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ABSTRACT
The ability to negotiate successfully is critical in many social
interactions. The dissemination of applications such as the
Internet across geographical and ethnic borders are opening
up opportunities for computer agents to negotiate with peo-
ple of diverse cultural and organizational affiliation. These
automated negotiators should be able to proficiently inter-
act and collaborate with their human partners. In this paper
we compare several techniques for modeling the negotiation
behavior of people across three different countries. Culture
plays an important role in people’s decision making and peo-
ple differ in the way make offers and fulfil their commitments
in negotiation across cultures. We consider a setting that
included multiple rounds of negotiation with non-binding
agreements. Participants in each of the countries interacted
with a computer agent that used a baseline negotiation strat-
egy that adapted to the extent to which participants were
helpful and reliable. The models considered various features
of the negotiation task, such as the extent to which pro-
posals are generous and helpful to participants and whether
participants fulfil their agreements. Our models achieved
high accuracy rates in predicting important decisions that
are made in negotiation such as whether participants reach
agreement and the extent to which they are reliable in differ-
ent situations. We show that the features that best vary the
prediction accuracy depend on people’s cultural affiliation in
addition to their actual negotiation behavior. These models
for predicting human behavior in negotiation will form the
basis of a computer agent that can successfully negotiate
with people across cultures.

1. INTRODUCTION
Negotiation is a tool widely used by humans to resolve dis-

putes in settings as diverse as business transactions, diplo-
macy and personal relationships. Computer agents that ne-
gotiate successfully with people have profound implications:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

They can negotiate on behalf of individual people or organi-
zations (e.g., bidders in on-line auctions (Kamar et al., 2008;
Rajarshi et al., 2001)); they can act as training tools for peo-
ple to practice and evaluate different negotiation strategies
in a lab setting prior to embarking on negotiation in the
real world (e.g., agents for negotiating a simulated diplo-
matic crisis (Lin et al., 2009)), or work autonomously to
reach agreements for which they are responsible (e.g., com-
puter games, systems for natural disaster relief (Schurr et al.,
2006; Murphy, 2004)).

The purpose of this paper was to investigate the role
of culture in predicting people’s negotiation behavior with
computer agents. Our long-term goal is to be able to build
computer agents that can learn to negotiate proficiently with
people across different cultures. Culture is a key determi-
nant of the way people interact and reach agreements in dif-
ferent social settings. Advancing technology such as the In-
ternet requires that computer systems negotiate proficiently
with people across geographical and ethnic boundaries. It
is thus important to understand the decision-making strate-
gies that people of different cultures deploy when computer
systems are among the members of the groups in which they
work and to determine their responses to different kinds of
decision-making behavior of others.

This paper investigates the hypothesis that explicitly rep-
resenting behavioral traits that vary across cultures will im-
prove the ability of computer agents to predict human ne-
gotiation behavior, and in turn, improve the performance of
computer agents when negotiating with people. To evalu-
ate this hypothesis, we collected data of human negotiation
behavior in laboratory conditions from three different coun-
tries, including Israel, Lebanon and the U.S. We used an
identical negotiation scenario in each country that required
people to complete a task by engaging in bilateral negotia-
tion rounds with non-binding agreements. The negotiation
protocol included alternating take-it-or-leave-it offers for the
exchange of resources. Agreements were not binding, and
participants were free to choose the extent to which they
fulfilled their commitments.

We collected data of people playing a computer agent re-
ferred to as the Personality, Utility and Rules Based agent
(PURB), that was designed to adapt to the extent to which
the other participant was helpful and kept commitments
over time. We included various features relating to peo-
ple’s negotiation behavior in our prediction models. These
included the extent to which their proposals were generous
and selfish, the extent to which they exhibit reliable behav-



ior in past behavior, and their current performance in the
game. We used standard machine-learning techniques to
build predictive models of the types of offers people make,
whether they are able to complete their tasks, and the extent
to which they fulfilled their commitments.

Our results showed that the optimal features to use for the
various learning tasks varied according to the cultural affil-
iation of the participants. In general, models that learned
from data that was restricted to a single country were as well
as, or better than models that learned from combining the
data for all countries. In addition, there were considerable
differences in people’s negotiation behavior across the differ-
ent countries, and these differences affected the prediction
accuracy of the models.

