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ABSTRACT

Online banking activities are constantly growing and are likely to be-
come even more common as digital banking platforms evolve. One
side effect of this trend is the rise in attempted fraud. However, there
is very little work in the literature on online banking fraud detec-
tion. We propose an attention based architecture for classifying on-
line banking transactions as either fraudulent or genuine. The pro-
posed method allows transparency to its decision by identifying the
most important transactions in the sequence and the most informa-
tive features in each transaction. Experiments conducted on a large
dataset of real online banking data demonstrate the effectiveness of
the method in terms of both classification accuracy and interpretabil-
ity of the results.

Index Terms— deep learning, attention, interpretability, Online
banking, fraud detection

1. INTRODUCTION

In recent years there has been a continuous increase in online bank-
ing transactions. According to a recent study [1], global non-cash
transaction volumes grew by 10.1% in 2016 to 482.6 billion and it is
estimated to accelerate at a compound annual growth rate of 12.7%
globally between 2016 and 2021. Online banking transactions are
likely to become even more commonplace in the near future, as more
financial services adopt digital banking platforms [2]. The increase
in online banking activity seems to has gone hand in hand with on-
line banking fraud. As reported in [3], annual online banking fraud
losses in the UK almost doubled from 63.7 million British pounds in
2010 to 121.4 million in 2017.

Traditional approaches to fraud detection systems are rule based
[4]. Rule based systems cannot be easily adapted to new fraud pat-
terns since they need constant manual updates. Therefore, in recent
years machine learning based techniques have been applied to online
banking fraud detection. This research direction, however, is under-
studied in the literature. Most of the solutions we found describe a
system based on smart domain expert features [5, 6, 7] or apply a
naive assumption on the sequence of transactions [8]. To carry out
an online payment transaction, a fraudster must, at the very least,
log in to the bank system first. The login and the payment are two
different transactions that must be done in that order. That is, even
this simple process adheres to a natural order of events. Although
most attempts at fraud are more complex, the majority of current
approaches concentrate on data from the latest transaction or most
recent transactions while relying on hand-engineered features that
will hopefully catch global dependencies.

In this study we focus on real-time fraud detection of online
banking transactions (e.g., logins, payments, view statements). The
purpose of a fraud detection solution in this setting is to assess in

real-time the risk of each individual transaction in the form of a fraud
probability. Then the bank may choose to allow the transaction, deny
the transaction or impose some form of authentication on the user
upon successful completion the transaction will be allowed. We ad-
dress this problem by formulating it as a sequence classification task
in which the classifier has visibility to long sequences of transactions
made by the user, and is able to extract global dependencies from it.
A common solution for these kind of tasks are recurrent neural net-
works, and more specifically, a Long Short-Term Memory (LSTM)
architecture. LSTM networks have gained a great deal of popularity
in sequence classification tasks leading to state-of-the-art results in
various fields. However, it is very difficult to interpret their deci-
sions. Here, we take a different approach, we propose an attention
based classifier. The attention mechanism enables a sequence-based
neural network to automatically focus on the data item that is most
relevant to the classification task by a data-driven weighted average
of local information found in each term of the sequence.

A recent study [9] introduced an attention architecture for ma-
chine translation with state of the art results based solely on atten-
tion which entirely eliminated reliance on convolutional or recur-
rent networks. Inspired by this research trend we propose a fraud
detector that relies solely on attention, without using any recurrent
networks to process the sequences. We use a hierarchical form of
attention [10], that is applied on both a single transaction for better
feature representation and the entire sequence to identify the most
relevant transactions. Our solution is simple yet powerful, can be
easily trained and efficiently implemented in real-time systems. In
addition, a major advantage of our attention mechanism is its ability
to explain the fraud detection decision by the specific features and
the most suspicious transactions. The main novel contribution of the
proposed fraud detection method therefore is two-fold:

1. An attention based network that efficiently integrates cues
from a sequence of transactions into a global fraud decision
yielding improved detection results.

