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Abstract

Persuasion is a common social and economic ac-
tivity. It usually arises when conflicting interests
among agents exist, and one of the agents wishes
to sway the opinions of others. This paper consid-
ers the problem of an automated agent that needs to
influence the decision of a group of self-interested
agents that must reach an agreement on a joint ac-
tion. For example, consider an automated agent
that aims to reduce the energy consumption of a
nonresidential building, by convincing a group of
people who share an office to agree on an economy
mode of the air-conditioning and low light inten-
sity. In this paper we present four problems that
address issues of minimality and safety of the per-
suasion process. We discuss the relationships to
similar problems from social choice, and show that
if the agents are using Plurality or Veto as their
voting rule all of our problems are in P. We also
show that with K-Approval, Bucklin and Borda vot-
ing rules some problems become intractable. We
thus present heuristics for efficient persuasion with
Borda, and evaluate them through simulations.

1 Introduction

Persuasion is a tool that enables social influence in many cru-
cial areas of human interaction in both personal and business
relationships. Persuasion is a key component that shapes mar-
keting campaigns [Tybout, 1978], litigation [Bell and Loftus,
19851, and domestic and international political policy [Cobb
and Kuklinski, 1997]. As computers make decisions with
people in increasingly complex settings, a need has arisen for
the ability of computers to influence people to adopt strate-
gies that will benefit themselves and the group.

This paper considers an automated agent that needs to in-
fluence the decision of a group of self-interested agents that
must reach an agreement on a joint action. Traditionally,
most of the work on group persuasion appears in economic
and political science literature (see [Lupia, 1992] for a brief
survey)'. Previous work in these areas usually assumes that

'We note that “persuasion” is also a common term in the field
of argumentation, where there is a dialog between the persuader and
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the members of the group have a specific (and restricted)
type of preferences, and tends to avoid computational aspects.
The work in social choice literature studies manipulation and
bribery and considers richer (and more complex) preference
models, but an explicit model of persuasion has not been con-
sidered in this context (we discuss the connection to manipu-
lation and bribery in Section 3).

In this paper we model persuasion in the context of social
choice. Specifically, we assume that there is one agent, the
sender thereafter, that needs to influence the decision of a
group of self-interested agents. The group members reach an
agreement through a voting procedure, which is a common
mechanism by which a collective decision is made. In a vot-
ing procedure, participants (voters) express their preferences
via votes, and a voting rule then defines the social outcome
chosen as a function of the votes cast.

In every election, there is a need for a reliable entity,
responsible for handling the elections; we assume that the
sender is that entity. During the election, each voter submits
her vote to the sender, that determines the winner. Thus, the
sender will have complete information on the voters’ pref-
erences. Since the voters will agree to use only a reliable
entity as the election organizer, we assume that the sender is
compelled (say, by law) to report the true winner of the elec-
tion, according to the pre-specified voting rule. However, the
sender may still affect the elections in the following way. Af-
ter all the voters submit their votes, the sender may suggest
that some of them change their minds and commit to different
votes. These voters are not allowed to vote again or change
their votes arbitrarily. Instead, they are given the opportunity
to approve or disapprove the vote suggested to them by the
sender. The voters are not compelled to accept the sender’s
suggestion, and they may want to retain their current vote.
However, as a reliable entity, the sender sends a suggestion
only to voters who benefit from her suggestions.

Consider the example of the agent that tries to reduce the
energy consumption of a nonresidential building where hu-
man occupants do not have direct financial incentive to save
energy. If the agent is able to convince some of the oc-
cupants to agree to her suggestion, then the overall energy
consumption of the building will be reduced. Suppose that

the listener. We follow the works in economic which use this term in
any situation where an agent with some preferences tries to influence
the decision of other agents.



there are 4 options, and 9 people, with the following prefer-
ences. Two people prefer 3 > 4 > 1 > 2, two people prefer
4> 2> 1% 3, two people prefer 2 > 3 > 1 > 4 and three
people prefer 1 > 2 > 3 > 4. Suppose also that 1 is the
option with the lowest energy consumption and 2 is the most
wasteful option. Using the Borda rule, which will be defined
later, the chosen alternative is 2. However, if the agent per-
suades the first two people to approve the vote 3 > 1 > 4 > 2
instead of their original vote, option 1 will be selected, which
is more energy efficient and is also preferred over option 2
by the people that were convinced. We note that since the
people do not know the preferences of the others, they will
not have an incentive to submit a non-truthful vote in order
to manipulate the system. In addition, as a reliable entity,
the agent’s decision making should be operated with trans-
parency, so she cannot decide on an alternative by her own,
ignoring the preferences of the people, and she cannot change
their votes without their approval.

