
Generating Content for Scenario-Based Serious-Games using CrowdSourcing

Sigal Sina
Bar-Ilan University, Israel

sinasi@macs.biu.ac.il

Avi Rosenfeld
Jerusalem College of Technology, Israel

rosenfa@jct.ac.il

Sarit Kraus
Bar-Ilan University, Israel

sarit@cs.biu.ac.il

Abstract

Scenario-based serious-games have become an important tool
for teaching new skills and capabilities. An important fac-
tor in the development of such systems is reducing the time
and cost overheads in manually creating content for these
scenarios. To address this challenge, we present Scenario-
Gen, an automatic method for generating content about ev-
eryday activities through combining computer science tech-
niques with the crowd. ScenarioGen uses the crowd in three
different ways: to capture a database of scenarios of every-
day activities, to generate a database of likely replacements
for specific events within that scenario, and to evaluate the
resulting scenarios. We evaluated ScenarioGen in 6 differ-
ent content domains and found that it was consistently rated
as coherent and consistent as the originally captured content.
We also compared ScenarioGen’s content to that created by
traditional planning techniques. We found that both methods
were equally effective in generating coherent and consistent
scenarios, yet ScenarioGen’s content was found to be more
varied and easier to create.

Introduction
Simulations and scenarios-based games constitute an impor-
tant subset of serious-games and are an important tool for
teaching new skills and capabilities. Such systems are cur-
rently used in a broad range of applications such as mili-
tary, government, educational and health care (Susi, Johan-
nesson, and Backlund 2007; Gandhe et al. 2009; Lane et
al. 2010). One main cost in the development of such sys-
tems is the time overhead needed by experts to manually
create the textual content for these scenarios (Nadolski et
al. 2008). While early works considered creating entire sce-
nario narratives without getting any real-time input from the
user (Meehan 1977; Turner 1993), later works focused on
interactive narratives where the user is part of the story and
can affect the plotline (Cavazza, Charles, and Mead 2002;
Riedl, Stern, and Dini 2006; Riedl and Stern 2006). Some
works also used hybrid methods whereby a predefined plot
is created and an autonomic agent can later add to or adapt
the plot in real-time (Niehaus, Li, and Riedl 2010). Other
work (Riedl and Stern 2006) used a hierarchical decompo-
sition to break a story plan down to primitive actions, how-

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ever the decomposition rules are manually authored. Over-
all, these studies focused on the general plot of the story
but not on the story’s details, which were almost exclusively
manually created by content experts. Similar to our work, Li
et al. (Li et al. 2012; 2013) used a semi-automated process
by which they requested that human workers write natural
language narrative examples of a specific, given situation.
The workers were requested to segment their narratives such
that each sentence contains one event, to use one verb per
sentence, and avoid complex linguistic structures. These ex-
amples were used to learn plot graphs, i.e. the set of events
that can occur and its typical ordering. Our approach also
acquires its knowledge from crowdsourced narratives, but
significantly differs from this work. While Li et al. used the
data acquired from the crowd to build the plot graph, our
approach uses a novel method to adjust and personalize the
crowd’s detailed descriptions for different people within a
specific situation in order to generate rich and colorful sce-
narios.

Research into Procedural Content Generation (PCG) for
games has blossomed in recent years and has successfully
addressed aspects of content generation in the past decade.
However, despite these advances tools for textual content
generation are still lacking (Hendrikx et al. 2013). Fol-
lowing Hendrikx et al.’s definition of scenarios, we specif-
ically focus on “concrete game scenarios (that) are ex-
plicitly presented in the game, for example as part of the
game narrative.” Our motivation for focusing on generating
this type of everyday content comes from a joint project,
VirtualSuspect, with law enforcement. The project’s
purpose is to train new detectives to efficiently interview sus-
pects of property felonies. The generative content facilitates
ability to add new training cases, allowing investigators to
have repeated practice sessions.

This paper’s main contribution is ScenarioGen, a general
method for generating content which serves as a better al-
ternative to current state of the art traditional planners such
as SHOP2 (Nau et al. 2003). ScenarioGen is a powerful al-
gorithm for generating textual content about everyday activ-
ities through combining computer science techniques with
the crowd. ScenarioGen is composed of three major com-
ponents – MaxSat (a maximal satisfiability solver), KAR
(K-nearest neighbor Activity Replacement) and SNACS
(Social Narrative Adaptation using CrowdSourcing). As is

the case with several recent works (Hajarnis et al. 2011;
Niehaus, Li, and Riedl 2010; Zook et al. 2012), we im-
plement a hybrid method which constitutes a “fill and ad-
just” semi-automatic narrative generation method. Accord-
ingly, the MaxSat component identifies the places where
modifications are required, the KAR component selects the
most appropriate activity for a new scenario and the SNACS
component then adjusts the activity adding rich detail. Sce-
narioGen’s novelty lies in how its KAR and SNACS algo-
rithms leverage the crowd to create the textual content from
Amazon Mechanical Turk (AMT) workers, an established
method for data collection from crowd (Paolacci, Chandler,
and Ipeirotis 2010). Using crowdsourcing offers several ad-
vantages over previous approaches: First, it enables us to
construct the activities’ scenarios and narratives’ database
with less cost and time than traditional planners. Second, it
gives us a large and diversified content from the workers,
yielding more diversified content than traditional planners.
Last, we also use crowdsourcing techniques with another
pool of workers, to quickly evaluate and demonstrate the ef-
ficacy of our approach in an extensive user study.

