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Abstract. In this paper we address a model of self interested infor-
mation agents competing to perform tasks. The agents are situated in
an uncertain environment while different tasks dynamically arrive from
a central manager. The agents differ in their capabilities to perform a
task under different world states. Previous models concerning coopera-
tive agents aiming for a joint goal are not applicable in such environ-
ments, since self interested agents have a motivation to deviate from the
joint allocation strategy, in order to increase their own benefits. Given
the allocation protocol set by the central manager, a stable solution, is a
set of strategies, derived from an equilibrium where no agent can benefit
from changing its strategy given the other agents’ strategies. Specifically
we focus on a protocol in which, upon arrival of a new task, the central
manager starts a reverse auction among the agents, and the agent who
bids the lowest cost wins. We introduce the model, formulate its equa-
tions and suggest equilibrium strategies for the agents. By identifying
specific characteristics of the equilibria, we manage to suggest an effi-
cient algorithm for enhancing the agents’ calculation of the equilibrium
strategies. A comparison with the central allocation mechanism, and the
effect of environmental settings on the perceived equilibrium are given
using several sample environments.

1 Introduction

Distributed task allocation to self-interested agents is an important concept in
Multi-Agent System (MAS) environments [10]. Though the case of task alloca-
tion to cooperative agents with a joint goal is always preferred over the allo-
cation to self-interested agents, the latter method is significantly important in
environments where a central manager does not own the agents or cannot fully
control them. In such environments, the central planner, striving to achieve a
specific goal, will try to enforce cooperation throughout task allocation proto-
cols. Nevertheless, while both centralized and distributed cooperative allocation
mechanisms assume a joint goal for all agents, this is not necessarily the case once
self-interested agents are introduced into a model. The latter case may suggest
conflict of interests, as each agent strives to maximize its own utility. This might



result in a deviation of the self interested agents from the centralized proposed
mechanism. Thus, having a clear methodology for finding the allocation strate-
gies in equilibrium is a necessary condition for resolving the non-cooperative
problem.

In this paper we study equilibrium strategies for self-interested agents sit-
uated in uncertain environments. We suggest a model in which different types
of tasks arrive dynamically according to a given probability (see Figure 1). The
tasks are allocated according to a pre-defined protocol set by a central man-
ager. This central manager may be defined as a government, a municipality, a
company, etc., operating in a dynamic environment and lacking the required re-
sources to perform the tasks by itself. The protocol defines the rules for selecting
a performer of the task and the appropriate payment for this task. A capability
for performing a task depends on a specific world state. Each agent has a differ-
ent set of capabilities, thus the agents differ in their cost for performing a given
task, in a specific world state. The goal of the central manager is to maximize his
expected utility, defined as a function of the number of tasks being performed
and the total payment.

Our long-term goal is to supply the central manager with the optimal proto-
col which maximizes its utility, given specific environmental settings. However,
deriving the central manager’s perceived utility when applying a given protocol,
requires understanding the agents’ equilibrium strategies when such protocol is
being used. In this paper, we demonstrate this methodology by proposing and
studying a specific protocol. The protocol suggests that the central manager
announces a reverse Vickrey auction upon the arrival of a new task. The agent
asking the lowest price is the winner and is paid the price requested by the
second lowest bid in the auction.
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Given the above protocol, each agent sets its optimal bid for any world state.
Winning the current auction will result in an immediate income, but the agent
will need to allocate resources in order to perform the task, thus avoiding any
additional auctions (possibly associated with better opportunities, e.g. better
world states and/or fewer agents to compete with). Therefore the agent’s bidding
strategy must consider the tradeoff between an immediate gain from the current
auction and the expected loss of future opportunities. The agent’s evaluation
of the above two measures is derived from the analysis of the other agents’
strategies in current and future auctions.

It is notable that e-commerce domains do not consider the modulation of
competitors’ future strategies when setting an agent’s bid (e.g. [4, 8]). This is
mainly due to the high rate of new agents entering the environment and the
difficulty in assessing the new agents capabilities. Nevertheless, in our domain,
the number of competing agents is relatively small, and their overall capabilities
can be estimated with some probability. Thus an agent’s strategy must consider
the long term strategies of the other agents in the environment as part of its
analysis.

