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Abstract.

We consider a setting where goods are allocated to agents by way
of an allocation platform (e.g., a matching platform). An “alloca-
tion facilitator” aims to increase the overall utility/social-good of the
allocation by encouraging (some of the) agents to relax (some of)
their restrictions. At the same time, the advice must not hurt agents
who would otherwise be better off. Additionally, the facilitator may
be constrained by a “bound” (a.k.a. ‘budget’), limiting the number
and/or type of restrictions it may seek to relax. We consider the facil-
itator’s optimization problem of choosing an optimal set of restric-
tions to request to relax under the aforementioned constraints. Our
contributions are three-fold: (i) We provide a formal definition of the
problem, including the participation guarantees to which the facilita-
tor should adhere. We define a hierarchy of participation guarantees
and also consider several social-good functions. (ii) We provide poly-
nomial algorithms for solving various versions of the associated opti-
mization problems, including one-to-one and many-to-one allocation
settings. (iii) We demonstrate the benefits of such facilitation and re-
laxation, and the implications of the different participation guaran-
tees, using extensive experimentation on three real-world datasets.

1 Introduction

Recently, allocation-platforms/matching-platforms, which allocate
resources of one sort or another to users, are being deployed for a
variety of applications in both the public and private sectors, includ-
ing in welfare and social services [17, 23, 3]. Some examples are
allocating home healthcare demand with service providers [20], on-
demand housekeeping platforms [34], government platforms for pro-
viding housing assistance to homeless individuals [25], ride-sharing
platforms [4], sharing parking spaces [28], and volunteer matching
platforms [27]. In these platforms, users specify their resource re-
quirements and constraints, and the platforms aim to optimize the al-
location of resources to users where resources can be shared among
several users.

The key stakeholders in the resultant allocation are clearly the
users. In many cases, however, there may be additional stakehold-
ers. For example, local welfare authorities are justifiably interested in
increasing the number of homeless individuals awarded housing as-
sistance (see e.g., [7]), and university administration is interested in
maximizing the number of courses for which classrooms have been
successfully allocated (see e.g., [14]). At times, these stakeholders
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may be able to directly determine, or make changes to the alloca-
tion, but more often than not, the allocation procedure itself is fixed
- for regulatory, commercial, or technical reasons (see e.g., [30]).
For example, New York City offers affordable housing opportunities
through the Housing Connect portal [2], which serves as an alloca-
tion and matching platform. The algorithm used for this allocation
is governed by multiple laws and regulations, including: (i) the fed-
eral Fair Housing Act, (ii) the NYC Human Rights Law, (iii))NYC
HPD regulations, and (iv) NYC HDC rules. These regulations deter-
mine the allocation, which does not change. At the same time, the
NYC Department of Housing Preservation and Development (HPD)
established an advisory initiative, called the Housing Ambassadors
Program [1], to help people navigate and use the allocation platform
effectively. In their website, they emphasize that the Housing Am-
bassadors do not provide housing directly, and they cannot guarantee
that an applicant will receive an affordable unit through the lottery.
In such cases, interested parties — which from now on we term

facilitators — can still shape the resulting allocation by assisting and

advising users in selecting the priorities and constraints they enter
into the allocation platform. It is important to stress that such advice
need not be viewed as a form of manipulation, neither of the platform
nor of the users. Indeed, users frequently do not know how best to
express their true constraints, and such interventions — if done right —
can benefit all [26]. As such, we only consider impartial facilitators
whose priorities are aligned with the overall social good, without any
preference for one user or another. In this paper, we study advice
provisioning with such impartial facilitators: what advice should they
provide? What guarantees should/can be offered to the users, both
those following the advice and those who do not?

In this paper, we assume that with appropriate guarantees, agents
are willing to accept the advice. Providing them knowledge about
whether they have been, or are currently, guaranteed a resource—
either through the facilitator to ease constraints or the allocator as an
act of transparency— further enhances their receptiveness.

For concreteness, we consider the following stylized model (see
Figure 1 for an example). There is an allocation platform that, given
(i) a set X of agents - each agent x; with demand level d; for the
number of resources it needs, (ii) a set Y of resources, and (iii) a bi-
nary compatibility relation £ between agents and resources, outputs
a maximum allocation of resources to agents (where the maximum is
in the sense of resource utilization). The compatibility relation F rep-
resents the compatibility as provided to the platform by the agents.
The facilitator can advise agents to add additional compatibilities E,
thereby enlarging the input compatibility relation to ™ = E U E.
If offered no advice, then ET = FE. Adding any such new com-



patibility e € FE is associated with some discomfort level p(e). We
consider a class of problems where the facilitator’s objective is to
maximize resource allocation with the constraint that the aggregate
cost does not exceed a specified bound. Here, the aggregate cost is
some function of all p(e)s, such as sum of all p(e)s or the count of
strictly positive p(e) values (which is the number of proposed relax-
ations). Figure 1 shows solutions for different functions. The incom-
patibility between a course and a classroom in Figure 1 can arise due
to various factors such as seating capacity, commute distance, and
accessibility issues. Optimal solutions for various scenarios (bound
type and value—participation guarantee) are shown, all of which can
be achieved by our framework. Expansions of the acronyms used in
these scenarios are given under “Summary of Contributions”. For-
mal definitions of the guarantees are provided in Section 3. Note that
even for such a simple example, the solutions can be very different
for different scenarios.

We propose the following two requirements to ensure that the pro-
posed relaxation does not harm the agents while encouraging coop-
eration among them:

(i) No agent is harmed: Any agent that was guaranteed to be granted
an allocation prior to the facilitator’s actions, is also guaranteed so
following the facilitator’s actions.