While the approach that we present is general and
can be used in many scenario-based games, we specifi-
cally focused on training scenarios for the joint project
VirtualSuspect with the law enforcement training de-
partment (Figure 1). As our approach generates content
with relatively low cost and maintenance, we can easily
add new training cases, allowing investigators to have re-
peated practice sessions using different types of investiga-
tion techniques for different cases of property felonies. In the
VirtualSuspect project, the generated content can also
be applicable as an alibi for a specific case. For example,
consider a case where a robber broke into a private house on
Sunday night and stole a laptop, jewelry and some money.
The law enforcement investigator (the human trainee) can
question a suspect, focusing on what he did on Sunday night.
The interviewee (our virtual agent), which can be innocent
or not, needs a coherent scenario of his Sunday activities
that is consistent with the facts that are known to the in-
vestigator and/or are common knowledge. While this paper
focuses only on describing the interviewee’s scenario gener-
ation portion of this project, it is important to stress that our
proposed approach can also be useful for other applications
with everyday content, especially in training scenarios such
as training doctors to ask a patient the right questions or to
help train candidates in a job interview application.

Questioning Stages:

Warning

Personal questions

Suspect's story

Alibi verification

Confrontation

Resolution

…

Questioning Log:

 How are you?

 Fine

 What is your name?

 My name is …

 What is your name?

 How many time you will

ask. You know me. I'm …

 Are you working?

 Yes. I work as locksmith.

...

Figure 1: The VirtualSuspect project

In order to evaluate the effectiveness and generality of

ScenarioGen, we implemented and evaluated it to 6 differ-
ent content domains: two entertainment activities – movie
watching and eating out at a restaurant, two errand activ-
ities – buying groceries and dry-cleaning, and two types
of job descriptions, administrative assistant and technology
worker. In all cases we found that the scenarios and their ac-
tivities’ details we generated (examples of which can be seen
in examples 1 and 3 below) were rated as being as believ-
able and consistent as the original scenarios and the original
activities’ details. We also compared the activities’ details
generated by ScenarioGen to those that were generated with
the more costly planning technique and found that Scenari-
oGen created equally believable content with lower cost and
more varied than that of the planner.

 Scenarios’ Generative System

Activity Scenario Generator

MaxSat

Solver

SNACS

Activity- Details

Generator

KAR

Activities

Generator

Activities

DBA

Activity-

Details DBD

Prior

Knowledge

 User Profile,

Scenario &

Personal Info

 New Scenario

Figure 2: System Modules and Flow

ScenarioGen Description
We proposed and built a system, presented in Figure 2,
which generates coherent new scenarios by replacing con-
tent details within an original, old scenario. As we analyzed
the coherent problem in scenarios, we identified three main
questions the system needs to address. These questions are:
(1) What should be removed from the scenario? (2) With
what should we replace it? (3) How should we replace it?
Accordingly, our system consists of three main modules,
one to address each of these questions. The modules are:
(1) MaxSat, a maximal satisfiability solver that ensures the
scenario’s integrity and identifies the places where modifi-
cations are required, whether it because of an explicit con-
straint (example 2), or because of implicit constrains, such
as distance constrains between places vs. time, which can
cause inconsistencies between activities; (2) KAR, an ac-
tivities generator which uses an algorithm based on the k-
nearest neighbor algorithm to choose the most appropriate
activity replacement for the required modification; and (3)
SNACS, an activity-details generator which adds detail to
transform the newly formed content into a realistic and co-
herent descriptive activity.

To help clarify, examples 2–4 illustrate ScenarioGen’s
stages. Our system needs to train law enforcement officers
to analyze different scenarios. To do so, it creates several
variations of John’s activity (example 2) by concealing the
information that John broke into a house. The MaxSat mod-
ule will identify the need to replace the BrokeIntoHouse
activity. The KAR module suggests as replacement a com-
mon activity, such as EatDinner and the SNACS module
generates a new activity-details as can be seen in example
3. Our system revises the scenario by basing itself on details
from a collection of reported activities, which it modifies to

Example 1: The following description was generated by our system concerning a 29-year-old single woman who has computer

science bachelor degree: "I am a system administrator for a semiconductor firm since May 2011. It is a large sized firm with around

750 employees. The firm provides innovative equipment, services and software to enable the manufacture of advanced

semiconductor, flat panel display and solar photovoltaic products. As part of my job, I handle lower level responsibilities like user

access and project creations all the way to Site redesigns, release management and upgrades and other IT projects that require

management. Overall I love my job. I don't have any complaints.''

Example 2: John is a 21-year-old male who is single and has no children. He broke into a private house on Sunday night and stole a

laptop, jewelry and cash money. He is now being questioning and needs an alibi for Sunday night.

Example 3: "On Sunday night I went out for dinner. I did not really want to spend too much so I went to "54th Street". I sat at the

bar and got chicken wings. I watched a few basketball games and ate. I read the newspaper a bit too. The food at "54th Street" is

always good. The team I picked won so that was also good."

