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Abstract

In this paper, we propose a theoretical framework within
which to evaluate the reliability of promises that an agent
makes, based on past performance of the agent. Our frame-
work does not just propose one such measure, but defines ax-
ioms that govern the choice of measure. The framework is
able to account for partial fulfillment of promises, late fulfill-
ment of promises, fulfillment of variants of promises, and the
like. Within this framework, we propose some specific mea-
sures to evaluate promises made by agents and develop algo-
rithms to compute these efficiently. We tested our methods
on a real world data set of airline flight information and show
that our methods are both accurate and quickly computable,
even on large data sets.

Introduction and Motivating Example
Politicians and political parties are prime examples of peo-
ple and organizations that make and break promises. Con-
ference and journal reviewers often promise to review papers
by a deadline, but may not meet the deadline, may only re-
view part of their assigned load, or not do it at all. Airlines
promise to deliver passengers and their bags by a deadline,
but may miss the deadline altogether. Suppliers to manu-
facturing plants and/or to retail outlets make promises about
when inventory and/or supplies will be delivered, but may
meet their promises partially or completely.

The goal of this paper is to develop a formal theory to
quantitatively evaluate how well an agent has fulfilled its
past promises and use that as a predictor of whether it will
keep its current (as yet unfulfilled promises). An agent A
can use the theory developed in this paper to assess the likeli-
hood that an agent B will fulfill a given promise. Our frame-
work takes into account three important factors not consid-
ered before: partial fulfillment of a promise is taken into
account, as is late fulfillment, fulfillment of a promise that is
similar to, but not identical to the promise that was made,
and combinations thereof. The toy example below, called
the Store example, is used throughout the paper.

Example 1. Consider a Store agent and a Supplier agent.
The supplier provides, among other things, shirts and balls
to the store. The supplier promises to deliver 10 blue balls
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by time t1, 5 green balls by time t2, and 15 green shirts by
time t3. Here are some possible scenarios.
(S1) He delivers 7 blue balls at time t1 and 3 blue balls
separately at time t1.
(S2) He delivers 7 blue balls at time t1 and 3 blue balls at
time t1 + 1.
(S3) He delivers 7 blue balls at time t1, 2 at time t1 + 1 and
1 at time t1 + 2.
(S4) He delivers 10 blue balls at time t1 − 3.
Most readers will agree that the degree of fulfillment of the
supplier’s promise in S1 exceeds that in S2 which in turn
exceeds that in case S3. However, case S4 is less clear.
Should early delivery be penalized? For example, a grocery
store may want just in time delivery as there are storage
costs involved. An early delivery of fish by one supplier may
cause the fish to rot if sufficient refrigeration is not available
when the delivery occurs.

In this paper, we make the following contributions. First,
we define a formal syntax for expressing promises and ac-
tions that an agent might take to keep those promises. These
include promises and actions with a numerical component.
We then define distance measures between actions (with the
same action symbol), followed by distance measures be-
tween sets of promises and actions. Rather than define dis-
tance measures directly, we develop axioms that such dis-
tance measures should satisfy and we then show some ex-
ample distance measures that satisfy the axioms.

We then define the concept of an enactment mapping,
which maps actions taken by an agent to the promises that
those actions were intended to contribute towards. Given an
enactment mapping, we can define a degree of fulfillment of
a promise w.r.t. the enactment mapping. When the enact-
ment mapping is not known, finding the enactment mapping
that maximizes the degree of fulfillment is shown to be com-
putationally intractable. Fortunately, one can get around this
complexity result easily as long as the agent taking an action
specifies which promise the action is supposed to contribute
towards. We prove various desirable properties of our notion
of fulfillment and show that when the enactment mapping is
fixed, it leads to an incremental way of updating the degree
of fulfillment when new actions are performed, i.e., without
having to process past actions all over again. We then de-
rive specific methods to estimate the likelihood that a given
promise will be fulfilled in the future.



In order to test our methods, we developed a prototype
implementation of our system and tested it out on real US
airline data where the promises pertain to on-time flight de-
partures and arrivals. We show that our estimation methods
have strong predictive power. We used our algorithms to pre-
dict how well airlines would perform (in terms of on-time
flight arrivals) in 2007 based on previous years’ data. Our
predictions were highly accurate and took small amounts of
compute time.

There is some past work on developing models of trust
in agent systems. (Sierra and Debenham 2007) presents a
model of decision making based on trust in simple Offer,
Accept, Reject negotiations. Decision-making in this model
integrates the utilitarian, information, and semantic views of
the exchange of information, and the authors present sum-
mary measures that generalize trust, reliability, and reputa-
tion as an illustration of the model’s capabilities. However,
promises of the kind we discuss in this paper are not consid-
ered. Another important difference with our approach is that
these measures assume the availability of probability distri-
butions that describe the ideal enactments with respect to
a given commitment, expected enactments, a more general
semantic similarity measure that allows to gauge the similar-
ity between the commitment and its actual enactment, and a
measure of how much uncertainty we expect to have given
a certain commitment. Other related work is that in the area
of trust and reputation in agent systems (which can include
both artificial and human agents). (Dondio and Barrett 2007)
propose a generic method of selecting evidence that is rec-
ognized as support for trust, while (Dellarocas 2006) pro-
vides a recent survey of the area, focusing on Internet-based
mechanisms (such as for online auctions). Game-theoretic
treatments of this topic have also been developed, such as
in (Ely, Fudenberg, and Levine 2002), but this approach has
been criticized for placing too much importance on proba-
bility while underestimating its cognitive aspects, such as
in (Falcone and Castelfranchi 2001). In this respect, our
work takes a step in this direction by allowing agents to in-
fluence the measure of fulfillment according to their own
preferences.

In contrast to this past work, we focus on developing a
general model of promises that tries to quantitatively assess
how well an agent has met its past commitments, taking into
account the fact that time plays a role in whether a promise is
met or not (promises often involve doing things by a dead-
line), that the “content” of an action sometimes - but not
always - allows a promise to be replaced by a similar, but
different promise (e.g. delivering red balls instead of green
balls), and partial fulfillment where part of a promise is kept.
Our framework is one of the first to develop a unified theory
around these important concepts.

