resources.
More discussion on these arguments can be found in [40].

8 Conclusions

Game-theory and economics techniques seem to be very useful in the develop-
ment of self-interested automated agents that act in a well-defined environment.
Logical models provide a framework for argumentations. In this paper we em-
phasized formal techniques. We believe that using them in multi-agent systems
is beneficial because there is a need to provide the agents with well-designed
algorithms.

The choice of the specific technique for a given domain depends on the spec-
ification of the domain. For example, whether the agents are self interested, the
number of agents in the environment, the type of agreement that they need to
reach, and the amount and the type of information the agents have about each
other.

While negotiation has been studied in other disciplines for many years, the
study of negotiations of multi-agent environment is relatively new. In particular,
there are many open questions with respect to applying formal models to multi-
agent environments. The main challenge is how to maintain the useful results of
the formal models, while adjusting them to real-world applications.
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