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1. INTRODUCTION

Recent years have seen a rapid increase in the number of online auction sites
that allow both private individuals and businesses to trade goods within a vir-
tual worldwide market (prominent examples included eBay, uBid, and Yahoo!).
While there are many minor implementation differences between these online
auctions (e.g., the availability of proxy bidding services, the use of a fixed or vari-
able auction duration, and the ability to set both starting and reserve prices),
these auctions have been modelled on real-world counterparts, and thus, in gen-
eral, they all share two common features [Lucking-Reiley 2000]. First, they are
predominantly based on the ascending price English auction, whereby bidders
submit bids to an auctioneer in an open fashion and the auction price increases
until no bidder is willing to bid higher1. Second, they typically exhibit discrete
bid levels, whereby the bids that the bidders may submit within the auction are
restricted to certain levels either through a minimum bid increment that the
next bid must exceed (as in eBay) or by forcing the auction price to increment
through a set of predetermined price levels (as in the popular Israeli auction
site www.olsale.com).

In contrast, the academic literature on auction theory has almost solely con-
sidered auctions in which the bid increment is continuous, and thus bidders
may submit extremely small increments in order to outbid the current highest
bidder. As such, it has typically been assumed that neither the bidders nor the
auctioneer have any time constraints and that bidding is not a costly process.
However, the prevalence of the discrete bid protocols within both real-world
and online auctions challenges both these assumptions. More significantly, the
existence of discrete bid levels causes many of the well-known results from
the continuous bid auction literature to fail. For example, the bidders within
the auction no longer have a dominant bidding strategy as they must decide
whether or not to bid at each bid level [Yu 1999]. In addition, as the item is
no longer guaranteed to be allocated to the bidder with the highest valuation,
the revenue equivalence theorem2 no longer holds, and thus the revenue of the

1The multiple-item Dutch auctions of eBay and the sealed bid Name-Your-Own Price auctions of

Priceline are prominent exceptions to this rule.
2The revenue equivalence theorem states that all feasible efficient auction protocols will yield the

same revenue at equilibrium. For example, consider a group of bidders with private valuations

drawn from a common distribution attempting to buy an item within an auction. If the auctioneer

implements a second-price sealed bid auction, then there exists a Nash equilibrium in dominant

strategies at which each bidder truthfully bids their valuation. Alternatively, if the auctioneer

implements a first-price sealed bid auction, then there exists a Bayes-Nash equilibrium at which

each bidder shades their bid by an amount dependent on their common beliefs regarding the

number of bidders participating and the distribution that describes their valuations. In both cases,

the auctions’ outcomes are efficient (i.e. they are guaranteed to allocate the item to the bidder with

the highest valuation), and thus both auction protocols generate the same expected revenue for the

auctioneer.
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auction will be dependent on the specific implementation details such as the
number and distribution of the discrete bid levels [Chwe 1989].

Thus, despite the widespread use of discrete bid levels, the standard aca-
demic auction literature provides little insight or guidance for an auctioneer
attempting to maximize its revenue. In real-world auctions, an auctioneer typi-
cally uses a combination of intuition and historical experience to adjust the bid
increments (and hence the discrete bid levels through which the auction price
increases) during the course of the auction [Cassidy 1967]. However, since our
ultimate goal is to automate the configuration of online auctions such human
interventions are not applicable, and we require a more theoretical understand-
ing of how the discrete bid levels affect the properties of the auction. What little
work has been done in this area has addressed the question for very limited
cases (see Section 2 for more details). For example, Rothkopf and Harstad [1994]
considered several cases where the number of bidders or the number of discrete
bid levels was restricted to two. In the case of two bidders with valuations that
are independently drawn from a uniform distribution, they showed that it was
optimal to use a fixed bid increment with evenly spaced bid levels. However, it
proved difficult to generalize these results to instances with larger numbers of
bidders whose valuations were drawn from arbitrary distributions.

Against this background, it is our aim to address this lack of guidance. Specif-
ically, we seek to determine the optimal auction design for English auctions with
discrete bid levels. As described previously, this represents a canonical auction
protocol on which nearly all current online auction protocols are based3. In
particular, we aim to determine both the reserve price of the auction and the
number and distribution of the discrete bid levels that yield the maximum
auction revenue in the general case of an arbitrary number of bidders whose
valuations are drawn from arbitrary distributions. In so doing, we extend the
state-of-the-art in this area in four key ways.

(1) We consider the same model of an ascending price auction with a bounded
number of discrete bid levels that was proposed by Rothkopf and Harstad
[1994]. But rather than considering particular instances with limited num-
bers of bidders or bid levels, we derive for the first time a general expression
for the expected revenue of the auction. This expression relates the expected
auction revenue to the specific discrete bid levels used in that auction and
is valid for any number of bidders and any distribution of bidders’ private
valuations.

(2) We demonstrate how this expression is used to determine the optimal bid
levels analytically, and, in addition, we present an algorithm to calculate
them numerically. In order to compare our results with the earlier work of
Rothkopf and Harstad, we consider two example cases where the bidders’
valuations are drawn independently from a uniform and an exponential dis-
tribution. In the case of the uniform distribution, we prove that when there

3To fully characterise a specific implementation of this auction protocol, it is also necessary to

consider all of the additional implementation details. For example, see Rogers et al. [2007] for a

full discussion of how the proxy bidding system, the minimum bid increment, and the fixed auction

closing time combine to affect the properties of the eBay auction protocol.
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are more than two bidders participating within the auction, a decreasing
bid increment is optimal and thus the interval between bid levels decreases
with each bid level. For the first time, we are able to calculate both ana-
lytically and numerically how this decrease should proceed for any number
of bid levels and for any number of bidders. In addition, in the case of the
exponential distribution, we are able to calculate numerically the optimal
distribution of discrete bid levels.

(3) Building on this analysis, we extend the initial auction model to consider
two additional cases that extend its scope and realism. First, we consider
the more realistic case that the number of bidders within the auction is
not a known fixed value but is described by a Poisson distribution whose
mean the auctioneer knows (or can estimate). Second, we explicitly include
within the model an expression that describes the auctioneer’s costs (e.g.,
an incremental cost for each bid level that the auction progresses through).
As before, we derive expressions for the expected revenue of the auction in
both cases and numerically solve for the optimal discrete bid levels in the
case of uniform and exponential bidders’ valuation distributions.

(4) Finally, in order to develop an intuition into the optimal distribution of the
discrete bid levels, we consider the distribution of these discrete bid levels
when their number approaches infinity (and assuming that in this limit the
bid levels get closer and closer together). In this case, we are able to derive
an analytic expression that describes the density of the discrete bid levels.
We show that this expression is similar (but not identical) to the distribution
of the expected closing price of the auction. However, we show that the later
distribution (which is easier to estimate from historical auction data) can
serve as a good estimate for the former distribution.

The remainder of the article is organized as follows. Section 2 presents related
work, Section 3 introduces the initial auction model that we consider, Section 4
derives a general expression for the expected revenue of the auction, and, in
Section 5, this is used to show how the optimal bid levels can be derived analyt-
ically and determined numerically. Section 6 extends the initial model to cover
the two new cases discussed previously, and we use our numerical algorithm to
calculate the optimal discrete bid levels in these cases. Section 7 considers the
limiting behavior of these discrete bid levels and derives an analytical expres-
sion for their density. Finally, Section 8 concludes and discusses future work.

2. RELATED WORK

The problem of optimal auction design has been studied extensively for the
case of auctions with continuous bid increments and independent private val-
uations [Riley and Samuelson 1981; Myerson 1981]. In such auctions, the rev-
enue equivalence theorem states that all feasible efficient auctions generate the
same revenue, thus the interesting design question concerns the reserve price
of the auction (i.e., in continuous English auctions, the price at which the bid-
ding commences). In general, setting a reserve price increases the revenue of
the auction and, thus, optimal auction design has typically been concerned with
finding the reserve price that maximizes the expected revenue of the auctioneer.
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A key finding in this respect is that the optimal reserve price of the auction is
independent of the number of bidders and is solely dependent on the bidders’
valuation distribution.

In contrast to the literature of continuous bid auctions, the case of discrete
bid levels has received little attention although some preliminary works exists.
Much of this work is based on the assumption that there is a fixed bid increment
and thus the price of the auction ascends in fixed-size steps [Yamey 1972; Chwe
1989; Yu 1999; Bapna et al. 2002, 2003]. In more detail, Yamey [1972] first
considered this scenario and commented that such bidding rules appear to
have the effect of speeding up the auction proceedings and hence reduce the
costs of both the auctioneer and the bidders. He concluded that if the fixed bid
increment is small, the expected revenue of the auction will approximate the
second highest price.

Chwe [1989] also assumed fixed bid increments but considered a first-
price sealed bid auction where bidders’ independent valuations were uniformly
distributed. He showed that a symmetric unique Nash equilibrium bidding
strategy exists and that this equilibrium converges to the equilibrium of the
continuous bid auction as the bid increment reduces to zero. In addition, he
showed that the expected revenue of the discrete bid auction is always less
than that of the equivalent continuous bid auction. Thus, the auctioneer has an
incentive to make the bid increments as small as possible, assuming that the
time and communication costs of the bidding can be ignored.