Typical applications in this domain include exploration of remote planets,
urban search, and rescue [5]. Consider for example an under-water exploration
mission undertaken by a government. Different companies are invited to compete
for different tasks (underwater surveys, inspections, mapping, pollution preven-
tion, recovery, etc.) using their own Remotely Operated Vehicles (ROVs). Since
the ROVs have been designed and evaluated by different companies, their capa-
bilities to perform a task are dissimilar in different world states. An additional
application can be found in an environment where self interested servers, with
different configurations and changing loads, are competing for the execution of
jobs arriving from an external source, such as universities. Even though each
server might have information regarding the other servers’ configuration, these
servers capability to perform a given job is a function of their load at that specific
time. Though each server can calculate its own capability for the performance of
a new job, it can only assess the distribution of capabilities of the other servers
for executing the job. In both applications, agents have to decide their strategies
promptly, according to their current information of the world sate, and their
evaluation of their competing agents’ capabilities.

The concept of task allocation in a competitive environment is discussed
in several works (e.g., [3, 7]). A core application in this domain is the contract
net protocol [9]. The main focus of the works cited above is on the commit-
ments and the communication problems that emerge in such an environment.
A general architecture and applications are given in [5]. None of these works
concern the concept of equilibrium and the modulation of other agents’ future
strategies. Several works from the adjacent domain of resource allocation involve
equilibrium analysis [11, 1, 2, 12]. However, they do not suggest the full extent of
changing capabilities and world states or the modulation of all future strategies
of the other agents.



In the following section we present the formalization of the model. The equi-
librium analysis is given in section 3. In section 4 we suggest an efficient algorithm
for the distributed calculation of the agents’ equilibrium strategies. Section 5 con-
tains a discussion and computational demonstration of the affect environmental
settings have on the perceived equilibrium strategies, as well as a comparison
to central allocation. Conclusions and future directions for research are given in
section 6.

2 Problem Formulation

We consider an environment with a set A of self interested agents. We denote an
agent g by Ag. A measure for an agent’s capability handling a given task, is the
duration of time required to successfully complete it. The agent’s required time
to perform any given task, at time t, is derived from the world state, st. Thus,
the duration required for agent Ag to perform a task, given a world state st at
time t, is attained by the function DAg (st). Due to the complexity of world’s
states, and the changing environment, we assume that for each world state st,
the duration DAg (st) is drawn from a probability function PD(x), defined over
the interval [Dmin, . . . , Dmax].

The agent’s decision must take into consideration two types of costs. The
first reflects the cost of participating in an auction (this represents all the costs
associated with preparing for the auction, possible auction fees set by the central
manager, calculations and evaluation costs, etc.), denoted by C. The second cost,
c, is the cost of operating the agent per time unit when performing a task (for
simplification we assume all agents share the same c). Considering the servers
application outlined above, C may be viewed as the resources a server has to
spend in order to evaluate a job characteristics (possibly even performing a
small pilot) and determine its capabilities to perform the job. The cost c in this
example is the cost of operating the server. For each auction, of k competitors
and a given DAg (st), agent Ag calculates its bid, denoted by Bk(DAg (st)). The
bid is limited by the maximum payment, M , the central manager is willing to
pay per task.

An agent will leave the environment only upon winning an auction. The
dynamic nature of the environment suggests possible entrance of new agents
(either former auction winners once they have completed their tasks, or brand
new ones). The number of agents entering the environment between two subse-
quent auctions is associated with a probability function Pnew(z), z = 0, ...,m,
where m is the maximum number of new agents entering. We assume m, as
well as E[Pnew(z)] are relatively small in comparison to the entrance rate in
e-commerce.

We assume that all agents are acquainted with the total number of agents, k
in the environment, at a given time. We also assume that all agents are familiar
with the probability function PD(x), the cost parameters C and c, the maximum
price M and Pnew(z). Within a given auction, each agent Ag can evaluate only
its own duration DAg (st) for performing this task.



3 Equilibrium Analysis

In this section we provide the equilibrium bids’ structure and show that no single
agent has an incentive to deviate from it.