(i) Participating agents benefit: Any agent that is asked by the fa-
cilitator to add a compatibility (and does so) is guaranteed to be
granted an allocation.
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Figure 1. An example of a course—classroom allocation platform where
every course needs to be matched to one classroom. Solid edges represent a
compatible pair of a course and a classroom, dashed edges indicate an
incompatible pair with a finite relaxation cost, and absence of an edge
indicates an infinite relaxation cost incompatibility. An example that
distinguishes between the different guarantees is in Figure 2.

It should be noted that the facilitator cannot secure these guarantees
by directly determining the allocation, as the platform is not under
its control. Rather, the facilitator must secure these guarantees by
properly designing its advice.

Given such a setting, the facilitator’s objective is to devise a set of
incompatibilities that it will request agents to relax, which (i) maxi-
mizes the resultant allocation, while (ii) maintaining the overall cost
within the given bound, and (iii) maintaining the no-harm and the
participating agents guarantees. Agents are incentivized to follow the
facilitator’s recommendation as this guarantees them an allocation.

Summary of Contributions.
(a) Problem formulation: We formally define the problem, including

e Participation guarantees: We consider two forms of “no harm” par-
ticipation guarantees: strong no harm guarantee (SNH), and weak
no harm guarantee (WNH), and two forms of benefit to relaxers
guarantees: strong benefit guarantee (SB), and weak benefit guar-
antee (WB). In both cases, the strong guarantee holds regardless
of the number of agents adhering to the facilitator’s advice, while
the weak guarantee holds if all agents comply with the facilitator’s
recommendations. Using the defined guarantees, we define three
guarantee combinations: SNH-SB, WNH-WB, and SNH-WB. The
WNH-SB combination is omitted because, in practice, ensuring a
strong guarantee for no harm is more important than for the benefit
to relaxers.

e Aggregated cost: Inspired by Faliszewski and Rothe [13], we con-
sider two functions for aggregating discomfort from relaxing indi-
vidual incompatibilities: size (total relaxations) and total cost (sum
of discomforts).

e We consider three allocation settings: (i) one-to-one where a re-
source is allocated to at most one agent and an agent is assigned at
most one resource, (ii) many-to-one where a resource is allocated
to at most one agent but an agent could be assigned multiple re-
sources, and (iii) one-to-many where an agent is assigned at most
one resource but a resource could be allocated to multiple agents
(e.g., by sharing a classroom).

(b) Polynomial algorithms: We provide polynomial algorithms to
solve each of the problem variants, for the three participation guaran-
tees combinations, and the two aggregation functions. For the reason
mentioned above, we omit the combination of weak no harm and
strong benefit.

(c) Experimental study: We applied the devised algorithms to three
real-world datasets, and conducted experiments in all three alloca-
tions settings (one-to-one, one-to-many and many-to-one). In each,
we study the improvement in allocation sizes obtained by the facili-
tator under the different participation guarantees. We show that for all
guarantees, a significant increase in allocation size is obtained. Com-
paring the performance of the different participation guarantees, we
show that if all agents comply with the facilitator’s advice, then the
stronger guarantees result in somewhat smaller allocations than the
weaker guarantees, but using the stronger guarantees is more robust
to agents’ failure to comply with the advice (as one would expect in
practice).

2 Related Work

Resource allocation in multi-agent systems. Many references dis-
cuss how agents express their requirements, identify efficiently solv-
able allocation problems and provide methods for evaluating the cor-
responding algorithms (see e.g., [9, 16, 11]). Nguyen et al. [22] pro-
vide a good survey on the complexity and approximability of prob-
lems in this area. Zahedi et al. [36, 35] present a method where dis-
satisfied agents can challenge the proposed allocation using coun-
terfactual queries. Relaxing the criteria for compatibility in kidney
matching is studied in [24, 19]. However, their focus is on general
criteria, not on specific agents (patients). Methods for active advice
generation for a single agent appear in Trabelsi et al. [30]. A multi-
round setting where several dissatisfied agents are given advice is
presented in Trabelsi et al. [31]. While these papers focus on agent
satisfaction, our work additionally emphasizes the role of the facili-
tator.

Participation in all maximum matchings. Costa [10] presented an
algorithm to partition a graph’s edge set into three subsets: edges that
participate in all maximum matchings, in some maximum matchings,



and in none of the maximum matchings. Irving et al. [18] showed
how to efficiently compute the Dulmage—-Mendelsohn decomposi-
tion [12] of a bipartite graph, enabling direct identification of the set
of nodes participating in all maximum matchings. Zhang et al. [37]
showed another algorithm for this task. However, these works do not
consider how changing the graph edges affects this set.

Modifying the graph for improving the allocation. Boehmer et al.
[6] considered bribery and external manipulations for providing par-
ticipation guarantees to an agent pair in stable matchings. Chen and
Csdji [8], Gokhale et al. [15] and Bobbio et al. [S] considered adjust-
ing the resource capacities for having a many-to-one matching with
some desired properties (e.g., a stable matching). However, these
works do not consider the criteria of participation in all possible
maximum allocations. Participation in all maximum allocations is
preferred in our context, as the allocator can choose any maximum
allocation and is not restricted to any other property (like stability).

3 Definitions and Problem Formulation

Here, we provide definitions for the one-to-one setting. The exten-
sion to the many-to-one case is provided in Section 5.

