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Abstract. Adaptive Cruise Control (ACC) is a technology that allows a vehicle
to automatically adjust its speed to maintain a preset distance from the vehicle
in front of it based on the driver’s preferences. Individual drivers have differ-
ent driving styles and preferences. Current systems do not distinguish among the
users. We introduce a method to combine machine learning algorithms with de-
mographic information and expert advice into existing automated assistive sys-
tems. This method can reduce the number of interactions between drivers and
automated systems by adjusting parameters relevant to the operation of these sys-
tems based on their specific drivers and context of drive. This method sheds light
on the kinds of dynamics that users develop while interacting with automation and
can teach us how to improve these systems for the benefit of their users. While
accepted packages such as Weka were successful in learning drivers’ behavior,
we found that improved learning models could be developed by adding informa-
tion on drivers’ demographics and a previously developed model about different
driver types. We present the general methodology of our learning procedure and
suggest applications of our approach to other domains as well.

1 Introduction

Cruise control is a known technology that aids drivers by reducing the burden of con-
trolling the car manually. This technology controls the vehicle speed once the user sets
a desired speed. Cruise control is not only convenient, but it has the potential to im-
prove the flow of traffic [11], and can be effective in reducing driver fatigue and fuel
consumption [1]. In this paper, we focus on a second generation of cruise controls—
adaptive cruise control (ACC). ACC is designed as a comfort-enhancing system, which
is an extension of conventional cruise control (CC). The ACC system relieves the driver
from some of the longitudinal-control tasks by actually controlling speed and headway
keeping, but the driver can choose to engage or disengage the ACC at any time. The
major difference between ACC and CC is the use of radar technology to maintain a
preset distance between the vehicle with the ACC and other vehicles on the road. This
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distance is controlled by a “gap” parameter which sets the minimum gap (headway dis-
tance) to the vehicle in front of it. Figure 1 shows a picture of a steering wheel with the
ACC technology. Note the existence of a “gap” switch on the left side of the figure.

While ACC adds more automation to the driving experience, it typically also re-
quires the driver to set and adjust one more parameter, the gap setting. The current ap-
proach is to preset the gap setting to a default value which can be adjusted by the driver
manually based on his driving preferences. Another approach taken in previous pub-
lished attempts was to learn this setting focusing on mechanisms such as fuzzy logic [6,
71. In these previous approaches, rules were learned manually after having interviewed
human drivers. Based on these rules the gap setting value was adjusted automatically
to the conditions of the drive without considering the particular driver in the vehicle.
Individual drivers, however, differ in their driving styles and preferences. Therefore, a
personalized learning approach may be valuable.

In this paper, we primarily focus on a method that learns how to quickly and ac-
curately adjust the gap setting based on the specific driver and context of a drive. To
accomplish this task, we created general driver profiles based on an extensive database
of driving information that had been collected from 96 drivers [4]. We used post-
processing of data from that study. Our general method is that once a new driver is
identified we classify this driver as being similar to previously known drivers and set
the initial gap setting accordingly.

The challenge of this study was to process real world data so as to obtain the most
accurate and practical rules from the learning algorithms. We found that the information
gleaned from demographics and the driver’s type was crucial for creating more accu-
rate learning models. This work focuses on which attributes will help, and a general
methodology for adding them. By following this methodology, we found that a better
application could be created in this domain, and are confident that better applications
can be created in other domains as well.

2 Related Work

The concept of using a group of characteristics to learn people’s behavior has long been
accepted by the user modeling community. Many recommender systems have been built
on the premise that a group of similar characteristics, or a stereotype, exists about a cer-
tain set of users [9]. Even more similar to our work, Paliouras et. al [8] suggested creat-
ing questionnaires, distributing them, and then creating decision trees to automatically
define different groups of users. Similarly, our application assumes that some connec-
tion exists between users, which can be learned using machine learning techniques. We
propose that this approach be applied to customize settings within an application, here
ACC, and not within recommender systems.

Previously, Fancher et. al [5], analyzed a group of 36 drivers and their acceptance
of adaptive cruise control (ACC). While all drivers enjoyed and accepted the ACC,
they found that drivers could be divided into three types with each group demonstrating
specific driving tendencies which impact their headway and closing speeds, relative to
vehicles ahead. In very general terms, these groups were assumed to be: one that is most
aggressive, another that is least aggressive, and a third that is in between. Although it is
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Steering Wheel Controls

Fig. 1. A steering wheel fitted with ACC technology.

clear that more detailed grouping may exist, and that a different profiling of the drivers’
population can be made, for the purpose of this study the characterization analysis was
aimed at identifying the above three grouping types. The three driving styles are: 1.
Hunters (aggressive drivers who drive faster than most other traffic and use short head-
ways); 2. Gliders (the least aggressive drivers who drive slower than most traffic or
commonly have long headways); and 3. Followers (whose headways are near the me-
dian headway and usually match the speed of surrounding traffic). In this scheme of
things, Hunters are drivers who tend to drive faster than the surrounding flow and they
tend to travel at shorter headway times than those adopted by other drivers. In contrast,
at the other end of driver characteristics, Gliders tend to travel slower than the surround-
ing flow and they tend to travel at longer headway times than those adopted by other
drivers. Between the Hunters and Gliders lie the Followers who tend to go with the flow
of traffic. They tend to adapt their driving behavior to the situation they are in.

