
Contrastive Explanations of Centralized Multi-agent Optimization Solutions

Parisa Zehtabi1*, Alberto Pozanco1*, Ayala Bloch2, Daniel Borrajo1†, Sarit Kraus3

1J.P. Morgan AI Research
2Ariel University

3Department of Computer Science, Bar-Ilan University
{parisa.zehtabi, alberto.pozanco, daniel.borrajo}@jpmorgan.com, ayalablo@ariel.ac.il, sarit@cs.biu.ac.il

Abstract
In many real-world scenarios, agents are involved in opti-
mization problems. Since most of these scenarios are over-
constrained, optimal solutions do not always satisfy all
agents. Some agents might be unhappy and ask questions of
the form “Why does solution S not satisfy property P ?”. We
propose CMAOE, a domain-independent approach to obtain
contrastive explanations by: (i) generating a new solution S′

where property P is enforced, while also minimizing the dif-
ferences between S and S′; and (ii) highlighting the differ-
ences between the two solutions, with respect to the features
of the objective function of the multi-agent system. Such ex-
planations aim to help agents understanding why the initial
solution is better in the context of the multi-agent system
than what they expected. We have carried out a computational
evaluation that shows that CMAOE can generate contrastive
explanations for large multi-agent optimization problems. We
have also performed an extensive user study in four different
domains that shows that: (i) after being presented with these
explanations, humans’ satisfaction with the original solution
increases; and (ii) the constrastive explanations generated by
CMAOE are preferred or equally preferred by humans over
the ones generated by state of the art approaches.

Introduction
In many real-world scenarios, centralized AI systems gen-
erate solutions for optimization problems involving multi-
ple agents with conflicting preferences. Due to these con-
flicts and the over-constrained nature of the problems, sat-
isfying all agents’ preferences is often impossible, and AI
decisions might lead to some agents being unhappy (Kraus
et al. 2020). In such situations, it is natural that some agents
question the decisions made by the AI system, since there
is a mismatch between the proposed solution and the user’s
mental model (Chakraborti et al. 2017).

Generating explanations for such questions may improve
the AI system’s transparency, facilitate human-computer
collaboration, and increase human satisfaction (Bradley
and Sparks 2009). Studies in different areas ranging
from Explainable AI (Krarup et al. 2021) to social sci-
ences (Lim, Dey, and Avrahami 2009; Miller 2019) or mar-
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Figure 1: Schematic representation of CMAOE.

keting (Tomaino et al. 2022) show that users typically for-
mulate “why?” questions when they are not happy with a
given solution. These questions usually take the form of
“Why does solution S not satisfy property P ?”. There ex-
ist two main approaches to answering these questions in the
literature: counterfactual and contrastive explanations.

Counterfactual explanations (Wachter, Mittelstadt, and
Russell 2017; Korikov, Shleyfman, and Beck 2021) try to
provide explanations by constructing a hypothetical situa-
tion where the agent would have received its desired solution
if its inputs were different. These explanations take the form
of “solution S would have satisfied property P if your input
to the system had been Y ′ rather than Y ′′”. This type of ex-
planations are not always valid, as the suggested recourses
might not be actionable in practice. Another alternative to
answering “why?” questions focuses on contrastive expla-
nations (Lipton 1990; Miller 2021). Their focus is purely
on understanding why the solution returned by the AI sys-
tem was a better choice than the one the human agent who
requested the explanation had in mind. Unlike counterfactu-
als, contrastive explanations do not prescribe actions, so they
can be safely generated across a wider range of domains.

Inspired by (Krarup et al. 2021), in this paper we present
CMAOE, a domain-independent approach to generate local
contrastive explanations for multi-agent optimization prob-
lems where decision making is centralized. Figure 1 de-
picts CMAOE. First, the solver generates a solution S for
the original Centralized Multi-Agent Optimization Problem
(CMAOP) and presents it to the user. Then, the user for-
mulates a question asking why solution S does not satisfy



property P . This is passed to CMAOE, which generates a
new hypothetical CMAOP (HCMAOP) that forces property
P to be satisfied. The hypothetical problem suggested by the
user might lead to a new solution that is very different from
the original one. This is often not desirable, since (i) the new
solution should be plausible in the real world, i.e., it should
be similar to the one generated by the solver; and (ii) a large
number of changes between the original and new solutions
would entail longer explanations that could frustrate users.
Therefore, HCMAOP not only encapsulates property P , but
also modifies the original problem to minimize the number
of changes between the original solution S and the new so-
lution S′. The Solver sends these two solutions to CMAOE,
which finally generates an explanation by computing their
differences. This process is iterative, as the user can ask fur-
ther questions until the explanation is satisfactory, also gain-
ing a better understanding of the decision-making process
followed by the Solver at each iteration.

The main contributions of this paper are: (i) the definition
of hypothetical CMAOP; (ii) the automated generation and
solving of HCMAOP that yields contrastive explanations;
(iii) a computer-based evaluation of several CMAOP tasks;
and (iv) an extensive user-study in four domains with more
than 240 users that shows the value and user acceptance of
those explanations, as well as their preference of contrastive
over counterfactual explanations.