Yu [1999] also considered auctions with fixed bid increments but studied each
of the four common auction protocols: the first-price sealed-bid, second-price
sealed-bid, English, and Dutch auctions. Extending Chwe’s result, Yu showed
that in each of the auction protocols a symmetric pure strategy equilibrium
exists. Specifically, no dominant strategy was identified for the English protocol.
However, for each of the protocols, she proved that as the number of bid levels
become very large (i.e., the bid increment becomes small), the equilibrium bids
converge to those of the corresponding continuous bid auction.

In contrast to this work, Rothkopf and Harstad [1994] considered the more
general question of determining the optimal number and value of the bid levels.
The authors provided a full discussion of how the discrete bid levels affect the
expected revenue of the auction, and they considered two different distributions
for the bidders’ private valuations: a uniform and an exponential distribution.
In the case of the uniform distribution, they considered two specific instances (i)
two bidders with any number of allowable bid levels, and (ii) two allowable bid
levels and any number of bidders. In the first instance, even spacing of bid lev-
els (i.e., a fixed bid increment) was found to be optimal. In the second instance,
the optimal bid increment was shown to decrease as the auction progressed
(this decrease was described analytically). In the case of the exponential
distribution of bidders’ valuations, the instance of just two bidders was again
considered, and the optimal bid increment was shown to increase as the auction
progressed.

In this article, we extend the work of Rothkopf and Harstad [1994]. We ini-
tially consider the same model of the ascending price auction but derive the op-
timal bid levels in the general case with any distribution of bidders’ valuations,
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any number of bid levels, and any number of bidders. Moreover, we then ex-
tend this model to incorporate the more realistic case that there is uncertainty
in the number of bidders who may enter the auction. In addition, we explicitly
consider the costs of the auctioneer, and, in both cases, we are able to determine
optimal bid levels.

Our work is also closely related to recent results that have been presented in
the context of auctions with severely bounded communication, that is, auctions
in which the bidders must communicate their bid using just t = log2(k) bits,
and thus, can express just k discrete bid values. In this context, Blumrosen
et al. [2007] have presented protocols based on modified priority games that
are superficially similar to sealed bid auctions. They have shown that in the
case that bidders have an a priori priority, they can achieve a dominant strat-
egy equilibrium whereby each bidder adopts a set of valuation intervals (each
one associated with one of the k bids), and then bids the interval into which
their valuation falls. When compared to the optimal case, they show that these
games incur a loss of revenue of order 1

k2 . Similarly, Kress and Boutilier [2004]
have considered a class of incremental limited-precision auctions which are
more similar to the ascending price auctions that we consider here. In order to
enforce dominant bidding strategies, they introduce an auction closing rule that
is similar to our own, and using a bid increment that decreases over time, they
empirically demonstrate their protocol generates revenues close to the optimal.
However, they do not formally analyse the expected revenue of their protocol
but it appears that the analysis that we present here for the ascending price
English auction would be directly applicable within their auction protocol.

3. AUCTION MODEL

Initially, we consider an auction model where n risk-neutral bidders are at-
tempting to buy a single item from a risk-neutral auctioneer. The bidders have
independent private valuations, vi, drawn from a common continuous proba-
bility density function, f (v) within the range [v, v]. This probability density
function has a cumulative distribution function, F (v), and, with no loss of gen-
erality, we can state that F (v) = 0 and F (v) = 1. These bidders participate in
an ascending price auction whereby the bids are restricted to discrete levels
which are determined by the auctioneer. We assume there are m + 1 discrete
bid levels, l0 < l1 < . . . < lm, and we note that the value of m explicitly bounds
the time and costs of the auctioneer (in Section 6, we extend this model to re-
lax this constraint and explicitly consider the costs of the auctioneer). At this
point, we make no constraints on the actual number of these bid levels nor on
the intervals between them.

In the work of Rothkopf and Harstad [1994], a standard oral English auc-
tion was considered. That is, the auctioneer proposes each bid level, and the
first bidder to indicate to the auctioneer his willingness to bid this amount be-
comes the current highest bidder4. In traditional English auction houses, this

4This auction protocol is implemented in many online auctions including the Israeli site

www.olsale.com. In this setting, bidders are presented with a bid button that advances the auction

price by an amount predetermined by the auctioneer each time it is clicked.
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indication is normally accomplished by raising a paddle or by a prearranged
signal to the auctioneer. However, as discussed earlier, there is no dominant bid-
ding strategy within this protocol, and bidders must strategize over whether or
not to bid at each bid level. To simplify their analysis, Rothkopf and Harstad
assumed that the bidders did not attempt to strategize but instead adopted
the simple policy of pedestrian bidding, that is, bidders sequentially raised the
bid price through the discrete bid levels until their own private valuation was
exceeded. Indeed, they showed that in the case of two bidders whose valua-
tions are drawn from any nonincreasing distribution, such as the uniform and
exponential distributions considered here, this policy is an equilibrium.

However, in our work, we modify this standard auction protocol to improve
its applicability within online auctions. Thus, under our protocol, the auction
commences with the auctioneer announcing the first discrete bid level, and
all the bidders have a fixed predetermined time interval in which to indicate
their willingness to pay this bid level. Having received indications from all
willing bidders, the auctioneer then randomly selects one of these bidders and
nominates this bidder as the provisional winner. The auction proceeds with the
price ascending through the discrete bid levels proposed by the auctioneer, and
a provisional winner is randomly selected at each level until either just one
bidder is willing to pay the offered bid price or no bidders are willing to pay the
offered bid price5. At this time, the auction closes. If there is just a single bidder
willing to pay this bid level, then this bidder is the winner. If there are no bidders
willing to pay this bid level, then the item is allocated to the provisional winner
from the previous bid level. To ensure that bidders do not need to strategize
over whether or not to bid at any level, we introduce an additional clearing rule.
Should a bidder find that they are the only bidder willing to pay the current bid
level, and they were also nominated as the provisional winner at the previous
bid level, then the price they pay is that of the previous bid level (i.e., bidders
do not pay more when they find that they have needlessly outbid themselves)6.

Our modified auction protocol has three key properties which make it partic-
ularly attractive within online settings where bidders are increasingly likely to
be automated trading agents rather than humans. First, unlike the standard
oral auction, bidders within our protocol have a simple weakly dominant bid-
ding strategy; they should continue to participate in the auction, and thus bid at
each bid level until the current bid level exceeds their private valuation. Note
that this weakly dominant bidding strategy is particularly attractive within
online auction settings since each bidders’ strategy in unaffected by assump-
tions regarding the rationality of the other bidders. In addition, the bidders’
strategies are also unaffected by the knowledge of whether or not they have
been nominated as the provisional winner at each level. Thus, this nomination

5This protocol is somewhat similar to the Japanese auction except that these auctions typically

operate with a continuous bid increment that precludes the possibility that there is no unique

highest bidder [Cassidy 1967].
6In their study of incremental limited-precision auctions, Kress and Boutilier [2004] employ a more

complex mechanism whereby one bidder is randomly selected and is held out from the next round

of bidding. Their mechanism and ours are interchangeable, however, we believe that ours is easier

to implement in real online auctions.
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need not be made public and need not actually be made until the final winner of
the auction is determined (in the case that there are multiple bidders to select
between), or the payment of the winner is determined (in the case that there is
just a single bidder willing to pay the current bid level)7. Second, as the rounds
of the auction have a predetermined and fixed duration, there is no advantage
in attempting to submit a bid earlier than an opponent, and thus, bidders with
greater computational or communication resources cannot gain an unfair ad-
vantage. Third, bidders may enter and leave the auction at any time and need
not be present at the commencement of the auction (an important considera-
tion where online auctions are subject to communication drop-outs)8. Crucially,
however, the analysis of how an auction using our modified protocol closes at
a particular discrete bid level (presented in the next section) is identical to
the analysis of the standard oral auction performed by Rothkopf and Harstad
[1994]. The extended results that we show are all still applicable within this
original model.

4. THE AUCTION REVENUE

In order to calculate the optimal bid levels, we must first find an expression
for the expected revenue of the auctioneer, given the specific discrete bid levels
used in that auction. Following the work of Rothkopf and Harstad [1994], we
can describe the probability of the auction closing at any particular bid level by
considering three exhaustive and mutually exclusive cases. These three cases
are shown in Figure 1, and they describe all the possible configurations of
bidders’ valuations that lead to the auction closing at a bid level of li. In the
diagram, the valuations of the bidders are shown as circles, and the arrows
indicate which bidder was nominated as the current highest bidder at each bid
level. We can describe each case as follows.

Case 1. Two or more bidders have valuations greater than bid level li, but
none of these bidders have valuations greater than li+1. Thus, once the bid price
has reached li, no bidder is willing to increase the bid any further, and the item
is allocated to the current highest bidder. In this case, the revenue earned by
the auctioneer is less than that which would have been earned in a continuous
auction (i.e., the second-highest valuation), and the outcome may be inefficient
as the item is not necessarily allocated to the bidder with the highest valuation.