We propose four variants of the group persuasion problem.
The basic problem is PERSUASION, where we ask the sender
to find a set of voters together with suggestions that will ben-
efit her and these voters. Since sending messages to many
voters may be costly (in terms of time or money), we are
also interested in an optimization version, where the sender is
interested in influencing the election while sending the least
number of messages. The corresponding decision problem is
k-PERSUASION. Since the voters are not compelled to accept
the sender’s suggestions (even though they are guaranteed a
more favorable alternative should they all accept the sugges-
tions), the sender or the voters may attain an even worse out-
come if not all the voters accept the senders suggestions. The
set of suggestions that can never lead to a worse outcome is
called safe, and we introduce the safe variants of the PERSUA-
SION and k-PERSUASION problems, SAFE-PERSUASION and k-
SAFE-PERSUASION, respectively. Our suggested problems are
very similar to other problems in social choice. Specifically,
PERSUASION is very similar to the unweighted coalition ma-
nipulation problem (UCM) [Conitzer and Sandholm, 2002;
Conitzer et al., 2007] and k-PERSUASION is very similar to
the Bribery problem [Faliszewski er al., 2006]. We discuss
the relationships and point out the differences in Section 3,
but we would like to emphasize two important differences
here. In UCM and Bribery the assumption is that the ma-
nipulative voters always vote according to the suggested ma-
nipulation, and there is no requirement that they will benefit
from it. Therefore, many works in UCM and Bribery consid-
ered the context where one would like to prevent the option to
affect the voters, and thus hardness of computation is advan-
tageous. In contrast, in our case the sender is allowed to send
a suggestion only to voters that will benefit from it, voters can
accept or decline the sender’s suggestions, and we sometimes
also require that the suggestions will be safe for the voters.
These assumptions are more suitable to the context where the
sender’s preferences represent some desirable properties, and
one would like to enable the sender to influence the decision
of the voters. Thus, we searched for efficient algorithms for
this purpose. In addition, in UCM and Bribery it is not so
easy for the manipulators to attain complete information on
the voter’s preferences. In our setting, since the sender is

the election organizer, this assumption is well-justified (see
also [Xia, 2012] which renders this distinction).

In this paper, we investigate the algorithmic aspects of the
four persuasion problems. We show that all problems are easy
when using Plurality or Veto voting rules. Although PERSUA-
SION is easy for K-Approval and Bucklin, we show that k-
PERSUASION and k-SAFE-PERSUASION are hard (in terms of
computational complexity) with these rules. With Borda, all
of our problems are hard. We thus propose heuristics for k-
PERSUASION and k-SAFE-PERSUASION with Borda, and evalu-
ate their performance through simulations. Our heuristics are
not complete, but they are proven correct, e.g., if the heuristic
for SAFE-PERSUASION finds a set of suggestions, it is guar-
anteed to be safe and benefit the sender and the voters.

2 Preliminaries and Definitions

We have a set of actions (also referred to as alternatives)
A={ay,...,an}andasetof voters V = {1,...,n}. Each
voter ¢ is represented by her preference R,;, which is a to-
tal order over A; we will also refer to total orders over A as
votes. For readability, we will sometimes denote the order R;
by >; (and thus a #; a). Given a preference R;, we will de-
note the alternative that is ranked in the j-th position in R; as
R;(j), and by rank(a, R;) the position of alternative a in R;.
The vector R = (Ry,..., Ry,) is called a preference profile.
We have one sender, s, which also has preferences over the
available actions, denoted R,.

We will use voting rules to determine which action will
be selected. A voting rule F is a mapping from the set of
all preference profiles to the set of actions. The voting rules
that we consider assign scores to all alternatives; one winner
is then selected among the alternatives with the highest score
using a tie-breaking rule. To simplify the analysis, we assume
that the tie-breaking rule is lexicographic, i.e., given a set of
tied alternatives, it selects one that is maximal with respect to
a fixed ordering >.

We will now define the voting rules considered in this pa-
per. Given a vector a = (1, ..., Q) Withag > -+ > ap,
the score so(a) of an alternative @ € A under a positional
scoring rule Fy, is given by Y.\, Qrank(a,r,)- Many clas-
sic voting rules can be represented using this framework. In-
deed, Plurality is the scoring rule with « = (1,0,...,0),
Veto (also known as Antiplurality) is the scoring rule with

a = (1,...,1,0), and Borda is the scoring rule with « =
(m—1,m—2,...,1,0). Further, K-Approval is the scoring
rule with a given by oy = - = ax = 1, agq1 = -+ =
oy, = 0.