3.1 Preliminaries

The setting. The setting consists of sets X of agents, Y of re-
sources, and E C X x Y of compatible pairs. Here, (z,y) € E
means that agent x is willing to be allocated the resource y (without
relaxing her preferences). Technically, the triple G = (X, Y, E) is
simply a bipartite graph.

Discomfort. For incompatible pairs (x,y) ¢ E, there is a dis-
comfort function p : E — R U {oo}, where p(x,y) reflects the
“discomfort” for agent x of relaxing the incompatibility (z,y), that
is, the discomfort that would be experienced by = if allocated to y. If
p(z,y) = oo then y cannot be allocated to x, and (z, y) are deemed
totally incompatible. We let Er = {(z,y)|(z,y) € E,p(z,y) <
oo} denote the set of relaxable incompatibilities.

Relaxations and cost bound. Given (X,Y, F) and p, we seek to
relax some of the incompatibilities in order to increase the size of the
resulting maximal allocation (produced by the allocation platform).
Totally incompatible pairs cannot be relaxed. Thus, technically, a re-
laxation is a set F' C Er. We denote by X (F') the set of agents that
participate in the relaxation F'. The aggregate cost of this relaxation
is obtained by aggregating discomfort induced by F. We consider
two aggregation functions:

e Total CosAt: T(F)A =2k P(@,Y).

e Size: S(F) := |F|.

We assume that the facilitator has a cost bound 5 on the aggregate
cost of the relaxation it chooses.

Allocations. In the one-to-one case, an allocation M C F' is
a matching and a maximum allocation is a maximum cardinality
matching in the graph G = (X,Y, F'). An allocation in the many-
to-many, many-to-one, and one-to-many cases are defined similarly.
Given a set F' C F, we denote by p(F') the size of a maximum al-
location of F, and by I'(F') C X the set of agents that participate in
all maximum allocations of F'. If several such allocations exist, one
of the solutions is picked arbitrarily.

Minimal relaxation. A relaxation F is minimal if w(E U
(F\{e})) < u(EUF),foranye € F.

3.2 Participation Guarantees

As explained in the introduction, the relaxation advice provided by
the facilitator must provide guarantees both to the agents participat-
ing in the relaxation and to those not. The followings four guarantees
are used for defining three guarantee combinations:

Strong No Harm: Any agent that participates in all maximum match-
ings prior to any relaxation continues to have this benefit after the
relaxation: I'(E) C I'(E U F),VE C E.

Strong Benefit to relaxers: All relaxing agents are guaranteed to par-
ticipate in any maximum matching: X (F) C I(EU F),VF C E.

Weak No Harm: T'(E) C I'(E U E)

Weak Benefit to relaxers: X (E) C T'(E U E)

Based on the above, we define the following three guarantee com-
binations:

Strong No Harm, and Strong Benefit to relaxers (SNH-SB): Partici-
pation is guaranteed even if some agents do not follow the facilita-
tor’s advice. Using this guarantee is preferred when it is expected
that several agents will not comply.

Weak No Harm, and Weak Benefit to relaxers (WNH-WB): partici-
pation is guaranteed, but only under the assumption that all agents
follow the facilitator’s advice. This guarantee is preferred when all
agents are known to comply as it often results in a larger allocation.

Strong No Harm, and Weak Benefit to relaxers (SNH-WB): the No-
harm guarantee holds even with partial compliance, but benefit to
relaxers is only guaranteed if all agents comply. In the intermediate
case, where we expect very high compliance, the facilitator should
weigh the costs of losing the Strong No Harm and/or the strong
Benefit to relaxers guarantees and the dissatisfaction of some agents
against the benefits of increasing the allocation size and choose one
of the three guarantees (See Section 6 for details).

It is easy to see that SNH-SB = SNH-WB = WNH-WB. The
example in Figure 2 shows that the hierarchy is strict.

z Y1

Zo-- <<y, SNH-SB: Egg = {xays}

37~ T=y3

2477 - s WNH-WB: Eyww = {z;y; i € {2—-T}}
T5-- --Ys

7677 s SNH-WB: Egy = e {2-4
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Figure 2. ESS, EWW and Esw are relaxation sets for SNH-SB,
WNH-WB and SNH-WB. Strictness follows from the fact that
Ess C Esw C Eww.

3.3  Problem Statement

Given the above definitions, the facilitator’s optimization problem is
the following:

Definition 1. Given X,Y, E, p, a participation guarantee PG &
{WNH-WB, SNH-WB, SNH-SB}, aggregated cost bound 8, and ag-
gregation function g € {T(-), S(-)}, find a relaxation E that is PG,
g(E) < B, and u(E U E) is the maximum among all such relax-
ations.

All in all, with three possible participation guarantees, and two
aggregation functions, the above defines six optimization problems.
We use the term “solution” to such an optimization problem to refer
to a set of relaxations.



3.4 An example

In Figure 1 we match eight courses with six available classrooms.
Initially, the course z2 is compatible with the classroom y1, 3 with
Y2, Te With y4 and z7 with ys. The discomfort levels can vary widely;
low for minor inconveniences such as the classroom being far from
the offices of the tutor (1 and y;) to major restrictions such as inad-
equate capacity, in which case, the tutor might have to make neces-
sary arrangements to accommodate extra students (x4 and y3). There
can be incompatibilities with infinite discomfort. For example, stu-
dents might require hearing accessories, which might be absent in the
classroom (z3 and y1 ). Figure 1 demonstrates the difference between
the bound types and the different guarantees. Figure 2 highlights the
differences between various participation guarantees.