Case 2. Two or more bidders have valuations between li and li+1 and a single
bidder has a valuation greater than li+1. As this single bidder was also nomi-
nated when the bid level reached li, none of the other bidders have valuations
sufficient to raise the bid to li+1. Thus, the auction closes at the price li, and the

7Making the nomination public does improve the transparency of the auction since all participants

can understand the outcome of the auction and the amount that the winner pays. This is often

an important reason for using an open ascending price auction as opposed to a sealed bid auction.

However, many successfully online auctions (most notably the proxy bidding service of eBay) op-

erate in a nontransparent way (since the amount that the winner pays is determined by the bid of

the second-highest bidder, and this is not disclosed during the course of the auction).
8Although clearly they may miss the opportunity to buy the item at a low price should there be few

other bidders present.
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Fig. 1. Diagram showing the three cases whereby the auction closes at the bid level li. In each

case, the circles indicate a bidder’s private valuation, and the arrow indicates the bid level at which

that bidder was selected as the current highest bidder.

item is allocated to the bidder with the highest valuation. Again, the revenue
earned by the auctioneer is less than that which would have been earned in a
continuous auction, but the outcome is allocatively efficient.

Case 3. Two or more bidders have valuations between li−1 and li, a single
bidder has a valuation greater than li, but, unlike. Case 2, this bidder was not
nominated when the bid level reached li−1. Thus, this bidder is forced to raise
the bid level, and the auction closes at li rather than at li−1. Again this case is
allocatively efficient, however, the revenue earned by the auctioneer is actually
greater than that earned in a continuous auction.

The expected revenue of the auction is dependent on the probability of each
of these three cases occurring. Each of these probabilities can be described in
terms of the cumulative distribution function of the bidders’ valuations, F (v).
We write P (Case1, li) for the probability that Case 1 occurs, and that the auc-
tion closes at bid level li. This probability can be computed by considering the
probability of having k bidders with valuations between bid levels li and li+1

(this happens with probability [F (li+1) − F (li)]
k) while the other n − k bidders

have valuations below li (this happens with probability F (li)
n−k). Summing

over all possible values of k gives:

P (case1, li) =
n∑

k=2

(n
k

)
F (li)

n−k[F (li+1) − F (li)]
k . (1)

We can perform a similar calculation for Case 2, where we have k bidders
with valuations between li and li+1, one bidder with a valuation greater than
li+1, and n − k − 1 bidders with valuations below li. In this case, we must
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also consider the probability that the bidder with the highest valuation is the
current highest bidder. Under our assumption that this selection is random,
this probability is simply given by 1

k+1
, and thus the whole expression is:

P (case2, li) =
n−1∑
k=1

(
n − 1

k

)
n

k + 1
F (li)

n−k−1[F (li+1) − F (li)]
k[1 − F (li+1)]. (2)

Finally, we consider Case 3, which is identical in form to Case 2 with the
exception that the bidder with the highest valuation was not nominated as
the current highest bidder at bid level li−1 and must thus raise the price to
li. The probability of this occurring is k

k+1
, rather than 1

k+1
as in Case 2. Note

that this description implies that there exists a bid level below li and thus
the expression that we derive is only valid for bid levels l1, . . . , lm. In order to
include the instance in which the auction closes at the bid level l0, we note
that this requires all but one bidder have valuations below l0. Thus, the final
expression is:

P (case3, li)

=

⎧⎪⎨
⎪⎩

nF (l0)n−1[1 − F (l0)] i = 0

n−1∑
k=1

(
n − 1

k

)
kn

k + 1
F (li−1)n−k−1[F (li) − F (li−1)]k[1 − F (li)] i > 0.

(3)

As these three expressions completely describe all the possible ways in which
the auction may close at any particular bid level, we can find the expected
revenue of the auctioneer by simply summing over all possible bid levels and
weighting each by the revenue that it generates, li. Thus the expected revenue
of the auction is given by:

E =
m∑

i=0

li[P (case1, li) + P (case2, li) + P (case3, li)]. (4)

The resulting expression at this stage is extremely complex due to the combi-
natorial sums in Equations (1), (2) and (3). However, as detailed in Appendix A,
it is possible to simplify this expression significantly (noting, in so doing, that,
with no loss of generality we can define F (lm+1) = 1), to give the final result:

E =
m∑

i=0

F (li+1)n − F (li)
n

F (li+1) − F (li)
[li(1 − F (li)) − li+1(1 − F (li+1))]. (5)

This expression is a key result, and many of the results that we present
in this article stem from the fact that we have been able to express the rev-
enue of the auction in a relatively compact form. Unlike previous work that has
considered simple instances of the auction, for example, those with just two
bidders or two bid levels, this expression is for the general case. It relates the
revenue of the auction to the actual bid levels used and is valid for any number
of bid levels, any number of bidders, and for any valuation distribution function
which is described by F (v). Also, unlike the earlier work, we make no assump-
tions about the positions of the first and last bid levels. Whereas Rothkopf and
Harstad [1994] fixed these at the extremes of the bidders’ valuation distribution
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(i.e., l0 = v and lm = v), we make them free parameters and allow them to take
any value. Since l0 is equivalent to the reserve price of the auction, we thus
determine the optimal reserve price and the optimal bid levels by the same
process.

5. OPTIMAL AUCTION DESIGN

The expression derived in the last section describes the expected revenue of the
auction when discrete bid levels l0, . . . , lm are used. Given the constraint of this
fixed number of bid levels, our goal is to attempt to determine their actual val-
ues such that the revenue of the auctioneer is maximised. Initially we present
analytical results applying this methodology to a uniform bidders’ valuation dis-
tribution. However, since it is not always possible to derive analytical results,
we also present a numerical algorithm that is applicable in the general case.

5.1 Analytical Solutions

Now, in order to solve for the discrete bid levels that generate the maximum
expected revenue for the auctioneer, we must find the partial derivatives of the
revenue expression given in Equation (5) with respect to each individual bid
level li. We can then solve the equations ∂E/∂li = 0 to find the values of li that
maximize the revenue.

To perform this differentiation, we must note that each li occurs in the sum-
mation of Equation (5) twice. For example, the bid level l5 occurs in the sum-
mand when i = 5, as F (li) and also in the preceding term when i = 4, as F (li+1).
Thus, for a uniform bidders’ valuation distribution, we substitute the analytical
expression F (li) = li−v

v−v into these two terms and differentiate to give:

∂E
∂li

= (li+1 − v)n − (li−1 − v)n

(v − v)n
+ nli−1(li − v)n−1 − nli+1(li − v)n−1

(v − v)n
. (6)

In order to find the value of li that maximizes the revenue, we can then sim-
ply make this partial derivative equal to zero (i.e. ∂E/∂li = 0) and solve the
resulting expression9. Doing so gives:

li = v + n−1

√
(li+1 − v)n − (li−1 − v)n

n(li+1 − li−1)
. (8)

This expression relates any individual optimal bid level to the bid levels on
either side of it. Thus, if we consider the specific case where n = 2, we can
simplify this expression to:

li = li−1 + li+1

2
. (9)

9Note that the second derivative is given by:

∂2 E

∂l2
i

= n(n − 1)(li−1 − li+1)(li − v)n−2

(v − v)n . (7)

Since li+1 ≥ li−1 and li ≥ li−1 ≥ v , then ∂2 E
∂l2

i
≤ 0. Thus, if solving ∂E/∂li = 0 yields a solution,

then this must be a unique solution that maximizes the revenue.
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Thus, the value of li is midway between li−1 and li+1, and as this is true for all li,
the optimal discrete bid levels are evenly spaced with a fixed bid increment. This
results confirms the analysis of Rothkopf and Harstad [1994] who considered
exactly this two-bidder case. However, given our general model, we can also
consider the case of more bidders (i.e., when n > 2), and, in this case, we can
show that:

li >
li−1 + li+1

2
. (10)

Again this is true for all li so the optimal distribution of bid levels consists
of a decreasing bid increment, whereby the bid levels become closer together
as the auction progresses (see Appendix B for a proof of this result). Thus,
perhaps rather surprisingly, the commonly used fixed bid increment is in fact
only optimal in one very limited case (i.e., when two bidders with uniform
valuation distributions participate).