Notice that the bid Bk(DAg (st)) set by agent Ag is determined solely by
DAg (st), and the current number of agents competing in the auction, k. Thus
the agents’ strategy is stationary, i.e., any agent A1 associated with a duration
DA1(st) and k competing agents will bid the same as agent A2 associated with
DA2(st) and k competing agents, where DA1(st) = DA2(st) (regardless of the
value t). From this point onward in the paper, we will refer to all durations
DAg (st) satisfying DAg (st) = Di ∈ [Dmin, . . . , Dmax] (Ag ∈ A) as Di. Similarly,
we denote the equilibrium bid Bk(Di) as Bk

i .
Consider a new task arriving at time t, where k agents are situated in the

environment. Theorem 1 states that the agents’ equilibrium bids when competing
for a given task, weakly decrease in their required duration to perform it (given
a specific world state).

Theorem 1. For any two agents A1 and A2, having durations Di and Dj re-
spectively, satisfying Di ≤ Dj, the following holds: Bk

i ≤ Bk
j .

Proof: As both agents, if winning the auction, will return to the environment
in the far future (according to the entrance probability function), their expected
opportunity loss when winning the current auction is equal. Thus, any bid Bk

j

encapsulating a positive revenue for agent A2, will also suggest a positive revenue
for agent A1 which can perform the task with a lower cost. ¤

Consider an agent which is about to attend an auction with a total of k
participating agents. The expected revenue of this agent is denoted by Rk. The
expected revenue of the agent currently participating in an auction, where its
duration for the proposed task is Di is denoted by Rk

Di
. The expected revenue

Rk is calculated as:

Rk = −C +
∑

y∈[Dmin,Dmax]

Rk
yPD(y) (1)

The above equation considers the cost C of participating in the auction and
the expected revenues given all the possible world states. The method for calcu-
lating Rk

y , (y ∈ [Dmin, Dmax]), is given in the following paragraph.

Notice that as the number of competitors an agent Ag has in an auction
increases, it is less likely that this agent will win the auction. Thus, we can state
the following theorem.

Theorem 2. An agent’s expected future utility from a given auction, monoton-
ically decreases in respect to the number of participating agents in this auction.
Formally stated: Rk > Rk+1 for any k.

Proof: by induction. ¤



In order to extract the agents strategies, we first need to understand the influ-
ence of the agents’ different bidding strategies on their expected utility functions.
An agent winning an auction, when bidding Bk

i , will be awarded the mean of
second bid values, denoted by EDi [second]. Otherwise, it will move on to the
next auction where its expected revenue will be either (assuming k agents in last
auction)

∑m
j=0 Pnew(j)Rj+k−1, if one of the other agents won this auction; or∑m

j=0 Pnew(j)Rj+k, if all agents used a bid higher than M . For simplification,
in the rest of this paper we will use: Rk+p(j) to denote

∑m
j=0 Pnew(j)Rj+k.
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Fig. 2. Agents’ bidding scenario

Figure 2, describes the different scenarios for an agent participating in a given
auction. We distinguish between 3 types of bids within the equilibrium:

(I) Bk
i < M : Using bids of this type, the agent wins the auction with a probabil-

ity PI , resulting in an expected revenue of EDi [second]− cDi. Otherwise (with
a probability of 1−PI) the agent loses the auction, thus its expected revenue is
Rk+p(j)−1. For agents associated with this type, the bid Bk

i satisfying:

Bk
i = Rk+p(j)−1 + cDi (2)

This bid guarantees their indifference to winning or losing the auction.
(II) Bk

i = M : Here, with a probability of PII the agent wins the auction,
obtaining a reward of M , thus its revenue is M − cDi. Otherwise, the agent’s
expected revenue is Rk+p(j)−1.
(III) Bk

i > M : When using bids of this type the agent will never win the auction.
Thus, its expected revenue will be Rk+p(j) (if all other agents, as well, bid higher
than M , with a probability of PIII), otherwise if any of the other agents win the
current auction, it will be Rk+p(j)−1.
In the rest of this paper we refer to the above types as type(I), type(II) and
type(III), respectively.

The following theorem suggests several important characteristics of the dif-
ferent equilibrium bid types.



