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Abstract

Adaptive Cruise Control (ACC) is a technology that allows a
vehicle to automatically adjust its speed to maintain a preset
distance from the vehicle in front of it based on the driver’s
preferences. Individual drivers have different driving styles
and preferences. Current systems do not distinguish among
the users. We introduce a method to combine machine learn-
ing algorithms with demographic information and expert ad-
vice into existing automated assistive systems. This method
can save on the interactions between drivers and automated
systems by adjusting parameters relevant to the operation of
these systems based on their specific drivers and context of
drive. We also learn when users tend to engage and disen-
gage the automated system. This method sheds light on the
kinds of dynamics that users develop while interacting with
automation and can teach us how to improve these systems
for the benefit of their users. While accepted packages such as
Weka were successful in learning drivers’ behavior, we found
that improved learning models could be developed by adding
information on drivers’ demographics and a previously de-
veloped model about different driver types. We present the
general methodology of our learning procedure and suggest
applications of our approach to other domains as well.

Introduction
Cruise control is a known technology that aids drivers by
reducing the burden of controlling the car manually. This
technology controls the vehicle speed once the user sets a
desired speed. Cruise control is not only convenient, but it
has the potential to improve the flow of traffic (van Arem,
van Driel, and Visser 2006), and can be effective in re-
ducing driver fatigue and fuel consumption (Bishop 2000).
In this paper, we focus on a second generation of cruise
controls– adaptive cruise control (ACC). ACC is designed as
a comfort-enhancing system, which is an extension of con-
ventional cruise control (CC). The ACC system relieves the
driver from some of the longitudinal-control tasks by actu-
ally controlling speed and headway keeping, but the driver
can choose to engage or disengage the ACC at any time.
The major difference between ACC and CC is the use of
radar technology to maintain a preset distance between the
vehicle with the ACC and other vehicles on the road. This
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distance is controlled by a “gap” parameter which sets the
minimum gap (headway distance) to the vehicle in front of
it. Figure 1 shows a picture of a steering wheel with the ACC
technology. Note the existence of a “gap” switch on the left
side of the figure.

While ACC adds more automation to the driving ex-
perience, it typically also requires the driver to set and
adjust one more parameter, the gap setting. The current
approach is to preset the gap setting to a default value
which can be adjusted by the driver manually based on
his driving preferences. Another approach taken in previ-
ous published attempts was to learn this setting focusing
on mechanisms such as fuzzy logic (Naranjo et al. 2003;
2006). Basically, rules were learned manually after having
interviewed human drivers. Based on these rules the gap
setting value was adjusted automatically to the conditions
of the drive without considering the particular driver in the
vehicle. Individual drivers, however, differ in their driving
styles and preferences. Therefore, a personalized learning
approach may be valuable.

In this paper, we primarily focus on a method that learns
how to quickly and accurately adjust the gap setting based on
the specific driver and context of a drive. To accomplish this
task, we created general driver profiles based on an extensive
database of driving information that had been collected from
96 drivers (Ervin et al. 2005). We used post-processing of
data from that study. Our general method is that once a new
driver is identified we classify this driver as being similar
to previously known drivers and set the initial gap setting
accordingly.

The challenge of this study was to process real world data
so as to obtain the most accurate and practical rules from the
learning algorithms. We found that the information gleaned
from demographics and the driver’s type was crucial for cre-
ating more accurate learning models. This work focuses on
which attributes will help, and a general methodology for
adding them. By following this methodology, we found that
a better application could be created in this domain, and are
confident that better applications can be created in other do-
mains as well.

Related Work
The concept of using a group of characteristics to learn peo-
ple’s behavior has long been accepted by the user model-



Figure 1: A steering wheel fitted with ACC technology.

ing community. Many recommender systems have been built
on the premise that a group of similar characteristics, or a
stereotype, exists about a certain set of users (Rich 1979).
Even more similar to our work, Paliouras et. al (Paliouras
et al. 1999) suggested creating questionnaires, distributing
them, and then creating decision trees to automatically de-
fine different groups of users. Similarly, our application as-
sumes that some connection exists between users, which can
be learned using machine learning techniques. We propose
that this approach be applied to customize settings within
an application, here ACC, and not within recommender sys-
tems.