2. Interpretability - The decision made by our system can be
explained in comprehensible to users terms.

The proposed method was applied to a large dataset of real bank
transactions and we demonstrate its improved performance com-
pared to different methods and its interpretability capabilities.

2. RELATED WORK

Online banking fraud detection is understudied in the literature. We
found few papers on this topic, perhaps because of data privacy,
even though most of today’s banks employ some kind of fraud de-
tection module. Wei et al. [5] presented a complete system in which
data are pre-processed and then classified by combining 3 models:
contrast pattern mining, cost sensitive neural network and decision
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forest. Kovach and Ruggiero [6] combined local behavior changes
on the user level with global evidence across all users to generate a
risk score for a transaction. Their system requires that the end user
download and install a component to have good device identification,
which could be a nuisance. Carminati et al. [7] suggested taking a
semi-supervised approach to rank users’ transactions so they could
be inspected more efficiently by an analyst. All these methods clas-
sify based on a single transaction while relying on domain-expert
features. However, none look at a sequence of transactions to make
a decision. In [8] the use of Hidden Markov Models (HMM) was
suggested for fraud detection. HMM assumes a first order Marko-
vian property on the hidden states which is not true in our case since
fraudulent transactions may be interleaved in genuine transactions.

Online credit card fraud and intrusion detection are somewhat
similar domains that have received more attention in the literature.
They are similar to the online banking use case in the sense that they
also deal with a highly imbalanced class distribution in which classi-
fying the minority class correctly has greater importance. However,
they may differ from the online banking use case in the amount of
data per user, the data richness or the variability in procedures.

Similar to the online banking case, several studies in the credit
card domain [11, 12, 13] have put forward techniques to create
powerful features using aggregations over time windows that could
be used by classifiers such as random forest, SVM or logistic re-
gression. In recent years several studies have addressed the fraud
detection problem as a sequence classification. Srivastava et al.
[14] used HMM over tokens representing spending profiles of card-
holders and Heryadi and Hendric [15] compared the performance
of CNN, LSTM and stacked LSTM, after applying PCA on the
input sequences. Both methods rely heavily on the fact that all
transactions have an amount attached to them; however, in our case
not all transactions involve money. Li et al. [16] generated 3 sets
of features: artificial features based on domain knowledge, latent
combinations between features using gradient tree boosting and
sequential features using GRU. They used all sets of features as
input to a random forest classifier. Jurgovsky et al. [17] integrated
several feature engineering strategies to generate representations of
transactions. Using these representations, they suggested classifying
credit-card sequences of transactions with LSTM. Wang et al. [18]
developed a system for classifying sessions with LSTM as either
fraudulent or genuine based on data generated from user clicks.

In the intrusion detection domain, several studies have utilized
sequences of user logs for classification. Yuan et al. [19] suggested
using LSTM to extract temporal features from sequences of user ac-
tions and then using these features as input to a CNN. Because CNN
expects a fixed size input they ignored short sequences and trimmed
long sequences. In our case this kind of sequence processing could
seriously damage performance. In both [20, 21] an unsupervised
approach was taken using RNNs to rank events or users for analyst
inspection. Tuor et al. [20] combined continuous features gener-
ated from aggregations over time with categorical features to train an
auto-encoder for detecting anomalies online, while in [21] the prob-
lem was formulated as a language model. The authors described a
2-tier approach that considers individual log-lines and users’ actions
over time to generate scores for all events in a single day.

3. ATTENTION BASED FRAUD DETECTION SYSTEM

The fraud detection network proposed here is made up of two main
components. The first component involves embedding of categori-
cal features in a continuous space and combining the features into a
single vector using an attention mechanism. The second component

is responsible for the actual fraud detection that is carried out by se-
quence level attention. We next describe the input structure and then
explain the network components.