4 Algorithmic Solutions

Here we introduce efficient algorithms for the different guarantees.
In Section 4.1, we present an algorithm for the strong no harm strong
benefit guarantee (SNH-SB). In Section 4.2, we demonstrate how to
adapt this algorithm for the strong no harm weak benefit guarantee
(SNH-WB). For space reasons, some proofs for the SNH-WB algo-
rithm, as well as the algorithmic solution for WNH-WB, are deferred
to the full version of the paper [32].

4.1 Strong no harm strong benefit to relaxers
(SNH-SB)

We first consider the stronger (and more complex) Strong no harm
strong benefit to relaxers guarantee (SNH-SB). We provide an ef-
ficient algorithm (Algorithm 1) for the problem and prove its cor-
rectness. The core of the algorithm is the weight assignment and the
maximum weighted matching calculation (lines 6-8). By assigning
appropriate weights to the edges, we ensure that the computed re-
laxation will be SNH-SB and will have the maximum number of
allocations among SNH-SB pairs of the graph G. On the loop in
lines 3-13, the algorithm adds & dummy agents and connects them to
all resources of Y. The dummy agents take the places of other agents
in the weighted matching and this way bound the total cost for the
non-dummy edges. The algorithm picks the smallest & for which the
total cost of a maximum weighted matching (without the dummy
edges) does not exceed the bound and removes the added agents for
constructing a solution. We will show that the algorithm returns an
optimal solution.

It is important to note that the weights w defined in Algorithm 1
are only used by the facilitator to determine the relaxation E. The
allocation itself is performed by a third party with no weights. Thus,
the facilitator needs to devise appropriate weights that will guarantee
the desired properties in the subsequent weightless allocation. De-
vising these weight functions and proving their validity for various
participation guarantees is the topic of subsequent sections.

The functions (). We define the function u(-) differently for
each aggregation function. For the size function, S(-), ui(e) = 1
has value 1 for each relaxation e. In this way, each relaxed edge has
a smaller weight compared to the weight of an original edge in the
maximum weighted matching computed in line 8 of Algorithm 1.
For the total cost function 7'(-), we define uz (e) to be the discomfort
level of relaxing e. Summing up the contributions of all the uz(e)
values to the weight function, results in a factor that is equal to the
total cost, divided by some constant.

Algorithm 1 SNH-SB Optimization
Input: Given X,Y, E, Er, p, aggregated cost bound 3, aggregation
function g € {7T'(-), S(-)} and weight function w : EU Er —
R+
Output: A relaxable set £
I: G+ (X,Y,EUERg)
2: Kiow < 0, khigh — ‘Y|
3: while kiow < kpnign do
4: k= ’Wow;kmgh

5: Construct G, by adding & dummy agents to G and connect-
ing them to all resources of Y with edges Ej,
for alle € E do

6
T w(e) =143 .cpup, w(e)
8
9

Compute a maximum weighted matching M, of Gy,
if g(My \ (E'U Eg)) < 3 then

10: Eomin < Ex, Mppin < My
11: khigh — k-1

12: else

13: klow < k+1

15: return E

We define the weight function w as:

{(IXIJrl)2

ec kb

w(e) = e € Er

The main motivation behind this definition is to assign high
weights to the original edges, ensuring that the maximum matching
of the graph includes them as a subgraph even after any relaxations.
Building on this, the function aims to increase the overall size of the
matching by incorporating relaxable edges according to their costs.

We have the following result for Algorithm 1.

Theorem 1. Algorithm 1 with the weights function w(-) solves
the SNH-SB optimization problem with aggregate function g €
{T(-), S(-)} and bound B.

The runtime of one iteration of the loop, starting in line 3 of Algo-
rithm 1, is dominated by the weighted matching calculation, which
can be done in O(max(|X]|,|Y])?) time using the Hungarian algo-
rithm. The loop repeats O(log(|Y'|) times and therefore the total run-
ning time is O(log(|Y'|) * max(|X|, [Y])?).

We now outline the proof of the theorem. The full proof appears in
an extended version of this paper [32]. Recall that for an edge set F',
w(F) is the size of a maximum allocation of F'. Recall also the defi-
nition of a minimal relaxation (Section 3.1). To provide the strong no
harm strong benefit guarantee (SNH-SB), we must provide two par-
ticipation guarantees, namely no-harm and benefit to relaxers, even
when some agents do not follow the facilitator’s advice. From defi-
nitions of the SNH-SB guarantees, it follows that for each SNH-SB
relaxation £, any subset of E also provides the SNH-SB guarantees.
Therefore, any minimal relaxation £’ C E for which p(E') = pu(E)
should also be SNH-SB. Therefore, it suffices for Algorithm 1 to
consider relaxations which are minimal. We will show in Lemma 2
that for all minimal SNH-SB relaxations, u(E U E) = u(E) + |E|.
Therefore, any maximum matching of (X, Y, E U E) must contain
a maximum matching of (X,Y, F) as a subgraph. We filter out all
solutions without these properties by modifying the weight function
and assigning significantly greater weights to the E edges.



We show in Lemma 1 that Algorithm 1 indeed filters out all non
SNH-SB relaxations (see the proofs of Lemma 1(1) and (2)) and
that the returned relaxation maximizes the allocation size (see Lem-
mas 1(3) and (4) and also Lemma 7 in the extended version of the
paper [32]). In the following lemmas, we denote kmin as the value
of k, used in line 14 to define Myin and E,,;r. The values of My in
and Eoin in line 14 are denoted as My, ;. and Ey, . . We define
a precedence order =< on subsets of Er. Let E, F C ER be two

Fore € Eg, setu/(e) = u(e)

/-
W. SO, u' is also a repre-
R

sentation of <, and

w(e) = {(w*)

w* —u'(e)

ec E
e € Er

We have already established that

relaxation sets. We say that E < Fifand only if E appears before WE U Ey,,;,, UE) = p(E) + kmin + | ]

E in tl}e order. Let v : Er — R. We say that u represents < if And by Lemma 2

FXE < Y pule) < cpule). To prove lemma 1, we . .

will use Lemmas 2 and 3 which are defined later. WE U E,,;,, UF) = p(E) + kmin + |F].