The contributions of this work are twofold. First, it shows
that people’s cultural diversity affects the accuracy of pre-
diction models of human negotiation behavior. Second, it
suggests a new paradigm for constructing automatic agents
that can negotiate with people across culture, by combin-
ing the individual learner models into an agent’s decision-
making model.

2. RELATED WORK
There is a body of work in the psychological and social sci-

ences that investigate cross-cultural behavior among human
negotiators (De Dreu and Van Lange, 1995; Gelfand and
Dyer, 2001; Gelfand et al., 2002). However, there are scant
computational models of human negotiation behavior that
reason about cultural differences. In artificial intelligence,
past works have used heuristics, equilibrium strategies, and
opponent modeling approaches toward building computer
agents that negotiate with people. For a recent compre-
hensive review, see Lin and Kraus (2010). Within repeated
negotiation scenarios, Kraus et al. (2008) modeled human
bilateral negotiations in a simulated diplomatic crisis char-
acterized by time constraints and deadlines in settings of
complete information. They adapted equilibrium strategies
to people’s behavior using simple heuristics, such as con-
sidering certain non-optimal actions. Jonker et al. (2007)
designed computer strategies that involve the use of conces-
sion strategies to avoid impasses in the negotiation. Byde
et al. (2003) constructed agents that bargain with people
in a market setting by modeling the likelihood of accep-
tance of a deal and allowing agents to renege on their offers.
Kenny et al. (2007) constructed agents for the training of
individuals to develop leadership qualities and interviewing
capabilities.

Recent approaches have used learning techniques to model
the extent to which people exhibit different social prefer-
ences when they accept offers in one-shot and multiple in-
teraction scenarios (Gal et al., 2009; Oshrat et al., 2009; Lin
et al., 2008). Learning techniques have also been applied to
model gender differences (Katz and Kraus, 2006) and the be-
lief hierarchies that people use when they make decisions in
one-shot interaction scenarios (Gal and Pfeffer, 2007; Ficici
and Pfeffer, 2008).

To date, all work on human-computer negotiation assumes
that agreements are binding, and have relied on prior data of
people’s negotiation behavior. A notable exception is work
by Kraus and Lehmann (1995) that proposed an agent for
negotiating with multiple participants that may renege on
agreements, but this work was restricted to a specific do-
main, that of the game of diplomacy.

This research extends the state-of-the-art of human-computer
negotiation in its focus on human-computer negotiation in
situations where agreements are not binding, and in its ex-
tensive empirical study that spanned over two-hundred and
twenty subjects in three countries.

3. IMPLEMENTATION USING THE COL-
ORED TRAILS TEST-BED

Our study was based on the Colored Trails (CT) game
(Grosz et al. (2004)), a test-bed for investigating decision-
making in groups comprising people and computer agents.
Colored Trails is Free Software and is available for download
at http://www.eecs.harvard.edu/ai/ct. The CT configu-
ration we used consisted of a game played on a 7x5 board
of colored squares with a set of chips. One square on the
board was designated as the goal square. Each player’s icon
was initially located in one of the non-goal positions, eight
steps away from the goal square. To move to an adjacent
square a player needed to surrender a chip in the color of
that square. Players were issued 24 colored chips at the
onset of the game.

Figure 1 shows the CT board game, in which there are
two players, “me” and “O”. The board game is shown from
the point of view of the “me” player. The relevant path from
the point of view of the “me” player is outlined. Figure 2
shows the chips that both players possess at the onset of the
game. Both “me” and “O” players are missing three chips
to get to the goal. The “me” player is lacking three yellow
chips; while the “O” player is lacking three grey chips. In
addition, each player has the chips the other player needs
in order to get to the goal. For example, the “me” player
has ten grey chips. Figure 3 shows an example of a proposal
made by the “me” player to give two grey chips to the “O”
player in return for two of its yellow chips.