5.2 Numerical Solutions

When we apply the analytical method previously presented to arbitrary bidders’
valuation distributions, we often find that solving Equation (6) is intractable.
Thus, since we would like to compare the optimal discrete bid levels in the
more general case of arbitrary bidders’ valuation distributions, we must adopt
a numerical approach to maximizing the expected auction revenue. There are
many numerical optimization algorithms available (see Press et al. [1992] for
examples), but two key features of this problem guide our choice. First, since
each term in the summation in Equation (5) contains only pairs of bid levels
(i.e., li and li+1), we note that maximizing this expression or solving ∂E/∂li = 0
is equivalent to solving a tridiagonal set of m + 1 simultaneous equations that
by denoting ∂E/∂li as Gi, we can write as:

G0(l0, l1) = 0

Gi(li−1, li, li+1) = 0 for i = 1 to m − 1 (11)

Gm(lm−1, lm) = 0

Second, the solutions to these equations are constrained by requiring their
ordering to be fixed (i.e., li−1 ≤ li ≤ li+1). Typically, a general-purpose optimiza-
tion package will fail to exploit the first feature and will be heavily constrained
by the second. However, we can produce a simple and efficient numerical al-
gorithm by implementing a version of the Jacobi iteration for solving itera-
tively a system of m + 1 simultaneous equations [Hageman and Young 1981].
That is, while fixing all other bid levels, we find the value of li that maxi-
mizes Equation (5), allowing li to vary in the range li−1 ≤ li ≤ li+1. As shown
in the previous section, between these limits, the expression is well behaved
and has a single maximum that can be found using hill climbing or any other
gradient-based method. We apply exactly the same procedure for the boundary
conditions, allowing l0 to vary in the range v ≤ l0 ≤ l1, and lm to vary in the
range lm−1 ≤ lm ≤ v. Thus, we sequentially update all li and iterate the process
until the bid levels converge to the necessary accuracy.
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Fig. 2. Pseudocode for a numerical algorithm based on Jacobi iteration to calculate solutions for

the optimal bid levels with arbitrary bidders’ valuation distributions.

We present this numerical algorithm in pseudocode in Figure 2 and note
that the expression E(l0, . . . , lm) represents the revenue expression shown in
Equation (5). While our purpose here is not to prove the convergence properties
of this iterative algorithm, in our experiments, it was found to converge reliably
and rapidly, given that a single condition for the initial values of li is satisfied.
Specifically, no bid level may be greater than the upper limit of the bidders’
valuation distribution (i.e., li ≤ v). In the first two lines of the algorithm, we
provide suitable starting conditions for the two valuation distributions that
we consider in the next section. These starting conditions simply uniformly
distribute the discrete bid levels over the range where we expect to find bidders’
valuations.

5.3 Comparison of Bidders’ Valuation Distributions

The numerical solution described in the previous section allows us to calculate
the optimal discrete bid levels for any value of n (i.e., the number of bidders
present in any auction) and any bidders’ valuation distribution. In this sec-
tion, we compare the optimal bid levels over a range of values of n for two dif-
ferent bidders’ valuation distributions; the exponential distribution proposed
by Rothkopf and Harstad [1994] and the uniform distribution. To allow us to
compare these two directly, we chose their parameters so that the expected
closing prices of the auctions are similar. Thus, in the case of a uniform dis-
tribution, we consider a range of [0,1] meaning f (v) = 1

v−v and F (v) = v−v
v−v ,

where v = 0 and v = 1. For the exponential distribution, we take f (v) = αe−αv

and F (v) = 1 − e−αv, where α = 4. The resulting optimal discrete bid lev-
els are shown in Figure 3 for three different numbers of bidders (n = 2,
10, and 20) and over a continuous range from 2 to 20. In both cases, we use
10 bid levels (i.e., m = 10) as this makes clear the differences between the two
cases10.

10Note that while changing the number of bid levels does affect their value, it does not affect the

general form of the distribution seen in the plot.
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Fig. 3. Optimal bid levels for (a) uniform and (b) exponential bidders’ valuation distributions for

the initial auction model.

Rothkopf and Harstad [1994] and our preceding analytical analysis proved
that when there are two bidders whose valuations are drawn from a uniform
distribution, the optimal discrete bid levels are evenly spaced with a fixed bid
increment. This same result is observed in our numerical results . In addition,
when there are more than two bidders, we observe that the optimal bid levels
become closer together, and the bid increment decreases as the bid price in-
creases as proved in the previous section. The case of the exponential valuation
distribution is more complex. When there are two bidders, we see an increasing
bid increment as was shown by Rothkopf and Harstad. However, as the number
of bidders increases, we observe that, rather than increasing, the bid increment
initially decreases, reaches a minimum size, and then increases again.

We also observe that, in both cases, as the number of bidders increases, the
value of the first bid level, l0, increases. Rothkopf and Harstad [1994] fixed the
values of the first and last bid level at the extremes of the valuation distribution
(i.e., for the uniform case, l0 = v and lm = v). However, we make no such
restriction, and thus the values of l0 and lm are optimized at the same time as
the other bid levels11. Since l0 is equivalent to the reserve price of the auction

11This is particularly important in the case of the exponential distribution where the upper limit

of the probability distribution is infinity. We do not force lm = ∞ and thus make more efficient use

of the constrained number of bid levels.
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(i.e., the item will not sell if there are no bidders willing to pay at least l0),
the results indicate that, in contrast to the literature of optimal continuous
bid auctions, the optimal reserve price of an auction with discrete bid levels is
dependent on the number of bidders. In general, we see that when the number of
bid levels is large, or the number of bidders is small, the value of l0 tends toward
the optimal reserve price of the equivalent continuous bid auction (i.e., given by
Riley and Samuelson [1981]: v∗ = [1 − F (v∗)]/F ′(v∗). For the uniform valuation
distribution, v∗ = max(v, v/2), and for the exponential valuation distribution
v∗ = 1/α).

Naı̈vely, our intuition would guide us to suggest that given a fixed number
of bid levels, we should position them closer together in areas where they are
most likely to differentiate the bidders with the highest valuations. Thus, in the
case of the uniform distribution, the bid levels become closer together nearer
to the upper limit of the distribution, while in the exponential distribution,
they become closer together in the area where we expect to find the bidder with
the second-highest valuation. In Section 7, we show that this intuition is only
partially correct, and more accurately, we analytically calculate the density
of bid levels by considering the limiting case where the number of bid levels
becomes large.

5.4 Auction Properties

Having shown that we can derive both numerical and analytical solutions for
the optimal bid levels, we consider how these optimal bid levels affect the prop-
erties of the auction. We consider three properties (i) the expected revenue of
the auction (i.e., the property that we have maximized in the derivation of the
optimal bid levels), (ii) the expected duration of the auction (measured in terms
of the number of bid levels that the price has been raised through), and (iii) the
allocative efficiency of the auction expressed as the probability that the item
is sold to the bidder with the highest private valuation. Using these measures,
we compare the properties of an auction using optimal discrete bid levels to
one implementing fixed bid increments (i.e., where we use the same number of
discrete bid levels but simply evenly distribute them between v and v). Note
that this comparison can only be made in the case of a bidders’ valuation dis-
tribution with a finite upper limit (such as the uniform distribution considered
here) since otherwise we have no way of determining the actual value of the
fixed bid increment to use.

To this end, we consider bidders’ private valuations drawn uniformly on
[0, 1], and we assume bid levels from l0 to l10. For each number of bidders
in the range 2 to 20, we use our numerical algorithm to find the optimal bid
levels and then, given these bid levels, we calculate the expected revenue, du-
ration, and efficiency of the auction12. We then compare these measures to
those calculated when a fixed bid increment is used and present the results in
Figure 4.

12The first measure is simply calculated using the revenue expression shown in Equation (5). See

Appendix C for details of the calculation of the other two measures.
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Fig. 4. Comparison of the expected revenue and duration of the auction, and the probability that

the bidder with the highest valuation actually wins the auction when optimal bid levels (solid lines)

and fixed bid increments (dashed lines) are used. Bidders valuations are drawn uniformly on [0,1]

and m = 10.

If we first consider the auction with fixed bid increments, we see that the rev-
enue of the auction increases as the number of bidders increases (Figure 4(a)).
Thus, the auction closes at a higher bid level, and we also see an increase in
the auction duration since bidders must raise the price through more bid levels
in order to reach this closing price (Figure 4(b)). We also see a large loss in
the allocative efficiency of the auction (Figure 4(c)). As the number of bidders
increases, it becomes more likely that the valuations of the highest bidders fall
between the discrete bid levels (Case 1 as described in Section 4). The item is
then allocated randomly to one of these bidders with the corresponding loss of
allocative efficiency and auction revenue.

When optimal discrete bid levels are used, the probability that the high-
est bidders fall between bid levels is reduced. The auction is thus able to
differentiate between the bidders with the highest valuations, and we see a
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substantial improvement in the allocative efficiency of the auction. As expected,
this efficiency improvement also results in an increase in the expected revenue
of the auction. However, the increase is relatively small since clearly the most
that we would expect to improve the revenue of the auction would be of the
same order as the difference between discrete bid levels. In addition, the initial
widely-spaced bid increments and optimal reserve price ensure that the bidders
do not have to raise the auction price too many times before it approaches the
likely closing price. And so we also see a reduction in the expected duration of
the auction.

Note that the improvements in auction revenue, duration and efficiency need
to be set against the potential disadvantages of an auction protocol that is
unfamiliar and more complex to describe (compared to one implementing a
fixed bid increment). However, we believe that this disadvantage will be short-
lived since in the near future much of the actual bidding within online auc-
tions will be performed by automated bidding agents acting on behalf of their
owners [Anthony and Jennings 2003]. Even if this is not the case and a fixed
bid increment is actually favored, it is equally important to be able to calcu-
late and understand the loss in revenue that this explicit design choice has
incurred.