Preliminaries
We start by defining the notion of temporal expression,
which is used to denote time points: we assume that time
in our model is discrete.

Definition 1 (from (Dix, Kraus, and Subrahmanian 2006)).
(1) Every integer is a temporal expression. (2) tnow is a tem-

poral expression. (3) If t1 and t2 are temporal expressions,
then so is (t1 + t2).

Symbol tnow represents the current time point; we assume
its value gets automatically updated as time goes by in the
environment.

We assume the existence of a logical alphabet that con-
sists of a finite set L of constant symbols, a finite set A of
action symbols (each with an associated arity), the predicate
symbols Do and Promise, and an infinite set V of variable
symbols. A constant or variable symbol is called a term.
Definition 2 (action atom). If α ∈ A, and t1, ..., tm (m ≥ 0)
are terms (resp. constants), then α(t1, ..., tm) is called an
action atom (resp. ground action atom).
atoms(α) denotes the set of all possible action atoms of the
form α(. . .).
Definition 3 (Do and Promise atoms). Suppose A, B are
agents, T is a temporal expression, and X is an action atom.
Then, Do(A,B,X,T) and Promise(A,B,X,T) are called Do and
Promise atoms respectively.

Intuitively, Do(A,B,X,T) is read “agent A does X for
agent B at time T ” while Promise(A,B,X,T) is read “agent
A promised agent B that it would do X at time T ”. The
following example, based on the Store example above, is
presented in order to illustrate these concepts.

Example 2. Let A and B be the Supplier and Store agents,
Here are some example Promise and Do atoms involving the
action del(it, col, am) which states that am amount of item it
of color col are delivered.

P1 = Promise(B, A, del(ball, blue, 10), T1),
P2 = Promise(B, A, del(shirt, green, 5), T2),
P3 = Promise(B, A, del(shirt, green, 15), T3),
D1 = Do(B, A, del(ball, blue, 7), T1),
D2 = Do(B, A, del(ball, darkBlue, 3), T1),
D3 = Do(B, A, del(shirt, green, 20), T3)
However, it might be the case that the Store agent is

neutral about whether the supplier delivers blue balls or
green balls, even though the supplier promised blue balls.
We therefore need a binary replaceability relation on action
atoms in order to capture this type of situation.

Definition 4. Let A be an agent, and S1 =
{α1(~t1), ..., αl(~tl)} and S2 = {β1( ~u1), ..., βm( ~um)}
be two sets of action atoms. We assume each agent A has an
associated relation of replaceability, denoted S1 
A S2,
read as: S1 is replaceable by S2 for agent A. We only
require S 
A S for any set S and agent A.

When the agent is clear from context, we will simply write
S1 
 S2. The above definition allows us to consider a
promise to be fulfilled when the agent has taken an action
that is considered good enough, even though it does not ex-
actly fulfill the promise as stated. The store manager who
thinks it is all right to replace blue balls with green ones
may set {del(ball, blue, N1), . . . , del(ball, blue, Nm)} 

{del(ball, green, M1), . . . , del(ball, green, Mk)} iff N1 +
. . . + Nm = M1 + . . . + Mk .1 One reason we need the

1Due to space constraints we do not provide an explicit syntax
to express the 
 relation.




 relation is because a Supplier might have made multiple
promises (of 5 green balls and 3 green balls all to be deliv-
ered at time 7) and may execute multiple Do actions (e.g.,
by delivering two packages each of 4 green balls at time 7)
that jointly meet the promises. In order to reason about this
kind of situation, we need ways of aggregating promises to-
gether. We start by defining two sets. Given agents A, B,
and a temporal expression T :

• UProm
A,B,T = {〈Promise(A, B, ai, T ), ωi〉 | 0 ≤ ωi ≤ 1

and Promise(A, B, ai, T ) is a promise atom }. ωi is any
real number in the [0, 1] interval called the proportion
component.

• UDo
A,B,T = {Do(A, B, ai, T ) | ai is an action atom } .

The following definition specifies whether it is possible to
merge multiple Promise atoms or Do atoms into one.
Definition 5. Let A and B be agents, T be a temporal ex-
pression, Sp ⊆ UProm

A,B,T , and Sd ⊆ UDo
A,B,T .

• Suppose a∗ is an action atom such that
{ai | 〈Promise(A, B, ai, T ), ωi〉 ∈ Sp} � {a∗}.
The promise composition operator χ takes any sub-
set Sp ⊆ UProm

A,B,T as input and returns the Promise
atom χ(Sp) = Promise(A, B, a∗, T ) if and only if∑

〈Promise(A,B,ai ,T ),ωi〉∈Sp
ωi = 1. Otherwise, it is

undefined.
• If a∗ is an action atom such that {ai |Do(A, B, ai, T ) ∈

Sd} � {a∗}, then the do composition operator χ
takes a set Sd ⊆ UDo

A,B,T as input and returns the
Do atom χ(Sd) = Do(A, B, a∗, T ) if and only if
{ai |Do(A, B, ai, T ) ∈ Sd} � {a∗}. Otherwise, it is
undefined.

We let χ−1(X), be the set of all sets S ⊆ UDo
A,B,T or

S ⊆ UPromise
A,B,T such that χ(S) = X . Informally, composi-

tions and decompositions are simply ways in which to refer
to “parts” of Promise and Do atoms. In the case of Promise
atoms, decompositions are sets of pairs that include a pro-
portion for each atom in the set, whereas in the case of Do
atoms, a decomposition is just a set. In contrast, composi-
tions specify a set of Do atoms as input and composes them,
when possible, into a single Do atom.