The rest of the paper is organized as follows. We first for-
malize CMAOPs and introduce a novel approach to gener-
ate contrastive explanations of solutions to these problems.
We evaluate CMAOE on four well-known CMAOPs, show-
ing how it generates explanations in a similar time as the
one needed to solve the original problem. Later, we present
the results of an extensive user study in four well-known
CMAOPs with more than 240 users. After being presented
with these explanations, humans’ satisfaction with the origi-
nal solution increases and their desire to complain decreases.
Furthermore, the explanations generated by CMAOE are
preferred or equally preferred by humans over the ones gen-
erated by state of the art approaches. Finally, we draw our
main conclusions and outline future work.

Centralized Multi-Agent Optimization
Problems

Centralized Multi-Agent Optimization Problems
(CMAOPs) are solved by finding an optimal solution
that minimizes (or maximizes) a given objective func-
tion from a set of alternatives, taking into account a
set of constraints referring to a set of agents. We focus
on CMAOPs where the decision-making is centralized,
i.e., a central entity solves the optimization problem by
considering the agents’ preferences and constraints. Many
real-world scenarios lie under this framework, such as nurse
shift scheduling, task or resource allocation, or logistics
planning. CMAOPs are formally defined as follows:

Definition 1 A Centralized Multi-Agent Optimization
Problem (CMAOP) is a tuple CMAOP = ⟨A,X,C, f,m⟩
where A is a set of agents, X is a domain of feasible points
subject to set of constraints C, f is the objective function,

and m is the goal function which is either min or max.
The Mixed Integer Programming (MIP) formulation of
CMAOPs is based on an algebraic specification of a set of
feasible alternatives, as well as the objective criterion for
comparing alternatives. This is achieved by: (i) introducing
discrete and/or continuous decision variables; (ii) expressing
the criterion as a function of variables; and (iii) represent-
ing the set of feasible alternatives as the solutions to a con-
junction of constraints described as equations and inequal-
ities over the variables. Therefore, MIP provides a general
framework for modeling a large variety of CMAOPs such as
scheduling, planning, task assignment, network design, etc.
A general MIP formulation of a CMAOP is defined below:

min f(x)
s.t. gi(x) ≥ 0 i = 1, ..., q

hj(x) = 0 j = 1, ..., p

where x ∈ X ⊆ Rn represents an n-variable decision vector
subject to a feasible set X . Let a(x) ⊆ x refer to the sub-
set of decision variables involving agent a ∈ A. One deci-
sion variable x could involve multiple agents. The objective
function f(x) is composed of two sub-terms: fA(x), a func-
tion over the subset of decision variables involving agents’
inputs; and fG(x), a function over the subset of decision
variables not involving any agents’ input.

The feasible set X is given by the set of constraints in
C. These constraints are represented as inequalities (gi) or
equalities (hj) of functions over the decision vector x.

Finally, a maximization problem can be modelled as a
minimization problem by multiplying the objective function
by (-1). We denote the quality of a solution to a CMAOP
as q

(
f(x)

)
. An optimal solution is represented as x∗. In the

rest of the paper, we will always refer to optimal solutions
when we talk about solutions of CMAOPs.

Running Example: the Knapsack Problem Let us in-
troduce a Knapsack Problem (KP) as the running example
throughout the paper. In KP, each agent from a set of agents
owns a few items. Each item occupies a different space, and
each agent assigns a different utility value to each item, i.e.,
how much they appreciate their items. The agents share a
common depot with a limited capacity where items can be
included. The problem is determining the items to be in-
cluded in the depot so that the total utility is maximized,
while satisfying the depot’s capacity and considering some
fairness issues. A formal MIP formulation of a KP is shown
below. The objective function to optimize is:

max
∑

a∈A,i∈I

xa,i × UTILITY(a, i) + minItems (1)

subject to the following constraints:∑
a∈A,i∈I

xa,i × SPACE(i) ≤ depotCapacity (2)

∑
i∈I

xa,i ≥ minItems (3)

xa,i ∈ {0, 1} (4)
minItems ∈ Z (5)



There is one binary decision variable xa,i for each agent
a ∈ A and item i ∈ I . These variables will take a value
of 1 if item i from agent a is included in the depot. Inte-
ger decision variable minItems keeps track of the number of
items belonging to the agent with the least number of items
included in the depot (Constraint 3). The objective function
maximizes the utility of the included items, and the num-
ber of items belonging to the agent with the least number
of items included in the depot. Constraint 2 ensures that the
maximum capacity of the depot is not exceeded.

In this case, the first term of the objective function cor-
responds to fA(x), i.e., variables explicitly associated with
agents’ inputs, while the second term corresponds to fG(x),
i.e., other variables not involving agents’ inputs.