6. EXTENSIONS TO THE INITIAL AUCTION MODEL

Having derived these results for our initial auction model, we consider two
incremental extensions to it that increase its realism and extend its applicabil-
ity. We first consider the more general setting in which the number of bidders
participating in the auction is not fixed but is described by a probability distri-
bution. We then explicitly incorporate a model of the costs of the auctioneer into
the revenue calculation. In both cases, we are able to derive an expression for
the expected revenue of the auctioneer and thus use the numerical algorithm
described in the previous section to calculate representative results.

6.1 Uncertainty in the Number of Bidders

The initial auction model that we considered assumed that the number of bid-
ders in the auction, n, is fixed and known to the auctioneer. In some settings
this may be the case, and thus the auction can be designed using this specific
knowledge of the number of bidders who will participate. However, in general,
this it is not so. It is more likely that while the auctioneer may have an esti-
mate of the number of bidders who will participate, it will be described by a
probability distribution13.

There are a number of candidates for this probability distribution. Levin
and Smith [1994] considered an auction model in which the number of bid-
ders participating was endogenously determined. They modeled a pool of po-
tential bidders and showed that at equilibrium each potential bidder has a fixed

13Indeed, in the case of the standard oral auction, it is not possible to determine the number of

bidders who are participating even once the auction has commenced since, in general, the number

of received bids can be less than the number of participants.
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probability of actually participating in (or entering) the auction. The number of
bidders participating in any auction was thus described by a binomial distribu-
tion. More recently, Bajari and Hortacsu [2003] considered a similar model and
compared their model to data collected from eBay auctions selling collectible
U.S. coins. They note that in such online auctions, the pool of potential bidders is
extremely large. However, the fact that, in general, only a small number of bids
are observed, suggests that the probability that a potential bidder participates
in any individual auction is very low. They deduce that, in such cases, a Poisson
distribution is an appropriate approximation for the binomial proposed by Levin
and Smith. This observation, was confirmed by Jiang and Leyton-Brown [2005]
who compared parameterized models to real eBay auction data and found that
the number of bidders within the auctions was well described by such a Poisson
distribution.14

In light of this work, we describe the number of bidders participating in any
auction by a Poisson distribution where the probability that n bidders partici-
pate is:

P (n) = λne−λ

n!
. (12)

The parameter λ describes the mean of this distribution and therefore repre-
sents the expected number of participants in any individual auction. Given this
distribution, we can extend the expression derived in Section 4 and describe the
expected revenue of the auction in terms of the parameter λ rather than n. To do
so, we simply sum the product of the expected revenue of the auctioneer, given
a fixed number of bidders, En, and the probability of that number of bidders
actually occurring:

Eλ =
∞∑

n=0

P (n)En. (13)

Substituting Equations (5) and (12) into this expression and making use of the
identity

∑∞
n=0

λn

n!
= eλ allows us to derive:

Eλ =
m∑

i=0

eλ[F (li+1)−1] − eλ[F (li )−1]

F (li+1) − F (li)
[li[1 − F (li)] − li+1[1 − F (li+1)]]. (14)

As before, we can use this expression within the numerical algorithm presented
in Section 5.2 to calculate the optimal discrete bid levels. Again, we compare
uniform and exponential valuation distributions, and, in Figure 5, we show
these results for a range of values of λ from 2 to 20. In each case, λ represents the
expected number of bidders, but the actual number of bidders who participate
in an auction is described by the Poisson distribution.

The figure shows that when λ is large, there is little difference between
this case and the case of a fixed number of bidders considered in the previous
sections. This is simply due to that fact that a large value of λ results in a Poisson
distribution with a peak close to λ and a relatively small standard deviation

14Note that Jiang and Leyton-Brown [2005] also attempted to infer the presence of bidders who

participated but did not have valuations sufficient to allow them to bid.
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Fig. 5. Optimal bid levels for (a) uniform and (b) exponential valuation distributions where the

number of bidders participating within the auction is described by a Poisson distribution who

expected value is λ.

√
λ. Thus the results are little different from those with an equivalent value of

n. However, when λ is small, the standard deviation of the Poisson distribution
is larger relative to the mean value, and there is a significant probability that
auctions occur in which the number of bidders differs from the expected value
by a large percentage. It is the effect of having fewer bidders that dominates,
and therefore, we observe that these optimal discrete bid levels are more evenly
spaced, and hence closer to a fixed bid increment. In addition, the value of l0

is lower, and is closer to the optimal reserve price of the equivalent continuous
bid auction.

6.2 Explicit Auctioneer Costs

In the previous analysis, we assumed that a fixed number of discrete bid levels
have been implemented by the auctioneer. This fixed number of discrete bid
levels places a strict bound on the time and costs of the auction, and our goal
has been to calculate the value of these bid levels in order to maximize the
expected revenue of the auctioneer. However, we have not explicitly included
the costs that each bid level incurs when calculating this revenue. Here we do
so by assuming that each bid level that the auction proceeds through costs the
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Fig. 6. Optimal bid levels for (a) uniform and (b) exponential valuation distributions for an auction

where we explicitly model the costs of the auctioneer. In this case, λ = 10, and the cost to the

auctioneer of the auction progressing through each district bid level, c = 0.005.

auctioneer a fixed amount that represents both the time and communication
costs of the auctioneer15. This cost is denoted by c, and it is now simple to
extend the expression for the expected revenue derived in the previous section
to deduct this cost, giving:

E =
m∑

i=0

eλ[F (li+1)−1] − eλ[F (li )−1]

F (li+1) − F (li)

× [[li − c(i + 1)](1 − F (li)) − [li+1 − c(i + 2)](1 − F (li+1))]. (15)

We can use this expression within our numerical algorithm to calculate the
optimal discrete bid levels. In Figure 6, we compare uniform and exponential
valuation distributions, but this time, we fix the expected number of bidders
and the auctioneer’s cost per-bid level (taking λ = 10 and c = 0.005), and we
vary the number of discrete bid levels (taking m = 2, 10 and 20). Including this
explicit cost has more effect than the previous extension to the model. First, it
results in a small increase in the value of all the discrete bid levels, since the
costs of the auction progressing through these bid levels must be recovered.

15Note that each auction could also incur a fixed overhead cost, but since this will not affect the

optimal bid levels, we do not incorporate it.
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More significantly, while in the previous examples increasing the number of bid
levels would have resulted in levels that were closer together and an increase in
the expected revenue of the auctioneer, this is no longer true. Now, increasing
the number of bid levels could potentially result in a net loss since each level
that the auction progresses through incurs an additional cost. Thus, as we in-
crease the number of bid levels, these extra bid levels are positioned so that they
are unlikely to affect the outcome of the auction. With the uniform valuation
distribution, these bid levels appear close together in the extreme of the distri-
bution (i.e., close to v). With the exponential distribution, they again appear in
the extreme of the distribution, but since this distribution is unbounded (i.e.,
v = ∞), they do not appear close together but have incrementally increasing
values.

Most notable, however, is that due to this effect, as we increase the number
of bid levels that we calculate (i.e., increase m), the values of the first few bid
levels rapidly reach static values that do not change. It is the position of these
bid levels that determine the expected revenue of the auctioneer (it is extremely
unlikely that the bidders will have high enough valuations to continue bidding
past these bid levels), and so we can calculate these significant bid levels for
an arbitrarily large total number of levels, and in so doing, we remove the
parameter m from the design of the auction.

In the results we have presented, we have assumed a relatively small value
for this cost per-bid level (i.e., c = 0.005). If we decrease the cost, the results
approach those presented earlier (i.e., the case in which the auction costs are
not calculated directly, and the expected revenue is determined by the strict
bound of the number of discrete bid levels, m). At the other extreme, if we in-
crease this cost further, it becomes increasingly difficult to recover the costs of
the auction process through the appropriate distribution of discrete bid levels,
and thus the expected bid level at which the auction closes approaches l0 (i.e.,
the auction closes at the first announced price). At this point, there is effec-
tively no longer an auction as such, and when we calculate the value of l0, we
are effectively calculating the optimal single take-it-or-leave-it price that the
auctioneer should announce to the bidders.

7. DISCRETE BID-LEVEL DENSITY FUNCTION

In Section 5, we demonstrated that in our basic auction model, we can calculate
the optimal discrete bid levels, using a numerical algorithm for any number of
bidders and any bidders’ valuation distribution. In addition, we then showed
that the same numerical algorithm can be applied to various extensions of the
model. In this section, in order to develop an intuitive understanding of these
numerical results, we go back to consider what happens in our basic model when
the number of discrete bid levels becomes very large. In the previous section,
we have seen that when we do this in an extended model with a cost term,
the optimal arrangement is for most of the bid levels to be clustered toward
the upper end of the valuation range—adding low-bid levels is likely to just
increase the cost of the auction without increasing the sale price. However, this
is not the case when there is no cost term. For typical valuation distributions,
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including the uniform and exponential distributions we have considered here,
discrete bid auctions yield a lower revenue than continuous bid auctions (since,
in the language of Section 4, the losses due to Cases 1 and 2 exceed the gains
due to Case 3). Thus we expect that as the number of permitted bid levels m
is increased, the optimal bid levels should get closer together. In calculating
the details of this effect, we can derive an analytic expression for the density
of the discrete bid levels, and gain an intuitive understanding of how they are
distributed that can then be applied in more general cases.