Theorem 3. Consider an agent Ag, with a duration Di:
(a) if cDi < M − Rk+p(j)−1 holds, then the agent’s equilibrium bid is in-
evitably according to equilibrium type(I). Otherwise, the agent will bid according
to type(II) or type (III). (b) if the agent’s equilibrium bid is M (type (II)), then
any other agent Ag′ with Di′ < Di, not complying with part (a) of the theorem,
will bid M as well.

Sketch of Proof: (a) Agents associated with type (I) strategy in equilibrium,
gain a better utility by using Bk

i < M , than by using Bk
i = M . Thus considering

Figure 2, the following must hold:

PI(EDi
[second]− cDi) + (1− PI)(Rk+p(j)−1) ≥ (3)

≥ PII(M − cDi) + (1− PII)Rk+p(j)−1

Manipulating the above equation we obtain:

PIEDi [second]− PIIM ≥ (PI − PII)(Rk+p(j)−1 + cDi) (4)

Notice that EDi [second] ≤ M , as a bid greater than M will never win. Thus
substituting EDi [second] with M , we obtain M > Rk+p(j)−1 + cDi. Similarly,
we can prove that these agents do not have an incentive to move towards type
(III) strategy.

(b) As agent Ag′ is not associated with type (I) strategy our only concern is to
prove that this agent’s expected benefit when bidding Bk

i′ = M is greater than
the expected benefit when using Bk

i′ > M . Agent Ag is associated with type (II)
strategy, for which the following must hold:

PII(M − cDi) + (1− PII)(Rk+p(j)−1) ≥ (1− PIII)Rk+p(j)−1 + PIIIR
k+p(j) (5)

Manipulating the above equation we obtain:

PII(M − cDi) ≥ PIIIR
k+p(j) − (PIII − PII)Rk+p(j)−1 (6)

The above equation will be valid for agent Ag′ , where Dj ≤ Di. Thus agent Ag′

is also associated with equilibrium strategy of type (II), i.e., Bk
i′ = M . ¤

Figure 3
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Fig. 3. Division into types



The above theorem divides the agents into 3 continuous groups as demon-
strated in Figure 3. We denote the shortest duration of an agent bidding M , as
D. The longest duration, is denoted D. Utilizing the above theorem, and the
new notations, we can now formulate the expressions for the agents’ expected
revenues Rk

i , according to the three different types.
Type (I): The expected revenue is composed of 3 components: (a) The agent
is a sole best bidder (awarded the expected second bid) ; (b) the agent is the
best bidder along with other agents with equal bids (awarded its own bid with
a probability equal to the others) ; (c) the agent loses the auction, moving on to
the next one. The above is formulated as follows:

Rk
Di

=
∑

y∈[i+1,max]

(min(Bk
y , M)− cDi)(PD(D ≥ y)k−1− PD(D > y)k−1)+ (7)

+ Pequal(Bk
i − cDi) + (1− PD(D ≥ Di+1)k−1 − Pequal)Rk+p(j)−1

where Pequal =
∑k−1

j=1

(
k−1

j

)PD(Di)
jPD(D>Di)

k−j−1

j+1 is the probability the agent
will win the auction when one or more additional agents have the same duration
Di.
Type (II): The expected revenue is composed of 2 components: (a) The agent
wins the auction with a probability similar to all other agents offering M (awarded
M) ; (b) The agent loses the auction, moving on to the next one. The above is
formulated as follows:

Rk
Di

= (M − cDi)PII + (1− PII)Rk+p(j)−1 (8)

where PII =
∑k−1

j=0

(
k−1

j

)PD(Di)
jPD(D≤D≤D)jPD(D>D)k−j−1

j+1 is the probability the
agent will win the auction when bidding M .
Type (III): In this case the agent inevitably loses the auction thus the only
consideration is the number of agents it will compete with in the next auction
(affected by whether or not one of the other agents wins the current auction):

Rk
Di

= PD(D > D)k−1Rk+p(j) + (1− PD(D > D)k−1)Rk+p(j)−1 (9)

At this point, we have all the necessary equations to calculate the equilibrium
bids and the appropriate perceived revenues for each agent. Solving a system
of simultaneous equations of types (1-2, 7-9), yields the appropriate strategy
parameters. However, in the current structure of the problem, this would be
extremely difficult as we need to solve a set of 2 ∗ N + K complex equations,
where N denotes the number of discrete durations in the interval [Dmin, Dmax].