Previously, Fancher et. al (Fancher and Bareket 1996), an-
alyzed a group of 36 drivers and their acceptance of adap-
tive cruise control (ACC). While all drivers enjoyed and
accepted the ACC, they found that drivers could be di-
vided into three types with each group demonstrating spe-
cific driving tendencies which impact their headway and
closing speeds, relative to vehicles ahead. In very general
terms, these groups were assumed to be: one that is most ag-
gressive, another that is least aggressive, and a third that is
in between. Although it is clear that more detailed grouping
may exist, and that a different profiling of the drivers’ popu-
lation can be made, for the purpose of this study the charac-
terization analysis was aimed at identifying the above three
grouping types. The three driving styles are: 1. Hunters (ag-
gressive drivers who drive faster than most other traffic and
use short headways); 2. Gliders (the least aggressive drivers
who drive slower than most traffic or commonly have long
headways); and 3. Followers (whose headways are near the
median headway and usually match the speed of surround-
ing traffic). In this scheme of things, Hunters are drivers who
tend to drive faster than the surrounding flow and they tend
to travel at shorter headway times than those adopted by
other drivers. In contrast, at the other end of driver character-
istics, Gliders tend to travel slower than the surrounding flow
and they tend to travel at longer headway times than those
adopted by other drivers. Between the Hunters and Gliders
lie the Followers who tend to go with the flow of traffic. They
tend to adapt their driving behavior to the situation they are
in.

The idea of assisting the driver in the task of longitudi-

nal control has been the focus of research in the last decade
(Naranjo et al. 2003; 2006). Operation tests have given in-
sight into this task. However, the goal of this project was
to attempt to create an intelligent ACC agent that could po-
tentially set this longitudinal value autonomously through
adjusting its gap setting per each driver.

In this paper, we use driver characterization into types
(hunter, glider or follower) in addition to other demographic
information to attempt to build an application that predicts
how the ACC should set its gap (headway) given this in-
formation and road situation. In general, other research has
previously found that we can better predict people’s behav-
ior by combining relevant behavior theory, here about peo-
ple’s driving type and demographics, in conjunction with
machine learning methods. These studies have included how
other behavior theories: Aspiration Adaptation (Rosenfeld
and Kraus 2012) and the Focal Points (Zuckerman, Kraus,
and Rosenschein 2011) could be used in conjunction with
machine learning algorithms to create an improved classifier.
These results also showed some positive correlation between
the complexity of the problem domain and the improvement
in performance when augmenting the behavior model. Thus,
the more complex the learning task, the added gain in the
learning model by adding behavior information. This paper
explores how the behavior model of a driver’s type impacts
their gap setting.

Learning Method
Current ACC systems allow the user to choose a value for
the gap setting between six possible values (1–6). These val-
ues control the distance the ACC autonomously maintains
with the vehicle in front of it. Currently, one value is set as
the default (in our case this value was 6) and the user may
change it during his driving as he wishes.

In order to study the problem of predicting what gap set-
ting a person would select, we constructed two different
types of models. The first type of model was a regression
model. In general regression models operate by statistically
predicting the value of a continuous dependant variable from
a number of independent variables. In this problem, the goal
was to predict the gap setting value a given driver would se-
lect based on the independent variables of the current driving
conditions. The second type of model was a decision tree
model (C4.5). In general, decision trees predict the value
of a discrete dependant variable from a number of indepen-
dent variables. Specifically, here we learn which of the dis-
crete gap values a driver will likely choose given all possi-
ble values given current driving conditions. Note that while
discrete regression functions and continuous decision algo-
rithms also exist, we focused on these two types of models
to differentiate between these categories of models.