3.1. Sequence Definition

Let r = {f1, f2, ..., fk} be a transaction that is represented by k
categorical features consisting of either raw transaction data or gen-
erated by a domain specialist. Each feature value is a token from a
pre-defined set of possible feature values. We define a sequence of
m transactions made on the same account as S = {r1, r2, ..., rm}.
The transactions in the sequence are ordered according to their time
of execution and are generated over a fixed period of time from the
last transaction in the sequence. That is, a sequence is defined as
all the transactions made on the same account in a fixed time win-
dow from the last transaction (e.g., 1 day, 7 days, 30 days). Note
that by defining sequences in this manner allows us to address an
online detection scenario in which the system evaluate how risky is
the last transaction based on data available from all transactions in
the sequence. The goal is finding the sequence binary class (Fraud or
Genuine). We use the abbreviation F or G to denote the two classes.

3.2. Network Architecture

Dense Feature Representation Given a sequence of recorded
transactions, we first move from categorical features to a dense rep-
resentation of each feature value. Let r = {f1, f2, ..., fk} be a
transaction where fi is a one-hot representation of a categorical fea-
ture value. We apply an embedding matrix Mi on fi to represent it
by a d-dimensional dense feature vector ei = Mifi. The matrices
M1, ...,Mk are learned in the training phase. The choice of d is a
hyper parameter of the model and both d and k are fixed across all
features and transactions in the database respectively.

Attention over Features In order to represent a transaction
as a single vector, we can either concatenate the features or average
them. The former is linearly increasing with the number of features
and thus can be computationally expensive. Hence, we prefer the
latter approach. In addition, we want to determine which features
were the most influential to the final decision. Therefore, we em-
ployed attention over the features, which provides this property. The
data driven weight of each feature ei is computed as follows:

αi =
exp(w> · g(ei))∑k
j=1 exp(w

> · g(ej))
(1)

where g is a non-linear function implemented by a neural network
and the vector w is a parameter that implements the attention mech-
anism. A given transaction is finally represented by a weighted av-
erage of the input features:

x =

k∑
i=1

αi · ei (2)

Attention over Transactions Given a transaction sequence
S = (x1, ..., xm), our goal is to find its class y that can be either
fraudulent or genuine (F or G). We first apply a local decision net-
work on each transaction separately:

p(y = F |xt) = 1− p(y = G|xt) = σ(h(xt)) (3)

such that h is a non-linear function of x that is implemented by a
neural network and σ is the sigmoid function.



A naive way to integrate the information from all of the transac-
tions in the sequence S is to average their local decisions:

p(y = F |S) = 1

m

m∑
t=1

p(y = F |xt) (4)

Alternatively we can weight the decisions using a fixed distribution
under the reasonable assumption that later transactions in the se-
quence are more important. Let z be a (hidden) random variable
that represents the transactions that convey the most relevant infor-
mation for decision making. We sample the transaction location z
using exponentially decaying weights:

p(z = t) =
exp(bt−m)∑m
j=1 exp(b

j−m)
, t = 1, ...,m (5)

such that b > 1 is the parameter of the exponential time decay. The
final fraud detection decision is:

p(y = F |S) =
m∑
t=1

p(z = t) · p(y = F |xt) (6)

In this study, we propose a data driven approach for weighting
the local decisions. That is, the importance of the transactions in a
sequence is extracted from the data itself. We can view the model
as a two-step process that produces a F/G decision given an input
sequence S. We first use an attention network component to select a
transaction location z and then use the selected transaction to obtain
the F/G decision. The attention selection is done as follows:

p(z = t|S) = exp(u> · l(xt))∑m
j=1 exp(u

> · l(xj))
, t = 1, ...,m (7)

such that l is a non-linear function that is implemented by a neu-
ral network and u is the attention parameter. The fraud decision is
finally obtained as a data driven average of the transaction level de-
cisions:

p(y = F |S) =
m∑
t=1

p(z = t|S)p(y = F |xt) (8)

Learning the Model Parameters We next describe the
training procedure. Assume we are given n transaction sequences
S1, ..., Sn with corresponding binary labels y1, ..., yn ∈ {F,G}.
Each sequence Si is composed of mi consecutive transactions
(xi,1, ..., xi,mi). Denote by θ the parameter set of the network
(the dense feature representation, the feature level attention and the
sequence level attention). The log-likelihood function of the model
parameters θ is:

L(θ) =

n∑
i=1

log p(yi|Si; θ) =

n∑
i=1

log(

mi∑
t=1

p(zi = t|Si)p(yi|xi,t))

(9)
where,

p(yi|xi,t) =


σ(h(xi,t)), yi = F

1− σ(h(xi,t)), yi = G

and p(zi = t|Si) is defined in Eq. (7). To find the network param-
eters we can maximize the likelihood function using the standard
back-propagation network training algorithm. The fraud detection
algorithm is summarized in Algorithm 1.