The Bucklin rule can be viewed as an adaptive version of
K-Approval. We say that w, 1 < w < m, is the Bucklin
winning round if for any j < w no alternative is ranked in
the top j positions by at least [n/2] voters, and there exists
some alternative that is ranked in the top w positions by at
least [n/2] voters. We say that the alternative a’s score in
round j is its j-Approval score, and its Bucklin score sp(a) is
its w-Approval score, where w is the Bucklin winning round.
The Bucklin winner is the alternative with the highest Bucklin
score. Note that the Bucklin score of the Bucklin winner is at
least [n/2]. If the context is clear, we refer to the score of an



alternative a simply by s(a).

Now, the sender sends suggestions only to voters who will
benefit from her suggestions. Let S; be the suggestion that
was sent to voter ¢. If no suggestion was sent to a voter ¢,
then S; = R;. The vector S = (Si,...,S,) represents the
suggestions that were sent to the voters. We use V* to de-
note the set of all voters who received a suggestion from the
sender, and V¥ C V¢ denotes the set of all voters who ac-
cepted the suggestion. For any V' € {V< VY }, let R_y~
be the profile obtained from R by replacing R, with .S, for all
i € V'. We are now ready to define our basic problem.

Definition 1. In the PERSUASION problem we are given a set
A of alternatives, a set V of voters specified via their pref-
erences, and a preference list of a sender R;. We are asked
whether there exist a subset of voters, V= C V, together
with suggestions S, such that F(R_y+«) >=; F(R) for all
ie Ve uU{s}

That is, in the PERSUASION problem we assume that all the
voters accept their suggested votes, and we would like to find
suggestions such that the chosen alternative will be preferred
over the current winner by the sender and by all the voters
who received a message from the sender. If the answer for
PERSUASION is “yes”, we will sometimes call the set of sug-
gestions S a successful persuasion (and similarly for the rest
of the problems). The corresponding optimized version is k-
PERSUASION which is defined the same as PERSUASION, with
the added requirement that |V | < k for a given positive
integer k.

As noted above, in the PERSUASION problem we assume
that V<~ = V. Since the voters are not compelled to accept
the suggestions (even though they are guaranteed a more fa-
vorable alternative should they all accept the suggestions), the
sender or the voters in V<~ may attain an even worse outcome
if not all the voters accept the sender’s suggestions. The set of
suggestions that can never lead to a worse outcome is called
safe, and we now introduce the safe variants of the PERSUA-
SION and k-PERSUASION problems.

Definition 2. In the SAFE-PERSUASION problem we are given
a set A of alternatives, a set V of voters specified via their
preferences, and a preference list of a sender R;. We are
asked whether there exist a subset of voters, V<~ C V, to-
gether with suggestions S, such that F(R_y«) +=; F(R)
for all i € V< U {s} and for any V¥ C V*, either
F(R_yv) =i F(R) foralli € V¥ U{s} or F(R_yv) =
F(R). In the k-SAFE-PERSUASION problem we also require
that |V | < k for a given positive integer k.

Given any preference profile and two distinct alternatives
c,a* € A, we state that c is stronger than o* if s(c) > s(a*)
or s(c) = s(a*) but the tie-breaking rule favors c over a*, and
c is weaker than a* if c is not stronger than a*. We define the
set of potential voters as P(R,c,a*) = {i € V : a* »; c}.
In addition, if a voter 7 switches from R; to S; and thus the
total score of an alternative a increases/decreases, we state
that ¢ increases/decreases the score of a.

We say that A <P B (A many-one polynomial time re-
duces to B) if there is a polynomial-time computable function
fsuchthatz € A < f(x) € B.

3 Persuasion Problems versus Manipulation,
Bribery and Safe Manipulation

Before we proceed to analyze our problems with the differ-
ent voting rules, we would like to show the links and point
out the differences between our problems and other compu-
tational problems that were studied in computational social
choice. The PERSUASION problem is very similar to the un-
weighted coalition manipulation problem (UCM), introduced
by [Conitzer and Sandholm, 2002; Conitzer et al., 2007].
However, in UCM we are allowed to add voters (or, equiva-
lently, to change the votes of specific voters). In PERSUASION,
we are allowed to make a suggestion to every voter who will
benefit from the suggestion. Nevertheless, it is easy to see
that PERSUASION <P UCM, for any voting rule.

Proposition 1. For a given voting rule F, if there is a poly-
nomial time algorithm for UCM, there is a polynomial algo-
rithm for PERSUASION.