The idea of assisting the driver in the task of longitudinal control has been the focus
of research in the last decade [6, 7]. Operation tests have given insight into this task.
However, the goal of this project was to attempt to create an intelligent ACC agent that
could potentially set this longitudinal value autonomously through adjusting its gap
setting per each driver.

In this paper, we use driver characterization into types (hunter, glider or follower)
in addition to other demographic information to attempt to build an application that
predicts how the ACC should set its gap (headway) given this information and road
situation. In general, other research has previously found that we can better predict
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people’s behavior by combining relevant behavior theory, here about people’s driving
type and demographics, in conjunction with machine learning methods. These studies
have included how other behavior theories: Aspiration Adaptation [10] and the Focal
Points [12] could be used in conjunction with machine learning algorithms to create
an improved classifier. These results also showed some positive correlation between
the complexity of the problem domain and the improvement in performance when aug-
menting the behavior model. Thus, the more complex the learning task, the added gain
in the learning model by adding behavior information. This paper explores how the
behavior model of a driver’s type impacts their gap setting.

3 Experimental Setup and Results

Current ACC systems allow the user to choose a value for the gap setting between
six possible values (1-6). These values control the distance the ACC autonomously
maintains with the vehicle in front of it. Currently, one value is set as default (in our case
this value was 6) and the user may change it during his drive as he wishes. In order to
study the problem of predicting what gap setting a person would select, we constructed
two different types of models. The first type of model was a regression model which
attempted to predict the number a given driver would select given the current driving
conditions. The second type of model was a decision tree model (C4.5) which treats
each number within the system as discrete values representing different categories a
driver can choose. Our goal was to use the output of either model to automatically set
the gap setting. Towards this goal, the second model is seemingly the better choice as its
output directly correlates to a value within the system. In contrast, the regression model
outputs a decimal value (e.g. 3.5) that must be first rounded to the closest value within
the system to be used. However, the advantage of this model is that a mistake between
two close values (e.g. 3.5 being close to 3 and 4) is not as mathematically significant
as mistakes between two extreme values (e.g. between 2 to 6). In contrast, the discrete
decision tree model weighs all types of errors equally. In practice, the regression model
will likely be more useful if the user is willing to accept errors between two similar
values.

Data for our analysis were taken from the Automotive Collision Avoidance Sys-
tem Field Operational Test (ACAS FOT) [4]. In that study, to understand how different
drivers use an ACC, each of 96 drivers was presented with a vehicle fitted with the ACC
which they used for a period of 4 weeks. During the first week the ACC system was not
available. That is, if the driver engaged the cruise control, it simply maintained speed
just like the conventional system (CC). During the next three weeks, if the driver chose
to engage the cruise control, it functioned as ACC. In general, three different datasets
were considered. The first, and most basic, dataset were objective characteristics that
can be studied based on the location of the vehicle itself, e.g., headway distance to
the lead vehicle, vehicle speed, longitudinal acceleration, road type (country, city, or
highway), weather (including day or night) and road density (is there traffic). A sec-
ond dataset added driver characteristics. These properties focus on driver demographics
such as age, sex, income level (high, medium, low), and education level (High School,
Undergraduate, and Graduate ). The ACAS FOT data consists of a good mixture of
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these demographics with a 51% male to 49% female split, 31% young (aged 20-30),
31% middle aged (aged 40-50), and 38% older drivers (aged 60-70), and people from a
variety of education and socioeconomic levels. The last dataset also logged a previously
developed measure used to quantify a driver’s behavior [5].

The experimental design of the ACAS FOT was a mixed-factors design in which the
between-subjects variables were driver age and gender, and the within-subject variable
was the experimental treatment (i.e. ACAS-disabled and ACAS-enabled). The disabled
period was treated as a baseline measure, since the research vehicle operated like a
conventional passenger vehicle. The drivers operated the vehicles in an unsupervised
manner, simply pursuing their normal trip-taking behavior using the ACAS test vehicle
as a substitute for their personal vehicle. Use of the test vehicles by anyone other than
the selected individuals was prohibited. The primary emphasis on user selection for
the field operation test was to roughly mirror the population of registered drivers, with
simple stratification for age and gender. No attempt was made to control for vehicle
ownership or household income levels. Thus, although the ACAS FOT participants may
not be fully representative of drivers who might purchase such a system, they were
selected randomly and represent a wide range of demographic factors.