Algorithm 1 Attention based fraud detection algorithm.

Input: A transaction sequence S = (r1, ..., rm) where each trans-
action is composed of k features: rt = (ft1, ..., ftk).
Output: Fraud/Genuine classification

Transaction Level Processing:

• Feature embedding:

eti =Mifti, i = 1, .., k, t = 1, ..,m

• Feature level attention:

αti =
exp(w> · g(eti))∑k
j=1 exp(w

> · g(etj))

xt =

k∑
i=1

αti · eti

Sequence Level Decision:
• Transaction level decisions:

p(y = F |xt) = σ(h(xt)), t = 1, ...,m

• Sequence level attention:

p(z = t|S) = exp(u> · l(xt))∑m
j=1 exp(u

> · l(xj))

• Weighted averaging of local decisions:

p(y = F |S) =
m∑
t=1

p(z = t|S)p(y = F |xt)

4. EXPERIMENTS & RESULTS

4.1. Dataset

Our method was tested on 6 months of data from 2017 belonging to a
South American bank. In that period there were 26.1 million transac-
tions. 22,500 of those transactions were marked by a bank’s analyst
as fraud and the rest were genuine transactions. We generated a total
of 57 categorical features by taking fields from the raw data, which
are, for the most part, categorical by nature (e.g., browser type, oper-
ating system). Non-categorical features such as payments amounts
were discretized manually. In order to incorporate the transaction
time, we extracted from the time-stamp the minute, the hour of the
day, the day of the week and the week of the month. We replaced
features with high domain space such as IP with alternative data such
as geo-location information. In addition, automatic predefined banks
policies sometimes deny the execution of transactions or oblige the
user to pass an authentication measure in order to complete the trans-
action successfully. Therefore, to incorporate this information when
we generated the sequences we erased this information from the final
transaction of the sequence to which we need to give a risk assess-
ment. Finally, Missing values were replaced with a special token.

We generated sequences by taking all of the transactions exe-
cuted 7 days prior to each transaction for each user to simulate on-
line detection scenario. As a result, the generated sequences were of



0.00 0.01 0.02 0.03 0.04
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Tr

ue
 P

os
iti

ve
 R

at
e

FS-Attn (area = 0.767)
S-Attn (area = 0.759)
LSTM (area = 0.756)
Last-T (area = 0.715)
DW (area = 0.714)
F-Attn (area = 0.661)

 0.5%  1%  1.5%  2%  2.5%  3%  3.5%  4%
Threshold

10%

20%

30%

40%

50%

60%

70%

80%

Re
ca

ll 
($

)

FS-Attn
S-Attn
LSTM
Last-T
DW
F-Attn

Fig. 1: Area under the top 4% FPR of the ROC curve (top) and recall
in US dollars presented in percentages on 8 thresholds (bottom).

varying lengths with average of 28 frames. We split the data to train,
validation and test according to the time of the last transaction in
each sequence. All sequences that ended in the first 4 months were
taken to be the training set, all sequences that ended in the following
1 month were taken to be the validation set and all the sequence that
ended in the final month were taken to be the test set.

4.2. Compared Classifiers

In our experiments we compared the following approaches. The first
three methods either used only the last transaction or a simple se-
quence averaging. The last three used a more sophisticated data
driven sequence processing:

• Last Transaction (Last-T) Attention on the features and us-
ing only the last transaction in the sequence.

• Decaying Weight (DW) Attention on the features and a fixed
weighted averaging of the sequence items with decaying pa-
rameter b = 1.5 (see Eq. (6)).