Proof. The idea is simple: if the current winner is alter-
native ¢, iterate over all the alternatives a € A such that
a > c (all the alternatives that are preferred by the sender
over the current winner), to cover all the possible options to
persuade the voters. Let a* be such an alternative, and set
V< =P(R,c,a*). Now, create a new preference profile R’
by removing all the voters from V< and run the algorithm
for UCM on R’ (set the number of manipulators to |V <|). It
is easy to see that there is a successful manipulation for a* in
‘R’ if and only if there is a set of suggestions S to the voters in
V< that will make a* the winner. Since the algorithm iterates
over at most m options, it runs in polynomial time. O

The k-PERSUASION problem is very similar to the Bribery
problem [Faliszewski ef al., 2006; 2009]. However, there is
one main difference. In Bribery we are allowed to change the
preferences of all the voters, even ones that prefer the cur-
rent winner to the alternative that we attempted to make as
the winner of the elections. In our case, the sender is allowed
to make a suggestion only to voters who will benefit from her
suggestion. Due to this difference, it seems that there is no
general reduction from k-PERSUASION to Bribery or the other
way around. In addition, [Faliszewski ef al., 2009] showed
that unless P = N P there is no general reduction from UCM
to Bribery. In our case, we note that PERSUASION <P = k-
PERSUASION and SAFE-PERSUASION <P k-SAFE-PERSUASION.

The k-PERSUASION problem is also very similar to the
“minimum manipulation coalition size” problem, which aims
at finding the smallest number £ such that changing k votes
can change the current winner [Nitzan, 1985; Chamberlin,
1985; Pritchard and Wilson, 2009]. Similar to k-PERSUASION,
all voters who change their votes must prefer the new winner
to the old one. However, in this problem there are no spe-
cific target alternatives which the coalition will try to make
the winner. Rather, this is a destructive version of manipula-
tion, where the coalition’s objective is to ensure that the cur-
rent winner will not be the winner. In addition, the analysis
of this problem concentrated on the possibility of manipula-
tion or the distribution over the required coalition size when
the number of voters increases to infinity, given a known dis-
tribution on the votes. In our analysis, we demonstrate how



to find the set of suggestions for a given problem (or prove
hardness).

The notion of safety in the context of coalitional manipu-
lation was introduced by [Slinko and White, 2008]. In their
setting a potential manipulator v announces how she intends
to vote, and some of the other voters whose preferences co-
incide with those of v may follow suit. A manipulative vote
is called safe if for some number of followers it improves the
outcome from v’s perspective, and can never lead to a worse
outcome. Extensions of this model were proposed by [Ha-
zon and Elkind, 2010], where the followers’ preferences may
differ from those of the leader. However, both in the original
model and in its extensions, the leader is restricted to propose
one manipulative vote to all the voters. Our work can be seen
as a generalization of this work, since we allow the sender to
suggest different votes to the voters. In addition, we are the
first to provide a heuristic which guarantees safety.

4 Plurality and Veto

In this section we show that all of our problems can be
decided in polynomial time for Plurality and Veto voting
rules. Since PERSUASION <P = k-PERSUASION and SAFE-
PERSUASION <P k-SAFE-PERSUASION, it is sufficient to show
that the optimization versions, i.e., k-PERSUASION and k-
SAFE-PERSUASION, are tractable. We begin with Plurality,
which is the most widely-used voting rule in political elec-
tions at the moment. We say that voter ¢ votes for alternative
a if 7 ranks a first.

Theorem 2. k-PERSUASION and k-SAFE-PERSUASION with
Plurality are in P.

Proof. Let c be the current winner. We note that the sender
cannot send any suggestion to voters that vote for c¢. Thus,
the score of ¢ cannot be decreased. We iterate over all the
alternatives a € A such that a 4 ¢, to cover all the possible
options to persuade the voters. Let a* be such an alternative,
and let g.q- = |s(c) — s(a*)|. If,

(1) geqx < k in the case that the tie-breaking rule favors a*
OVer ¢, or g.q« < k otherwise, and

(2) There are at least g+ voters from P(R, ¢, a*) who do not
vote for a*,

then there is a successful persuasion; the sender suggests to
these voters to vote for a*. It is easy to verify that if one of
the conditions does not hold there is no set of k suggestions
that can make a* the winner, and checking these conditions
can be done in polynomial time. For k-SAFE-PERSUASION,
we already noted that the score of ¢ cannot be decreased. In
addition, we increase the score of ¢* and the score of all other
alternatives does not increase. Therefore, the solution found
by the algorithm is also a safe k-persuasion. O

With Veto, the analysis is slightly different. We say that
voter i vetoes alternative a if 7 ranks a last, i.e., R;(m) = a.

Theorem 3. k-PERSUASION with Veto is in P.