Example 4: "I went and got lunch and a beer at a local bar "The Liffey". It was during March Madness, so I was watching some

basketball. I sat at the bar and got chicken wings. I watched a few basketball games and ate. I read the newspaper a bit too.

The food at "The Liffey" is always good. The team I picked won so that was also good."

better match the scenario main character’s profile. In this ex-
ample, we base the revised content on a reported activity of
a 26-year-old male who goes out to lunch, as can be seen in
example 4, and change the details about the time and loca-
tion to match the required content.

Algorithm 1 presents ScenarioGen’s logical flow. Scenar-
ioGen requires as input the user profile, the scenario and a
set of constraints which indicates the desired changes or re-
placement constraints (such as the person’s location). It out-
puts new coherent content where some activities and their
descriptions are replaced in order to satisfy the constraints.

Algorithm 1 Scenarios Generator (ScenarioGen)
Require: User profile P , original scenario O Scn and a

constraints set S
Ensure: Revise scenario N Scn

1: Run MaxSat solver to get a new scenario N Scn with
AI placeholders

2: while N Scn includes placeholders do
3: Run KAR to replace a placeholder AI
4: Run SNACS to extend the chosen replacement AI

into ADR
5: Run MaxSat solver to validate N Scn
6: end while
7: return N Scn

We define the following terms for use in the algorithm:

• User Profile (P) - describes the user properties (i.e.
the scenario’s writer or the subject) and consists of gender,
age, personal status and number of children.

• Scenario - a sequence of activities and their descrip-
tions represented as a list of pairs <AI, ADR> where
each activity instance AI is accompanied with an activity-
details record ADR. The description of these two fields
follows.

• Activity Instance (AI) - is a specific occurrence
of activity which is part of the scenario and is composed
of the activity name, a day, start and end time, loca-
tion and participants. In our example: AI(night, John,
BrokeIntoHouse, Downtown, alone).

• Activity-Details Record (ADR) - is a tuple
<P,ADA,ADP> where: P is a user profile, ADA is the
activity-details attributes vector and ADP is the activity
natural language presentation. A detailed description of

the latter two fields follows immediately.
• Activity-Details Attributes (ADA) - con-

tains a vector of attributes which accompanies the
activity-details. This vector is a superset of the activity
instance AI, which contains the general attributes such
as participants, a day and location, but it also contains
information specific to the activity-details domain, such
as restaurant name and type. It can contain optional val-
ues, and thus can be full or partial, for example in the
eat-at-a-restaurant activity a person can eat at a restaurant
alone, but can also go with another person (e.g. a spouse).
For example 2, we represent this vector as: 〈day (Thurs-
day), part-of-day (noon), name (The Liffey), type (Bar
and Grill), location (downtown) and participants (alone)〉.

• Activity Presentation (ADP) - is the activ-
ity’s detailed description written in natural language
and is composed of three parts: (1) The activity
Introduction describes the main facts of the activ-
ity, such as who went, when, what are the main objects’
names (which movie/restaurant), where and why; (2) The
activity Body describes the activity in detail, what was
the course of events and what happened during the ac-
tivity; and (3) The activity Perception describes how
good or bad the experience was from the user’s perspec-
tive. Note that we intentionally split the activity presenta-
tion into these three parts. This semi-structured free text
writing is very applicable when describing social, every-
day situations. It also centralizes most of the activity spe-
cific details in the introduction part, which facilitates ad-
justing the activity to a new user profile and attributes
vector. Accordingly, the presentation of example 2 is: (1)
Introduction: “I went and got lunch and a beer at a
local bar. . .” (2) Body: “I sat at the bar and got chicken
wings. . .” and (3) Perception: “The food at “The Lif-
fey” is always good. . .”

The novelty within the ScenarioGen algorithm is its KAR
and SNACS modules and not the MaxSat solver. This is
because our use of MaxSat for content generation follows
previous work (Biskup and Wiese 2008), and we used
the award-winning off-the-shelf “akmaxsat” solver (Kuegel
2010) in our implementation. Both KAR and SNACS use
the same similarity measure to find similar activities (in
KAR) and content activity details (in SNACS) in the pre-

acquired datasets – the activities dataset, denoted DSA and
the activity-details dataset, denoted as DSD, respectively
(which will be described in details later). Using a compar-
ison function, we compare each pair of attribute values. The
function returns one of the 3 values: same, similar and
other. Note that in the case one of the attribute values is
missing, the function returns the similar value as the default
value. For example, we consider the number-of-children at-
tribute to be the same if the difference between the two val-
ues is 1 or less, similar if it is less than or equal to 3 and
other if one person has children and the other does not or
when the difference is greater than 3. We now detail how
these similarity measures are used in the KAR and SNACS
modules.

KAR Activities Generator Module
The activities generator’s goal is to find the most ap-
propriate activity replacement, such as AI(night, John,
EatDinner,Downtown, alone), for the scenario’s place-
holder provided by the solver, such as AI(night, John,
PH,Downtown, alone). To do this, KAR receives as in-
put a user’s profile P, the scenario Scn, activity records
AR within the dataset DSA and the activity placeholder AI
which needs to be replaced. KAR returns a revised scenario
with changed activity which will later be associated with a
natural language description and details from the SNACS
module. KAR is implemented using the k-nearest neighbor
algorithm and it uses likelihood measure (based on the sim-
ilarity measure described above) to predict which activity
record is the best replacement for the placeholder. Specifi-
cally, ten attributes are compared in determining activities’
similarity: the 4 attributes of the profile P and the 6 attributes
of the activity Act.