Suppose that for some large value of m the bid levels are closely spaced. Then
we can find a smooth function l (t), defined over the range 0 ≤ t ≤ 1, such that
the actual bid levels li are equally-spaced samples of this function:

li = l
(

i
m

)
for i = 0, . . . , m. (16)

where the endpoints of the range are given by l0 = l (0) and lm = l (1). By
substituting this term into the revenue expression given in Equation (5) and
expanding in inverse powers of m (see Appendix C for more details on this
calculation), we obtain an approximation to the auction revenue:

E ≈ n
∫ l (1)

l (0)

F (v)n−1[vF ′(v) + F (v) − 1]dv + l (1)(1 − F (l (1))n)

− n(n − 1)

12m2

∫ 1

0

F (l (t))n−2[2F ′(l (t))2 + (1 − F (l (t)))F ′′(l (t))]l ′(t)3dt. (17)

The terms in the first line of this expression give the revenue in a continuous
price auction with n bidders, a starting price l (0) and a maximum possible price
l (1) (see e.g., Riley and Samuelson [1981] and note that since it is typically as-
sumed that F (l (1)) = 1, the second term vanishes). The terms in the second line
give the loss in revenue due to discrete bid levels (note that for common distri-
butions, including the uniform and exponential distributions used previously,
the quantity 2F ′2 + (1 − F )F ′′ is positive). As noted by Rothkopf and Harstad
[1994], the loss due to discrete bid levels is of the order 1

m2 , and thus as the
number of bid levels increases, the revenue of the auction rapidly approaches
that of the equivalent continuous bid auction16.

Thus, in order to maximize the revenue of the auction, it is necessary to
minimize the integral on the second line in the previous expression. This is a
standard problem in the calculus of variations (and details are again provided
in Appendix C) with the result that l (t) must satisfy:

1

l ′(t)
= [F (l (t))n−2(2F ′(l (t))2 + (1 − F (l (t)))F ′′(l (t)))]1/3

C
, (18)

where C is a constant17. Since l (t) describes the values of the bid levels in
terms of the continuous variable t, a plot of 1/l ′(t) against l (t) represents the

16Blumrosen et al. [2007] show a similar result in their analysis of auctions with severely-bounded

communication.
17Note that all the considerations of this section can be extended to the model of Section 6.1 in

which the number of bidders in the auction is not fixed but is a Poisson process with mean λ. The
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optimal density of the discrete bid levels as a function of the bid level (all this,
we reiterate, is valid when m is large). Thus:

Discrete Bid Level Density ∝ [F (v)n−2(2F ′(v)2 + (1 − F (v))F ′′(v))]1/3. (19)

In order to compute the proportionality constant, we need to know the value of
the minimum and maximum bid levels, l (0) and l (1). To a first approximation,
these can be taken to be the values required to give optimal revenue in a contin-
uous price auction. Thus, as the number of discrete bid levels becomes larger,
the maximum bid level is simply the maximum of the valuation distribution18,
and thus l (1) = v. The minimum bid level, is simply the optimal reserve price
of the equivalent continuous auction, v∗ and, as shown in Riley and Samuelson
[1981], is determined by solving the expression v∗ = [1 − F (v∗)]/F ′(v∗).

Thus, for the uniform valuation distribution that we used previously, v∗ =
max(v, v/2), and, for the exponential valuation distribution, v∗ = 1/α.

In Figure 7, we show the resulting density functions for both the uniform
and exponential bidders’ valuation distributions. For the case of the uniform
distribution when n = 2, the density of bid levels is constant across the range,
indicating as before that in this case a fixed bid increment is optimal. As the
number of bidders increases, the density of bid levels at the upper extreme of
the distribution increases, confirming the previous numerical results whereby
the value of l0 increases and the bid increment decreases as the auction price
increases. In the case of the exponential distribution when n = 2, we see a
decreasing density as the bid price increases, and as before, we observe an in-
creasing bid increment. However, for larger values of n, we see a clear peak
in the discrete bid density that corresponds to the bid increment decreasing,
reaching a minimum size, and then increasing again. The position of this max-
imum bid density increases as the number of bidders increases.

In previous sections, we observed that the density of the bid levels increases
in the region where we expect the auction to close (i.e., in the region where
we expect to find the bidder with the second-highest valuation). However, the
analytical expression we have just derived shows that this intuition is only
approximately correct. The probability of the continuous bid auction closing
price at any price, v, is given by:

Probability of Auction Closing ∝ F (v)n−2 F ′(v)(1 − F (v)). (20)

large m approximation to the revenue is:

E =
∫ l (1)

l (0)
λeλ(F (v)−1)[vF ′(v) + F (v) − 1]dv + l (1)(1 − eλ(F (l (1))−1))

− λ2

12m2

∫ 1

0
eλ(F (l (t))−1)[2F ′(l (t))2 + (1 − F (l (t)))F ′′(l (t))]l ′(t)3dt + O(m−3).

The optimal bid level distribution satisfies:

1

l ′(t)
= [eλ(F (l (t))−1)(2F ′(l (t))2 + (1 − F (l (t)))F ′′(l (t)))]1/3

C
.

18Note that for the exponential distribution, this cannot be attained, and it is necessary to consider

the first-order correction to get a finite answer for l (1).
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Fig. 7. Analytically calculated results showing the optimal density of discrete bid levels for the

case where bidders valuations are drawn from (a) uniform and (b) exponential distributions (as

before, the uniform distribution has support [0, 1] and the exponential distribution is determined

by α = 4.)

Fig. 8. Calculated results showing the distribution of the expected continuous bid auction closing

price when bidders’ valuations are drawn from (a) uniform and (b) exponential distributions (as

before, the uniform distribution has support [0, 1] and the exponential distribution is determined

by α = 4).

Clearly this expression is similar to that shown in Equation (19) with both dom-
inated by the F (v)n−2 term. However, the plot of this distribution in Figure 8
shows the differences clearly (and enables a comparison with the optimal bid
level density shown in Figure 7). For the uniform distribution, while the prob-
ability of the auction closing in the upper extreme of the distribution decreases
to zero, it is exactly this area where the density of discrete bid levels reaches a
maximum. For the exponential distribution, both expressions simplify and are

ACM Transactions on Internet Technology, Vol. 7, No. 2, Article 12, Publication date: May 2007.



Optimal Design of English Auctions with Discrete Bid Levels • 25

Fig. 9. Diagram showing the three cases in the large m limit, whereby the auctioneer makes a

gain or loss, compared to the equivalent continuous auction.

identical apart from an additional 1/3 power. This causes the bid level density
function to be much flatter than the auction closing price distribution, and thus
the bid levels are more evenly distributed than our initial intuition suggested.

We can intuitively understand the form of the expression for the density
of bid levels by reconsidering the three cases that we initially presented in
Section 4. Now, in these original case descriptions, we considered the possibility
that two or more bidders’ valuations fell between any two bid levels. However,
as we increase the number of bid levels, we can assume that, at most, two
bidders’ valuations fall between any two bid levels. Thus, in Figure 9, we can
represent the three cases described in Section 4 in terms of the gain or loss that
each incurs when compared to a continuous auction which closes at a bid price
equal to the valuation of the second-highest bidder. Thus, we see that Case 1
describes an event whereby when two bidders’ valuations do in fact fall between
two discrete bid levels and that this event generates a net loss in revenue for
the auctioneer. The probability of this occurring is described by the first term
in the discrete bid level density expression, 2F ′(v)2 F (v)n−2. In addition, we see
that now Cases 2 and 3 occur with approximately equal probability, and while
Case 2 generates a loss in revenue, Case 3 generates a gain in revenue. The net
effect of Cases 2 and 3 depends on the bidder’s valuation distribution. In the
case of a uniform distribution, Rothkopf and Harstad [1994] noted that the loss
of Case 2 exactly cancels the gain of Case 3. However, when the distribution is
not uniform (or more accurately when F ′′(v) �= 0) this does not happen, and the
second term in the discrete bid level density expression, (1− F (v))F ′′(v)F (v)n−2

exactly captures the probability of a net gain or loss to the auctioneer due
to these two cases. Hence, the discrete bid levels are distributed in order to
both minimize an expression that contains two terms: the probability of Case 1
occurring, and the difference in probabilities of Cases 2 and 3.