Proof. Let c be the current winner. The suggested algorithm
iterates over all the alternatives a € A such that ¢ =4 ¢, to
cover all the possible options to persuade the voters. Let a*
be such an alternative. We observe that the sender cannot

send any suggestion to voters that veto a*. Thus, the score
of a* cannot be increased. The algorithm tries to decrease the
score of all the alternatives that are stronger than a* in the fol-
lowing way. It iterates over all the voters from P(R, ¢, a*).
Given a voter ¢ € P(R,c,a*), if the vetoed alternative in
R;, R;(m), is stronger than a* or weaker than ¢* but has the
same score of a*, the algorithm skips to the next voter. Oth-
erwise, the algorithm suggests to ¢ to veto an alternative that
is currently stronger than a* (instead of R;(m)), and updates
the scores accordingly. If after k suggestions there are still
alternatives stronger than o™ then there is no k-persuasion for
a*. An inductive argument shows that this algorithm always
finds a successful k-persuasion if it exists, and it clearly runs
in polynomial time. O

Not all successful k-persuasions found by the algorithm in
the proof of Theorem 3 are safe. However, only two small
modifications are needed for the algorithm to guarantee that
a k-safe-persuasion (if it exists) will be found.

Theorem 4. k-SAFE-PERSUASION with Veto is in P.

Proof. Let c be the current winner, and suppose searching for
a k-persuasion that will make the alternative a* the winner.
If there is at least one alternative b such that ¢ =5 b and b
is stronger than a*, then there is no successful k-persuasion
for a* which is also safe. Indeed, suppose there is a success-
ful k-persuasion which sends suggestions to V= such that
F(R_y+) = a*. Since every voter decreases the score of
exactly one alternative and V" is a successful k-persuasion,
there exists a subset of voters, V;, C V<, that veto b till b
is weaker than a*. If we set V¥ = V* \ V, we find that
F(R_yv) = b, thus the k-persuasion is not safe. Simi-
larly, in any successful k-persuasion there is a subset of voters
V. C V¥ that veto c till ¢ is weaker than a*. If there is an
alternative b such that ¢ >; b for a voter ¢ € V. and b is
stronger than a*, then ¢ cannot be part of V. in any success-
ful k-persuasion for a* which is also safe, due to the same
reasoning. Thus, in order to find a k-safe-persuasion we use
the algorithm from the proof of Theorem 3 with the follow-
ing two modifications. Before iterating over all voters from
P(R,c,a*) we add a step which checks if an alternative b
exists such that ¢ >4 b and b is stronger than a*. If so, the al-
gorithm skips to check the next possible a* € A. Also, when
iterating over the voters from P (R, ¢, a*), before making a
suggestion to voter ¢ the algorithm checks if an alternative b
exists such that ¢ >; b and b is stronger than a*. If so, the
algorithm skips to the next voter. Therefore, if the modified
algorithm finds a k-persuasion it is also a k-safe-persuasion,
and an inductive argument shows that this algorithm always
finds a successful k-safe-persuasion, if it exists. O

S K-Approval, Bucklin and Borda

Unlike Plurality and Veto, in K-Approval, Bucklin and Borda
voting rules a single voter can decrease and increase the score
of multiple alternatives at once. Some of our problems thus
become intractable. We begin with K-Approval. It is known
that UCM for K-Approval is in P [Lin, 2011]. We thus im-
mediately attain a polynomial time algorithm for PERSUASION
with K-Approval according to Proposition 1. However, k-
PERSUASION and k-SAFE-PERSUASION become N P-hard.



Theorem 5. k-PERSUASION and k-SAFE-PERSUASION with K-
Approval * are N P-hard, for each K > 5.

The proof for K-Approval is very similar to the proof for
Bucklin (it is even simpler) which we demonstrate below,
thus we omit this proof due to space constraints. As proved
by [Xia et al., 2009], UCM for Bucklin is also in P, and
we again immediately attain a polynomial time algorithm for
PERSUASION with Bucklin according to Proposition 1. We
now show that k-PERSUASION and k-SAFE-PERSUASION be-
come NP-hard with Bucklin.

Theorem 6. k-PERSUASION and k-SAFE-PERSUASION with
Bucklin are N P-hard.

Proof. Our reduction is from the exact cover by 3-sets prob-
lem (X3C), defined as follows. Given a ground set G =
{91,--.,93t} and acollection X = {X7,..., X,,} of subsets
of G with | X;| = 3forj =1,...,n. Itis a “yes -instance
if G can be covered with exactly ¢ sets from X, and a “no”-
instance otherwise. We can assume without loss of generality
that n > ¢: otherwise either an exact cover is impossible or
the instance is easily solvable. Given an input (G, X) we
construct an instance of our problem as follows. The set of
alternatives consists of GG, two extra alternatives {a*, c}, and
aset D = Dy U D,,q of dummy alternatives, |[Dx| = 3t + 1
and |D,4| = 3t + 2. For each i, 1 < i < 3¢, let x; be the
number of sets X; that contain g;. We construct the following
two sets of voters.

For each set X; € X, we construct a voter ¢ with prefer-
ences: a* =; ¢ =; X; =; Dx »; (G \ Xz) U D,,q. The
alternatives in X;, Dy and (G \ X;) U D,q are placed in
arbitrary order by 7. Let Vx denote the set of all such voters.