Figure 1: An example of a CT Board

At the onset of the game, one of the players was given the
role of proposer, while the other was given the role of re-
sponder. The interaction proceeded in a recurring sequence
of phases. In the communication phase, one of the players
was designated the role of a proposer, and could make an
offer to the other player, who was designated the responder.
In turn, the responder could accept or reject the offer. If the
offer was rejected, then players switched roles: the responder



Figure 2: Chip Display Panel (showing the chips in
the possession of both participants)

Figure 3: Communication Panel (used by partici-
pants to make offers)

became the proposer and the proposer became the respon-
der. This sequence of alternating offers continued until an
offer was accepted, or the time limit for the communication
phase was up. In the transfer phase, both players could
choose chips to transfer to each other. The transfer action
was done simultaneously, such that neither player could see
what the other player transferred until the end of the phase.
In particular, players were not required to fulfill their com-
mitments to an agreement reached in the communication
phase. A player could choose to transfer more chips than it
agreed to, or any subset of the chips it agreed to, including
transferring no chips at all. In the movement phase, play-
ers could manually move their icons on the board across one
square by surrendering a chip in the color of that square. At
the end of the movement phase, a new communication phase
began. Players alternated their roles, such that the first pro-
poser in the previous communication phase was designated
as a responder in the next communication phase, and vice
versa. These phases repeated until the game ended, which
occurred when one of the following conditions held: (1) at
least one of the participants reached the goal square; or,
(2) at least one of the participants remained dormant and
did not move for three movement phases. When the game
ended, both participants were automatically moved as close
as possible to the goal square, and their score was computed
as follows: 100 points bonus for getting to the goal square,
5 points bonus for any chip left in a player’s possession; 10
points penalty for each square left in the path from a player’s
final possession and the goal square.

These parameters were chosen so that getting to the goal
was by far the most important component, but if a player
could not get to the goal it was preferable to get as close
to the goal as possible. Note that players had full view of
the board and each others’ chips, and thus they had com-
plete knowledge of the game situation at all times during

the negotiation process.
One of the advantages of using CT for cross cultural stud-

ies is that it provides a realistic analog to task settings,
highlighting the interaction among goals, tasks required to
achieve these goals, and resources needed for completing
tasks. In CT, chips correspond to agent capabilities and
skills required to fulfill tasks. Different squares on the board
represent different types of tasks. A player’s possession of a
chip of a certain color corresponds to having the skill avail-
able for use at a time. Not all players possess chips in all
colors, much as different agents vary in their capabilities.
Traversing a path through the board corresponds to per-
forming a complex task whose constituents are the individ-
ual tasks represented by the colors of each square.

CT is thus particularly suitable for modeling negotiation
that occurs between people of different cultures, in which ne-
gotiation processes are conducted within task contexts, and
involve the exchange of resources (for example, within diplo-
matic negotiations for trade agreements or peace treaties).
In addition, it has been shown that people that use CT
generally display more cooperative behavior than identical
decision-making scenarios that involve more abstract rep-
resentations such as payoff matrices or decision-trees (Gal
et al., 2007). This incentive for cooperation may allow both
parties in negotiation to reach agreements more quickly.
Both of these are important qualities to multi-cultural dis-
putes that are often volatile.

4. DATA COLLECTION
We collected data from three countries, Lebanon, the U.S.

and Israel. Two hundred and twenty two subjects partici-
pated the study. Ninety subjects were students studying in
the Beirut area, 119 subjects were students enrolled in col-
lege degree programs at institutions in the greater Boston
area, and 32 subjects were students from Bar-Ilan Univer-
sity. The demographics of the subjects were as follows: In
the U.S., 44.5% of subjects identified as Caucasian, 21%
identified as African American, 16% of subjects identified as
Asian Americans and 4.2% of subjects identified as Latin or
Hispanic. The mean age of subjects in the U.S. was 24. In
Lebanon, 80% of the subjects identified themselves as Arab
or Lebanese, while 10% of the subjects identified themselves
a Phoenician. The mean age of subjects in Lebanon was 22.
In Israel, all subjects identified themselves as Israeli Jews.
The mean age of subjects in Israel was 24.

Each participant was given an identical 30 minute tutorial
on CT. This tutorial consisted of a written description of the
CT game, as well as a short movie that explained the rules
of the game using a different board than those used in the
study. Participants were seated in front of terminals for the
duration of the study, and could not speak to each other
or see their terminals. All participants played one or two
games with the PURB agent, but were told they would be
playing with different people. Authorization for this slight
deception was granted by the ethics review board of the
institutions that participated in the study. Subjects were
given an extensive debriefing at the end of the study which
revealed this fact and explained the study.