The following is an example of combinations and decom-
positions of Promise and Do atoms.
Example 3. Consider the Promise atoms and Do atoms in
Example 2 and let:

P 1
1 = Promise(B, A, del(ball, blue, 7), T1),

P 2
1 = Promise(B, A, del(ball, blue, 3), T1),

D1
3 = Do(B, A, del(shirt, green, 5), T3),

D2
3 = Do(B, A, del(shirt, green, 15), T3)

Now, if χp is a promise composition operator and Sp =
{
〈
P 1

1 , 0.7
〉
,
〈
P 2

1 , 0.3
〉
}, we have that χp(Sp) = P1. Sim-

ilarly, if χd is a do composition operator and Sd =
{D1

3, D
2
3}, we have that χd(Sd) = D3.

We now define event sets and action histories.
Definition 6 (event sets and action histories). An event set
is any finite set of ground Do and Promise atoms. An action
history is a function h from [0, ..., tnow] to event sets.

An action history describes what promises were made and
what actions occurred at each time point before tnow. We will
generally be interested in finite action histories, i.e., where
{t | h(t) 6= ∅} is finite.

A Distance Measure between Atoms
In order to determine the degree of fulfillment between
promises and actions, we will develop distance functions
in three phases: first between action atoms, then between
Promise atoms and Do atoms, and finally between sets of
Promise atoms and sets of Do atoms. Of course, these dis-
tance functions can be defined in many ways, and so we
present axioms governing the definition of such distance
functions so that application specific knowledge can play a
role in our framework.

Distance between Two Action Atoms
We start with distance functions on action atoms by first con-
sidering two action atoms that share the same action symbol.

Definition 7. A distance measure between two action atoms
α(t1, t2, ..., tn) and α(s1, s2, ..., sn), from the point of view
of agent A is a function δA

α : atoms(α) × atoms(α) →
R̄+ ∪ {0}. Function δA

α must satisfy the property of Weak
Identity of Indiscernibles: If a1 = a2 then δA

α (a1, a2) = 0.

Note that the distance measure δA
α is undefined when

comparing atoms with different action symbols.

Example 4. From the point of view of the Store agent,
the distance between two atoms deliver(i1, c1, q1) and
del(i2, c2, q2) may be |q1 − q2| if and only if i1 = i2 and
c1 = c2, and some very large constant d � 0 otherwise,
indicating that the manager considers any deviation in the
product to represent a large difference.

Note that this is not a distance metric from a mathemat-
ical point of view, since symmetry and triangle inequality
are not required by the definition; as we will argue in the
following, these properties are not always desirable in this
framework. For instance, consider actions a1 = del(ball, 7)
and a2 = del(ball, 10). Here, three extra balls were de-
livered and we might want to set δA

del(a1, a2) = 3. How-
ever, we might want to set δA

del(a2, a1) > δA
del(a1, a2) be-

cause delivering three fewer balls may be less desirable. For
triangle inequality, consider an order for screws with ac-
tions a1 = del(screws, 5mm), a2 = del(screws, 5.2mm),
and a3 = del(screws, 5.4mm), where the first component
refers to a standard sized bag of screws and the second refers
to their size. If the allotted error range of the manufacturer
is 0.3mm, then δA

del(a1, a2) and δA
del(a2, a3) might be 0, but

δA
del(a1, a3) would be strictly positive.

We now present a set of axioms that describe the desired
characteristics for a measure of distance between two action
atoms; in the following, sharing the same action symbol.
Let a1 = α(t1, t2, ..., tn), a2 = α(s1, s2, ..., sn), and a3 =
α(r1, r2, ..., rn) be action atoms. The following definition is
required before presenting the axioms.

Definition 8. Let a1 = α(t1, t2, ..., tn) and a2 =
α(s1, s2, ..., sn) be two action atoms. The disagreement set



of the two atoms, denoted by disagree(a1, a2) is the set of
all triples (ti, si, i) such that ti 6= si.

We now present axioms that δA
α should satisfy.

Axiom A1: δA
α (a1, a2) = 0 iff {a1} 
A {a2}.

This axiom simply states that the distance between two
actions is zero if and only if the singleton sets that contain
each are replaceable from the point of view of the agent.
Axiom A2: If disagree(a1, a2) ⊆ disagree(a1, a3),
a2 6� a3, and a1 6� a3, then δA

α (a1, a2) < δA
α (a1, a3).

Axiom A2 intuitively states that if the discordances be-
tween a1 and a2 are a subset of those between a1 and a3,
and a2 is not replaceable by a3 (i.e., the remaining differ-
ences are significant), then the distance between a1 and a2 is
strictly smaller than that between a1 and a3. The following
axiom deals with the case in which the remaining differences
are not significant from the point of view of the agent.
Axiom A3: If a2 �A a3, then δA

α (a1, a2) = δA
α (a1, a3).

According to Axiom A3, the distance between an atom a1

and two others a2 and a3, such that a2 is replaceable by a3,
is the same. The following example illustrates these axioms.

Example 5. Suppose we have a1 = del(bball, blue, 50),
a2 = del(vball, blue, 45), and a3 = del(vball, white, 45).
Here bball may refer to a beach ball, while vball refers
to a volleyball. We then have disagree(a1, a2) =
{(bball, vball, 1), (50, 45, 3)} and disagree(a1, a3) =
{(bball, vball, 1), (blue, green, 2), (50, 45,3)}, and there-
fore the inclusion holds. Then, if a2 6� a3 we have that the
difference in color is significant and therefore δα(a1, a2) >
δα(a1, a3) according to A2. However, if the difference in
color is not significant, which would be the case if a2 � a3,
the two distances should be equal, as stated by axiom A3.

Distance between a Promise and a Do Atom
We now deal with the problem of measuring the distance
between a single Promise atom and a single Do atom, inter-
preted as being the enactment of the promise.

Definition 9. A distance measure between a Promise atom
P = Promise(B, A, a1, T1) and either a Do atom D =
Do(B, A, a2, T2) or the special constant Null, from the point
of view of agent A, is a function φA

α (P, D) → R̄+ ∪ {0},
where a1 and a2 are action atoms that share the same ac-
tion symbol α.