We construct a second set of 3n — 2¢ voters where n voters
rank c first, and the other 2n — 2t voters rank d. € D4
first. Then, 2n — 21 — t + 1 voters rank g; second, and the
other n + x1 — t — 1 voters rank d; € D,,4 second. Then,
2n—xo —t+1 voters rank g5 third, and the other n+xo—t—1
voters rank do € D, 4 third. In general, for each i, 1 < i <
3t, 2n—x; —t+1 voters place g; in the (i+1)-th position, and
the other n 4+ x; — t — 1 voters place d; € D,,4 in the (i + 1)-
th position. Then, 2n — 2t voters place d, € D,4 in the
(3t + 2)-th position, ¢ in the (3t + 3)-th position and a* in the
(3t 4 4)-th position. The other n voters (which have already
ranked c first) place a* in the (3t + 2)-th position. The rest of
the alternatives are placed by all the voters in arbitrary order
after a*. Note that for each voter ¢ in this set, ¢ =; a*. We
complete the reduction by setting & = ¢ and the preference of
the sender to a* =, ¢ =4 G U D. Note that the Bucklin score
of every winner in this setting is at least 2n — k + 1.

In the current setting ¢ wins in round 2 with 2n points,
and all other alternatives attain less than 2n points in the first
two rounds. Since c is ranked second by the sender, the only
possible k-persuasion is to make a* the winner by suggesting
to at most k voters from Vy to change their vote. We note that
this is possible if and only if the sender sends suggestions that
correspond to an exact cover by 3-sets of (G. Details are left
out due to space restrictions. As for k-SAFE-PERSUASION, we

The k in k-PERSUASION and the K in K-Approval are different
parameters.

observe that the instance is built such that only when V¥ =
V< the 3t + 2-Approval score of ¢ is 2n — k as required. If
VY C V<, then F(R_y) = ¢ = F(R). Therefore, any
successful k-persuasion for the instance is also a successful
k-safe-persuasion. O

As for Borda, the complexity of UCM for Borda was re-
cently resolved by [Davies et al., 2011] and [Betzler et al.,
2011], who show that UCM is N P-complete for Borda. We
show that all of our problems are [NV P-hard with Borda. As
noted above, it is sufficient to show that PERSUASION and
SAFE-PERSUASION are [N P-hard.

Theorem 7. PERSUASION and SAFE-PERSUASION with Borda
are N P-hard.

In essence, we use the same construction of [Betzler et al.,
2011], but for the PERSUASION problem we need to fill the
preferences of W (i.e., the set of manipulative votes in the
definition of UCM for Borda by [Betzler et al., 2011]). Let ¢
be the winner of the resulting elections. We make sure that:
(1) For the sender, ¢* >, ¢ >5 (CUD)\ {c,c*}.

(2) For every voter ¢ € V, ¢ =; c*.
(3) For every voter j € W, ¢* = c,and F(R_(g;}) = c.
The full proof is omitted due to space constraints.

6 Heuristics for Borda

The Borda voting rule or one of its modifications are used by
many organizations and competitions, but unfortunately all
the persuasions problems with Borda are N P-hard. In this
section we provide heuristics for k-PERSUASION and SAFE-
PERSUASION when using the Borda voting rule.

6.1 k-Persuasion

The challenge in providing a successful k-persuasion is dou-
ble: we need to decide which k voters to include in V'
and what suggestions to provide. Our heuristic deals with
the first challenge. It assigns scores to the voters and then
greedily chooses the k& voters with the highest score. Let ¢
be the current winner, and a* the alternative that we will try
to render the winner. Given a voter 7 € V, the score of 7 is
rank(a*, R;) — 1+ m — rank(c, R;) (where rank(a, R;) is
the position of alternative a in R;). That is, the heuristic score
reflects the ability of a voter to affect the elections by increas-
ing the score of a* and decreasing the score of c. We also
tested a more involved heuristic, which takes into account the
position of other alternatives, but since it did not perform bet-
ter than the simple version we do not present it here.

After the selection of k voters we need to generate a set of
suggestions. We thus use the current available heuristics for
UCM for Borda. The first heuristic, introduced by [Zucker-
man et al., 2009] is REVERSE (we follow the terms provided
by [Davies et al., 2011]). This heuristic fills the votes of each
voter in turn. It ranks the desired alternative a* first, and
the remaining alternatives are placed in reverse order of their
current Borda scores. The heuristic was shown by [Zucker-
man et al., 2009] to actually be an approximation algorithm,
which guarantees that a manipulation that uses at most one
more manipulator than is optimal will be found. A differ-
ent approach was proposed by [Davies et al., 2011], which is



inspired by bin packing and multiprocessor scheduling. They
suggested two heuristics, LARGEST FIT and AVERAGE FIT, and
experimentally showed that these heuristics significantly out-
perform REVERSE. Specifically, with AVERAGE FIT they were
able to find optimal manipulations in almost all the randomly
generated elections they tested.