The study included the CT scenario that was described in
Section 5. We used two different types of boards. In both
of these boards, there was a single distinct path from each
participant’s initial location to its goal square. One of the
board types exhibited a symmetric dependency relationship



between players: neither player could reach the goal given
its initial chip allocation, and there existed at least one ex-
change such that both players could reach the goal. We
referred to players in this game as task co-dependent. The
other board type exhibited an asymmetric task dependency
relationship between players: one of the players, referred to
task independent, possessed the chips it needed to reach the
goal, while the other player, referred to as task dependent,
required chips from the task-independent player to get to
the goal. An example of the co-dependent board is shown
in Figure 1. In this game both “me” and “O” players were
missing three chips to get to the goal. The relevant path
from the point of view of the “me” player is outlined.

Each subject played a single CT game. To standardize our
experiments, in all CT games we ran, people were designated
as first proposers, and the PURB agent was designated as
the first responder. Each subject was randomly assigned
one of the following dependency roles: a task co-dependent
participant that was paired with a task co-dependent PURB
agent; a task independent participant that was paired with
a task dependent PURB agent; or, a task dependent partic-
ipant that was paired with another task independent PURB
agent.

5. EMPIRICAL METHODOLOGY
We focused on learning four key features that character-

ized human negotiation in our study. Specifically we consid-
ered the following learning models.

• Reliability Model - the extent to which a person was
reliable in the negotiation.

• Acceptance Model - the likelihood of accepting a given
proposal.

• Human Reached Goal Model - the likelihood for the
person to get to the goal following accepting a given
proposal.

• Agent Reached Goal Model - the likelihood for the
agent to get to the goal.

5.1 Potential Features
We defined a general set of features to be used by the var-

ious learning models. To describe the features we lay out
the following notation. Let n denote an arbitrary commu-
nication phase in the game. For any two participants i and
j, let ci denote the set of chips in possession of i at phase n
in the game. Let pn = (pi, pj) denote a proposal at round
n, where pi ⊆ ci is the set of chips that i agreed to send
to j, and let p∗i ⊆ ci be the set of chips actually sent by
i following the agreement. Similarly define cj , pj , and p∗j
from the point of view of player j. We can now describe the
following features:

• The current score for i at round n measures the score
in the game given its current set of chips ci. This is
defined as sni (ci).

• the resulting score to player i at round n measures the
score in the game that i would receive in the case that
j sent all of its promised chips pj during the transfer
phase, and i sent all of its promised chips pi. This is
defined as sni (hi), where hi = ci ∪ pj \ pi.

• the score-based-reliability of player i at round n, de-
noted rni is the extent to which player i fulfilled an
agreement pn = (pi, pj) at round n. It computes relia-
bility measures solely for negotiation rounds in which
agreements were reached. This is defined as the ratio
between the score to j given the chips that i actually
transferred, and the score that j would receive if i ful-
filled its agreement. Formally, we define

rni =
sj(c

n ∪ p∗i )

sni (cn ∪ pi)

We now use the definitions above to describe the set of
potential features for our models. Each feature is described
from the point of view of a general player i. We also con-
sidered the symmetrical feature from the point of view of
player j.

• The current round n.

• the current score for i at round n.

• the resulting score to i given proposal pn = (pi, pj) at
round n.

• the score-base-reliability of i at round n.

• the weighted score-base-reliability wrn of i. This is
defined as follows: for n > 1 it is a weighted average
of the score-base-reliability of i at round n and n− 1

(0.7 · rn) + (0.3 · wrn−1)

For n = 1, the score-based-reliability of i is defined as
an initial score-based-reliability of 1.

• the generosity of player i at round n. This feature
clustered the chip sets offered by both players in round
n into three classes measuring the difference in the
number of chips proposed by i to i and j.

– |pi| < |pj | (player i offered less chips to j than
player j offered to i),

– |pi| = |pj | (both players offered the same chips to
each other),

– |pj | < |pi| (player i offered more chips to player j
than did player j.)

• The dependency role of player i at round n, which was
one of two classes: task independent, task dependent.