When clear from context, we will simply write φα(P, D).
The Null constant stands for the “lack of enactment”, it is
a key aspect of the treatment of degree of fulfillment pre-
sented in the next section. We now present axioms that con-
strain the value that the degree of fulfillment function can
take given the various situations.
Axiom F1:

φA
α (Promise(B, A, a1, T1), Do(B, A, a2, T2)) ≥ δA

α (a1, a2)

This basic axiom states that the distance between a Promise
atom and a Do atom cannot be less than that between the
actions they refer to.
Axiom F2: φA

α (Promise(B, A, a1, T1), Null) = ∞.
This axiom states that the distance between a Promise atom
and the constant Null is infinite.

Axiom F3: If T1 = T2 then

φA
α (Promise(B, A, a1, T1), Do(B, A, a2, T2)) = δA

α (a1, a2)

If the action enactment was performed at the time agreed in
the promise, then the distance between the promise and the
enactment must be the distance between the two actions. In
particular, if the action agreed upon is replaceable by the one
that performed, then the distance between the promise and
its enactment must be zero, according to Axiom A1.

Two key situations, early completion and late completion,
are unconstrained by the axioms. This is because different
scenarios can arise, both where either of these are beneficial
and detrimental to the agent to which the promise was made.
For instance, while early delivery of an email is most likely
harmless, a manager receiving items like fish and meat that
require refrigeration earlier than expected must have the ap-
propriate storage space (e.g. refrigerator space) to store it.
The following proposition presents a class of functions that
satisfy all of the axioms.

Proposition 1. Let P = Promise(B, A, a1, T1) and D =
Do(B, A, a2, T2) be two atoms such that a1 and a2 have
action symbol α. Any φ function of the form:

φA
α (P, Null) = ∞

φA
α (P, D) =





f`(T1, T2) + k`δ
A
α (a1, a2) if T2 > T1,

δA
α (a1, a2) if T1 = T2,

fe(T1, T2) + keδ
A
α (a1, a2) if T1 > T2,

where f`(.) and fe(.) are positive real functions, and k` and
ke are constants in R≥1, satisfies axioms F1, F2, and F3.

Proof. We have to show that φA
α (P, D) satisfies all three ax-

ioms F1, F2, and F3.
Satisfaction of Axiom F1. Case 2 of the function definition,
for T1 = T2, trivially satifies this axiom by definition. For
cases 1 and 3, we assume that k`, ke ≥ 1 and get:

φA
α (P, D) = f`/e(T1, T2) + k`/eδ

A
α (a1, a2)

≥ k`/eδ
A
α (a1, a2) ≥ δA

α (a1, a2)

since f`(T1, T2) and fe(T1, T2) are both positive functions.
Satisfaction of axiom F2. Satisfied trivially by definition.
Satisfaction of axiom F3. Satisfied by case 2 of the function
definition.

There are many such examples of reasonable φ functions
that fall into this category, such as one that simply fixes the
weight assigned to every time unit under or over the deadline
by defining f` = `×|T2 −T1|, fe = e×|T2 −T1|, for some
e, ` ∈ R+ , and k` = ke = 1. Of course, functions outside
this class can also be defined.

A Function to Measure Degree of Fulfillment
The φ function presented above is the backbone of the final
measure that we will present, which allows an agent to mea-
sure the degree of fulfillment given a set of Promise atoms
and a set of Do atoms. Before introducing this function, we
need the definition of an enactment mapping:



Definition 10. Let A and B be agents, and Sp =
{P1, . . . , Pn} and Sd = {D1, . . . , Dm} be sets of Promise
and Do atoms, respectively. Let

∆p =
|Sp|⋃

i=1

Si and ∆d =
|Sd|⋃

j=1

Sj

for some Si ∈ χ−1(Pi) and Sj ∈ χ−1(Dj).
An enactment mapping between Sp and Sd is defined as any
MSp,Sd : ∆p → ∆d ∪ {Null} that is quasi injective, i.e.,
∀pi, pj ∈ Sp : MSp,Sd(pi) = MSp,Sd (pj) ∧ MSp,Sd (pi) 6=
Null =⇒ pi = pj.

Intuitively, an enactment mapping associates “parts” of
Promise atoms with “parts” of Do atoms (or Null), stating
that the latter “counts towards” the former. The space of
all possible such mappings is given by the different possible
compositions of the ∆ sets given the variation in the S sets
involved. The following example shows a simple enactment
mapping function:

Example 6. Consider the set of atoms from Example 3. A
possible enactment mapping M is the following:

M (P 1
1 ) = D1, M (P 2

1 ) = D2,
M (P2) = D1

3, M (P3) = D2
3.

In this case, promise P1 was split into two atoms in order to
map it to D1 and D2, as was enactment D3, in order to map
it to P2 and P3.

The degree of fulfillment is then defined as:

Definition 11. Let M be an enactment mapping between
two sets Sp and Sd and let P = Promise(A, B, a, T ). The
degree of fulfillment of P , denoted degFulfillM (P ), is de-
fined as:

e
−

∑
Pi∈Dom(MP ) ωiφ

A
α (Pi,M(Pi))

where DomMP is the domain of M restricted to consider-
ing only atom P . The degree of fulfillment for Sp , denoted
degFulfillM (Sp), is then defined as:

∑
Pi∈Sp

γdiff(tnow,Ti)degFulfillM (Pi))∑
Pi∈Sp

γdiff(tnow,Ti)

where γ ∈ (0, 1], Ti is the time point associated with Pi, and
diff(x, y) = x − y if x > y and 0 otherwise.

Note that degree of fullfillment according to this definition
is a real number in [0, 1]. Intuitively, this definition assumes
the existence of a set of Promise atoms Sp and a set of Do
atoms Sd, that represent promises made by an agent B to
an agent A and what actions were carried out by B towards
fulfilling such promises. In order to obtain the associated
degree of fulfillment, A will evaluate the distance between
the promises and the enactments by establishing a mapping
from some suitable decomposition of Sp to some suitable
decomposition of Sd. With such a mapping, individual de-
grees of fulfillment are obtained using the first part of the
definition, and then each individual degree is weighted ac-
cording to the time at which the promise was due as in the
second part of the definition.