In our experiments we tested our heuristic for selecting
the k voters, combined with the aforementioned heuristics
for generating suggestions. We used the same repository of
votes of [Davies et al., 2011], which generated either uniform
random votes or votes drawn from a Polya-Eggenberger urn
model [Berg, 1985]. The urn model tries to capture varying
degrees of social homogeneity by introducing correlation be-
tween votes. At first, all the possible m! votes are placed in
an urn. Then, votes are drawn from the urn at random, and
are placed back into the urn along with b other votes of the
same type. In our setup b = m! so that there is a 50% chance
that the second vote will be the same as the first.

In the first set of experiments we checked how & would af-
fect the performance of the heuristic. We fixed the number of
voters n = 32 and the number of alternatives m = 8. Since
these values were relatively small, we were also able to com-
pare our heuristic to a Brute-Force approach, which checks
every possible subset of k voters, runs REVERSE, LARGEST
FiT and AVERAGE FIT to fill in the voters’ preferences, and
chooses the best one. We generated 1000 instances and for
each instance and each value of k£ we checked which alter-
natives could be made the winners by sending suggestions to
at most k voters. Figure 1 depicts the results, where the y-
axis is the percentage of alternatives that could be made the
winners, and each point is an average over 1000 instances.
Surprisingly, our heuristic with either LARGEST FIT or Av-
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Figure 1: Success ratio with k-PERSUASION

ERAGE FIT achieves the same performance compared to the
Brute-Force approach, even though the running time of our
heuristic is 500 times faster than the Brute-Force approach
(on average). With REVERSE our heuristic’s performance is
consistently behind, and it does not close the gap even when
we increase k to its maximum value. As indicated by [Davies
et al., 2011], in the urn model many more voters are required
to generate a successful manipulation. This explains the dif-
ference between the uniform and the urn model in the per-
centage of alternatives that can be made winners.

In the next set of experiments we set k = 12 and the num-
ber of alternatives m = 8 and varied the number of voters.
The results are presented in Figure 2. As before, the y-axis is
the percentage of alternatives that could be made the winners
and each point is an average over 1000 instances. We can see
that our heuristic with either LARGEST FIT or AVERAGE FIT
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performs better than with REVERSE in all the scenarios. Since
k is a fixed number, when the number of voters increases there
are less alternatives that can be made winners.

6.2 Safe-Persuasion

In order to describe the heuristic we introduce additional
notations. As before, let ¢ be the current winner, and a*
the alternative that we will try to render the winner. Let
B={ae€A| (c>sa)V(c> ai€ P(R,c,a"))}
We denote by maxA* the score of a* when all the voters
from P(R,c,a*) rank a* first. We define target = mazA*
in the case that the tie-breaking rule favors a* over c, and
target = maxA* — 1 otherwise. For every b € B, let
aGap(b) = target — s(b) in the case that the tie-breaking
rule favors ¢ over b, and aGap(b) = target — s(b) — 1 oth-
erwise. For every other alternative a ¢ B, aGap(a) = oo.
Let B" = {b € B | bis stronger than a* in R} and for each
such alternative b we define cGap(b) = s(c) — s(b) in the
case that the tie-breaking rule favors c over b, and cGap(b) =
s(c)—s(b)—1 otherwise. Finally, let A’ = A\ (B"U{c,a*}).
In the description of the algorithm we abuse notation and
use s(a) to denote the score of alternative a in the prefer-
ence profile R_p(r c,q+) (i.€., the preference profile that is
obtained from R when replacing R; with .S; for every voter
i€ P(R,c,a")).

The algorithm works as follows. It ranks a* first in the pref-
erences of every voter from P(R, ¢, a*). Thus, a* attains its
maximum score, maxA*. If as a result a* is stronger than c,
the task has been completed. The resulting persuasion is also
safe, since the score of ¢ does not decrease and the score of all
the other alternatives does not increase. If a* is still weaker
than c, the voters need to decrease the score of ¢, but the al-
gorithm does not allow the score of ¢ to go below target.
Thus, the algorithm iterates over the voters and places the
alternatives in reverse order according to their current score
(as REVERSE does). However, it keeps track of the alterna-
tives from B, since they are the alternatives that can break the
safety of the persuasion. The algorithm thus assigns for each
alternative b € B the variable aGap(b), which represents the
maximum increase in score that b can attain. Whenever a
voter increases the score of alternative b, aGap(b) is updated,
and if the filling of \S; results in an increase in b’s score above
aGap(b) (negative aGap in the algorithm) the algorithm re-
sets all the alternatives to their original positions in .S; (ex-
cept for ¢*). One more requirement is necessary to ensure
safety. The set B" consists of the alternatives from B that
are stronger than a* in the original profile. Since the score