Figure 2 presents the accuracy of the decision tree model to learn a driver’s preferred
gap setting based on this data. Clearly, adding the demographic data here is crucial, as
the model’s accuracy drops from over 66% accuracy with this data to less than 37%
accuracy without this. As a baseline, we also include the naive classifier, which is based
on the most common gap setting— here the value of 6, which is also the system’s default.
Note that the naive model had an accuracy of nearly 27%, far less than other models.
The user’s type did improve accuracy, as adding this information to the type increased
accuracy to near 70%. In line with previous work, we hypothesized that adding this be-
havior model yields less significant increases if it can be learned from other attributes
within the data. Here, we believed that adding information about drivers’ type is less
important, as their type was already evident from information such as the driver’s de-
mographics.

To support this hypothesis, we constructed a decision tree (again C4.5) to learn
the driver’s type. We found that this value could be learned with over 95% accuracy
(95.22%)— which strongly supports our hypothesis. Possibly equally interestingly, we
found that the most important attributes in predicting a driver’s behavior are his age,
education, and income level. Young men with above High School education tended to
be “hunters” or those with extremely aggressive driving habits. While men with only a
high school education and college educated women were “flow-followers” or those that
basically adhered to the flow of traffic. Older women tended to be “gliders” or those who
drive slower than most vehicles. Naturally, exceptions existed, which typically focused
on the person’s income, the third most important attribute. We found that people with
higher incomes tended to be more aggressive drivers.

Similarly, the demographic information was equally crucial in creating an accurate
regression model, found in Figure 3. Within these models, correlation values can range
from 1.0 (fully positive correlated) to -1.0 (fully negatively correlated) with 0 signify-
ing no correlation. We found a model with both demographic and type data yielded a
correlation of 0.78, while without this information the accuracy dropped to 0.75. Using
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Fig. 2. The importance of driver type and demographics in predicting the gap setting within the
ACC for a discrete decision tree model.

only vehicle specific data yielded a model of only 0.4, and the naive model (here using
the average gap value of about 3.5) yielded a value of nearly 0. Again, we found that
the type only slightly improved the model’s accuracy, as much of this information was
already subsumed within the drivers’ demographics.

Generally, one of the goals of this paper is to encourage people who build applica-
tions to consider incorporating data from external measures, such as psychological or
behaviorial models. As was true in other domains as well [10, 12], exclusively using
behavior models alone, such as the driver type possible in this domain [5], is not suffi-
cient. By combining the driver type with other data, we achieved a prediction accuracy
of nearly 70% within the discrete decision tree model (Figure 2) and a correlation of
0.78 within the regression model (Figure 3). However, when we used only the driver
type information and removed the demographic information these models dropped to
an accuracy of 46% and 0.55 respectively. This suggests that exclusively using behavior
models is not as effective as the approach we present. Thus, we advocate for synthesiz-
ing data gleaned from behaviorial models in conjunction with observed domain data,
something we believe can be effective in many other domains as well.

Practically, we are studying how either or both of these attributes can be used in the
company’s ACC. The advantage to using the demographic data alone is that ostensibly
it can be provided before the driver begins using the car (e.g. in the showroom) and
thus can be used to accurately model the driver from the onset. However, people may
be reluctant to provide this information due to privacy concerns. Using driver profiling
information is relatively difficult to calculate and is based on observed behavior over
a period of time [5]. Thus, this value cannot be used to initially set values within the
ACC. However, this data can be collected without privacy concerns and can be used to
further improve the system’s accuracy over time.
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Fig. 3. The importance of driver type and demographics in predicting the gap setting within the
ACC for a regression model.

4 Conclusions

Adapting automated processes to better serve humans is a challenging task because
humans are characterized by inconsistent behaviors, have difficulties in defining their
own preferences, are affected by their emotions, and are affected by the complexity
of the problems they face together with the context of these problems. In particular,
human drivers also need to react fast enough to road conditions and changes in traffic.
Therefore our task was to learn the ACC’s gap setting quickly and accurately given data
we could use from past experience of many drivers from the ACAS field test data [4].

We empirically studied two learning approaches: regression and decision trees. Both
were able to learn accurately the gap setting of an individual given his demographics
characterization and driving type (hunter, glider or follower) with nearly 70% for the
decision tree model and with a correlation of 0.78 for the regression model. These
experiments emphasized the need for driver information including a behavior model
about the driver’s type [5] in addition to the information collected on the trips them-
selves. These results stress the fact that drivers may be very different from each other
and previous approaches that set the gap setting similarly for all drivers [6, 7] are less
effective. Therefore, driver characterization is essential for adapting automated systems
in the vehicle. By understanding the current state of acceptance of automated systems
and learning about differences among human users, we can improve the next genera-
tions of adaptive automated systems adjusted to their particular human users.
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