CMAOE: Generating Contrastive
Explanations

Given that most CMAOPs are over-constrained, optimal so-
lutions do not always satisfy all agents, who might be un-
happy and ask questions about the solution. In this paper, we
focus on generating local contrastive explanations for ques-
tions that take the form of “Why does solution S not sat-
isfy property P ?”. The next sections describe how CMAOE
works: (i) it builds a hypothetical CMAOP; and (ii) it gen-
erates explanations from the comparison of the solutions re-
turned by the original and the hypothetical CMAOP.

Building a Hypothetical CMAOP
To generate these explanations, we build a hypothetical opti-
mization problem where property P is forced to be satisfied.
This hypothetical problem might generate a solution that is
very different from the original one. To prevent this, we fur-
ther modify the original problem to minimize the number of
changes between the original and new solution, S and S′.

We first define how to compute the differences between
two solutions. In many scenarios, the set of decision vari-
ables x used to model CMAOPs includes some auxiliary
variables that are used to help the modeling process or im-
prove the efficiency when solving the problem. We refer to
the subset of decision variables in a CMAOP that actually
represent a solution as S ⊆ x. These are the variables con-
sidered when computing the differences between two solu-
tions. Going back to our KP running example, while xa,i and
minItems are the decision variables of the problem (x), only
xa,i variables would be in S, since they are the only ones
representing a solution.

We formally define a Hypothetical Multi-Agent Opti-
mization Problem (HCMAOP) as an extension of the origi-
nal CMAOP as follows:
Definition 2 A Hypothetical Multi-Agent Optimiza-
tion Problem (HCMAOP) is a tuple HCMAOP =
⟨A,X ′, C ′, f,m, S, P ⟩, where A is a set of agents, X ′

is an updated domain of feasible points subject to the new
set of constraints C ′, f and m remain as in the original
OP, S is a solution to the original CMAOP, and P is the
hypothetical property to be enforced.
We extend the original set of constraints C with a new set
of constraints that enforce that the hypothetical property P

is satisfied. From now on, we assume HCMAOP is solvable,
i.e., enforcing the hypothetical property P might affect qual-
ity but not solvability. We also extend the original decision
vector x with a new set of decision variables z(S) that will
compute the differences between the solution to the origi-
nal CMAOP (S) and a solution to the new HCMAOP (S′).
The value of these new variables is ensured by a set of con-
straints Z, i.e., C ′ = C ∪P ∪Z. Finally, we also modify the
original objective function to reason at the same time about
the quality of the solution, f(x), and the number of changes
between the original and the hypothetical solution, z(S).

A general MIP formulation of a HCMAOP is defined as:

min αf(x′) + βz(S)
s.t. C ′

where x′ ∈ X ′ represents the new decision vector subject to
the feasible set X ′. We introduce two parameters (weights)
in HCMAOP’s objective function, α and β. By modifying
these parameters, we will generate solutions that prioritize
either maximizing the quality of the hypothetical CMAOP
solution or minimizing the number of changes between the
original (S ⊆ x) and the hypothetical (S′ ⊆ x′) CMAOP
solutions. In scenarios where we maximize quality, the solu-
tion to the HCMAOP problem might be arbitrarily different
from the original solution, thus yielding very long explana-
tions. However, minimizing the number of changes between
the original (S ⊆ x) and the hypothetical (S′ ⊆ x′) CMAOP
solutions leads to shorter and more concise explanations.

KP running example. Now, agent “Alice” asks why item
“bed” has not been included in the optimal CMAOP’s so-
lution x∗. We build the associated HCMAOP as follows.
First, we enforce the agent’s property by adding a con-
straint, which ensures that the bed is included in the depot
(x′

Alice,bed = 1 ). Then, we generate a new set of z(S) vari-
ables by duplicating the decision variables used to represent
the original solution. In this case, we add one za,i variable
for each original xa,i variable. We also add the following
constraints to ensure that the z variables capture the changes
of the new solution with respect to the original one:

x′
a,i − xa,i ≤ za,i, xa,i − x′

a,i ≤ za,i, za,i ≥ 0

Finally, we update the objective function:

maxα
( ∑

a∈A,i∈I

x′
a,i×UTILITY(a, i)+minItems

)
−β

∑
a∈A,i∈I

za,i

In the following, we focus on two main variations of
CMAOE: Q-CMAOE, which prioritizes quality by making
α ≫ β; and C-CMAOE, which prioritizes the number of
changes by making β ≫ α. Both variations still reason
about both terms.

The complexity of the new HCMAOP compared to that
of the original CMAOP relates to how many new con-
straints and variables need to be added. The number of
constraints and variables to add depends on (i) the num-
ber of decision variables used to represent a solution in the
original CMAOP; and (ii) the hypothetical property P to
be enforced. HCMAOP’s objective function is more com-
plex since it also reasons about z(S) variables. However,



as we will see later, the hypothetical property P tends to
constrain the solution space so that HCMAOPs can be effi-
ciently solved in practice.

Generating Explanations from CMAOP and
HCMAOP Solutions

The next step of CMAOE is to generate explanations by
computing the differences between the solution to the orig-
inal CMAOP S, and the solution to the HCMAOP S′. We
envision generating two types of explanations, depending on
the level of abstraction we want.
Abstract Explanation. The explanation only refers to the
difference in the quality of both solutions.