Our goal was to use the output of either model to auto-
matically set the gap setting. Towards this goal, the second
model is seemingly the better choice as its output directly
correlates to a value within the system. In contrast, the re-
gression model outputs a decimal value (e.g. 3.5) that must
be first rounded to the closest value within the system to be
used. However, the advantage of this model is that a mistake
between two close values (e.g. 3.5 being close to 3 and 4) is



not as mathematically significant as mistakes between two
extreme values (e.g. between 2 to 6). In contrast, the dis-
crete decision tree model weighs all types of errors equally.
In practice, the regression model will likely be more useful
if the user is willing to accept errors between two similar
values.

Additionally, we focus on two secondary goals, when the
ACC is first engaged, and when the ACC is disengaged.
Here, the goal was not to create an agent to autonomously
engage or disengage the ACC. However, by analyzing when
people are most comfortable with the ACC, we hope to un-
derstand the user acceptance of such systems.

In both of these learning tasks, we are confronted by the
known dataset imbalance problem (Chawla et al. 2002). In
many real-world problems, as is the case here, each class is
not equally represented. In fact, in the specific case of the
ACC engagement task, over 90% of manual driving cases
continue their manual driving, and in only a small percent-
age of cases do people engage the ACC. From a statistical
perspective, a classifier could then naively classify all cases
as being in the majority case and still have extremely high
accuracy. However, because only the “minority” cases are
relevant, novel methods are needed to find them. While sev-
eral algorithms exist, we specifically focused on the Meta-
Cost algorithm. Metacost is a general algorithm for making
any type of classification learning algorithm cost sensitive,
allowing us to stress certain categories more than others.
Metacost has the advantage of treating of working well with
any classification algorithm, as it operates by wrapping a
cost-minimization procedure around any classifier (Domin-
gos 1999). We opted to use this algorithm because of its flex-
ibility and the ease within this algorithm in controlling the
bias size given to the minority case. Empirical results for the
learning gap settings and classifying engagement and disen-
gagements of and from the ACC are explained in the next
section.

Experimental Setup
Data for our analysis were taken from the Automotive Colli-
sion Avoidance System Field Operational Test (ACAS FOT)
(Ervin et al. 2005). In that study, to understand how different
drivers use an ACC, each of 96 drivers was presented with
a vehicle fitted with the ACC which they used for a period
of 4 weeks. During the first week the ACC system was not
available. That is, if the driver engaged the cruise control,
it simply maintained speed just like the conventional sys-
tem (CC). During the next three weeks, if the driver chose
to engage the cruise control, it functioned as ACC. In gen-
eral, three different datasets were considered. The first, and
most basic, dataset were objective characteristics that can be
studied based on the location of the vehicle itself, e.g., head-
way distance to the lead vehicle, vehicle speed, longitudinal
acceleration, road type (country, city, or highway), weather
(including day or night) and road density (is there traffic). A
second dataset added driver characteristics. These properties
focus on driver demographics such as age, sex, income level
(high, medium, low), and education level (High School, Un-
dergraduate, and Graduate ). The ACAS FOT data consists
of a good mixture of these demographics with a 51% male

to 49% female split, 31% young (aged 20–30), 31% mid-
dle aged (aged 40–50), and 38% older drivers (aged 60–70),
and people from a variety of education and socioeconomic
levels. The last dataset also logged a previously developed
measure used to quantify a driver’s behavior (Fancher and
Bareket 1996).

The experimental design of the ACAS FOT was a mixed-
factors design in which the between-subjects variables were
driver age and gender, and the within-subject variable was
the experimental treatment (i.e. ACAS-disabled and ACAS-
enabled). The disabled period was treated as a baseline mea-
sure, since the research vehicle operated like a conventional
passenger vehicle. The drivers operated the vehicles in an
unsupervised manner, simply pursuing their normal trip-
taking behavior using the ACAS test vehicle as a substitute
for their personal vehicle. Use of the test vehicles by anyone
other than the selected individuals was prohibited. The pri-
mary emphasis on user selection for the field operation test
was to roughly mirror the population of registered drivers,
with simple stratification for age and gender. No attempt was
made to control for vehicle ownership or household income
levels. Thus, although the ACAS FOT participants may not
be fully representative of drivers who might purchase such
a system, they were selected randomly and represent a wide
range of demographic factors.