Lemma 1. The set, E returned by Algorithm 1 has the following So, since both £ and F' have allocation of the same size, | E| = |F.

properties: By Lemma 3 (for the first equality) and Lemma 2 (for the second)

(1) It provides the strong benefit for relaxers. we have (see the extended version of the paper [32] for details):

(2) It provides the strong no harm guarantee.

(3) For any SNH-SB set 3 C Eg, |My,,,.| > W(EUE, . U F) w(Mi

min) =

w(Mg,,;,, N Ek

min

(4) For any SNH-SB set F C Egand for any aggregation function g,
if | M,,,, | =w(EUE,_, UF) then E X F.

Set w* = |X|+ 1 and let E = M;
returned by the algorithm.

\ E be the relaxation

min

Proof idea of lemmas 1(1) and 1(2). Consider F - E. Let M =
My, N E. We will first show that |Mpz| = kmin + u(E) + |F).
So, (i) [Mz N E| = w(E), and (i) |[Mz N F| = |F|. So, by (i)
Mg N E is a maximum matching of (X,Y, E), so ['(E) C Mg,
and by (ii) FC M. Since it is correct for any F', E has the no-
harm and benefit for relaxers SNH-SB guarantees with respect to
(XU Xy, ,Y,EUE,, UE).

By construction of Ey, ., all agents X . participate in all
maximum matchings of (X U X, , ,Y,EU Ejy_, U F). It can
be shown that E has also the SNH-SB guarantees also with respect
to (X,Y, E U E) as requested. O

min

min

Proof idea of lemma 1(3). For purposes of contradiction, suppose
that there is another SNH-SB set I, for which the maximum match-
ingof (X UXy, . ,Y,EUFUE},, ) is of greater size.

We set F” C F as an inclusion minimal subset of # for which
p(E") = p(F). In particular, since F is inclusion minimal, u(E U
Ex,.. UF) > w(EU Eg,,, UF\ {e})). So, the conditions of
Lemma 2 hold for (E U Ej,,,,) and F'. Let Mz, be a maximum
matching of (X,Y, EUE} U F) So, since M}

) min 18 @ matching
of (X U X U E),

Mg, | > |My,,,, |- So,

min

Y,EU E},

min? min

|Mp, NF'| =|Mp, \ E| = |Mp,| — |Mg N E|

=|Mgz| — pu(E) by Lemma 2

> |Mk,,,,.| — #(E) by assumption

= |My,,...| = |Mg,,,,, N E| by Lemma 3

= |My,,., N E| + Mg, N E,.;. |
Using this equation, it can be shown that w(My, ;) < w(Mz,).
This contradicts the maximality of w (M, ;. ). O

Proof of lemma 1(4). Let F be a SNH-SB relaxation with maxi-
mum allocation when adding kmin dummy agents and for which
g(F) < B. R R

First note that since F' is SNH-SB so is any subset of F'. So, for
anye € F, u(EUF) > u(EUFE\ {e}),orelse F'\ {e} is a SNH-
SB set with allocation of the same size that preceding Fin < (Since
u(+) is strictly positive).

) =/ (E) + |Elw” + () - (w")?

w(Mp) = w(My,,, N Er,,,) = (F) +|Flw” + p(E) - (w")*

By construction w(My, . ) > w(Mjz). So, since |E| = |F|,

W' (E) <u'(F).So, E < F.
The two lemmas below are used for proving Lemma 1:

Lemma 2. Let E be a minimal SNH-SB relaxation. Then p(E U
E) = u(E) + | B.

The following three results are used in proving Lemma 2. In these
results, G = (X, Y, E) is a bipartite graph.

(1) Let ¢ € T'(E). Let (z,y) be an edge in Er. Then pu(E) =
#(EUA{(z,y)})-

Proofidea of (I). We first note that since E C E'U {(z, y)}, it fol-
lows that u(F) < p(E U {(z,y)}. We assume for contradiction
that u(E) < p(E U {(z,y)}) and show that it contradicts the par-
ticipation of  in all maximum matchings of G = (X,Y, E). O

(2) Let x be an agent that does not participate in all maximum match-
ings of G and (z,y) € Er ¢ E.If x participates in all maxi-
mum matchings of (X, Y, E U {(z,y)}), then p(E U {(z,y)}) =
w(E) + 1.

Proof of (2). We assume that x participates in all maximum match-
ings of (X,Y, E U {(x,y)}) and prove that pu(E) +1 = p(E U
{(z,y)})- Since (X,Y, EU{(z,y)}) is supergraph of G, u(E) <
w(E U {(z,y)}). On the other hand, from definition of matching,
wEU{(z,y)}) < u(E)+ 1. Therefore, either u(EU{(z,y)}) =
w(E) or u(E U {(z,y)}) = u(F) + 1. Assume for contradiction
that u(E U {(z,y)}) = p(E). In this case, all maximum match-
ings of G are also maximum matchings of (X,Y, E U {(z,v)}).
From the lemma’s definitions, there is a maximum matching of G
in which x does not participate. Since it is also a maximum match-
ing of (X,Y, EU{(x,y)}), x does not participate in all maximum
matchings of (X,Y, E U {(z,y)}), a contradiction. O

(3) A node x € X does not participate in all maximum matchings
of G iff there is an even-length alternating path between = and a
free node with respect to any maximum matching of G. (This well-
known result in matching theory [21]; (A proof of this result and
the definitions for alternating paths and free nodes are also given in
the extended version of the paper [32].)