In Definition 11, the term φA
α (Pi, M (Pi)) refers to the

distance between a given promise Pi and the action M (Pi)
that was performed to fulfill that promise according to en-
actment mapping M . Multiplying this term by the propor-
tion ωi of Pi gives us a weighted assessment of this distance
(for cases in which the Pi’s correspond to parts of an orig-
inal promise). The summation over all Pi’s in Dom(MP )
gives us all sub-promises Pi associated with P and com-
putes their individual fulfillments. Taking e to the negative
power of this summation weights promise P ’s fulfillment in
a way that is inversely proportional to these distances, re-
sulting in a value in [0, 1]. The following example shows a
simple calculation of degree of fulfillment:

Example 7. Let us return to Examples 2 and 3, where D1

is now changed to Do(B, A, del(ball, blue, 5), T1) instead.
Consider the functions

δdel(del(I1, C1, X1), del(I2, C2, X2)) = |X1 − X2|
iff I1 = I2 and C1 = C2, and ∞ otherwise, and

φdel(Promise(B, A, a1, T1), Do(B, A, a2, T2)) =
δA

del(a1, a2) + |T1 − T2|
In this case, using mapping M from Example 6, we have the
following individual degrees of fulfillment:

degFulfillM(P1) = e−(0.7∗ 2 + 0.3∗ 0) = 0.246
degFulfillM(P2) = e−1 ∗ 0 = 1
degFulfillM(P3) = e−1 ∗ 0 = 1

Then, assuming γ = 0.9, that the different time points are at
unit distance, and that tnow = T3 + 1, we get:

0.93 ∗ 0.246 + 0.92 ∗ 1 + 0.9 ∗ 1
0.93 + 0.92 + 0.9

≈ 1.889
2.439

≈ 0.774

As we have seen, mapping M plays a major role in how
the degree of fulfillment is computed, and there are many
ways in which this mapping can be obtained. For instance,
it can be built by the agents involved in the promises made,
since they can agree on this mapping when each action de-
scribed by a Do atom is performed. Another way would
be to perform a search through the space of possible map-
pings in order to obtain one that maximizes the degree of
fulfillment that is obtained, i.e., the mapping that is most
beneficial to agent B. However, this approach has a high
computational cost, as shown in the following result.

Proposition 2. Given two sets Sp and Sd of Promise and Do
atoms, respectively, and a real number k ∈ [0, 1], finding an
enactment mapping M such that degFulfillM (Sp) > k is
NP-complete.

Proof. We will first show membership in NP and then NP-
hardness.
Membership in NP: If we are given a mapping M , check-
ing that it is well defined (i.e., that its domain and codomain
are valid decompositions of Sp and Sd, respectively) can be
done in polynomial time. Hence, it remains to be proven,
that the size of M (where M is a relation, i.e. a set of pairs)
is polynomial in the size of the input, i.e. |Sp| and |Sd|. For
this, it is important to observe that the number of elements in
any minimal decomposition χ−1(P ) of any promise P ∈ Sp



is bounded by |Sd| + 1. To prove this, assume the contrary.
Hence, we have

∣∣χ−1(P )
∣∣ > |Sd| + 1, from which we can

conclude that at least two elements p1, p2 must be mapped
onto elements d1, d2 which are part of the decomposition of
a single do atom D ∈ Sd, i.e., d1, d2 ∈ χ−1(D). Hence,
we can merge p1, p2 and d1, d2 within their respective de-
compoositions and arrive at a new mapping M∗ which is
semantically equivalent (i.e. promises are fulfilled by the
same Do’s or decompositions thereof) due to the fact that M
is quasi injective and hence violates the minimality of the
original decomposition χ−1(P ). The case where both p1

and p2 are mapped onto Null is similar to the one presented
above, whereby we only merge p1, p2. Consequently, the
size of M is bounded by |Sp| (|Sd|+ 1) as had to be proven.
Note that we only consider the bound on minimal mappings
(minimality with respect to the decompositions). The ar-
gument above shows that this does not exclude reasonable
mappings.
NP-hardness: We will reduce the problem of SUBSET-
SUM (SS) with positive integers to our problem in polyno-
mial time in order to prove NP-hardness. This corresponds
to deciding, given a set S of positive integers and an integer
c, if there exists S′ ⊆ S such that

∑
ei∈S′ ei = c.

Given an instance of SS, we must then provide an in-
stance of our problem such that its solution provides an
answer to SS. Let Sp = {Promise(A, B, α0, 0)}, and
Sd = {Do(A, B, βj , 0) | j ∈ S}, where αi and βj are
dummy action symbols of arity zero. We fix the replaceabil-
ity relation � such that it states that {α0} � D if and only
if D = {αi | i ∈ S} and

∑
αi∈D i = c. Next, φ(αi, βj) = 0

if and only if i = j and ∞ otherwise. for i, j ∈ S. Lastly,
let k = 0.

This transformation yields the desired results, since an en-
actment mapping M such that degFulfillM (Sp) > 0 exists
if and only if Sp can be decomposed into a set of Promise
atoms that represent a subset of S that sums to c. If this is
not possible, then by Definition 11, degFulfillM (Sp) = 0.
Lasly, note that this reduction can be done in polynomial
time.

We conclude this section by stating some propositions
that characterize the degree of fulfillment introduced in Def-
inition 11. We first show that the overall degree of fulfill-
ment does not depend on the reference time point tnow, and
hence gives justification for our notation which leaves the
time point tnow implicit with the context.

Proposition 3. The overall degree of fulfillment,
degFulfillM (Sp), is independent of the reference time
point tnow, i.e., evaluating degFulfillM (Sp) w.r.t.
two reference time points t1now and t2now such that
∀Pi ∈ Sp : Ti ≤ t1now, t2now yields the same value.

Proof. Let M be a fixed mapping between promise and do
decompositions and let Sp be a set of promises. Let t1now and
t2now be two time points such that ∀Pi ∈ Sp : Ti ≤ t1now, t2now.