Quality Diff = q
(
f(x)

)
− q

(
f(x′)

)
(6)

Full Explanation. The explanation refers to the specific
changes between S and S′, grouping them by agents. Al-
gorithm 1 outlines how this computation is performed. The

Algorithm 1: Full Explanation Generation

Require: HCMAOP = ⟨A,X ′, C′, f,m, S, P ⟩, S′

Ensure: E
1: EI ← ∅ , ED ← ∅
2: I = COMPUTEINCREASES(S, S′)
3: D = COMPUTEDECREASES(S, S′)
4: for a ∈ A do
5: Ia = a(I), Da = a(D)
6: EI ← EI ∪ {⟨i, q

(
f(i)

)
⟩ | i ∈ Ia}

7: ED ← ED ∪ {⟨d, q
(
f(d)

)
⟩ | d ∈ Da}

8: end for
9: E ← EI ∪ ED

10: return E

algorithm receives as input the HCMAOP and the solution to
the new problem (HCMAOP already contains the solution to
the original problem). First, the algorithm computes the sub-
set of decision variables representing a solution whose value
has either increased or decreased between the original and
the hypothetical solution. This is done by the COMPUTEIN-
CREASES and COMPUTEDECREASES functions, which re-
turn the set of increase (I) or decrease (D) changes, respec-
tively. Then, the algorithm iterates over the set of agents,
computing the subset of increases and decreases where agent
a was involved (line 5). After that, it computes the contribu-
tion of these changes to the objective function and updates
the sets of increases and decreases (lines 6 and 7). Finally,
the algorithm returns the explanation E , which is the union
of all the decision variables in the solution that either in-
creased or decreased their value in the new solution S′ with
respect to the original solution S.

KP running example. Let us assume that the only change
between solutions S and S′ is Bob removing his bed (with a
utility of 4) in favour of Alice’s bed (with a utility of 2). The
Abstract Explanation would be that doing so would mean a
loss of 2 utility units. The Full Explanation would be: EI =
{⟨xAlice,bed, 2⟩} ∪ ED = {⟨xBob,bed, 4⟩}.

Computational Evaluation
Although our formalization is general to any CMAOP de-
scribed as a MIP, we run experiments using Mixed Inte-
ger Linear Programs (MILP) for which optimal solutions
are easier to compute. We evaluate our approach by provid-
ing explanations in simulated scenarios in four well-known
CMAOPs that can be formulated as MILPs. Below, we pro-
vide a brief description of each domain. A formal definition
of their associated MILPs can be found in (Zehtabi et al.
2023).
• Knapsack Problem (KP). A variation of our KP running

example where the objective function only optimizes the
total utility of the items included in the depot.

• Task Allocation Problem (TAP). A set of tasks needs to
be allocated to a set of agents. Each agent has a maximum
workload. Each agent assigns a different utility value to
each task. The goal is to assign all the tasks, while max-
imizing the total utility of the assignment and respecting
agents’ workload.

• Wedding Seating Problem (WSP). A set of agents need
to be seated at a set of tables with different capacities.
Each pair of agents has an associated affinity value, i.e.,
how much they would like to be seated at the same table.
The AI system’s problem is determining the allocation
of agents to tables so that the total affinity is maximized
while satisfying the tables’ capacities.

• Capacitated Vehicle Routing Problem (CVRP). A set
of agents (vehicles) with heterogeneous capacities have
to visit a set of points distributed on a map. The number
of points a vehicle can visit is given by its capacity. All
agents start and end in a depot. Each pair of points has an
associated distance. The AI system needs to determine
the route of vehicles so that the total traveled distance is
minimized while satisfying the vehicles’ capacities.

Experimental Setting
We have generated problems in the four domains by fixing
some inputs and general constraints of the problem: the de-
pot’s capacity in KP, the tables’ capacity in WSP, the number
of points and vehicles’ capacity in CVRP, and the number of
agents in TAP. For each configuration, we have generated
10 CMAOPs with random utilities/affinities/distances de-
pending on the domain. We optimally solved each problem
and automatically computed all of the unsatisfied variables,
i.e., those decision variables representing the solution with a
value of zero. Then, we randomly picked 10 of these unsat-
isfied variables in order to generate 10 hypothetical proper-
ties, i.e., agents’ questions about the original solution. For
example, in KP we get all of the items that were not in-
cluded in the depot and generate 10 questions of the form
”why was item x not included in the depot?”. This yielded
100 HCMAOPs to solve. We can solve each problem with
either of the two variations of our approach: Q-CMAOE or
C-CMAOE. For each problem, we report (i) the time needed
to compute the solution for the CMAOP and the HCMAOP;
(ii) the quality of the CMAOP and the HCMAOP; and (iii)
the length of the explanation, i.e., the number of changes
between the CMAOP and HCMAOP solutions.