• Missing chips: this feature includes the total number
of chips that player i needed to get to its goal given its
position in the board at round n.

5.2 Learning Algorithms
Our study was based on the Weka framework (http://

www.cs.waikato.ac.nz/ml/weka/), a repository of machine
learning algorithms that is freely available on the web. We
used the following learner models on all prediction tasks.

• K-Nearest Neighbors classifier (KNN): a method for
classifying objects based on closest training examples
in the feature space. K-NN is a type of instance-based
learning, or lazy learning where the function is only
approximated locally and all computation is deferred
until classification. The k-nearest neighbor algorithm



is amongst the simplest of all machine learning algo-
rithms: an object is classified by a majority vote of its
neighbors, with the object being assigned to the class
most common amongst its K nearest neighbors (K is
a positive integer, typically small).

• SMO-PUK: Sequential Minimal Optimization using the
PUK (The Pearson VII function-based Universal Ker-
nel) kernel function was used. Support Vector Ma-
chines (SVMs) application are used for solving classifi-
cation and regression problems. SVM has high gener-
alization performance and ability to model non-linear
relationships with a suitable kernel function. This ker-
nel function transforms the non-linear input space into
a high dimensional feature space in which the solution
of the problem can be represented as being a straight
linear classification or regression problem. There are
a lot of possible kernel functions that can be used
to create such high dimensional feature space. The
most commonly used kernel functions are the linear
and polynomial inner-product functions and the Ra-
dial Basis Function (RBF). But, the applicability, suit-
ability, performance and robustness of the PUK ker-
nel function in comparison to the commonly applied
kernels is robust and has an equal or even stronger
mapping power as compared to the standard kernel
functions leading to an equal or better generalization
performance of SVMs.

• J48: J48 implements C4.5 algorithm, (a decision-tree
algorithm) for generating a pruned or unpruned C4.5
decision tree. The decision trees generated by J48 can
be used for classification. J48 builds decision trees
from a set of labeled training data. It uses the fact
that each attribute of the data can be used to make a
decision by splitting the data into smaller subsets. To
make the decision, the attribute with the highest nor-
malized information gain is used. Then the algorithm
recurs on the smaller subsets. The splitting procedure
stops if all instances in a subset belong to the same
class. Then a leaf node is created in the decision tree
telling to choose that class.

Table 1 summarizes the number of instances used for each
model, population. In Table 4, each item in the table is the
success rate which is the correctly Classified Instance, based
on running the algorithm (mentioned in parentheses) with
ten-fold cross validation. In this cross-validation method,
the data-set is randomly reordered and then split into 10
folds of equal size. In each iteration, one fold is used for
testing and the other 9 folds are used for training the clas-
sifier. The test results are collected and averaged over all
folds. This gives the cross-validation estimate of the accu-
racy.

5.3 Evaluation Criteria
We now formally define the learning models and the cri-

teria we used to evaluate them.

Reliability Model Given that an agreement was reached
over proposal pn = (pi, pj) at round n, the reliability
model predicts the reliability of player j following the
agreement. For classification purposes we discretized
the reliability measure to four types: (1) whether player

j did not send any of the promised chips(p∗j = ∅); (2)
whether player j sent a set of chips p∗j that were dif-
ferent than the set of chips it promised (p∗j 6= pj);
(3) whether player j sent part of the promised chips
(p∗j ⊂ pj); (4) whether player j sent all of the promised
chips (p∗j = pj). In addition, we tested another option
of 2 classes measure: (5) whether player j did not fulfill
the agreement (classes (1) and (2)); (6) whether player
j fulfilled the agreement in part or in full (classes (3)
and (4)). We note that the definition of reliability in
the evaluation criteria is different than the way relia-
bility is measured as a feature in the learning models.

Proposal Acceptance Model Given a proposal pn = (pi, pj)
at round n of the game, the Acceptance Model predicts
whether the Human (player j) (1) accepts the proposal
or (2) reject it. Each proposal within a game is an ex-
ample or instance of the model.

Human Reached Goal Given a proposal pn = (pi, pj) at
round n of the game, this model predicts if at the end
of the game (1) the human will reach the goal or (2)
not. Each offer within a game is an example or instance
of the model.