The impact of having a high similarity measure can de-
pend on the specific attribute. For example, having the same
gender value is likely more important than having the same
exact age. We associate different weights for each attribute
with a scoring function that gets an attribute and a similar-
ity measure and returns a score within the range [-15,15].
We refine this score function using several preliminary trial
and error iterations. KAR calculates the likelihood measure
for each of the records, AR, as a summation of these scores,
then it sorts the activities records according to this measure
and uses the k-nearest neighbor algorithm to choose the best
candidate. We implemented two variations of this algorithm,
one with K=1, which returns the activity with the highest
measure and the other with K=11, which also takes into ac-
count the number of similar records. As each activity type
has different instances in the dataset for different profiles,
we gave measures for the specific instances. We keep the
top 11 instances with the highest measures and return the
activity type which was most common.

SNACS Activity-Details Generator
The activity-details generator module is responsible for
adding detail to the revised scenario to make more varied
and realistic content. Its input is the user’s profile P, a par-
tial activity details attributes vector ADA (which is made
up of the values given in the activity instance AI) and the

activity-details records ADR within the dataset DSD. It re-
turns as output a new activity-details record ADR which
contains a consistent and realistic activity presentation ADP
written in natural language, which substitutes the activity
in the revised scenario. The novelty behind SNACS is that
its generator is based on the activity-details records col-
lected from the crowd. SNACS first selects the best candi-
date record (we present 3 variations of this selection process
below). Then, it completes the missing activity-details at-
tributes through generating attributes which are similar to
the original record’s attributes and matches them to the new
user’s profile. For example, if in the original activity some-
one went to see a children’s movie with his son and the
new user has no children, SNACS can choose to include his
niece/nephew among the participants. Last, it generates the
activity’s natural language presentation as follow: (1) It re-
places the original activity’s introduction, i.e. its first part
(who went, when, where, why), with a newly generated in-
troduction according to the new profile and the new vector
of attributes, using pre-defined templates. Specifically, we
used SimpleNLP (Gatt and Reiter 2009), a Natural Lan-
guage Generation (NLG), template-based surface realiza-
tion, which creates an actual text in natural language from a
syntactic representation. We created several NLG templates
for each activity type, which were randomly chosen. For ex-
ample, one such template for the movie activity was: “Last
〈time〉 I went to a movie with my 〈with〉. We went to see
the movie 〈movie〉 at 〈theater〉”. Each such template can
generate a few variations according to the chosen attributes,
such as: (a) Last weekend I went to a movie with my fam-
ily or (b) Last Sunday afternoon I went to a movie with my
wife and my son. (2) It adjusts the body and perception (the
second and third parts) of the chosen activity by replacing
the references of the original attributes’ vector with the new
corresponding activity, such as the restaurant’s name in ex-
ample 3.

We implemented 3 variations of the SNACS algorithm:
SNACS-Any, SNACS-Bst and SNACS-Tag, which differ
in how the original candidate activity-details record is cho-
sen. The SNACS-Any variation is a baseline measure that
randomly chooses one activity-details record from DSD.
In contrast, both the SNACS-Bst and SNACS-Tag varia-
tions use a compatibility measure to select the best candidate
from among all records in DSD. This compatibility mea-
sure is based on 7 attributes: the 4 attributes of the profile
P and 3 attributes from the activity-details attributes vector
ADA (participants, type and part-of-day). However, when as-
sessing the compatibility of the activity-details record ADR,
we must also account for the natural language presentation
of the activity. Thus, we define an importance level vec-
tor ILV, which corresponds to these 7 attributes for each
record ADR within DSD. Each value in ILV is a value SM
and is used to represent the importance of the compatibil-
ity of a given attribute within the activity body and per-
ception parts of the activity presentation. Accordingly, if a
given attribute within ADR can be modified without violat-
ing any common sense implications, then the value is other.
At the other extreme, if that attribute is critical and even
small variations can make the activity implausible, then the

value is same. SNACS considers two approaches in which
the vector ILV can be built for every record. The first ap-
proach, denoted as SNACS-Bst, uses a fixed (automatic)
ILV across all records within DSD. Specifically, it contains
the same value for the gender attribute and a similar value
for all of the other attributes. The second approach, denoted
as SNACS-Tag, utilizes manually tagging of every record
within DSD. This manual tagging takes less than 2 minutes
per description and does not requires technical skills. Af-
ter reading the description, people grade whether or not the
content includes specific details related to the attributes vec-
tor. For example, the manual ILV for example 4 is 〈gender
(same), age (similar), number-of-children (other), personal-
status (other), participants (other), type (similar), part-of-
day (similar)〉. We again build a score function but this time
it gets as input an attribute, a similarity measure and an im-
portance level and returns a score within the range [-15,15].
During runtime, SNACS first calculates the similarity mea-
sure of the 7 attributes for all of the records ADRwithin DSD

compared to the given user’s profile P and the (partial) ac-
tivity instance AI it needs to replace. It then calculates the
compatibility measure as a summation of the scores of the
7 attributes based on its calculated similarity measure and
its given (fixed or manual) importance level and chooses the
record with the highest measure as the best candidate.