In the next section we show that for an important applicable variant of the
above model, a simple algorithm with a complexity O(N2k) can be used to
calculate the equilibrium bids, and thus the agents’ equilibrium revenues.



4 Bounded Size Environments

In this section, we focus on bounded size environments, where no new agents
enter the environment (Pnew(0) = 1). The number of available agents never
increases, thus once an agent is awarded a task, the number of available remain-
ing agents always decreases by one. This scenario is mostly common in disaster
environments (where task durations are relatively long and the arrival rate of
new tasks is quite high) or when the group of agents is physically isolated as
in the application for the exploration of remote planets [5]. Similarly, we can
identify such a scenario in the proposed self-interested servers application (see
section 1). Consider a scenario in which servers are competing for the execution
of night jobs (assuming they have idle resources only during night). A typical
execution of such a job lasts several hours, thus preventing the executing server
from competing for additional jobs during the night run. The entire application
will start over the next night as all servers will be available again to compete for
incoming jobs.

In the bounded size environment, a situation will eventually occur where one
of the agents is left alone. Nevertheless, unlike in the general model where new
agents might join this agent in subsequent auctions, here the agent will have no
future competition. In this situation the agent will undoubtedly bid M , having
no other agents to compete with. This is a unique scenario that can not be found
in general cases. However, even in this situation the agent might not be interested
in winning any given auction. As no competition is expected in future auctions,
it might be more beneficial for it to wait for a better world state, in which its
capabilities allow it to complete the task in a shorter duration, and thus with
a lower cost. In the absence of the cost of participating in an auction, C, the
agent will wait until it reaches a world state in which its capability to perform
the task is Dmin. However, the introduction of cost C requires a cost-effective
analysis. The agent’s optimal strategy, when left alone, is stationary, i.e., an
agent refusing to bid in an auction with a duration of Di will always repeat this
strategy. Thus the agent will use a reservation value strategy, bidding M in all
world states where its duration Di is smaller or equal to its reservation value.
By denoting the reservation value of the agent as D1

r we obtain:

R1(D1
r) = C +

D1
r∑

y=Dmin

(M − yc)PD(y) + PD(D > D1
r)R1(D1

r) (10)

This recursive equation is derived from classical search theory ([6], and refer-
ences therein), in which the searcher, having a fixed cost per search stage and a
distribution of benefits from possible opportunities, seeks to maximize its overall
utility (opportunity utility minus search cost). The above modification, results
in:

R1(D1
r) =

C +
∑D1

r

y=Dmin
(M − yc)PD(y)

PD(D ≤ D1
r)

(11)



The optimal reservation value, D1
r , is the one where the agent is indifferent

to obtaining an immediate revenue M and to continuing the search with an
expected future payoff of R1(D1

r). Formally stated:

R1(D1
r) =

C +
∑D1

r

y=Dmin
(M − yc)PD(y)

PD(D ≤ D1
r)

= M −D1
rc (12)

Thus R1 = R1(D1
r).

Since the analysis given in section 3, for the case of having more than one
agent in an auction, remains unchanged, except for replacing Rk+p(j) with Rk,
we will not repeat it in this context. Though the modifications of equations (1-9)
for the bounded size environment do not take into consideration an increase in
the number of agents, the solution process still involves solving a set of 2N + k
complex simultaneous equations. However, using the analysis given for the case
where k = 1 and Theorems (1-3) we suggest an efficient algorithm that the
agents can use for calculating their equilibrium bids.

For the bounded size environment, we can formulate equation (1) by dividing
the expected utility,

∑
y∈[Dmin,Dmax] R

k
yPD(y), into:

Rk = −C +
∑

y∈[Dmin,D]

PD(y)Rk
y+ (13)

+ PD(D > D)(1− PD(D > D)k−1)Rk−1 + PD(D > D)kRk

This way, we can extract Rk, once we have Rk−1, as the following algorithm
suggests.

Algorithm 1 An algorithm for calculating the equilibrium bids.
Input:

k - Number of initial agents
M - The maximum price
D[1 : N ] - Vector of the discrete durations
PD[1 : N ] - Vector of probabilities, associated with D[1:N].