Then we have:

degFulfillM(Sp) =

∑
Pi∈Sp

γdiff(t1now,Ti)degFulfill(Pi, Sd)
∑

Pi∈Sp
γdiff(t1now,Ti)

=

∑
Pi∈Sp

γt1now−TidegFulfill(Pi, Sd)
∑

Pi∈Sp
γt1now−Ti

=
γt1now

∑
Pi∈Sp

γ−Ti degFulfill(Pi, Sd)

γt1now
∑

Pi∈Sp
γ−Ti

=

∑
Pi∈Sp

γ−Ti degFulfill(Pi, Sd)
∑

Pi∈Sp
γ−Ti

=
γt2now

γt2now

∑
Pi∈Sp

γ−TidegFulfill(Pi, Sd)∑
Pi∈Sp

γ−Ti

=

∑
Pi∈Sp

γt2now−TidegFulfill(Pi, Sd)
∑

Pi∈Sp
γt2now−Ti

=

∑
Pi∈Sp

γdiff(t2now,Ti)degFulfill(Pi, Sd)
∑

Pi∈Sp
γdiff(t2now,Ti)

The following result shows how the overall degree of ful-
fillment can be incrementally computed.

Proposition 4. Let Sd be a set of promises and let ρ =
degFulfillM (Sp) denotes its overall degree of fulfillment.
Suppose S̃p = Sp ∪ {P} and degFulfillM (P ) denotes the
degree of fulfillment of P according to M . Then we have:

degFulfillM (S̃p) =
ρτ + γdiff(tnow,time(P ))degFulfillM(P )

τ + γdiff(tnow,time(P ))

where τ is the denominator of the degree formula, i.e. τ =∑
Pi∈Sp

γdiff(tnow,Ti).

Proof. Starting from the definition of degFulfillM (S̃p), we
have the following derivation:

degFulfillM (S̃p) =
∑

Pi∈S̃p
γdiff(tnow,Ti)degFulfillM (Pi))∑

Pi∈S̃p
γdiff(tnow,Ti)

=
∑

Pi∈Sp
γdiff(tnow,Ti)degFulfillM (Pi))+γdiff(t1now,time(P ))degFulfillM (P )

∑
Pi∈Sp

γdiff(tnow,Ti)+γdiff(t1now,time(P ))

= ρτ+γdiff(tnow,time(P ))degFulfillM (P )

τ+γdiff(t1now,time(P ))

since degFulfillM(Sp) = ρ
τ

where τ is the denominator of
the degree formula, i.e., τ =

∑
Pi∈Sp

γdiff(tnow,Ti).

The following result shows that the degree of fulfillment
of a single promise changes by a constant factor for different
weightings of time in the particular distance measure intro-
duced in Proposition 1.

Proposition 5. Let φµ(P, D) = `µ×|T2−T1|+δA
α (a1, a2),

for P = Promise(B, A, a1, T1) and D = Do(B, A, a2, T2),
be distance measures similar to the one defined in Proposi-
tion 1 where `µ ≥ 0 are a set of real numbers to weight time
delays. Let M be the fixed mapping between promise and



do decompositions as before. Let degFulfill
φµ

M (P ) denote
the degree of fulfillment for a single promise P with respect
to the distance measure φµ. Then we have:

degFulfillφk
M (P )

degFulfill
φj

M (P )
= e

−(`k−`j )
∑

Pi∈D{P}
ωi|time(Pi)−time(M(Pi))|

Proof. We start from the deifinitions of degFulfillφk

M (P ) and

degFulfill
φj

M (P ); we then have the following derivation:

degFulfill
φk
M (P )

degFulfill
φj
M (P )

= e
−

∑
Pi∈D{P}

ωiφk(Pi,M(Pi))

e
−

∑
Pi∈D{P}

ωiφj (Pi,M(Pi))
=

= e
−

∑
Pi∈D{P}

ωi(φk(Pi,M(Pi))−φj(Pi ,M(Pi))) =

= e
−

∑
Pi∈D{P}

ωi((`k−`j)×|time(Pi)−time(M(Pi))|+d−d)

where d = δA
α (a1, a2); continuing with the derivation:

e
−

∑
Pi∈D{P}

ωi((`k−`j)×|time(Pi)−time(M(Pi))|) =

= ke
−(`k−`j)

∑
Pi∈D{P}

ωi|time(Pi)−time(M(Pi))|

The next result shows how linear changes in the distance
function on actions impact the degree of fulfillment.

Proposition 6. Let φ1(P, D) = ` × |T2 − T1|+ δA
α (a1, a2)

and φ2(P, D) = ` × |T2 − T1| + λδA
α (a1, a2), for P =

Promise(B, A, a1, T1) and D = Do(B, A, a2, T2), be two
distance measures. Then we have
degFulfillφ2

M (P )

degFulfillφ1
M (P )

= e
−(λ−1)

∑
Pi∈D{P}

ωiδA
α (action(Pi),action(M(Pi)))

Proof. We start from the deifinitions of degFulfillφ1
M (P ) and

degFulfillφ2
M (P ); we then have the following derivation:

degFulfill
φ2
M (P )

degFulfill
φ1
M (P )

= e
−

∑
Pi∈D{P}

ωiφ2(Pi,M(Pi))

e
−

∑
Pi∈D{P}

ωiφ1(Pi,M(Pi))
=

= e
−

∑
Pi∈D{P}

ωi(φ2(Pi,M(Pi))−φ1(Pi,M(Pi))) =

= e
−

∑
Pi∈D{P}

ωi((`−`)×|time(Pi)−time(M(Pi))|+(1−λ)×d)
=

where d = δA
α (a1, a2); continuing with the derivation:

= e
−

∑
Pi∈D{P}

ωi((1−λ)×δA
α (a1,a2)) =

= e
−(1−λ)

∑
Pi∈D{P}

ωiδ
A
α (a1,a2)

Application and Experiments
In this section, we use the preceding results to estimate the
future behavior of agents that made a promise in the past.
We show that our fulfillment measures have a strong predic-
tive power (unlike past papers on this topic which did not
demonstrate predictive power).