Evaluation Methodology
We used the Amazon Mechanical Turk (AMT) platform, an
established method for data collection (Paolacci, Chandler,
and Ipeirotis 2010), to construct database of possible content
replacements with relatively low cost. We also used a second
group of crowd-sourced workers to evaluate the efficacy of
our approach in an extensive user study (250 subjects). In
both populations we ensured that people answered truthfully
by including open test questions and reviewing it manually
before accepting their work.

We evaluated a total 6 different content domains to
judge the generality of ScenarioGen. Motivated by the
VirtualSuspect application, we studied four different
types of scenarios revolving around daily activities: watch-
ing movies, eating out at restaurants, buying groceries and
going to the dry cleaner. Additionally, to indicate Scenario-
Gen’s usability in other applications, such as content gener-
ation for simulating job interviews, we also evaluated how
well it could generate content about job descriptions for
technology workers and administrative assistants. Examples
of all of the questionnaires used to crowdsource the data can
be found at http://aimamt.azurewebsites.net/.

Acquiring the Datasets
As described above, both the activities generator (KAR) and
activity-details generator (SNACS) rely on large diversified
datasets to generate new content based on similarities with
existent records. We now describe how we build these two
datasets.
KAR Dataset The activities dataset, denoted DSA,

contains a collection of daily schedule records, SR, and ac-
tivity records, AR. The SR is a tuple <P,Sch> where P is
a user profile and Sch is a daily schedule represented as a

list of activity instances AI. The AR is a tuple <P,Act>
where P is a user profile and Act is the activity properties,
defined in a more generic representation than AI, and con-
sists of the activity name and six attributes: a day (a weekday
or weekend), part of day, duration, location, participants and
frequency. We use two types of forms in order to acquire
the two record types. The first form is used to define the
set of possible activities and the second form is used to col-
lect additional data on each of the activities from a variety
of profiles. In the first questionnaire, we acquire weekday
and weekend schedules (in one hour increments), where we
asked the workers to describe the activities as specifically
as possible and limited each activity to up to a 3 hour dura-
tion. For each activity in the schedule, the worker is asked
to enter in free text the activity name, the participants and
the location. Defining the set of possible activities requires
only a few schedules, and thus we collected 16 schedules,
2 schedules from 8 subjects (4 male, 4 female, ages 23-53,
paid 25-40 cents). We then map all of the activities in these
schedules into an enumerated list and store the converted
schedules Schwith their profile P at DSA as the SR records.
The second questionnaire is used to acquire the six attributes
of Act for each activity in the collected schedules. The AR
records are collected from 60 subjects (23 male, 37 female,
ages 21-71, paid 35 cents) which filled-in 12 activities each.
Overall we have 720 AR records at DSA.
SNACS Dataset The activity-details dataset, denoted

as DSD, contains a collection of ADR records which in-
cludes: the profile P, the activity attributes vector ADA and
the activity presentation in natural language ADP. Here, the
workers are asked to describe in free text daily, social activ-
ities in as much detail as possible according to the three ac-
tivity presentation parts - introduction, body and perception.
Then, the workers are presented with a list of specific ques-
tions. The completed records ADR are then stored at DSD.
We intentionally split the activity’s detailed description into
three parts for two reasons. First, this semi-structured free
text writing is very applicable when describing social, every-
day situations, and it helps us to elicit a detailed description
of the activity from the workers. Second, it centralizes most
of the activity-specific details in the introduction, which al-
lows us to adjust the activity-details to a new user’s profile
and attributes vector during the activity details generation
without the need for intensive usage of NLP tools. We col-
lect and store 10 activity-details for the 4 everyday activities
types from 20 subjects (6 male, 14 female, ages 19-55, paid
50 cents) which write two activity-details each. We also col-
lect 32 job descriptions: 16 for positions in computer science
field (8 male, 8 female, ages 24-50) and 16 for administra-
tive assistance positions (all female, aged 25-63) which were
paid 45-85 cents each. We use similar questionnaire but with
a different attributes vector. Overall we have 72 ADR records
at DSD.

Comparison
To evaluate the efficacy of our approach, we compare the
generated content to the original handwritten content and
to a random based generated content as baseline for veri-
fication. In order to validate the significance of SNACS, we

also implemented a second activity-details generator - a tra-
ditional planning-based generator described below.
Planner One traditional approach for generating

activity-details is to use planning-based systems (Meehan
1977; Ware and Young 2011; Cavazza, Charles, and Mead
2002). The planning-based approach can use a causality-
driven search or a hierarchical task network to link a series
of primitive actions in order to to perform a task. We based
our implementation, denoted as Planner, on SHOP2’s
planning-based generator using a Hierarchical Task Network
(HTN) as it is one of the best-known approaches, and has
been evaluated and integrated in many real world planning
applications such as evacuation planning, evaluation of en-
emy threats and manufacturing processes (Nau et al. 2003).
In conjunction with SHOP2, Planner uses a plot graph
(Weyhrauch and Bates 1997) which is a script-like structure
to partially order basic actions that defines a space of possi-
ble action sequences that can unfold during a given situation.

