
EvoGrad: Evolutionary-Weighted Gradient and Hessian Learning
for Black-Box Optimization

Yedidya Kfir 1, Elad Sarafian2, Yoram Louzoun1, Sarit Kraus1

1Bar-Ilan University, 2Nvidia
kfiry@biu.ac.il, esarafian@nvidia.com, louzouy@math.biu.ac.il, sarit@cs.biu.ac.il

Abstract

Black-box algorithms aim to optimize functions with-
out access to their analytical structure or gradient infor-
mation, making them essential when gradients are un-
available or computationally expensive to obtain. Tradi-
tional methods for black-box optimization (BBO) pri-
marily utilize non-parametric models, but these ap-
proaches often struggle to scale effectively in large in-
put spaces. Conversely, parametric approaches, which
rely on neural estimators and gradient signals via back-
propagation, frequently encounter substantial gradient
estimation errors, limiting their reliability. Explicit Gra-
dient Learning (EGL), a recent advancement, directly
learns gradients using a first-order Taylor approxima-
tion and has demonstrated superior performance com-
pared to both parametric and non-parametric methods.
However, EGL inherently remains local and myopic, of-
ten faltering on highly non-convex optimization land-
scapes. In this work, we address this limitation by
integrating global statistical insights from the evolu-
tionary algorithm CMA-ES into the gradient learning
framework, effectively biasing gradient estimates to-
wards regions with higher optimization potential. More-
over, we enhance the gradient learning process by esti-
mating the Hessian matrix, allowing us to correct the
second-order residual of the Taylor series approxima-
tion. Our proposed algorithm, EvoGrad2 (Evolution-
ary Gradient Learning with second-order approxima-
tion), achieves state-of-the-art results on the synthetic
COCO test suite, exhibiting significant advantages in
high-dimensional optimization problems. We further
demonstrate EvoGrad2’s effectiveness on challenging
real-world machine learning tasks, including adversar-
ial training and code generation, highlighting its ability
to produce more robust, high-quality solutions. Our re-
sults underscore EvoGrad2’s potential as a powerful tool
for researchers and practitioners facing complex, high-
dimensional, and non-linear optimization problems.

1 Introduction
Black-box optimization (BBO) is the process of searching
for optimal solutions within a system’s input domain without
access to its internal structure or analytical properties (Audet
et al. 2017a). Unlike gradient-based optimization methods

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that rely on the calculation of analytical gradients, BBO al-
gorithms query the system solely through input-output pairs,
operating agnostically to the underlying function. This fea-
ture distinguishes BBO from traditional ML tasks, such as
neural network training, where optimization typically in-
volves backpropagation-based gradient computation.

Many real-world systems naturally fit the BBO frame-
work because their behavior is difficult or impossible to
model explicitly. In such cases, BBO algorithms have
achieved remarkable success across fields, such as robotic
motor control (Gehring et al. 2014; Prabhu et al. 2018), am-
bulance deployment (Zhen et al. 2014), parameter tuning
(Olof 2018; Rimon et al. 2024), and signal processing (Liu
et al. 2020), among others (Alarie et al. 2021). BBO applica-
tions also go beyond physical systems; many ML problems
are black-box when the true gradient is unavailable. Exam-
ples include hyperparameter tuning (Bischl et al. 2023), con-
textual bandit problems (Bouneffouf, Rish, and Aggarwal
2020), large language model training with human feedback
(Bai et al. 2022), and optimizing language models for long
context inference (Ding et al. 2024), to name a few.

As problem dimensions increase, the cost of evaluating
intermediate solutions becomes a critical constraint, espe-
cially in real-world settings where interaction with the en-
vironment is expensive or in ML, where larger models de-
mand substantial computational power. Therefore, modern
BBO algorithms must reduce evaluation steps (Hansen et al.
2010). Achieving this requires algorithms capable of more
accurately predicting optimization directions, either through
better gradient approximation (Anil et al. 2020; Lesage-
Landry, Taylor, and Shames 2020) or momentum-based
strategies to handle non-convexity and noise. In this paper,
we propose two novel methods: (1) Evolutionary Gradient
Learning (EvoGrad), a weighted gradient estimator that bi-
ases toward promising solutions, and (2) Higher-Order Gra-
dient Learning (HGrad), which incorporates Hessian correc-
tions to yield more accurate gradient approximations.

We unify the strengths of EvoGrad and HGrad in
EvoGrad2, which offers four key advantages:
• Performance: EvoGrad2 consistently outperforms base-

line algorithms across a diverse range of problems. In-
cluding synthetic test suites and real-world ML applica-
tions. It can handle noisy and non-convex environments.

• Strategic Global Gradient Estimation: Although tra-



ditional local search methods can become trapped due
to exploitation steps, our algorithm strategically incorpo-
rates statistical biases toward promising global regions,
enhancing the likelihood of identifying directions lead-
ing closer to the global minimum.