In the rest of this section, we assume that mapping M
used in Definition 11 above is fixed a priori2. We now dis-

2This assumption is made without loss of generality, and is
needed in order to avoid unwanted variations in the way in which
the mapping is done when changing the set of relevant promises
taken from historic information. An easy way to fix a mapping is
the following: when an agent performs an action, it merely states
which promise that action is intended to fulfill, partially or com-
pletely.

cuss two different ways in which an agent can reason about
the likelihood of the different outcomes that can arise in the
presence of a pending promise or set of promises.

• FFIP Strategy (Future fulfillment is identical to the Past).
Agent A decides that the likelihood that a certain promise
P ∗ = Promise(B,A,a,T) where T > tnow will be kept by
agent B at a future time T is completely determined by
the experiences with past promises. Hence, in this case,
we set FFIP = degFulfillM (Sp), which simply states that
we expect the agent to fulfill its promises to the degree of
fulfillment associated with its past promises. The agent is
free to choose which promises should be included in this
computation, since taking different subsets into account
(taking into account the type of promise) may have an
impact on how accurate the estimation is.

• FFLT Strategy (Future fulfillment is a Linear Trend
based on the Past). Agent A evaluating agent B’s promise
notices that the reliability of B has changed over time.
For instance, its reliability at time 1 was r1, its reliability
at time 2 was r2, and so forth. The reliability at any time
t is computed using degFulfillM (Sp) as above. The agent
now considers the ri’s as a time series and uses linear re-
gression to predict the value of this time series at time T .
This method allows our system to establish a more con-
trolled way in which to penalize an agent that has broken
recent promises (even though promises in the distant past
were kept well) or to reward an agent that has kept its
promises recently (even though it broke promises in the
more distant past). Of course, this method can be easily
extended to the use of other kinds of regression models
such as logistic regression or higher degree polynomial
regressions used commonly in statistics; we study the ap-
plication of these models in an extended version of this
paper.

The US Airline On-Time Performance Dataset

As an example application, we use our approach to ana-
lyze the reliability of US airlines. The dataset used in this
experimental evaluation corresponds to the on-time perfor-
mance data for over 117 million flights in the US, recorded
over a span of 20 years. For each flight, 55 attributes are
stored, including flight dates, origin and destination, depar-
ture and arrival delays, whether the flight was canceled or
diverted, and information about who was responsible for de-
lays and/or cancelations (BTS 2008).

We considered each flight stored in the database to rep-
resent both a promise made by the airline to the customer
(of departing and arriving on time, without deviating from
the agreed on departure and arrival airports) and its enact-
ment. Therefore, we have a single action symbol fly of ar-
ity 3, i.e., actions are of the form fly(from, to, depTime),
while promises and enactments have the form Promise(A, C,
f, arrTime) and Do(A, C, f, arrTime), respectively, where A
is the airline agent, C is the customer agent, f is a fly atom,
and arrTime is the arrival time promised. The information
provided in the database for each flight is enough to derive
these atoms.



Airline FFIP FFLT Actual distFFIP distFFLT

A1 0.933 0.924 0.924 0.009 0
A2 0.922 0.911 0.877 0.045 0.034
A3 0.914 0.909 0.883 0.031 0.026
A4 0.942 0.936 0.935 0.007 0.001
A5 0.924 0.918 0.895 0.029 0.023
A6 0.935 0.927 0.904 0.031 0.023
A7 0.934 0.926 0.899 0.035 0.027
A8 0.923 0.907 0.908 0.015 0.001

Table 1: Predictions for 2007: all past data and linear trend

Empirical Results
Out of the airlines that reported on-time performance for
their flights, we chose the eight that have reported contin-
uously from 1988 to 2007; this set includes all major US
airlines active today, but we will keep their names anony-
mous in reporting our results.

For these preliminary evaluations, we computed degrees
of fulfillment over sets of promises made throughout en-
tire years, in order to avoid seasonal variations (such as
increased delays during winter). However, each individual
flight made a contribution to the final degree computed, as
dictated by Definition 11. We implemented the FFIP and
FFLT strategies that an individual traveler or a travel agent
could adopt in order to predict the degree of fulfillment that
a promise will have when made by a certain airline. Ta-
ble 1 shows how these strategies performed when trying to
predict the degree of fulfillment for the year 2007 based on
information of all flights from 1988 to 2006. All degrees
of fulfillment reported in these tables were obtained using
a distance function φ that ignored delays in departures, and
used a “step” function for assigning distances regarding ar-
rival delays. This step function is defined as follows: 0.1
for delays up to 15 minutes, 0.2 up to 30 minutes, 0.8 up to
45 minutes, 2.0 up to 60 minutes, and 10.0 for 90 minutes
or more. This means, for instance, that a flight arriving 18
minutes late is considered to be fulfilled to a degree of e0.2,
which is about 0.818. A value of 0.99 was used for γ, tnow
was set to January 2, 2008, and the unit of time granular-
ity was set to 30 days, meaning that a flight that occured in
January of 1988 is 244 time units away, and its weight is
0.99244 ≈ 0.086.
Fulfillment Model Construction Time. The time taken to
compute these degrees depends linearly on the number of
promises, as can be deduced from Definition 11. For ex-
ample, as a general indication of the time required to per-
form this computation, all 15.6 million flights for airline a1

(from 1988 to 2006) were processed at a rate of about 0.18
millisconds per promise. All computations were performed
on a computer with an Intel Xeon CPU at 3.4GHz and
32GB of RAM under the Linux Operating System (2.6.9-
42.0.10.ELlargesmp kernel); the database engine used was
PostgreSQL version 7.4.16.
FFIP and FFLT query processing time. Most computa-
tions for the FFIP and FFLT strategies are performed dur-
ing the model construction time; actual query processing in-
volves a small number of primitive operations (looking up
a value, and computing a linear function, respectively), and

Figure 1: Evolution of degree of fulfillment for a single air-
line over time, for two different φ functions sensitive only to
arrival delays.