Agent Reached goal Given a proposal pn = (pi, pj) at
round n of the game, this model predicts if at the end
of the game (1) the agent will reach the goal or (2) not.
Each offer within a game is an example or instance of
the model.

Table 1: Number of Instances
Model Israel Lebanon U.S. Lebanon

& U.S.
Reliability 126 80 196 276
Acceptance 206 152 317 469
Human reached Goal 397 343 580 923
Agent reached Goal 397 343 580 923

6. RESULTS AND DISCUSSION
For the remainder of this paper we will use the abbrevia-

tions in Table 3 (right) to relate to each potential feature of
the learning models:

Table 3 (left) lists the set of optimal features chosen for
each learning tasks. The selection process for the features
was carried out by hand on a held-out test-set that was not
used to evaluate the learning modules.

Table 1 lists the number of instances for data used by
the learning models. For all learning tasks, the lowest num-
ber of instances were in Lebanon. This is because the CT

Table 2: Behavior Measures for People (in percent-
ages)

Model / Population Israel Lebanon U.S. Lebanon
& U.S.

Reliability 55 92 65
Acceptance 60 39 75
Human reached Goal 80.92 95 78 86.1
Agent reached Goal 83.05 87.7 87 87.6



Table 3: Features used for Learning Modules

Model /Population Israel Lebanon U.S. Lebanon & U.S.
Reliability CS, CS, CS, CS,

RS, RS, RS, RS,
WPR WPR WPR WPR

Acceptance CS, CS, CS, CS,
RS, RS, RS, RS,
OG OG PR, OG

PR
OG
RN

Human reached Goal CS, CS, CS, CS,
PR PR PR
R,
MC

Agent reached Goal CS, CS, CS, CS,
PR PR PR PR
R R R R

Feature Description
Key (FBP=For Both Players)
CS Current Score(FBP)
RS Resulting Score(FBP)
PR Previous Reliability(FBP)
WPR Weighted Previous Reliability(FBP)
OG Offer Generosity
R player’s Role(FBP)
MC Missed Chips(FBP)
RN Round Number

games played in Lebanon were on average shorter than in
the other countries because players were able to reach agree-
ments quicker.

We first analyze the prediction accuracy of each of the
learning models, as shown in Table 4. With respect to the
reliability model, for all countries, the features that were op-
timal for prediction were the current and resulting scores for
both players, and weighted reliability. The best results in all
countries were achieved using the PUK learner. The highest
accuracy rate (97.5%) was achieved in Lebanon, the lowest
accuracy rate (84.127%) was achieved in Israel, and the ac-
curacy rate in the U.S was between these two (85.714%).
To understand these success rates, we note that the reliabil-
ity of people in each of the countries echo these results: As
shown in Table 2, people in Lebanon exhibited higher reli-
ability than people in Israel (92% versus 65%), and people
in the U.S. exhibited higher reliability than people in Israel
(65% versus 55%).

We concluded that because the reliability of people in
Lebanon was significantly higher than the reliability in Is-
rael and the U.S., it was easier to learn the extent to which
people in Lebanon were reliable than the U.S. or Israel. In
contrast to Lebanon, the success rate of the reliability for the
U.S. population and Israel are similar. Their success rate
was nearly the same (84.127% and 85.7143% correspond-
ingly). The main difference in their behavior, as shown in
Table 2 was that in the U.S., people were more likely not
to deliver any of their chips (and entirely renege on their
commitments) than in Israel (61% versus 41%).

With respect to the acceptance model, the highest suc-
cess rate of predicting the likelihood of acceptance was in
Lebanon (75%). Interestingly, people in Lebanon were less
likely to agree to offers than in the U.S. or Israel. However,
when they accept or reject an offer, they were more likely
to fulfill the agreement. To predict acceptance, the opti-
mal features included the scores and generosity features for
players. The success rate to predict acceptance in the U.S.
was a bit less, 73.5016%. In addition, in the U.S, removing
any parameters from the feature set caused the success rate
to be reduced. For example, the round number parameter
was important. The success rate to predict acceptance in
Israel was 70%. To predict acceptance, the optimal features

included the scores and offer generosity parameters.
The Israel population accept 56% from the offers. From

this, 35% were mistakenly classified, means, classified as
FALSE, though their real class was TRUE. As we can see
in this acceptance model’s success rate table, when learn-
ing the model on the combined populations, Lebanon and
U.S. the success rate is significantly reduced, only 65.8849%,
as compared to learning them separately. This shows that
learning from combined population is not good enough as
learning each population specifically. To explain this, we
note that there was a difference in the likelihood of accep-
tance in both countries. In the U.S., people were more likely
to accept offers than in Lebanon, and we expect that the dif-
ference in this behavior made it more difficult to learn from
the combined populations.