MILP problems were modeled using the PuLP Python li-
brary (Mitchell, OSullivan, and Dunning 2011) and solved
using the CBC solver (Forrest and Lougee-Heimer 2005).
Experiments were run in Intel(R) Xeon(R) CPU E3-1585L
v5 @ 3.00GHz machines with 64GB RAM and a 60s time-
out (including the solving and model-building times).

Scalability Evaluation
We first evaluate the scalability of our approach by com-
paring the time (in seconds) needed to compute the original
and the hypothetical solutions as we increase the complex-
ity of the problem. In KP, we increase the complexity of the
problem by increasing the number of agents and setting the
depot’s capacity to be a function of this number. In TAP, we
fix the number of agents and increase the number of tasks to
be assigned. In WSP, we also increase the number of agents,
fixing the number of tables but varying their size to be able to
accommodate all agents. Finally, in CVRP, we increase the
number of points, fixing the number of vehicles but vary-
ing their capacity to be able to visit all points. All of these
problems are solved using Q-CMAOE. Execution times are
similar for C-CMAOE.

The results of this experiment are shown in Figure 2. As
expected, increasing the complexity of the problems leads
to longer solving times and explanation generation times in
all domains. However, while generating explanations is no-
tably faster than solving the problem in WSP and CVRP, the
opposite occurs in KP and TAP. This is because these prob-
lems only have one type of decision variable and only a few
types of constraints, while the other domains involve more
constraints and interrelated decision variables.

We conclude that the time needed to generate an explana-
tion compared to the time needed to generate a solution will
vary depending on the problem to be solved and its formula-
tion. However, this time difference does not usually exceed
an order of magnitude and remains constant as problems be-
come more complex. Therefore, our approach will generate
explanations for any MILP for which a solution can be gen-
erated within reasonable time and memory bounds.

Solution Quality vs Explanation Length Trade-off
We analyze the trade-off between quality and explanation
length by comparing our two approaches and measuring: (i)
Explanation Length —the number of changes between the
original and hypothetical solutions, |E|; and (ii) Suboptimal-
ity Ratio —the quality of the original vs. the hypothetical
solution, q

(
f(S)

)
/q
(
f(S′)

)
. The results of this experiment

are shown in Figure 3 for the smaller problems in all do-
mains, i.e., 10 agents in KP, 10 tasks in TAP, 8 agents in
WSP and 8 points in CVRP. Conclusions drawn from bigger
problems are the same, and their results are shown in (Ze-
htabi et al. 2023).

As expected, optimizing the quality of solution S′ first (Q-
CMAOE) yields solutions closer to the optimal one S (lower
Suboptimality Ratios) at the expense of generating a new so-
lution S′ with more changes (higher Explanation Length).
On the other hand, minimizing the number of changes be-
tween S and S′ first (C-CMAOE), generates shorter expla-
nations at the expense of having slightly worse solutions in

terms of quality. Despite this trend, we often get the same
Suboptimality Ratio and Explanation Length regardless of
the approach used. From 100 problems generated for each
domain, we obtain the same values in 67 problems in KP,
30 in TAP, 39 in WSP, and 9 in CVRP. When focusing on
problems for which we obtain similar rather than exact val-
ues, there are 77 problems in KP, 30 in TAP, 49 in WSP, and
33 in CVRP for which the Suboptimality Ratio and Expla-
nation Length values differ by less than 30%. These results
show that, in most cases, there are no big differences in the
solutions produced by both approaches.

User Study 1: CMAOE Validation
We designed and implemented a between-subjects user
study to validate CMAOE. In the following subsections, we
detail the setup, results and analysis.

Setup We generated abstract and full explanations using
Q-CMAOE. We chose this variation given the similar re-
sults both approaches got in the previous section, while Q-
CMAOE generates solutions with slightly higher quality.
We compared these explanations against a baseline expla-
nation. The objective of the baseline is to demonstrate that
our explanation was the determining factor in the users’ be-
havior, rather than simply providing any explanation. This is
necessary based on the findings in (Kosch et al. 2023) that
demonstrated the placebo effect in AI experiments. In par-
ticular, in this user study, we used “Sorry, this is what the
algorithm generated” as a baseline explanation. We wanted
to validate the following hypotheses:
Hp1: CMAOE’s explanations improve humans’ satisfaction
with the decisions of the AI system.
Hp2: CMAOE’s explanations reduce humans’ desire to
complain about the decisions of the AI system.
Hp3: Humans prefer more detailed explanations.

This experimental setting just focuses on assessing
whether our contrastive explanations improve humans’ sat-
isfaction and decrease their desire to complain or not.

The evaluation of CMAOE against other state of the art
approaches is discussed in detail in User Study 2.

By considering the four domains discussed in previous
section and the three types of explanation, we generated
twelve scenarios. We force the original solution to be very
unfavourable for the participants so they have a reason to
complain. In each scenario, participants were asked (i) their
user satisfaction for the solution generated by AI, and (ii)
their desire to make a complaint regarding that solution. The
answers to both questions were measured on a 5-point Lik-
ert scale, where 1 represents the lowest and 5 is the highest.
Then, in each scenario, regardless of the level of satisfaction
or their desire to complain, the participants were presented
with one of the three different types of explanations.