However, despite the differences between the expressions for the optimal
discrete bid level density and the expected auction closing price (shown in
Equations (19) and (20) the comparison between them is valuable. It is the
probability distribution of the closing price of the auction that is most easily
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estimated from historical auction data; estimating the number of bidders and
the valuation distributions which gave rise to these closing prices is a much
harder task. Thus, we can use the expected auction closing price with an addi-
tional 1/3 power as an approximation for the density function of the discrete bid
levels. In doing so, we can be confident that this additional 1/3 power ensures
that the effect of errors in our approximation are likely to be small.

8. CONCLUSIONS AND FUTURE WORK

In this article, we considered a canonical online auction protocol, the ascending
price English auction with discrete bid levels. This auction protocol forms the
basis of nearly all current online auctions, and our aim was to understand how
these discrete bid levels affect the auction properties and also to provide the
optimal auction design for this setting.

To this end, we derived a general expression which describes the revenue
of the auction in terms of the actual bid levels implemented, the number of
bidders participating, and the distribution from which these bidders’ valuations
are drawn. Using this expression, we showed that, in the case of a uniform
valuation distribution, we could derive analytical results that described the
distribution of the discrete bid levels. Specifically, we proved that, in the case
of two bidders, a fixed bid increment is optimal, while, for greater numbers
of bidders, it is optimal to implement a decreasing bid increment so that the
interval between bid levels decreases as the auction proceeds.

We then developed a numerical solution that allowed us to calculate the
values of the discrete bid levels in the general case, and we compared results
for uniform and exponential valuation distributions. We showed that contrary
to the standard literature on continuous auctions when discrete bid levels are
used, the reserve price of the auction increases as the number of bidders in-
creases. In addition, we then used the same numerical algorithm to consider
two extensions to the auction model that increased its applicability and realism.
Specifically, we considered the case that the number of bidders participating
was not fixed but was described by a probability distribution, and we explicitly
included the costs of the auctioneer into the derivation of its expected revenue.

Finally, we considered the limiting case where the number of discrete bid
levels became very large and the auction closing price approached that of the
equivalent continuous auction. Here we derived an analytical expression for the
density of the discrete bid levels and showed that this expression was similar,
but not identical, to that describing the expected closing price of the auction.
Thus, we suggested that the later distribution (which is easier to estimate from
historical auction data) could serve as an estimate for the former distribution,
and we noted that the presence of an additional 1/3 power would ensure that
the effect of errors in our estimation would likely be small.

Our future work in this area considers two areas. First, we intend to exam-
ine and attempt to relax some of the assumptions of the auction model that we
consider. In Section 6, we presented some initial work in this area. However,
we are particularly interested in the common assumption that all bidders are
a priori symmetric (i.e., they all draw their private valuations from the same
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distribution). This is often a useful simplifying assumption, but it has conse-
quences for the allocation of bid levels. A simple example can illustrate this.
Suppose that we have two bidders. In one case, they both draw their values
from a uniform distribution on [0,2]; in the other, one draws from a uniform
distribution on [0,1] and one from a uniform distribution on [1,2]. If we suppose
that we use two bid levels, in the first case, we can calculate their optimal value
(in this case, l0 = 1.0532 and l1 = 1.5266) and show that the expected revenue
is 0.8142. However, in the second case, where the bidders’ valuations are drawn
from separate distributions, the expected revenue is greatest if both bid levels
are allocated within the range [1,2]. Since there is certainly one bidder with a
valuation in this range, an expected revenue of 1 can be guaranteed by simply
setting l0 = 1 (the value of l1 is irrelevant). Thus, clearly the presence of asym-
metric bidders has a significant effect on the optimal allocation of bid levels
and also on the resulting expected auction revenue. We intend to investigate
this further and incorporate it within the framework presented here. A further
extension of this model of the bidders would be to consider that, like the auc-
tioneer, they incur a participation cost that is related to the number of discrete
bid levels that the auction proceeds through.

Second, we intend to address the question of how an auctioneer should at-
tempt to use the analysis that we have presented to design real-world online
auctions. In this respect, online settings are particularly interesting since these
typically involve auctioneers who hold many similar repeated auctions. Thus,
there is an opportunity for the auctioneer to attempt to use the experience of
earlier auctions in order to tailor the discrete bid levels implemented within
future auctions. In our preliminary work, we have used Bayesian inference to
allow the auctioneer to infer the number and valuation distribution of bidders
who participate in a series of repeated auctions [Rogers et al. 2005]. However,
building upon the analysis that we presented in the previous section, our aim is
to extend this inference technique to the more general setting where rather than
deal with the individual bidder’s valuation distributions, the auctioneer uses
the more easily estimated expected auction closing price to guide his design.
Our intention then is to develop efficient methods that automate the design of
optimal discrete bid auctions.

APPENDIXES

A. EXPECTED AUCTION REVENUE

Our initial expression for the revenue of the auction was derived by summing
over all possible bid levels contributions from the three cases in which the
auction closed at bid level li, to give:

E =
m∑

i=0

li[P (case1, li) + P (case2, li) + P (case3, li)]. (21)

In Equations (1), (2) and (3) we presented expressions for these three proba-
bilities. In order to reduce the complexity of the final expression for the rev-
enue of the auction, we must first simplify the combinatorial summations in
each of these equations. To do so, we note that by substituting k − 1 for k in
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Equations (2) and (3) we can then change the indices of the summation in these
equations from from k = 1 . . . n − 1 to k = 2 . . . n to give:

P (case1, li) =
n∑

k=2

(n
k

)
F (li)

n−k[F (li+1) − F (li)]
k (22)

P (case2, li) =
n∑

k=2

(
n − 1

k − 1

)
n
k

F (li)
n−k[F (li+1) − F (li)]

k−1[1 − F (li+1)] (23)

P (case3, li)

=

⎧⎪⎪⎨
⎪⎪⎩

nF (l0)n−1[1 − F (l0)] i = 0

n∑
k=2

(
n − 1

k − 1

)
(k − 1)n

k
F (li−1)n−k[F (li) − F (li−1)]k−1[1 − F (li)] i > 0

(24)

Then, by noting that
(

n−1
k−1

)
n
k = (n

k

)
, we can again rewrite Equations (23) and

(24) such that the binomial expressions and the indices of the summation in all
three equations are identical.

P (case1, li) =
n∑

k=2

(n
k

)
F (li)

n−k[F (li+1) − F (li)]
k (25)

P (case2, li) =
n∑

k=2

(n
k

)
F (li)

n−k[F (li+1) − F (li)]
k−1[1 − F (li+1)] (26)

P (case3, li)

=

⎧⎪⎪⎨
⎪⎪⎩

nF(l0)n−1[1 − F (l0)] i = 0

n∑
k=2

(n
k

)
(k − 1)F (li−1)n−k[F (li) − F (li−1)]k−1[1 − F (li)] i > 0.

(27)

We then use the identity
∑n

k=0

(n
k

)
an−kbk = (a + b)n to derive the result that∑n

k=2

(n
k

)
an−kbk = (a + b)n − nan−1b − an. Using this result, we can simplify

Equations (25) and (26) to give:

P (case1, li) = F (li+1)n − nF (li)
n−1[F (li+1) − F (li)] − F (li)

n (28)

P (case2, li) = 1 − F (li+1)

F (li+1) − F (li)

× [F (li+1)n − nF (li)
n−1[F (li+1) − F (li)] − F (li)

n] (29)

We use a similar procedure for the case of P (case3, li). This case is more complex
as we have an additional factor of k − 1 inside the summation. However, we
observe that this factor arises through the differentiation of bk−1, and thus
we can derive the identity

∑n
k=2

(n
k

)
(k − 1)an−kbk = b2 d

db[ 1
b

∑n
k=2

(n
k

)
an−kbk].
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By substituting (a + b)n − nan−1b − an for
∑n

k=2

(n
k

)
an−kbk in this expression

and differentiating the result, we can show that
∑n

k=2

(n
k

)
(k − 1)an−kbk = (a +

b)n−1[b(n − 1) − a] + an. Using this result in Equation (27) gives:

P (case3, li)

=

⎧⎪⎪⎨
⎪⎪⎩

nF (l0)n−1[1 − F (l0)] i = 0

1 − F (li)

F (li) − F (li−1)
[F (li−1)n − F (li)

n + nF (li)
n−1(F (li) − F (li−1))] i > 0

(30)

We can now substitute Equations (28), (29), and (30) into our expression for the
expected revenue of the auction (Equation (21)), to give:

E =
m∑

i=0

li
1 − F (li)

F (li+1) − F (li)
[F (li+1)n − nF (li)

n−1(F (li+1) − F (li)) − F (li)
n]

+
m∑

i=1

li
1 − F (li)

F (li) − F (li−1)
[F (li−1)n + nF (li)

n−1(F (li) − F (li−1)) − F (li)
n]

+ l0nF(l0)n−1(1 − F (l0)) (31)

Clearly, many terms in these expressions cancel each other. The middle terms
of each summation are equal and opposite when li is between l1 and lm. Ad-
ditionally, the term that is left over from this cancellation (i.e., when i = 0)
cancels the additional term P (case3, l0). This gives the simpler result:

E =
m∑

i=0

li
1 − F (li)

F (li+1) − F (li)
[F (li+1)n − F (li)

n]

+
m∑

i=1

li
1 − F (li)

F (li) − F (li−1)
[F (li−1)n − F (li)

n]. (32)

Finally, we note that by substituting i + 1 for i in each term within the second
summation and stating with no loss of generality that F (lm+1) = 1, we can
change the indices of this summation from i = 1 . . . m to i = 0 . . . m, and combine
it with the first summation to give the final result:

E =
m∑

i=0

F (li+1)n − F (li)
n

F (li+1) − F (li)
[li(1 − F (li)) − li+1(1 − F (li+1))]. (33)

This final expression relates the expected revenue of the auctioneer to the dis-
crete bid levels used in the auction and the cumulative distribution from which
the bidders’ independent valuations are drawn.