Results
For the training experiments, we used the three previously
defined datasets. Figure 2 presents the accuracy of the deci-
sion tree model to learn a driver’s preferred gap setting based
on these datasets. Clearly, adding the demographic data here
is crucial, as the model’s accuracy drops from over 66% ac-
curacy with this data to less than 37% accuracy without this.
As a baseline, we also include the naive classifier, which is
based on the most common gap setting– here the value of 6,
which is also the system’s default. Note that the naive model
had an accuracy of nearly 27%, far less than other models.
The user’s type did improve accuracy, as adding this infor-
mation to the type increased accuracy to near 70%. In line
with previous work, we hypothesized that adding this behav-
ior model yields less significant increases if it can be learned
from other attributes within the data. Here, we believed that
adding information about drivers’ type is less important, as
their type was already evident from information such as the
driver’s demographics.

To support this hypothesis, we constructed a decision tree
(again C4.5) to learn the driver’s type. We found that this
value could be learned with over 95% accuracy (95.22%)–
which strongly supports our hypothesis. Possibly equally in-
terestingly, we found that the most important attributes in
predicting a driver’s behavior are his age, education, and in-
come level. Young men with above High School education
tended to be “hunters” or those with extremely aggressive
driving habits. While men with only a high school education
and college educated women were “flow-followers” or those
that basically adhered to the flow of traffic. Older women
tended to be ”gliders” or those who drive slower than most
vehicles. Naturally, exceptions existed, which typically fo-
cused on the person’s income, the third most important at-



Figure 2: The importance of driver type and demographics
in predicting the gap setting within the ACC for a discrete
decision tree model.

Figure 3: The importance of driver type and demographics
in predicting the gap setting within the ACC for a regression
model.

tribute. We found that people with higher incomes tended to
be more aggressive drivers.

Similarly, the demographic information was equally cru-
cial in creating an accurate regression model, found in Fig-
ure 3. Within these models, correlation values can range
from 1.0 (fully positive correlated) to -1.0 (fully negatively
correlated) with 0 signifying no correlation. We found a
model with both demographic and type data yielded a cor-
relation of 0.78, while without this information the accuracy
dropped to 0.75. Using only vehicle specific data yielded a
model of only 0.4, and the naive model (here using the av-
erage gap value of about 3.5) yielded a value of nearly 0.
Again, we found that the type only slightly improved the
model’s accuracy, as much of this information was already
subsumed within the drivers’ demographics.

While the focus of the ACC is on the gap setting that dif-
ferentiates the adaptive cruise control, from the “standard”
cruise control, we also considered two additional problems:
when people activate the ACC and when they deactivate it.
The goal behind the gap value task was to allow an au-
tonomous agent to set, at least initially, this value within
the ACC. However, by understanding when people are more
likely to use this product we can hopefully increase its ac-
ceptability and use. Similarly, by understanding when peo-

ple disengage the ACC we can hopefully create new genera-
tions of this technology where people will use it longer and
not feel compelled to disengage it.

In both of these learning tasks, we are confronted by the
known dataset imbalance problem (Chawla et al. 2002). In
this paper, we constructed two models for these two prob-
lems based on the same three types of datasets. The first
model is a basic C4.5 without any modification. As was the
case in gap setting task, we considered attributes based on
the behavior type model, driver demographics and the ve-
hicle’s characteristics. In the second model, we again used
the same three datasets, but created a learning bias to find
the important minority cases. We specifically focused on the
MetaCost algorithm (Domingos 1999).