To generate rich content about activity-details including
natural language descriptions, we gave Planner an option
to match natural language descriptions to the basic actions
portion of the activity. We defined a set of 10-15 different
descriptions that were tailored to each one of the selected ac-
tions, which assured the implemented planner had a variety
of descriptions with which to build activity-details. These
descriptions were manually handwritten and part of them
were also manually tagged with specific tags, such as movie
or restaurant types. In addition to the introduction’s realiza-
tor, which we also used in SNACS, we implemented dedi-
cated actions’ realizators (SimpleNLP based) that took the
planner output, a semi-structured plan, and translated it into
a natural language activity presentation. Overall, the HTN-
based generator had an inherently higher cost compared to
SNACS for the following reasons: Both SNACS and the
planner have the steps of building the activity introduction
templates and the implementation of the logical constraints.
However, the planner implementation also required the fol-
lowing additional manual steps: the manual building of the
plot graph; the writing, associating and tagging of several
detailed descriptions for each basic action; and writing a spe-
cific realizator for each basic action. We implemented this
planning-based method only for the movie and restaurant
activities because of the cost overhead.
Random Baselines We also implemented 3 ran-

dom methods as baselines to ensure the validity of the
experiments. The first method is a random replacement
method, denoted as Random, for the activity generator ex-
periment and the other two random methods, Rnd-SNACS
and Rnd-Planner, are for the activity-details generator
experiment. Rnd-SNACS uses the SNACS infrastructure,
where it randomly chooses one of the activity-details records
in the dataset and then randomly fills in the rest of the activ-
ity attributes. Rnd-Planner uses the planning-based gen-
erator, where we removed the plan’s logical built-in con-
straints and used random selections instead.

Experiments Setup and Measures
To check the integrity of the scenario’s activities list after
the replacement of one of its activities, we used the daily

schedules we already collected from the crowd for DSA,
as the original scenario (without the activity-details that
will be evaluated next). We randomly cut a section of 7-
8 hours from each of the original activities list, denoted as
Original and randomly chose one activity from the list to
be replaced. We generated three revised lists by replacing the
chosen activity. Two of the lists were generated using KAR
algorithm, one with K=1 and the other with K=11, and the
third used a Random replacement. Each activities list was
associated with a user profile and a day and the AMT work-
ers were asked to rate 3 aspects: reasonable, matching to
profile and coherence from 1 (Least) to 6 (Most). The work-
ers were also asked to try to recognize which, if any, activity
was replaced. To evaluate the activity-details generators, for
each activity type or job description, we generated 4 user
profiles and for each profile generated descriptions for all
of the implemented generation methods. We also randomly
selected 4 additional descriptions out of the original dataset
for each type. Each description was associated with its user
profile and we asked a new set of AMT workers to rate 6 as-
pects of the descriptions: authenticity, reasonable, matching
to profile, coherent, fluency and grammar using the same 6-
value scale. A total of 250 subjects participated in this eval-
uation, 80 at the first experiment and 170 at the second (121
male, 129 female, ages 18-72, paid 25-50 cents).

Lexical Variability We assume that different
people have different communication types. As a result, de-
scriptions of different groups need to use fundamentally dif-
ferent types of language. Thus, besides the essential purpose
of generating a good and realistic descriptions, we wanted a
method which can generate a variety of descriptions for dif-
ferent profiles with high lexical variability. The basic lexical
variability measure is the Lexical Overlap method (Salton
1989; Damashek 1995) which measures the lexical overlap
between sentences, i.e. the cardinality of the set of words oc-
curring in both sentences, while more recent methods also
include semantic analysis. In our case, as the documents are
semantically similar as they all describe similar social situa-
tions, we decided to use lexical matching methods. We chose
the Ratio and Cosine models because recent work found
these to be the most effective (Lee et al. 2005). The Ratio
model (Tversky 1977) is a binary model which only con-
siders the occurrences of the words in each document. The
Cosine model (Rorvig 1999) is a count model which also
considers the number of occurrences of each word within the
document. All evaluation scores have been measured with-
out the Stop Words, which is the most commonly preferred
method. The similarity scores are:

SRatio
ij =

aij

aij+bij+cij
, SCosine

ij =

∑
k
xikxjk

(
∑

k
x2
ik

∑
k
x2
jk

)
1
2

where xik counts the number of times the k-th word occurs
in the document i, tik denotes whether the k-th word oc-
curs in the document i, tik = 1 if xik > 0 and tik = 0
if xik = 0. aij =

∑
k tiktjk counts the number of com-

mon words in the i-th and j-th documents, and the counts
bij =

∑
k tik(1−tjk) and cij =

∑
k(1−tik)tjk are the dis-

tinctive words that one document has but the other doesn’t.

Experimental Results
Table 1 shows the results for the first experiment which
checks the integrity and coherence of the scenarios activities
list after the replacement of one of its activities. It presents
the average grades for each aspect and also the total average
grade, which was calculated as the average of these three
grades. The results show that our generated method KAR
K=11 yields the higher results, however, there is no sig-
nificant difference between the results of Original, KAR
K=11 and KAR K=1. As expected the Random variation
yields significantly lower results than the others (specifi-
cally, the ANOVA test of Random compared to Original,
KAR K=11 and KAR K=1 have p-values much smaller than
the 0.05 threshold level with p=1.7E-9, 2.8E-11 and 1.1E-8
respectively). It also can be seen from the replacement iden-
tification percentage (the last row in Table 1), that only 7%
of the users identify the generated activity in the KAR K=11
and KAR K=1 methods which is significantly lower than the
61% in the Random replacement or the 20% in case of an
uniform random selection.