Afterward, the same set of questions was repeated in order
to compare the participants’ satisfaction and desire to com-
plain before and after receiving the explanation. Each user
was asked to rate their satisfaction with the explanation on a
Likert scale. Finally, we asked a domain-related question to
verify the users’ comprehension of the domain; e.g. in KP,
asking what the goal of the AI algorithm was.



(a) KP (b) TAP (c) WSP (d) CVRP

Figure 2: Time (seconds) in log scale needed to compute the original and hypothetical CMAOP as we increase the complexity
of the problem. Points below the diagonal line represent problems for which producing the explanation takes less time than

solving the original problem.

(a) KP (b) TAP (c) WSP (d) CVRP

Figure 3: Trade-off between Explanation Length and Suboptimality Ratio when solving the HCMAOP with Q-CMAOE (blue
points) or C-CMAOE (orange crosses).

We recruited 207 computer science students, 75 females
and 132 males. The average age was 24.75 (std=3.54). Each
participant was shown 2 or 3 scenarios randomly, ensuring
that no domain or explanation type was repeated. We dis-
carded 34 scenarios where users answered the verification
question incorrectly, leading to 100, 85, 76 and 84 scenar-
ios examined for the KP, WSR, CVRP and TAP domains,
respectively. We used repeated measures ANOVA (General
Linear Model) for each domain separately.

Human Satisfaction & Desire to Complain
In the first part of the user study, we evaluate Hp1 and Hp2.
Table 1 shows the number of users (N ) who participated
in each scenario (distinct pairs of domain and explanation
type). Further, it presents the mean and standard deviation
of user satisfaction with the solution and their desire to com-
plain. Based on the table, in all domains, the initial satis-
faction of the users with the solution was similar among all
users with different explanations (p > 0.05). This is a good
indication of our randomized distribution of the users be-
tween all sessions since, at the initial stage, no explanation
was presented to the users.

From a post-hoc analysis with correction for multiple
measurements in all domains, the level of satisfaction af-
ter receiving the explanation is still low. This is because the
original solution was very unfavourable for the participants,
and CMAOE just tries to explain the outcome rather than
changing it. Despite the general low satisfaction level, we
can observe that the increase in user’s satisfaction level was
significantly greater following the abstract and full explana-

tions compared to the baseline explanation. For more details
about the main and interaction effects, an ANOVA analysis
is described in (Zehtabi et al. 2023).

The results presented in this table confirm Hp1, i.e. the
explanations generated by CMAOE improve humans’ satis-
faction regarding decisions made by the AI system.

Finally, from a post-hoc analysis with correction for mul-
tiple measurements in all domains, the decrease in desire
to complain was significantly greater following the abstract
and full explanations compared to the baseline explanation.
Similarly, an ANOVA analysis of the results is shown in (Ze-
htabi et al. 2023). The results presented in this table confirm
Hp2, that the generated explanations by CMAOE decrease
humans’ desire to complain regarding decisions made by AI.

Length of Explanation
In this part of the study, we validate our third hypothesis,
Hp3. The results in Table 2 present a between-subjects anal-
ysis comparing the satisfaction between the users in each
of the explanation types, using Univariate Analysis of Vari-
ance. In all domains, we found an effect for the type of
explanations on user satisfaction. The F-score and p-value
were; KP(F (2) = 19.52, p ≪ 0.01), WSP (F (2) = 14.62,
p ≪ 0.01), CVRP (F (2) = 10.64, p ≪ 0.01) and TAP
(F (2) = 6.9, p < 0.01). In general, in all domains, users
reported higher satisfaction with the abstract and full ex-
planations rather than the baseline explanation. In CVRP
and WSP, users were significantly more satisfied with the
full explanation in comparison to the abstract explanation.



Table 1: Satisfaction and desire to complain (’mean (std)’) about the original solution before and after participants are presented
with CMAOE’s explanations in the four domains. N represents the number of participants per session.

Status Exp.
Domains

KP TAP WSP CVRP

Satisfaction Desire to
Complain N Satisfaction Desire to

Complain N Satisfaction Desire to
Complain N Satisfaction Desire to

Complain N

Before Exp. - 1.52 (0.89) 4.32 (1.07) 100 1.79 (1.25) 3.82 (1.35) 84 1.14 (0.46) 4.42 (0.97) 85 2.14 (0.97) 3.89 (0.95) 76

After Exp.

Baseline 1.58 (0.84) 4.11 (1.11) 36 1.63 (0.72) 4.00 (1.23) 30 1.40 (0.75) 4.15 (1.19) 32 2.04 (0.93) 3.64 (1.22) 25
Abstract 2.20 (0.98) 3.79 (0.90) 29 2.70 (1.06) 2.67 (1.30) 27 2.18 (1.00) 3.77 (1.08) 27 2.63 (1.09) 3.29 (1.16) 24

Full 2.77 (0.94) 2.97 (1.04) 35 2.59 (0.97) 2.89 (1.08) 27 2.54 (0.99) 3.42 (1.14) 26 2.92 (0.87) 2.85 (1.06) 27
Total 2.18 (0.92) 3.62 (1.01) 100 2.30 (0.92) 3.18 (1.20) 84 2.04 (0.91) 3.78 (1.14) 85 2.53 (0.97) 3.26 (1.14) 76

Table 2: User’s satisfaction (mean (std)) with each explanation in the four domains. N is the number of participants per session.