Figure 2: Evolution of degree of fulfillment for a single air-
line over time, for a φ function sensitive to departure delays
only; note that the trend is positive, unlike those shown in
Figure 1 (note the difference in scale in the x axis w.r.t. that
figure).

therefore query processing times are under 1ms.
Accuracy of Predictions. Two things to note from the re-
sults in Table 1 are:

1. When comparing what actually happened in terms of an
airline’s performance (the “Actual” column) and what
FFIP and FFLT predicted, the distances between them
was relatively small — under 0.03 in almost all cases.

2. When comparing FFIP and FFLT against each other,
FFLT was closer to the actual degree of fulfillment in ev-
ery single case. We then conclude that FFLT is the better
algorithm.

Figure 1 presents an example of two trend analyses. The top
curve shows how the degree of fulfillment (grouped in years)
has evolved for a certain airline from 1988 to 2006, while the
dotted line indicates the linear trend it follows. The bottom



curve and dotted line correspond to the same analysis, but
w.r.t. a different, “harsher” φ distance function. This func-
tion is similar to the one presented above, but assigns larger
distances, namely: 0.1 for delays up to 5 minutes, 0.2 up to
15 minutes, 0.8 up to 25 minutes, 2.0 up to 35 minutes, and
10.0 for 45 minutes or more. For the example flight above
which was 18 minutes late, this function declares a degree
of fulfillment of e0.8, which is about 0.449.

We observe that this yielded overall lower degrees of ful-
fillment, but the shape of the curve is more or less the same,
with each inflection being more exaggerated than its coun-
terpart for the previous function. These changes correspond
to what was expected given the change in how the φ function
was defined.

Finally, Figure 2 shows an example of a trend analysis for
the same airline shown in Figure 1. The φ distance function
used in this case is a different one, which is only sensitive
to delays in departures instead of arrivals (the specific val-
ues are the same as for the first function presented above).
It is interesting to observe that, depending on the perspec-
tive of the user, the same airline displays both a downward
trend and an upward trend in the evolution of its degree of
fulfillment over time. This shows one of the strengths of
the framework, i.e., that the user’s preferences are taken into
account in evaluating the degree of fulfillment of an agent’s
promises. This is in contrast to, for example, the conclusions
that could be obtained by performing a traditional statistical
analysis of the frequency of delays such as those presented
in (FlightStats 2008).

Discussion
In this section, we would like to discuss several aspects of
our framework that we want to highlight, including several
limitations that the reader should be aware of.

First of all, the work in this paper assumes that all
promises considered have already been made, and therefore
“agreed upon” by both parties, i.e., the promise was pro-
posed and accepted. This means that agents cannot sim-
ply make promises leaving a lot of room for possible fail-
ures (for instance, promising to land at 9AM instead of at
8:15AM), since this kind of behavior will likely not be ac-
cepted by the other agent. Furthermore, promises in this
framework only involve one action, so a “complex” promise
that requires several actions to be performed is actually re-
garded as a series of promises, each of which will have its as-
sociated degree of fulfillment. Lastly, we are focusing only
on reasoning based on actions taken towards these promises,
and not about beliefs regarding the capabilities of agents to
fulfill the promises they have made.

We would like to discuss certain limitations that the
framework exhibits. First of all, the axiomatization pre-
sented is intended to be a general set of properties that any
system should exhibit. Even though this generality can be
perceived as a weakness, it lays the groundwork for future
research in which assumptions can be made in accordance
with specific domains. Another important aspect to note
is that the current presentation assumes that the reasoning
agent evaluates degrees of fulfillment for one agent at a time.
This means that, for instance, it will not reason about what

the other agent did towards fulfilling its promises with other
agents; if this were not the case, Axiom F2 would not always
be a desirable property since no action might be preferable
to actions benefiting others. Another aspect that may be
perceived as a limitation is the fact that degrees of fulfill-
ment are real numbers. This means that it is hard to make
the distinction, for instance, between complete fulfillment
of a strict subset of promises versus partial fulfillment of all
promises in the same set (this is similar to the limitation ex-
hibited by customer satisfaction ratings that merge ratings
in different areas into one percentage value). Finally, the
distance function between actions as defined here can only
be evaluated for atoms that share the same action symbol,
which does not allow agents to compare promises with re-
spect to different actions, even though this may be desirable
in certain situations.

Conclusions and Future Work

There are numerous applications where an organization or
an individual wants to estimate the likelihood that a given
organization or individual will fulfill a promise. Manufac-
turing companies wish to make such estimates in order to
assign logistics assets and to plan accordingly. Consumers
would like to decide whether one airline is more reliable than
another or whether one politician is more likely to honor his
promises than another.

In this paper, we have developed axioms that a notion of
distance between actions, between promises and performed
actions, and between sets of promises and sets of actions
must satisfy. These axioms are generic and can be satisfied
by many different specific distance functions. We provide
an epistemic basis for these axioms and define some specific
distance functions.

Based on these ideas, we propose a notion of fulfillment
of promises that has many important features. In particular,
it accounts for three phenomena not fully handled in previ-
ous works. First, we develop a notion of time in studies of
promises. Our axioms allow us to penalize late (or early)
fulfillments of promises if we so wish, though it does not
require such penalties to be imposed. Second, we develop
a notion of numeric quantities in promises: delivering 50
of a promised 100 units of a given item can be considered
better than nothing and has an impact on our rating of the
fulfillment of that promise. Third, we develop notions of
replacability where an agent can accept actions in place of
promises that are close enough (e.g. 50 red balls may be ac-
ceptable in place of 50 blue balls). Our framework is rich
enough to support a variety of desires on the part of users to
customize the notion of promise fulfillment to their needs.

We implemented two methods for using such fulfillment
metrics in order to predict the likelihood of fulfillment of
a promise in the future by a given agent, and tested them
out on a database of flight on-time information for 8 major
US airlines over the last 20 years. Our predictions, tested
on the degrees of fulfillment for all flights in 2007 operated
by these airlines, are highly accurate and can be computed
within reasonable amounts of time.
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