Output: B[1 : k][1 : N ] - An array of equilibrium bids.
01 init: for (i=1;i≤N;i++) B[1][i]=M;
02 calculate R[1][N+1] using Equation (12);
03 for (i=2;j ≤ k;i++) {
04 for (j=N;j ≥ 1;j --) calculate B[i][j] using Equation (2);
05 for (Indx=1;(B[i][Indx] ≤ M)and(Indx ≤ N);Indx++) ;
06 for (j=Indx;j ≤ N ;j++) {
07 calculate R[i][N+1] using Equation (13);
08 if R[i][N+1] calculated using Equation (8) is greater than

when calculating using Equation (9) then {
09 B[i][j]=M;}
10 else return(B[1 : K][1 : N ]);
11 }
12 }
13 return(B[1 : K][1 : N ]);



The algorithm follows the rules of distinction between the 3 agent types as
suggested in the former section, particularly making use of the characteristics
described in Theorem 3.

Theorem 4. (a) Algorithm 1 will always terminate in finite time. (b) If an
equilibrium exists for the environment4 the array B[1 : K][1 : N ] will store the
equilibrium bids after the algorithm execution is completed. (c) The complexity
of the algorithm is O(N2k).

Proof:
(a) The loops 01, and 03-06 are finite.
(b) After executing line 02, the equilibrium revenue for the case of a single agent,
R1, will be stored in R[1][N+1]. Lines 03-13 are for calculating the equilibrium
bids for each scenario of more than one agent in an auction. First, the algorithm
isolates the agents that will unavoidably bid less than M . This is done using
Equation (2). A temporary Rk (stored in R[k][N+1]) is calculated using Equation
(13), based on the bids stored in array B[][]. Then (lines 08-09 ) the algorithm
starts scanning the agents that currently bid more than M , but have the incentive
to deviate towards bidding M , given the values of the current Rk, and the Rk−1

formerly calculated. The agent characterized with the shortest duration in the
group of agents bidding more than M is assessed first, and then the other agents
according to their durations. Once there is no additional agent to be added to
the group of agents bidding M , a final Rk can be calculated for the case of k
competing agents. The value of Rk+1 is calculated in the same manner, thus,
starting with k = 1, all Rk values (for k > 1) can be calculated recursively.
(c) The complexity of the algorithm is O(N2k), as it uses two loops bounded by
N, for all k agents. The computations made at each stage are immediate. ¤

In addition to the algorithm being used by each agent for situations where
M , k and C are fixed, it can also be utilized by the central manager. By using the
algorithm, the central manager can efficiently calculate the expected equilibrium
strategies for different environments controlling the above parameters. Thus the
expected benefit can be derived for each of these environments, and the central
manager’s utility can be optimized when the second price auction is used as the
allocation protocol.

5 Computational Examples and Discussion

In this section we explore the behavior of the agents’ expected revenues and the
central manager’s total expenses for performing tasks in different environmental
settings. Our goal is mainly to emphasize and illustrate some of the charac-
teristics of the equilibrium as analytically developed in the previous sections.

4 A scenario where an equilibrium does not exist might occur only in discrete environ-
ments and this is very rare. Nevertheless, the suggested algorithm can be extended
to handle such a scenario.



Calculations were performed using Algorithm 1. We use an environment where
the durations are uniformly distributed in the interval [1, 10] with 100 discrete
values, and the parameters: c = 5, M = 100.
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Our first goal is to demonstrate how the number of agents competing in an
auction, k, affects each agent’s equilibrium revenue and the cost for the cen-
tral manager. Figure 4, presents the agents’ expected revenue, as a function of
the duration Di for different numbers of competing agents, k. As predicted, an
agent’s expected revenue decreases in its duration (agents characterized with
shorter durations are more likely to win an auction and their cost for performing
the task is lower). The curves decrease as the agent bids lower than the max-
imum price and from a specific transition point they become constant as the
agents bid higher than the maximum price. The relatively steep change in the
agent’s expected revenue that can be noticed at the transition point is a mea-
sure of the interval in which agents set their equilibrium bids to the maximum
price (types II). Notice that unlike the agents bidding higher than the maximum
allowed bid (all having the same expected revenue, as they will never win the
auction), agents setting their bid to the maximum price seldom win the auction.
Thus agents of the latter type differ in their expected revenue as their cost for
performing the task is different.