Table 1 displays the complete results demonstrating the
tradeoff between a model’s accuracy and the success in find-
ing the minority cases in the task of predicting when a driver
engages or disengages the ACC. The first four rows repre-
sent different models created to predict when a person would
activate the ACC. The first model is the standard decision
tree algorithm C4.5. In addition, we considered three weight
biases within the MetaCost algorithm: 0.5, 0.7 and 0.9. Note
that raising these weights allows us to give greater weight to
the minority case, thus increasing the recall of cases found,
but at a cost to the overall accuracy of the model. For each of
these models we trained four different models: one created
with all information, one without the type information but
with the demographic information, one without the type and
without the demographic information, and a naive model
that assumes the majority case– that a person continues driv-
ing in manual mode. The accuracy of each of these models
are found within the first four columns in Table 1, and the
corresponding recall levels for these models are found in the
last four columns of the table. Similarly, we also considered
the task of predicting when a person turns off the ACC, and
trained models based on the same four algorithms with the
same four datasets. The results for the accuracy and the re-
call of these models are found in the last four rows of Table
1.

Ideally, one would wish for a perfect model: e.g. one with
100% accuracy and recall of all cases. Unfortunately, this
is unrealistic, especially in tasks involving people which
are prone to variations due to noise. Nonetheless, the over-
all conclusion is that by adding more information, and
specifically about a person’s demographics, we were able
to achieve higher overall accuracies with better recall.

We would like to present the driver for a recommendation
as to when to engage the ACC. Towards this goal, we wish
to build a model that is as accurate as possible, but with a
minimum threshold. Thus, we wished to set the desired con-
fidence level of the model, as found based on the recall of
the minority class, before presenting a recommendation to
the user. Figure 4 displays the interplay between the over-
all model’s accuracy and the recall within the minority cases
in the task of predicting when a driver engages the ACC.
Again, the most desirable result is one in the upper right
corner– high accuracy and recall. However, as one would



ACC On All Info Without Type Without Demo Naive All Info Without Type Without Demo Naive
C4.5 92.67 92.32 91.22 91.27 0.35 0.32 0.07 0
MetaCost 0.5 92.42 91.97 90.97 91.27 0.40 0.36 0.13 0
MetaCost 0.7 91.93 91.38 90.37 91.27 0.45 0.42 0.18 0
MetCost 0.9 87.99 86.60 77.12 91.27 0.63 0.61 0.51 0
ACC Off All Info Without Type Without Demo Naive All Info Without Type Without Demo Naive
C4.5 88.71 88.64 88.42 86.37 0.37 0.37 0.35 0
MetaCost 0.5 88.59 88.55 88.14 86.37 0.43 0.42 0.41 0
MetaCost 0.7 87.68 87.49 87.31 86.37 0.49 0.49 0.49 0
MetCost 0.9 82.03 82.23 81.15 86.37 0.66 0.67 0.66 0

Table 1: Analyzing the tradeoff between overall model accuracy (left side of table) and recall of the minority cases (right side)
in both the task of when people turn the ACC on (top) and off (bottom).

expect, and as evident from Table 1, the naive case of con-
tinuing without engaging the ACC constitutes over 91% of
the cases, but this model will have recall of 0 for the minority
case. By modifying the weights within the MetaCost algo-
rithm we are able to get progressively higher recall rates over
the basic decision tree algorithm. Also note that the model
trained with all information achieves significantly better re-
sults than one without the type and demographic informa-
tion.

Similarly, Figure 5 displays the same interplay between
the overall model’s accuracy and the success in finding the
minority cases in the task of predicting when a driver dis-
engages the ACC. In this task, the naive case assumes that
the driver will continue with the ACC constitutes over 86%
of the cases, but this model will have recall of 0 for the mi-
nority case (see the left side of Figure 5). Note that we were
again able to raise the recall within the minority case by cre-
ating weight biases of (0.5, 0.7 and 0.9), but again at the
expense of a lower overall accuracy. However, as opposed
to the engage ACC task, we noticed that the gain from the
demographic and type information was not very significant.
In fact, upon inspection of the output trees, we noticed to
our surprise that people’s decision to disengage the ACC
was more dependent on how quickly the ACC slowed the
vehicle down, and not on the overall behavior of the driver.