Algorithm 1 SafePersuasion(R, ¢, a*)

Init S < R, when all the voters from P(R, ¢, a™) rank a™ first
if s(¢) < target then
return S
foralli € P(R,c,a”)do
if B" # () then
dec < m — Max, e phige}y rank(b, S;)
move all b € B" and ¢ down by dec positions in .S;
if s(c) < target then
move all b € B" and cup in S; until s(c) = target
else if c is not last in S; then
dec «— min{min, _ 55 cGap(b), m — rank(c, Si)}
if s(c) — dec < target then
dec + s(c) — target
e < S;(rank(c, S;) + dec)
ife ¢ B" then
switch between e and ¢
else
if Ja such that a is positioned between c and e and a ¢ B" and given
such a with the highest rank, cGap(e) — dec — (rank(e, S;) —
rank(a, S;)) > 0 then
decrease cGap(e) by rank(e, S;) — rank(a, S;)
else if Ja such that a is positioned lower than e and a & B" then
find such a with the lowest rank
if a suitable a was found by one of the previous conditions then
put e in rank(a, S;)
put a in rank(c, S;)
put cin rank(c, S;) + dec
if ¢’s position has been changed then
decrease dec from cGap of all b € B
else
place c lastin S;
while aGap(S;(rank(c, S;) — 1)) = 0do
move c up by one position in S;
if s(c) < target then
move c up in S; until s(c) = target
sort A’ according to the current scores s(-)
place the alternatives from A’ in all the positions in S; that are not occupied by
alternatives from B" U {c, a*}, in reverse order of their scores s(+)
forallb € B do
if rank(b, S;) > rank(b, R;) then
aGap(b) < aGap — (rank(b, S;) — rank(b, R;))
if 3b € B, such that aGap < 0 then
S; + R;,when a™ is ranked first
if s(¢) = target then
return S
return failure

of ¢ decreases, their score should also decrease. Moreover,
any voter that decreases the score of ¢ decreases the scores
of the alternatives from B” as well. There is no need to al-
ways decrease the scores of ¢ and the score of the alternatives
from B" to the same extent; thus for each alternative b € B"
the algorithm assigns the variable cGap(b), which represents
the maximum difference allowed between the decrease in the
score of ¢ and b. However, whenever the cGap of one of the
alternatives reaches zero, every decrease in the score of c is
executed to the same extent to the scores of the alternatives
from B". To summarize, the algorithm ensures that the fol-
lowing three conditions are always true:

(1) The score of ¢ does not go below target (unless it was
like that at the beginning and we are done).

(2) For any subset of voters, any alternative b € B” is weaker
than c.

(3) Any subset of voters does not increase the score of alter-
native b € B above target.

We thus attain:

Theorem 8. If Algorithm 1 returns S, it is a successful safe-
persuasion for a*.

We conducted experiments to test the performance of our
algorithm. We varied the number of alternatives and the num-
ber of voters. However, we did not use all of our randomly
generated instances, since in some of them even a regular per-
suasion is not possible. Thus, we first used REVERSE to select
the instances with a successful persuasion. We were able to
find 900 instances with the uniform distribution, and 600 in-
stances with the urn model. In each of these instances, the
preferences of the sender were randomly chosen. We then
used our algorithm to find a successful safe-persuasion. Fig-
ure 3 depicts our results, where the y-axis is the percentage of
instances with a safe-persuasion (of the all the instances with
a successful persuasion). Not surprisingly, in the uniform
distribution the percentages were much higher. In addition,
when we increased the number of voters and decreased the
number of alternatives there were more voters in P(R, ¢, a*)
to choose from and less alternatives in 3, resulting in an in-
crease in the ratio. In the urn model, the increase in the num-
ber of voters had a much less effect, since the votes were
correlated.
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Figure 3: Success ratio with SAFE-PERSUASION

7 Conclusions and Future Work

Settings in which a group of self-interested agents need to
reach an agreement on joint actions are common nowadays.
The ability of an automated agent to influence their decision
is an important aspect in the field of social choice and eco-
nomics. This paper investigated four different problems that
address the persuasion process in such settings, both theo-
retically and empirically. One of the innovations presented
in this paper concerns its context. We provide the motiva-
tion and demonstrate a real world application that can utilize
the phenomena of manipulation, which is traditionally con-
sidered an artifact of election systems. We also explored the
safety of persuasion which is of essence, especially when try-
ing to persuade a group of self-interested agents when the
outcome is uncertain. Motivated by the simulation results, in
future research in this field we plan to focus on extending the
analysis to other voting rules. Moreover we intend to provide
additional heuristics for more voting rules.
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