• Features Attention (F-Attn) Attention over the features and
unweighted averaging of the items in the sequence.

• LSTM Attention on the features and using LSTM to process
sequences of transactions for a binary F/G decision.

• Sequence Attention (S-Attn) Attention over the transactions
in the sequence and unweighted feature averaging.

• Features and Sequence Attention (FS-Attn) Our proposed
method of applying attention on both the features and the
transactions.
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Fig. 2: Distribution of the location of the A-transaction for each
class.
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Fig. 3: Mean attention weights assigned to each value of the
features (a) operating system and (b) browser type at the A-
transaction.

4.3. Evaluation Metrics

In imbalanced settings, a popular evaluation metric is the area un-
der the Receiver Operating Characteristic (ROC) curve. Banks often
set a probability threshold above which a user’s transaction may be
stopped. By doing so banks can maintain a friendly user experience
and a low workload that is expressed in a small number of cases for
analyst inspection. Therefore, we chose the main evaluation met-
ric to be the area under a portion of the ROC curve, which in our
use case was the standardized area on the top 4% false positive rate
(FPR), a threshold used currently by the bank.

In addition, since the ultimate goal is to prevent monetary loss to
the banks as a result of transactions with money involved, we suggest
another metric that compares the recall in money values. Similar to
the previous metric we evaluated the model performance based on
the recall of the top 4% scored transactions.

4.4. Implementation Details

The feature level attention was obtained by setting w as a parameter
vector and modelling g(eti) by a 2 layer NN. The transaction level
decision function, h(xt), was modeled by a 6 layer NN with residual
connection on each of the hidden layers. The sequence level atten-
tion was obtained by modeling u as a 2 layer NN and by taking the
4th layer of h(xt) to be l(xt). All layers and vectors were set to size
32 apart from the first 2 hidden layers and the final hidden layer of
the transaction level NN that were set to 64 and 16 accordingly.

All the parameters were initialized using Glorot initialization
[22] and were updated using the ADAM [23] optimizer with β1 =



Table 1: Use cases

Seq.
Class

Highest
Weighted
Transactions

Highest
Weighted
Features

Details

F 6,8,9 Time features,
transaction
type, amount,
beneficiary

True positive, The last transactions in the sequence were all payments attempts
committed by the fraudster. All the transactions were executed in a short period
of time, the amount at each transaction was slightly different, and the benefi-
ciary was the same in most of them.

F 8 Change infor-
mation, device
details

True positive, The fraudster tried to fool the system by changing some of the
user’s personal information in the 8th transaction. In addition, in both the 8th

transaction and the last transaction the fraudster connected from a device that
differed from previous devices of the user.

F 10 Location,
device details

False Negative, The sequence extended across several days and only the last
transaction was a fraud attempt. The information in the last transaction was
similar to information in previous transactions (e.g., device elements, location)
and there wasn’t anything unusual in the sequence or in the last transaction.
Therefore we speculate that the system considered the sequence as genuine.

G 7-9 Transaction sta-
tus

False Positive, All transactions were made by the actual user, however, because
of predefined bank policies transactions 7-9 were not allowed to complete. We
speculate that because it is a suspicious pattern the network assigned a high
score to the sequence indicating a possible fraud attempt.

0.9, β2 = 0.999 and a learning rate of 0.0003. We enforced regu-
larization by a weight decay of 0.002. Since we are dealing with a
highly imbalanced class distribution, in order to prevent the classi-
fiers from being biased towards the genuine class, during training at
each epoch we balanced the dataset so there would be an equal num-
ber of fraud sequences and genuine sequences. In addition, since
most transaction are genuine and there is a small number of fraudu-
lent transactions, at each epoch we used all of the fraud sequences in
the training set while sampling random genuine sequences from the
training set each time. We trained our model on the GPU GeForce
GTX 1080 Ti for 80 epochs until convergence and chose the model
that had the highest area under the top 4% of the ROC curve on the
validation set. The total training time was 20 hours.