Exp.
Domains

KP TAP WSP CVRP
µ(std) N µ(std) N µ(std) N µ(std) N

Baseline 1.64 (0.96) 36 1.97 (1.22) 30 1.65 (0.97) 32 2.16 (1.07) 25
Abstract 2.95 (1.15) 29 2.92 (1.35) 27 2.41 (1.22) 27 2.87 (1.29) 24

Full 3.17 (1.22) 35 3.00 (0.91) 27 3.23 (1.17) 26 3.63 (1.08) 27
Total 2.58 (1.11) 100 2.62 (1.16) 84 2.43 (1.12) 85 2.89 (1.15) 76

However, their satisfaction with the abstract and full expla-
nations was much closer in the KP and TAP domains. We
hypothesize this is because KP and TAP are much simpler
domains in comparison to CVRP and WSP. The results of
Table 2 confirm Hp3 —users prefer a more detailed expla-
nation. These results are aligned with previous works on so-
cial sciences and marketing (Ramon et al. 2021).

User Study 2: Contrastive vs Counterfactual
Explanations

In this user study, we compare the contrastive explanation
generated by CMAOE with the counterfactual explanation
generated by (Korikov and Beck 2021) (will be referred to
as KORIKOV21). To the best of our knowledge, this is the
closest state-of-the-art approach that can address OPs.

Setup Here, full explanations by the Q-CMAOE are com-
pared against the KORIKOV21 explanations for KP and
WSP domains. As discussed in Related Work, the KO-
RIKOV21 can generate counterfactual explanations high-
lighting a set of hypothetical facts that would have satisfied
user’s desired characteristics. Such hypothetical facts are a
set of changes that the user could have done to get their de-
sired chracteristics. The KORIKOV21 is restricted to a spe-
cific optimization formulation where the preferences of each
user can only be reflected in the objective function and not in
the constraints. TAP does not fit this formulation, thus KO-
RIKOV21 cannot generate explanations for this domain. For
CVRP, the counterfactual explanations would include sug-
gestions to change the distance between the points on the
map. From a practical point of view, such suggestions are
not actionable and realistic, and this has been the reason why
we did not include this domain in the user study.

For the KP and WSP domains, we have generated four
scenarios. The initial part of User Study 1 was repeated for
each scenario . For each scenario, each particpant was asked
to rate, on a 5-point Likert scale, their satisfaction and desire
to complain regarding the unfavourable solution for each do-
main. Regardless of the level of satisfaction or their desire

to complain, the partcipants were presented with one of the
explanations generated by either CMAOE or KORIKOV21.
Afterward, the same set of questions was repeated. At the
end of each scenario, participants were asked to rate on a 5-
point Likert scale the statements presented in (Zehtabi et al.
2023) regarding explanations. These are metrics adapted
from standard ones (Hoffman et al. 2018). Below are the
hypotheses that we wanted to test in this user study.
Hp1: CMAOE’s explanations improve humans’ satisfaction
more than KORIKOV21’s explanations.
Hp2: CMAOE’s explanations reduce humans’ desire to
complain more than KORIKOV21’s explanations.
Hp3: CMAOE’s explanations lead to higher scores on good-
ness metrics than KORIKOV21’s explanations.

For this user study, we recruited 40 computer science stu-
dents or graduates, 10 females and 30 males, average age
27.9 (std=7.27).

Human Satisfaction & Desire to Complain
The first part of the user study evaluates Hp1 and Hp2. Ta-
ble 3 presents the number of users (N ), the mean and stan-
dard deviation of user satisfaction with the solution and their
desire to complain. A post-hoc analysis, with correction for
multiple measurements, shows that the decrease in the de-
sire to complain in the KP domain was significantly greater
following explanations generated by CMAOE than the ones
generated by the KORIKOV21 (p < 0.05). But, this decrease
was not significant for the WSP domain. A detailed ANOVA
analysis of these results appears in (Zehtabi et al. 2023).

While results confirm Hp1, Hp2 is partially satisfied
as humans prefer or equally prefer the explanations by
CMAOE in comparison to the ones by KORIKOV21.

Good Metric Analysis of Explanations
Using a Univariate Analysis of Variance, we analysed the
results of the user study comparing the users’ satisfaction
with the two types of explanations, using a set of statements
adopted from (Hoffman et al. 2018).



Table 3: Satisfaction and desire to complain (mean (std)) about the original solution before and after participants are presented
with CMAOE’s and KORIKOV21’s explanations in the two domains. N represents the number of participants per session.