 Original Random KAR K=1 KAR K=11

Average grade 4.77 3.87 4.72 4.87

Reasonable 4.71 3.90 4.68 4.81

Profile 4.56 3.86 4.62 4.65

Coherent 5.05 3.85 4.88 5.16

Replacement identification --- 61% 7% 7%

Table 1: Scenario’s Activities List Results

Table 2 shows the results for the second experiment which
checks the authenticity, integrity, coherence, matching to
profile, fluency and grammar of the generated descriptive
activities. It presents the average grade for each activity
type and generation method, which was calculated as the
average of the six aspects’ grades. The results show that
our approach produced revised activity-details which were
rated as being as coherent and consistent by workers when
compared to the original activity-details and the planning-
based technique. The main advantage of our approach is
that the descriptive activities are much easier to create. Both
of the random variations Rnd-SNACS and Rnd-Planner
have significantly lower grades than the others (specifi-
cally, the ANOVA test for the movie activity-details of
Rnd-Planner compared to Original, Planner and
SNACS-Bst have p-values much smaller than the 0.05
threshold level with p=1.9E-4, 5.0E-3 and 9.3E-3 respec-
tively). The results also show that all SNACS-based algo-
rithms have very similar grades where SNACS-Bst and
SNACS-Tag are usually slightly better than SNACS-Any.
Overall for the entertainment activities details, although the
Original grades are slightly higher than all of the other
methods, there is no significant difference between all of
the SNACS-based generator methods or the planning-based
generator or the original activity-details. We find similar re-
sults for the errands activity-details and for the job descrip-
tions domains where SNACS-Bst or SNACS-tag have the
best results, but again there is no significant difference be-
tween all of the SNACS-based generator methods or the the
original descriptions. As expected the Rnd-SNACS has sig-

nificantly lower grades than all the others. We find that the
results for each of the 6 aspects (omitted due to lack of
space) are very similar to the average grade.

Algorithm Movie

Restaurant

Buy

Groceries

Dry

Cleaning

Computer

Science

Admin

Assistant

Original 4.758 4.690 4.094 4.510 4.581 4.581

SNACS-Any 4.475 4.303 3.775 4.633 4.649 4.626

SNACS-Bst 4.429 4.527 4.379 4.753 4.958 4.636

SNACS-Tag 4.438 4.468 4.833 4.707 4.741 4.536

Planner 4.521 4.250 --- --- --- ---

Rnd-Planner 3.719 3.358 --- --- --- ---

Rnd-SNACS 2.752 3.065 3.599 3.745 3.623 3.876

Table 2: Activity-Details (Narratives) Average Grades

 Movie Restaurant
Computer

Science

Admin

Assistant

Algorithm Ratio Cosine Ratio Cosine Ratio Cosine Ratio Cosine

Original 0.089 0.356 0.072 0.150 0.083 0.241 0.087 0.228

Planner 0.201 0.560 0.261 0.525 --- --- --- ---

Rnd-Planner 0.192 0.592 0.262 0.514 --- --- --- ---

Rnd-SNACS 0.092 0.408 0.118 0.331 0.077 0.172 0.116 0.222

SNACS-Any 0.084 0.352 0.126 0.304 0.105 0.236 0.062 0.151

SNACS-Bst 0.099 0.518 0.115 0.327 0.097 0.273 0.082 0.146

SNACS-Tag 0.102 0.508 0.108 0.324 0.102 0.261 0.112 0.175

Table 3: Similarity Scores

One major advantage of SNACS over hand-crafting de-
scriptions is the time saved. However, SNACS also produced
significantly more varied and diversified stories than those
based on the planning-based generation algorithm. Table 3
supports this claim by presenting the similarity measures,
ratio and cosine, for all of the algorithms. As expected,
the Original descriptions, which are completely hand-
written, have the best scores (lower is better) in both mea-
sures. The average ratio and cosine scores for the planning-
based algorithms (Planner and Rnd-Planner) are sig-
nificant worse than the SNACS-based algorithms. The
ANOVA tests for mean difference of the entertainment de-
scriptions’ ratio and cosine scores of Planner compared to
SNACS-Tag at the 0.05 significance level yielded p=7.6E-4
and 2.3E-3 respectively. We also calculated these measures
for the job descriptions and found that all SNACS-based al-
gorithms generated descriptions which are variable and ver-
satile as the original, hand-written descriptions.

Conclusions
This paper makes the following two key contributions: (i) It
is the first work to address the problem of modifying sce-
narios to generate personal information but yet maintains
consistency even when varied scenarios are generated. (ii)
It provides a methodology to use crowdsourcing in a princi-
pled way for this task. We present ScenarioGen which uses
the crowd as the source of our dataset, thus reducing the
time and effort needed to generate new scenario content and
avoiding the inherent cost of manually modifying scenarios.
ScenarioGen uses the MaxSat logical engine in combina-
tion with our novel KAR and SNACS modules to generate
this content. Our extensive evaluation in 6 different domains
shows that revised scenarios and their activities’ details de-
rived from ScenarioGen are rated as coherent and consistent
as the original scenarios and the original activities’ details,
yet are generated with significantly lower cost than content
created by an accepted planning technique.