Next, we demonstrate the affect of C (cost of participating in an auction) and
the number of agents, k, on the expected expenses of the central manager. The
affect is illustrated in Figure 5, depicting the average cost per task, for different
C and k values. Simple intuition suggests that increasing the number of agents
and decreasing the cost C will enhance competition. Thus the central manager’s
average expenses per task should decrease. Figure 5 demonstrates that the above
is true, though the improvement is limited. This is simply because adding more
agents extends the average number of auctions an agent needs to participate in,
prior to winning a task (see Figure 6, describing the expected number of auctions
until all tasks are allocated, for different values of C and k). At some point, as
the number of agents increases, the expected future revenue becomes negative
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for any agents participating in this type of auction sequence. In the latter case,
the protocol is not feasible as the agents initially prefer not to participate in any
of the auctions. The same holds for the increase in cost. If the central manager
can control C and k, it will certainly select the combination that will produce the
lowest feasible expected cost (in our example, k = 20, C = 2.2). The behavior
presented in Figure 6 can be explained as follows: for small values of C the
agents tend to wait for better world states. As C increases, the agents tend to
compromise and prefer taking a task even in non-optimal world states, rather
than paying C for an additional auction.
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We also compare the performance of the distributed allocation to the self-
interested agents model with the alternative method where agents are coopera-
tive, and the central manager uses a centralized allocation. For this purpose we



consider an allocation method where the central manager allocates each arriving
task to the agent with the lowest duration. The expected average expense for a
task given k available agents, denoted as Qk, in this case will be:

Qk =
∑

y∈[Dmin,Dmax]

cy(PD(D ≥ y)k−1 − PD(D > y)k−1) (14)

Obviously, we can not obtain such a theoretically expected expense in a dis-
tributed environment of self-interested agents. However, this presents a reference
point for comparison. Figure 7 compares the two methods, when for each num-
ber of agents, k, the optimal C (as derived from Figure 5) was used by the
central manager to supply the best average expected cost in the distributed self-
interested agents allocation. The graph suggests that the expected expense is
significantly smaller in the central allocation method, however this is mainly a
function of the parameters C, c and the distribution function. Notice the ex-
penses associated with the central allocation as formulated in Equation (14),
give only the ”net” cost of agent’s operation, c. However, if we also take into
consideration leasing fees the central manager needs to pay for having full con-
trol over the agents, then for some leasing fee values it will be more economic to
use the allocation of tasks to self-interested agents.

6 Conclusions

In this paper we have developed a theoretical framework for analyzing the task
allocation process for self-interested agents in a dynamically changing environ-
ments. The main challenge in these types of environments is to identify the
agents’ equilibrium strategies, for any given protocol and specific environmental
settings. Typical environments of such domains (e.g., exploration of remote plan-
ets, servers competing for executing jobs during idle periods) are characterized
by a relatively small number of agents with partial knowledge regarding other
agents’ capabilities. Thus each agent attempts to maximize its revenue by taking
into consideration both the other agents’ long term strategies and the influence
changes in its own strategy will have on the other agents. This imposes a signif-
icant computation complexity as large sets of complex simultaneous equations
need to be solved in order to derive the equilibrium. We focused on a specific
allocation protocol, where the central manager initiates a second price reverse
auction for each arriving task. We developed the equilibrium equations for this
environment and identified important characteristics of the equilibrium. Based
on the analysis, we were able to produce an efficient algorithm for calculating
the agents’ equilibrium bids when no new agents appear in the environment.
The complexity associated with the proposed algorithm suggests a significant
improvement in comparison to the complexity of solving the sets of equilibrium
equations. In addition to the usage of the algorithm by the agents, the central
planner can now use it to fine tune the parameters of the proposed protocol to
maximize its utility.



In future work we intend to use the methodology developed in this paper
for exploring the equilibrium of the task allocation process for self-interested
agents in respect to additional protocols. This will further enhance the central
manager’s capabilities to affect its utility by also controlling the type of protocol
to be applied.
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