We also note that the games in the U.S. were gener-
ally longer than in other countries. The round number in
Lebanon games was up to six, whereas in U.S, the games
last up to 16 rounds, which is significantly longer.

The following explains results with respect to the likeli-
hood for reaching the goal. Human Reached Goal model:

• For the Israeli model, many features in the parameters
list were needed to get the high success rate of 94.71%.
In comparison to Lebanon, where only one parameter
(CS) was needed to get high success rate of 93.8776%.
On the other hand, for both the U.S and the combined
populations, only two parameters of the model were
taken: CS and PR. In these cases, adding any other
parameter from the basic model, lead the success rate
to be reduced.

• In Lebanon, when they accept an offer, they really ful-
fill the agreement, and therefore, they quickly reached
the goal.

• In U.S., the best success rate, 81.0345% was with two
parameters in the model, CS and PR. The false posi-
tive was 18 instances from 399, i.e 4.5%, and the false
negative was 92 instances from 181, i.e, 50%.

• When learning both Lebanon and U.S. population, the
parameters needed were CS and PR, and the success
rate was 85.2654%, which is much less when learning



Table 4: Optimal Success Rate (in percentages)

Model / Population Israel Lebanon U.S. Lebanon and U.S.
Reliability 84.127 (PUK) 97.5 (PUK) 85.7143 (PUK) 87.3188 (PUK)
Acceptance 70.3883 (KNN:k=19) 75(J48) 73.5016 (KNN; k=9) 65.8849 (KNN; k=9)
Human reached Goal 94.7103 (J48) 93.8776 (J48) 81.0345 (J48) 85.2654 (J48)
Agent reached Goal 87.1537 (J48) 87.172 (J48) 86.8966 (J48) 86.9989 (J48)

Lebanon separately (93.8776%), and a bit better than
learning U.S. separately (81.0345%). Again, this shows
that learning each population separately gives better
result than learning population together.

Agent Reached Goal model:

• In case of the PURB agent reached goal, it can be seen
that in all kind of populations, and even in combined
populations, the agent reached the goal in 87%. In
addition, for each population learning, this success rate
was generated with the 3 parameters, CS, PR and R.

As shown in Table Models Average likelihood, People in
Lebanon reached the goal significantly more often than the
PURB agent(95% of the time versus 87% of the time), while
in the U.S. the PURB agent reached the goal significantly
more often than people (95% of the time versus 87% of the
time).

To conclude this section, we showed that there were signif-
icant differences in the negotiation behavior of people across
the three countries. We have shown that these differences
affect the performance of learning models in two ways: the
types of features that they use to achieve best performance,
and the extent to which they can predict behavior in each
country. As we have noted in the beginning of this section,
the ethnicity demographics of the subjects in each country
were different, while other demographic components, such
as age and gender, were equal. Therefore we concluded that
the differences in behavior can be accounted to the cultural
discrepancies between subjects.

7. CONCLUSIONS
This paper investigated the use of machine learning mod-

els to predict decisions relating to people’s negotiation be-
havior across cultures. It focused on a repeated negotiation
setting in which participants need to accrue and exchange
resources in order to complete their individual goals, and
agreements were not binding. This setting was implemented
using a test-bed that consists of a computer board game that
provided a task analogy to the types of interactions that oc-
cur in the real world.

Our results showed that models that learned to negotiate
from using data from particular countries were able to as well
as, or better than models that learned from combining the
data for all countries. We also showed that there were con-
siderable differences in people’s negotiation behavior across
the different countries, and that these differences affected
the prediction accuracy of the models. We are currently
adapting these learning models towards building a cohesive
agent that will be able to negotiate successfully with people
across cultures.
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