Figure 4: Comparing the overall model accuracy and recall
for cases for engaging the ACC

Thus, it should be noticed that simply adding attributes is
not a panacea for higher accuracy– it only improves accu-
racy when relevant to the learning task at hand.

Figure 5: Comparing the overall model accuracy and recall
for cases for disengaging the ACC

Overall, these results suggest that finding attributes be-
yond the observed data can be critical for accurately mod-
eling a person’s behavior. Similar to previous studies that
found that other behaviorial theories can better predict
people’s actions (Rosenfeld and Kraus 2012; Zuckerman,
Kraus, and Rosenschein 2011), this work found that a
driver’s preferred gap setting could be better predicted by us-
ing a model of driving behavior (Fancher and Bareket 1996).
Even if this measure was not readily available, an accurate
estimate of this value could be learned based on a driver’s
demographic data.

Generally, one of the goals of this paper is to encour-
age people who build applications to consider incorporat-
ing data from external measures, such as psychological or
behaviorial models. As was true in other domains as well
(Rosenfeld and Kraus 2012; Zuckerman, Kraus, and Rosen-
schein 2011), exclusively using behavior models alone, such
as the driver type possible in this domain (Fancher and
Bareket 1996), is not sufficient. By combining the driver
type with other data, we achieved a prediction accuracy of
nearly 70% within the discrete decision tree model (Figure



2) and a correlation of 0.78 within the regression model (Fig-
ure 3). However, when we used only the driver type informa-
tion and removed the demographic information these models
dropped to an accuracy of 46% and 0.55 respectively. This
suggests that exclusively using behavior models is not as ef-
fective as the approach we present. Thus, we advocate for
synthesizing data gleaned from behaviorial models in con-
junction with observed domain data, something we believe
can be effective in many other domains as well.

Practically, we are studying how either or both of these
attributes can be used. The advantage to using the demo-
graphic data alone is that ostensibly it can be provided be-
fore the driver begins using the car (e.g. in the showroom)
and thus can be used to accurately model the driver from
the onset. However, people may be reluctant to provide this
information due to privacy concerns. Using driver profiling
information is relatively difficult to calculate and is based
on observed behavior over a period of time (Fancher and
Bareket 1996). Thus, this value cannot be used to initially
set values within the ACC. However, this data can be col-
lected without privacy concerns and can be used to further
improve the system’s accuracy over time.

Conclusions
Adapting automated processes to better serve humans is a
challenging task because humans are characterized by in-
consistent behaviors, have difficulties in defining their own
preferences, are affected by their emotions, and are affected
by the complexity of the problems they face together with
the context of these problems. In particular, human drivers
also need to react fast enough to road conditions and changes
in traffic. Therefore our task was to learn the ACC’s gap set-
ting quickly and accurately given data we could use from
past experience of many drivers from the ACAS field test
data (Ervin et al. 2005).

We empirically studied two learning approaches: regres-
sion and decision trees. Both were able to learn accurately
the gap setting of an individual given his demographics char-
acterization and driving type (hunter, glider or follower)
with nearly 70% for the decision tree model and with a cor-
relation of 0.78 for the regression model. These experiments
emphasized the need for driver information including a be-
havior model about the driver’s type (Fancher and Bareket
1996) in addition to the information collected on the trips
themselves. These results stress the fact that drivers may be
very different from each other and previous approaches that
set the gap setting similarly for all drivers (Naranjo et al.
2003; 2006) are less effective. Therefore, driver character-
ization is essential for adapting automated systems in the
vehicle. These differences among humans are made more
salient when trying to learn when users engage or disengage
from an automated system such as the ACC. Reactions could
be very different teaching us also about the tendencies of
users towards automation. Moreover, another challenge here
was learning in cases where a strong majority category ex-
isted but the important events were in the minority category.
We therefore, turned to the implementation of the MetaCost
algorithm to learn from unbalanced data sets.

By understanding the current state of acceptance of auto-
mated systems and learning about differences among human
users, we can improve the next generations of adaptive au-
tomated systems adjusted to their particular human users.
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