We use the above three results to prove Lemma 2.

Proof of Lemma 2. We recall that an edge set E is minimal if for
any edge ¢ € E, u(E U E\ {e}) < w(E U E). The proof is by
induction on |E|. The basis is for |[E| = 1, where the lemma is
fulfilled trivially. We now assume that the lemma holds for |E| =q
and prove it for |E| =q+ 1.

Let |E| be a SNH-SB relaxation and assume that for any edge
ec B, uW(EUE \e}) <u(BEU E). Let x be any agent in X(E),
and let (z,y) € E be the corresponding edge in E. Tt follows that:

W(EUE\{(z,y)}) +1=uwEUE) (1)

Case 1: The set 2\ {(x,y)} is minimal: Here, by induction hypoth-
esis, w(E U E\ {(z,y)}) = p(E) + g. Therefore, if we merge
this condition with Equation (1), we get u(E U E) = u(E U
E\{(z,y)}) +1 = u(E) + q + 1 as required.

Case 2: The set £\ {(z,y)} is not minimal: In this case, there is
an edge (z',y') € E\ {(x,y)} such that w(E U E\ {(z,y)}) =
w(E U E\ {(x,v),(«',y")}). Let M be a maximum matching of
(X,Y,EUE\ {(,y)}) without (z’,y). (Such a matching exists
because of Equation (1) above.)

We note that since u(E U E) > u(E U E \ {(z,y)}), Result (2)
above implies that £ must not participate in all maximum matchings
of (X,Y,E U E\ {(z,y)}). Therefore, it follows from Result (3)
above that there is an even-length alternating path between x and a
free agent concerning any maximum matching of (X,Y, E U E \
{(x,7)}). On the other hand, since £ has the SNH-SB benefit to
relaxers, ' must participate in all maximum matchings of (X, Y, EU
E\ {(x,v)}). Therefore, by Result (3) above, ' does not appear in
any even length alternating path between x and a free vertex in any
maximum matching of (X, Y, EU E\ {(z,)}).

Since M is also a maximum matching of (X,Y,E U E \
{(z,y), (z',y')}), an alternating path of even length between z
and a free vertex of M exists in (X,Y, EU E\ {(z,y), (z/,y")})
and therefore - does not participate in all maximum matchings of
(X,Y,EUE\{(@y), @)},

We now add (z,y) to (X, Y, EU E\ {(z,y), («',y’)}) and get
(X,Y,EUE\{(«,y)}). If z participates in all maximum match-
ings of (X,Y, E U E\ {(z',4')}). then by Result (1) above, the
matching size must increase, contradicting the fact that the original
set is minimal. Otherwise,  does not participate in all maximum
matchings after x relaxes its restrictions, contradicting the SNH-SB.
Therefore, we conclude that no such z’ exists, and we are done. [

Lemma 3 below is based on the definition of w(-).

Lemma 3. |My, ., NE|=u(E).

min

4.2 Strong no harm weak benefit guarantee
(SNH-WB)

As in the SNH-SB problem, the SNH-WB problem can also be
solved using Algorithm 1. Intuitively, as in the right column of Fig-
ure 1, it is possible that a maximum matching of (X,Y, EU E ) does
not have a maximum matching of (X,Y, E) as a subgraph. There-
fore, the weights of the EZ edges must be reduced. However, these
weights must remain greater than those of E to ensure that the WB
guarantee is preserved.

Note that if the set E returned by the algorithm contains an edge
{x,y} € E such that z € T'(E), then z cannot participate in all
maximum matchings of (X, Y, E U E \ {z,y}) and therefore, the

SNH-WB no-harm guarantee does not hold. That is so since other-
wise, u(E U E \ {x,y}) = u(E U E) and the maximum weighted
matching in line 8 won’t contain the relaxed edge {x, y}, contradict-
ing the fact that {z, y} € E. Therefore, we assign a negative weight
to all edges with agent in I'(E) and this way, we keep the no-harm
guarantee even when some agents of E do not relax. The updated
weight function is defined as follows:

-1 e = (z,
(1X/+1) e=(z,
| X+ 1-—

u(e) e=(z,y) € Ep,z ¢ I(E)

maxezeER{u(e/)}

y) € EUER,xz € I\(E)

E,z¢T(E
o) y) € B,z ¢ T(E)

In this function, the weights of the original edges are smaller as it is
not required to have a maximum matching from original edges as a
subgraph of the resulting matching; however, it is required that the
guaranteed agents won’t be asked to relax their restrictions. This way,
if they do not relax, no harm will be caused.

Note that the set I'(E) can be computed in polynomial time us-
ing the method of [18]. The functions w that are used are identical
to those used in the SNH-SB case. We conclude with the following
theorem:

Theorem 2. Algorithm 1 with the weights function w(-) solves the
SNH-WB optimization problem with an aggregate cost function g
(see Theorem 1) and a bound (3.