Status Exp.
Domains

KP WSP

Satisfaction Desire to
Complain N Satisfaction Desire to

Complain N

Before Exp. - 1.37 (0.83) 4.42 (0.83) 40 3.23 (0.92) 3.27 (0.88) 42

After Exp.
CMAOE 2.68 (1.01) 3.05 (1.22) 19 3.09 (1.06) 2.59 (1.05) 22

KORIKOV21 2.19 (1.08) 3.81 (1.03) 21 3 (1.26) 2.60 (1.05) 20
Total 2.43 (1.06) 3.45 (1.18) 40 3.05 (1.15) 2.60 (1.04) 42

The set of statements and the results are presented in de-
tail in (Zehtabi et al. 2023). The statistical test was per-
formed with a significance level of 0.05. Based on this,
for the Knapsack domain, we found a significant effect for
the type of explanation in each of the statements we asked
(p ≪ 0.05). On the other hand, in the WSP domain, despite
CMAOE explanations got higher value scores than the KO-
RIKOV21, their difference were not statistically significant.

These results confirm Hp3, where we assumed the partici-
pants prefer CMAOE’s explanations to KORIKOV21’s ones.

Related Work
Most works on generating explanations for optimization
models focus on explaining infeasibility, often through iden-
tifying a minimal (Parker and Ryan 1996; Chinneck 2007)
or user preferred (Junker 2004) set of constraints that should
be relaxed to get a solution. More recent works also cover
optimality in their explanations using different approaches.

(Korikov, Shleyfman, and Beck 2021; Korikov and Beck
2021) propose to use counterfactual explanations for OPs.
Given a set of facts and a solution that does not satisfy some
desired features, they solve an inverse optimization prob-
lem to generate explanations in the form of a hypothetical
set of facts that would have satisfied the users’ characteris-
tics. Their setting is similar to ours, allowing an individual
to inquire about any change to a decision that can be rep-
resented with a constraint set on the original formulation.
However, while their explanations involve hypothetical fea-
tures or facts that would yield the user desired output, our ex-
planations highlight the losses incurred in satisfying users’
characteristics. Another difference is that their explanation
focuses only on the individual asking the question, while our
explanation focuses on the rest of the agents involved in the
optimization problem. On the experimental side, they limit
their evaluation to simulations in two well-known domains,
but do not test the validity and usefulness of their explana-
tions with user studies as we do here.

Other literature focuses on contrastive explanations.
Cyras et al.(2019) explain schedules using argumentation
frameworks. In order to provide the explanations, they man-
ually generate the attack graphs, i.e., the relationship be-
tween the preferences and the assignments, while we do not
need any external input other than the original model and
the user’s request. A key difference between these works
and ours is that they are restricted to makespan scheduling
problems with a limited number of preferences, while our
approach can provide explanations for any CMAOP. On the

evaluation side, they do not report any experiments. Pozanco
et al. (Pozanco et al. 2022) proposed the EXPRES frame-
work, which also focuses on explaining why the original
solution is better than one where the user inquiry is sat-
isfied. However, they: (i) are restricted to linear programs
where a totally ordered set of preferences is defined; (ii)
need external inputs as in (Čyras et al. 2019); and (iii) only
conducted experiments in a workforce scheduling domain,
where they measured whether humans preferred explana-
tions generated by other humans or those generated by EX-
PRES. In this paper, we have conducted experiments in many
different CMAOPs, showing how humans’ satisfaction with
the original solution increased after receiving the explana-
tions generated by CMAOE.

More recently, (Vasileiou, Xu, and Yeoh 2023) proposed
QUERIES, a logic-based explanation generation frame-
work that produces both reason-seeking (contrastive) and
modification-seeking (counterfactual) explanations that op-
timize for privacy. In their evaluation, the authors prove that
individuals prefer explanations containing only public infor-
mation, i.e., constraints and preferences known by all agents,
over explanations including private information. However,
they do not compare, as we do in this paper, whether indi-
viduals prefer contrastive or counterfactual explanations.

Conclusion and Future Work
We have introduced CMAOE, a domain-independent ap-
proach to generating contrastive explanations of multi-agent
optimization solutions. We generate explanations by build-
ing a hypothetical optimization problem that (i) forces the
user’s requested property to be satisfied; and (ii) minimizes
the number of changes between the original and the hypo-
thetical solution. Experimental results through a computa-
tional evaluation show how CMAOE can scale in generat-
ing contrastive explanations for CMAOPs. Finally, an ex-
tensive user study in different CMAOPs shows that expla-
nations generated by CMAOE (i) increase humans’ satis-
faction with the original solution and decrease their desire
to complain; and (ii) humans prefer the contrastive explana-
tions generated by CMAOE over the counterfactual expla-
nations generated by state of the art approaches.

Currently, we are only providing one explanation. How-
ever, HCMAOPs often have a few optimal solutions. In fu-
ture work, we would like to characterize each of these so-
lutions to present a set of diverse explanations from which
users could choose. Also, we would like to extend CMAOE
to consider agents’ privacy or fairness.
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