4.5. Fraud Detection Results

Fig. 1 presents the fraud detection results on the test set according to
the evaluation metrics defined above. We can first observe that later
transactions in the sequence are more relevant to the classification
decision. The area under the ROC curve (AUC) of the DW and Last-
T classifiers are higher than the F-Attn. The Last-T and the DW
performance is similar with a slight advantage to the Last-T, mainly
because of the better results in the higher regions.

Our second observation is that when modeling the entire se-
quence with adaptive classifiers, either by using transaction atten-
tion or by using LSTM, there is an improvement in the performance.
It can be seen that the LSTM, S-Attn and FS-Attn achieve a better
AUC by a substantial margin compared to the other classifiers and
prevent larger monetary loss on almost all thresholds.

Finally, it can be seen that the attention based classifiers sur-
passed the LSTM according to the AUC metric, where the highest
AUC was achieved by our proposed method, the FS-Attn model.
The FS-Attn and the LSTM prevent the largest amount of monetary
loss on almost all thresholds. On the first 3 thresholds the LSTM
was better by a small margin, whereas on the other thresholds the
FS-Attn was the same or better. When looking on the 4% threshold,
the FS-Attn model prevented almost 80% of the monetary loss from
frauds, which corresponds to hundreds of thousands of dollars.

4.6. Attention Mechanism Analysis

The most important advantage of our hierarchical attention method
(apart from performance) is its ability to explain how the decision
was made. This interpretability ability is due to the attention mech-
anism that localizes the decision to the relevant transaction and to
the relevant features within that transaction. We first analyze the
transaction attention mechanism. Denote the transaction with high-
est attention weight by A-transaction. The index of the A-transaction
in a sequence S = (x1, ..., xm) is:

index = argmax
t
p(z = t|S) = argmax

t
(u>l(xt)) (10)

Fig. 2 presents the A-transaction location distribution for the two
classes in the test set. We normalized the index locations to [0,1]
(where 0 corresponds to the most recent transaction) by dividing
them in the sequences length. The graph shows that in genuine se-
quences the attention is prone to give the highest weight to the last
transaction in the sequence whereas in fraud sequences the distribu-
tion is smoother, indicating that earlier transactions in the sequence
were the trigger for the fraud detection.

We next analyze the feature attention. We collected the feature
attention distributions (Eq. (1)) at the A-transaction and for every
feature i we calculated the average feature attention probability per
each value v according to:

αiv =
1

nv

n∑
t=1

αti · 1{fti = v} (11)

where n is the total number of sequences in the test set, nv is
the number of sequences where the value of feature i in the A-
transaction is v, αti is the attention allocated to the ith feature in
the A-transaction of the tth sequence and fti is the corresponding
feature value. Fig. 3 depicts the average feature attention distri-
bution for the features operating system and browser type. It is
interesting to notice that feature values which are unique to genuine
sequences tend to get higher probability, indicating that the feature
was more significant in these kind of sequences while values that



are not unique to either class tend to get lower probabilities without
much difference between the classes.

Finally, In Table 1 we demonstrate the ability to explain our
model decisions by the most important transactions and features. We
present 4 sequences, each one made of 10 transactions. The first 2
examples were fraudulent attempts that were rightfully allocated a
high score and in the last 2 examples our classifier was wrong. We
explain the decision by the weights assigned to the features in the
highest weighted transactions. We numbered the transactions in the
sequence according to their order such that 1 is the oldest transaction
and 10 is the most recent transaction.

5. CONCLUSION

In this study we proposed modeling the online banking fraud detec-
tion problem as a sequence classification. We developed a classifier
that applies attention over the features and attention over the trans-
actions without any use of recurrent or convolutional connections.
Our model is simple, yet powerful and makes it possible to inter-
pret its decisions. We demonstrated our method on real data from a
South American bank. We showed that there is substantial benefit in
attention based models that dynamically assign weights to transac-
tions compared to models with constant weights and we showed how
our model outperformed LSTM; a common approach for sequence
classification. Finally, we analyzed the attention mechanism of our
network and demonstrated the effectiveness of our classifier’s ability
to spot the most relevant features and the most relevant transactions
for its final decision.
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