5 Many-to-One and One-to-Many Allocations

Up to now, we have considered allocating a single resource to
each agent. In many scenarios like allocation of classrooms to
courses [31], a single agent might need multiple resources, e.g., for
providing a course with enough classrooms for holding an exam
where students need to be far from each other. In other scenarios, a
single resource might be shared among multiple agents, e.g., for pro-
viding multiple courses with very few participants with an appropri-
ate classroom for holding an exam together. This section formulates
an optimization problem for many-to-one allocations and presents a
polynomial time algorithm to solve it. The one-to-many case where
a resource can be shared by multiple agents can be done similarly.

The problem is similar to Definition 1 but with an addition: a func-
tion d : X — N that assigns to each agent its desired amount of
resources is added to the problem inputs. Note that p(-) is the size
of a maximum valid allocation with respect to d (not necessarily a
maximum matching).

Note when moving to the many-to-one setting, the aggregation
functions are naturally applied to the set of relaxed edges (not relax-
ing agents). In particular, the size aggregation cost function bounds
the overall number of relaxed edges.

We propose Algorithm 2 that uses Algorithm 1. Algorithm 2 first
duplicates the agents that need more than one resource and adds some
relevant edges. It then runs Algorithm 1 on the modified graph and
returns its results. Lemma 4 is crucial for showing that this modifica-
tion does not affect the desired participation guarantees.

Lemma 4. Let G = (X,Y, E) be a graph and let x,x' € X be
agents. Set Y, and Y, as the resources adjacent to x and x' in E. If
Y, C Y, and v € T'(G), then 2’ is also in T'(G).

Proof of lemma 4. Assume for the purposes of contradiction that
z' € T'(G). Let M be a maximum matching of G without z’. Since
z € T'(Q), there is y for which {z,y} € M. Since Y; C Y, the



edge {z',y} € E. therefore, we can substitute the edges and have
a maximum matching of G without x, and we have a contradiction.
O

Algorithm 2

Input: Given, XY, F, p, aggregated cost bound [, aggregation
function g € {T'(-), S(-)}, demand functiond : X — N and a
weight function w : EU Er — R*

Output: A relaxable set E

XY E 0

: for all agents x € X do

X' = X"U{z;|0<j<d(x)}

. for all resources y € Y do

Y =Y u{y}.

D B = {{=;,y}{z, v} € B},

t Ep = {{z;, y}l{z,y} € Er},

Y@, u} € Er. p({{z5,9}) = p({z,y}),

: V{zj,y} € E'UER,w'(z;,y) = w(z,y)

. Run Algorithm 1 with X', Y’ E', Ef, p', 3,9 and w'. Let £’

be the returned edge set.

11: Construct a set I from £’ by substituting all instances z; of x
by x itself.

12: return £
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We conclude with the following:

Theorem 3. Algorithm 2 with a weight function w(-) corresponds
to a participation guarantee PG € {SNH-SB, WNH-WB, SNH-WB}
(e.g., the weight functions in Section 4) solves the many-to-one PG
optimization problem with an aggregate cost function g (see Theo-
rem 1), a bound 3 and a demand function d(-).

Proof of Theorem 3. Note that Algorithm 2 uses Algorithm 1 as a
subprocedure. The correctness of Algorithm 1 was proved in the pre-
vious sections. We conclude that Algorithm 1 returns a relaxation set
with a maximum sized allocation that has the relevant participation
guarantee with the relevant aggregate function and bound. It remains
to show that relevant participation guarantee is preserved when merg-
ing the duplicated agents as we do in line 11 of Algorithm 2.
Lemma 4 implies that if one instance of an agent is guaranteed to
be matched so is for all other instances. Therefore, the different guar-
antees for relaxers and the different no-harm guarantees provided by
Algorithm 1 to some instances of an agent hold for all and therefore
for the agent itself. This concludes the proof of Theorem 3. O

The runtime of Algorithm 2 is determined by the runtime of Algo-
rithm 1 on line 10. The key difference lies in the size of X', which
is 3, cx d(z). The overall complexity is therefore O(log(|Y]) -

max(3", ¢y (), [Y])?).

6 Experiments

In this section, we discuss the results of employing a facilitator, as
described in this paper, on three different real-world datasets. Ex-
periments were conducted in all three allocations settings (one-to-
one, one-to-many and many-to-one). We compared the WNH-WB,
SNH-WB and the SNH-SB participation guarantees and the extent
to which these different participation guarantees affect the resultant
allocation size.”.

2 The code and data for running the experiments are available at [29]

Datasets. We ran our experiments on three real-world datasets. The
courses and classes dataset (COURSE) [30] contains 154 courses
and 144 classrooms, with the goal of matching courses to appropriate
classrooms. The attributes in this dataset are room capacity, location,
availability of accommodations for physical disability, and availabil-
ity of accessories for hearing disability. The students lab dataset
(LAB) [31] consists of a lab with 31 students that should be matched
to seats in 14 lab rooms. Room attributes include proximity to some
locations in the lab (e.g., advisor’s room, restrooms, Kitchen), capac-
ity, and strength of the Wi-Fi signal. The children activities dataset
(CHILD) [33] consists of 653 children and 533 available activities
over a period of several weeks. We focused on one week during the
autumn vacation in the Swiss municipality of Morges. During that
week, 249 activities were offered. Attributes included minimum and
maximum allowed age and children’s priorities over the activities.
Note that the CHILD dataset has significantly more agents and rela-
tively less available resources, so the overall match rate and the po-
tential for improvements by the facilitator are much more limited.