B. PROOF OF OPTIMAL DECREASING BID INCREMENTS

In order to show that the optimal bid levels show a decreasing bid increment
when n > 2, it is sufficient to show that, in this case:

li >
li−1 + li+1

2
. (34)
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Thus, using the result from Equation (8), we must show that:

v + n−1

√
(li+1 − v)n − (li−1 − v)n

n(li+1 − li−1)
>

li−1 + li+1

2
. (35)

If we define a = li−1 − v and b = li+1 − v, then we must show, for 0 < a < b,
that:

bn − an

b − a
> n

(
a + b

2

)n−1

. (36)

PROOF. If f (t) is a strictly convex function over the interval [a, b], then it
follows from Jensen’s inequality that:

1

b − a

∫ b

a
f (t)dt > f

(
a + b

2

)
. (37)

We take f (t) = ntn−1. This has f ′′(t) > 0, when n > 2, and thus is strictly
convex. Substituting into Equation (37) and integrating between the limits
gives Equation (36) as required.

C. CALCULATING AUCTION PROPERTIES

We can calculate the average number of bid levels that any auction proceeds
through, t, by simply summing over the probability that the auction will close
at any bid level to give:

t =
m∑

i=0

(i + 1)[P (case1, li) + P (case2, li) + P (case3, li)], (38)

where P (case1, li), P (case2, li), and P (case3, li) are given in Equations (1), (2)
and (3).

We can calculate the probability that the bidder with the highest valuation
does win the auction by considering the ways in which this does not happen.
In Cases 2 and 3 (see Section 4), the bidder with the highest valuation always
wins the auction. However, the bidder with the highest valuation will not win
if all the bidders valuations are below l0 or, in Case 1, when the valuations of
the k highest bidders fall between bid levels, but one of the k − 1 other bidders
is selected as the winner. Thus, we can simply sum the probabilities of these
events occurring and subtract this probability from one, to give:

P (Highest Bidder Wins) = 1 − F (l0)n −
m∑

i=0

n∑
k=2

(n
k

)k − 1

k
F (li)

n−k

× [F (li+1) − F (li)]
k . (39)

D. CONTINUOUS LIMIT DERIVATION

In this appendix, we give some of the details necessary to obtain the results
stated in Section 7. We first consider how to find a smooth function l (t), defined
over the range 0 ≤ t ≤ 1, such that the actual bid levels li are equally-spaced
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samples of this function:

li = l
(

i
m

)
for i = 0, . . . , m, (40)

and the endpoints of the range are given by l0 = l (0) and lm = l (1). We take
as our starting point the expression for the expected revenue of the auction
given in Equation (5) and using the fact that we have defined F (lm+1) = 1, we
separate out the final term to give:

E =
m−1∑
i=0

F (li+1)n − F (li)
n

F (li+1) − F (li)
[li(1− F (li))− li+1(1− F (li+1))]+ lm(1− F (lm)n). (41)

Given that we are considering the continuous limit where m is large, we can
now express each term within the summand of this expression as a Taylor
expansion of our smooth function l (t) in increasing powers of 1

m . For example,
for F (li+1) − F (li) we have:

F (li+1) − F (li) = F
(

l
(

i + 1

m

))
− F

(
l
(

i
m

))

≈ 1

m
F ′

(
l
(

i
m

))
l ′

(
i
m

)

+ 1

2m2

(
F ′

(
l
(

i
m

))
l ′′

(
i
m

)
+ F ′′

(
l
(

i
m

))
l ′

(
i
m

)2
)

+ 1

6m3

(
F ′

(
l
(

i
m

))
l ′′′

(
i
m

)
+ F ′′′

(
l
(

i
m

))
l ′

(
i
m

)3

+ 3F ′′
(

l
(

i
m

))
l ′

(
i
m

)
l ′′

(
i
m

) )
. (42)

Since m is large, each term in this Taylor expansion is significantly smaller than
the preceding one, and thus, we need only retain the first three terms (i.e., those
in 1

m , 1
m2 , and 1

m3 ). Repeating this procedure for each of the terms in Equation (41)
and then substituting these results back into Equation (41) results in a rather
complicated expression for the auctioneer’s expected revenue. This expression
is difficult to manipulate by hand and is unfortunately too long to present
here. However, using Maple to perform the necessary symbolic manipulation,
and again keeping just the first three powers of 1

m , we can simplify it to an
expression of the form:

E ≈ l (1)(1 − F (l (1))n) + 1

m

m−1∑
i=0

G1

(
i
m

)

+ 1

m2

m−1∑
i=0

G2

(
i
m

)
+ 1

m3

m−1∑
i=0

G3

(
i
m

)
, (43)

where the functions G1( i
m ), G2( i

m ), and G3( i
m ) are functions composed of multiple

powers and derivatives of l ( i
m ) and F (l ( i

m )) that are similar in structure to
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Fig. 10. Graphical interpretation of the Euler-Maclaurin sum formula.

those in Equation (42), and are too long to present here. Now, when m is large,
the summations of these functions can be approximated by integrals using
the Euler-Maclaurin sum formula, which for our purpose can be conveniently
written as:

1

m

m−1∑
i=0

G
(

i
m

)
=

∫ 1

0

G(t)dt − 1

2m
[G(1) − G(0)] + 1

12m2
[G ′(1) − G ′(0)] + O

(
1

m4

)

=
∫ 1

0

(
G(t) − 1

2m
G ′(t) + 1

12m2
G ′′(t)

)
dt + O

(
1

m4

)
(44)

Figure 10 shows a graphical interpretation of this result where the shaded rect-

angles represent the summation 1
m

∑m−1
i=0 G( i

m ). This summation can clearly be
approximated as the integral of the function G(t) over the range 0 ≤ t ≤ 1 plus
a number of correction terms dependent on the derivatives of G(t) (for details
see, e.g., Eric W. Weisstein.19 Using these integral approximations within Equa-
tion (43) and using Maple to manipulate the expression, allows the expected
revenue of the auction to be written as:

E ≈ n
∫ l (1)

l (0)

F (v)n−1[vF ′(v) + F (v) − 1]dv + l (1)(1 − F (l (1))n)

− n(n − 1)

12m2

∫ 1

0

F (l (t))n−2[2F ′(l (t))2 + (1 − F (l (t)))F ′′(l (t))]l ′(t)3dt, (45)

where we have introduced the variable v by noting that
∫ 1

0
F (l (t))dt =∫ l (1)

l (0)
F (v)dv. This change of variable is pertinent since the first line of this ex-

pression can now be seen to be equivalent to the revenue of a continuous price
auction with n bidders, a starting price l (0), and a maximum possible price
l (1) (see, e.g., Riley and Samuelson [1981] and note that since it is typically
assumed that F (l (1)) = 1, the second term vanishes).

The terms in the second line describe the loss in revenue due to the discrete
bid levels, and thus the revenue of the auctioneer is maximized when l (t) is
chosen such that the integral here is minimized. To do this, we first note that

19Euler-Maclaurin Integration Formulas, from Mathworld—a Wolfram Web resource, http://-

mathworld.wolfram.com/EulerMaclaurinIntegrationFormulas.html).

ACM Transactions on Internet Technology, Vol. 7, No. 2, Article 12, Publication date: May 2007.



Optimal Design of English Auctions with Discrete Bid Levels • 33

this integral can be written in the form:∫ 1

0

p(l (t))l ′(t)3dt. (46)

Now, the usual Euler-Lagrange equation for minimization of integrals of this
form gives:

p′(l (t))l ′(t)3 − d
dt

(3p(l (t))l ′(t)2) = 0, (47)

or after simplification:

3p(l (t))l ′(t)l ′′(t) + p′(l (t))l ′(t)3 = 0. (48)

Multiplying by l ′(t), the left-hand side is precisely the derivative of p(l (t))l ′(t)3,
which must therefore be constant. That is, we have:

l ′(t) =
(

C
p(l (t))

)1/3

. (49)

Finally for the correct choice of p, we have:

1

l ′(t)
= [F (l (t))n−2(2F ′(l (t))2 + (1 − F (l (t)))F ′′(l (t)))]1/3

C
, (50)

which describes the optimal discrete bid level density in the large m limit.
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