Acknowledgments
This work was supported in part by ERC grant # 267523.

References
Biskup, J., and Wiese, L. 2008. Preprocessing for controlled
query evaluation with availability policy. Journal of Com-
puter Security 16(4):477–494.
Cavazza, M.; Charles, F.; and Mead, S. 2002. Character-
based interactive storytelling. IEEE Intelligent Systems
17(4):17–24.
Damashek, M. 1995. Gauging similarity with n-grams:
Language-independent categorization of text. Science
267(5199):843–848.
Gandhe, S.; Whitman, N.; Traum, D.; and Artstein, R. 2009.
An integrated authoring tool for tactical questioning dia-
logue systems. In 6th Workshop on Knowledge and Rea-
soning in Practical Dialogue Systems.
Gatt, A., and Reiter, E. 2009. SimpleNLG: a realisation en-
gine for practical applications. In 12th European Workshop
on Natural Language Generation, 90–93.
Hajarnis, S.; Leber, C.; Ai, H.; Riedl, M.; and Ram, A. 2011.
A case base planning approach for dialogue generation in
digital movie design. In Case-Based Reasoning Research
and Development, 452–466.
Hendrikx, M.; Meijer, S.; Van Der Velden, J.; and Iosup,
A. 2013. Procedural content generation for games: a sur-
vey. ACM Trans on Multimedia Computing, Communica-
tions, and Applications.
Kuegel, A. 2010. Improved exact solver for the weighted
max-sat problem. Workshop Pragmatics of SAT.
Lane, H. C.; Schneider, M.; Michael, S. W.; Albrechtsen,
J. S.; and Meissner, C. A. 2010. Virtual humans with secrets:
Learning to detect verbal cues to deception. In Intelligent
Tutoring Systems, 144–154. Springer.
Lee, M.; Pincombe, B.; Welsh, M.; and Bara, B. 2005. An
empirical evaluation of models of text document similar-
ity. In 27th annual meeting of the cognitive Science Society.
Lawrence Erlbaum Associates.
Li, B.; Appling, D.; Lee-Urban, S.; and Riedl, M. 2012.
Learning sociocultural knowledge via crowdsourced exam-
ples. In Proc. of the 4th AAAI Workshop on Human Compu-
tation.
Li, B.; Lee-Urban, S.; Johnston, G.; and Riedl, M. 2013.
Story generation with crowdsourced plot graphs. In Twenty-
Seventh AAAI Conference on Artificial Intelligence.
Meehan, J. 1977. Tale-spin, an interactive program that
writes stories. In Fifth International Joint Conference on
Artificial Intelligence.
Nadolski, R. J.; Hummel, H. G.; Van Den Brink, H. J.; Hoe-
fakker, R. E.; Slootmaker, A.; Kurvers, H. J.; and Storm, J.
2008. Emergo: A methodology and toolkit for developing
serious games in higher education. Simulation & Gaming
39(3):338–352.
Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, J.; Wu, D.;
and Yaman, F. 2003. SHOP2: An HTN Planning System.

Journal of Artificial Intelligence Research (JAIR) 20:379–
404.
Niehaus, J.; Li, B.; and Riedl, M. 2010. Automated sce-
nario adaptation in support of intelligent tutoring systems. In
Twenty-Fourth International Florida Artificial Intelligence
Research Society Conference.
Paolacci, G.; Chandler, J.; and Ipeirotis, P. 2010. Running
experiments on amazon mechanical turk. Judgment and De-
cision Making.
Riedl, M., and Stern, A. 2006. Believable agents and intel-
ligent story adaptation for interactive storytelling. In Tech-
nologies for Interactive Digital Storytelling and Entertain-
ment, 1–12. Springer.
Riedl, M.; Stern, A.; and Dini, D. 2006. Mixing story and
simulation in interactive narrative. In Second Artificial Intel-
ligence and Interactive Digital Entertainment Conference,
149–150. The AAAI Press.
Rorvig, M. E. 1999. Images of similarity: A visual explo-
ration of optimal similarity metrics and scaling properties of
trec topic-document sets. JASIS 50(8):639–651.
Salton, G. 1989. Automatic Text Processing: The Transfor-
mation, Analysis, and Retrieval of. Addison-Wesley.
Susi, T.; Johannesson, M.; and Backlund, P. 2007. Serious
games: An overview.
Turner, S. 1993. MINSTREL: a computer model of creativ-
ity and storytelling.
Tversky, A. 1977. Features of similarity. Psychological
Review 84:327–352.
Ware, S., and Young, R. 2011. CPOCL: A Narrative Plan-
ner Supporting Conflict. In Seventh AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment,
AIIDE.
Weyhrauch, P., and Bates, J. 1997. Guiding interactive
drama. Carnegie Mellon University.
Zook, A.; Lee-Urban, S.; Riedl, M. O.; Holden, H. K.; Sot-
tilare, R. A.; and Brawner, K. W. 2012. Automated scenario
generation: Toward tailored and optimized military training
in virtual environments. In International Conf on the Foun-
dations of Digital Games. ACM.