Appropriate discomfort functions were defined for the datasets.
In the LAB dataset, the attributes were explicitly rated on a scale
of 1-5, and the discomfort function was defined accordingly, with
rating 1 taken as no discomfort, and 2-5 having discomfort of 1-4,
respectively. The discomfort for relaxing an edge is the sum of the
discomforts for all its attributes. For the COURSE dataset, the dis-
comfort was estimated from the nature of the constraints. These esti-
mates were informed by consultations with a university administrator
and faculty members. The availability of accommodations for physi-
cal disability and the availability of accessories for hearing disability
have a crucial impact on the discomfort level. The distance from the
desired location determines the discomfort incurred by the room’s
location. Finally, the discomfort of the room capacity is more signif-
icant as the difference from the desired capacity is more significant.

The CHILD dataset has attributes of both types (explicit rating and
not), so both methods were employed for determining the discomfort
function. Children rated some activities, and their ratings contributed
to the discomfort in a way similar to the attributes in the LAB dataset.
If a child is younger than the minimum age for the activity, the dif-
ference between her age and the minimum age of the activity was
considered for determining the discomfort. The contributions to the
discomfort when the child is older than the maximum allowed age
for the activity were computed similarly.

Maximum possible match sizes when all agents comply. Here,
we compare the WNH-WB, SNH-WB and SNH-SB relaxations for
the special case where all agents comply. Since a SNH-SB relax-
ation is optimized to handle the case when not all agents comply,
this stricter condition might impact the matching size when com-
pared with WNH-WB, even when all agents comply. The SNH-WB
is somewhere between the SNH-SB and the WNH-WB in the courses
dataset and is comparable with SNH-SB in the two other datasets.
Figure 3 depicts the resultant matching sizes for WNH-WB, SNH-
WB and SNH-SB relaxations when all agents comply. The base-
line bar is for when no relaxation is allowed. First, note that relax-
ation does indeed increase the match size considerably, even for low
bounds. In the CHILD dataset, a 5% increase in the relaxation cost
bound allows 32 more children to be matched. Comparing the results
of WNH-WB, SNH-WB and SNH-SB, we see that while SNH-SB
and SNH-WB do provide better results sometimes in smaller match-
ings, the difference is relatively small.

Match sizes when not all agents comply. Figure 4 depicts the
matching size as a function of the number of complying agents, with
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Figure 3. Fraction of matched agents as a function of the bound on
allowed relaxations, for the SNH-SB, SNH-WB and WNH-WB guarantees.
The scale and limits of the y axis are different for the different datasets. The

baseline (in black) corresponds to no relaxations or a cost bound of zero.

no bound restrictions. Here, we first computed the full SNH-SB,
SNH-WB and WNH-WB relaxations, using the methods devised in
the earlier sections, randomly selected a set of complying agents (of
different sizes), and then computed the maximum matching with the
resultant relaxation. Each point on the graph is an average of ten
such random samples. We can see that SNH-SB performs better with
low and moderate compliance rates, while WNH-WB performs bet-
ter when more agents comply. The performance of SNH-WB is com-
parable to that of SNH-SB in most cases and it is between SNH-SB
and WNH-WB for the COURSE dataset.

Hence, we propose using SNH-SB when it is expected that several
agents will not comply. However, if all agents are known to comply,
WNH-WB is preferable. In the intermediate case, where we expect
very high compliance, the facilitator should weigh the costs of losing
the SNH-SB or the SNH-WB guarantees and the dissatisfaction of
some agents against the benefits of increasing the allocation size.
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Figure 4. Fraction of matched agents vs. number of relaxing agents for
SNH-SB, SNH-WB, and WNH-WB guarantees. The scale and limits of the
y axis are different for the different datasets.

Many-to-one and one-to-many. For the COURSE dataset, we al-
low some courses to have multiple rooms. Such a scenario may hap-
pen in exams where there needs to be some gap between students
for preventing dishonesty. The CHILD dataset is used when some of
the activities allow multiple children for fixing the balance between
the children and the avaialabe activities. For the CHILD dataset, we
chose 1-3 instances at random for each activity. For the COURSE
dataset, we again chose 1-3 instances at random for each course.
Similar to Figure 4, In Figures 5 (left) we can see that SNH-SB per-
forms better with low and moderate compliance rates, while WNH-
WB performs better when more agents comply. The bumps in the
graphs, where the number of relaxing agents is greatest, is due to the
fact that the facilitator only addresses so many agents in a few of
the replications and we can therefore safely ignore these bumps. In
Figure 5 (right) (COURSE), the fraction of matches is lower than in
Figure 3. That is since some courses might need more than one class-
room so there is stronger competition on the available classrooms.
The opposite is true for the CHILD dataset, where multiple children
are allowed per activity.
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Figure 5. Results for many to one (COURSE) and one to many (CHILD)

7 Conclusion

In this work, we define a matching problem where a facilitator ad-
vises agents on which constraints to relax. The facilitator’s goal is to
increase the allocation size while ensuring that no agent is harmed by
the suggested relaxations and that relaxing agents benefit from relax-
ing by securing a guaranteed resource. Additionally, the facilitator is
constrained by a bound on the total cost of relaxations that can be
suggested.

For three allocation settings, namely one-to-one, many-to-one and
one-to-many, we consider three variants of participation guarantees
and two possible forms of cost aggregration. A general approach is
presented to tackle the one-to-one problems leading to polynomial
time algorithms. An extension of this approach is presented to obtain
polynomial time algorithms for the many-to-one and one-to-many
problems as well. Our experiments demonstrate the usefulness of
these algorithms by applying them to three real-world datasets.

Expanding our research by developing other techniques for defin-
ing discomfort levels and quantifying them through numerical values
is left for future work.
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