• Success Rate: Our algorithms are consistent throughout
the suite, able to solve more problems than other algo-
rithms on the benchmark.

Related works: Black-box optimization (BBO) algo-
rithms have a long history, with various approaches devel-
oped over the years. Some of the foundational techniques
include grid search, coordinate search (Audet et al. 2017b),
simulated annealing (Busetti 2003), and direct search meth-
ods like Generalized Pattern Search and Mesh Adaptive
direct search (Audet et al. 2017c), Gradient-less descent
(Golovin et al. 2019), and ZOO (Chen et al. 2017). These
approaches iteratively evaluate potential solutions and de-
cide whether to continue in the same direction. However,
they resample at every step and don’t reuse the budget from
previous iterations, wasting a lot of budget.

Another prominent family of BBO algorithms is the evo-
lutionary methods (Back 1996). Including methods such as
Covariance Matrix Adaptation (CMA) (Hansen 2016) and
Particle Swarm Optimization (PSO) (Clerc 2010). These
simulate the process of natural evolution, where a population
of solutions evolves through mutation and selection (Au-
det et al. 2017d). They perform well in BBO environments
due to their effectiveness in tackling non-convex problems.
However, they come with significant drawbacks, particularly
the need for extensive fine-tuning of parameters like gen-
eration size and mutation rates. CMA, for example, strug-
gles in higher-dimensional environments and requires care-
ful adjustment of hyperparameters and guidance to perform
optimally (Loshchilov, Schoenauer, and Sebag 2013; Tang
2021). Recently, (Braun, Lange, and Toussaint 2024) uses
CMA as a building block for SVGD (Liu and Wang 2016)
in intractable environments, highlighting the diverse ways in
which CMA and evolution strategies can be repurposed.

Then there are model-based methods (Audet et al. 2017e),
which attempt to emulate the behavior of the function using
a surrogate model. These models provide important analyti-
cal information, such as gradients (Bertsekas 2015), to guide
the optimization process and help find a minimum. Within
this class, we can further distinguish two sub-classes. To ad-
dress the issue of dimensionality, Explicit Gradient Learn-
ing (EGL) was proposed by (Sarafian et al. 2020). While
many model-based methods focus on learning the function’s
structure to derive analytical insights (e.g., Indirect Gradi-
ent Learning or IGL (Lillicrap 2015; Sarafian et al. 2020)),
EGL directly learns the gradient information. EGL uses Tay-
lor’s theorem to estimate the gradient. The authors also em-
phasize the importance of utilizing a trust region to handle
black-box optimization problems.

Several works have explored hybrid approaches that com-
bine gradient-based methods with evolutionary algorithms,
aiming to leverage both global search and local descent
capabilities. For example, (Liu, Li, and Qian 2020; Ma-
heswaranathan et al. 2019; Kunpeng, Yugang, and Xiabi

2012) utilize gradient information to construct probabilis-
tic models or distributions, which are then employed to es-
timate the search direction. On the other hand, (Tang 2021)
took a different approach. Ignoring the functions’ gradient
information, it seeks to train a generative model from the
function’s distribution and generate better candidate solu-
tions from the model.

The paper is organized as follows: Section 2 covers the
algorithm’s theoretical background and mathematical foun-
dations. Sections 3 and 4 present our two enhanced vari-
ants of the gradient learning algorithm: EvoGrad and HGrad.
These are followed by section 5 where we present the full
algorithm, EvoGrad21. Section 6 provides experimental re-
sults on the synthetic COCO test suite, and Section 7 high-
lights 2 real-world high-dimensional applications and poten-
tial uses. Finally, section 8 concludes and suggests future
research directions. The supplementary material shows our
code, experiments, and environment setup.

2 Background
BBO: The goal of black-box optimization (BBO) is to min-
imize a target function f(x) through a series of evaluations
(Audet et al. 2017a), over a predefined domain Ω:

find: x∗ = argmin
x∈Ω

f(x) (1)

Explicit Gradient Learning: The Explicit Gradient Learn-
ing method, proposed by (Sarafian et al. 2020), leverages the
first-order Taylor’s expansion: f(y) = f(x) +∇f(x)⊤(y−
x) + R1(x, y). Here, R1(x, y) = O(∥y − x∥2) is a higher-
order residual. By minimizing the residual term with a surro-
gate neural network model, EGL learns the mean-gradient:
a smooth approximation of the function’s gradient

gEGL
ε (x) = arg min

gθ:Rn→Rn

∫
τ∈Bε(0)

(REGL
gθ,x

(τ))2dτ

REGL
gθ,x

(τ) = f(x)− f(x+ τ) + gθ(x)
⊤τ

(2)

Here, Bε(0) is a ball around 0 defining the acquisition re-
gion of new statistics, where usually samples are uniformly
sampled from this region. As ε → 0, the mean-gradient con-
verges to ∇f . EGL thus uses ε to control the accuracy of the
mean-gradient. This property enables EGL to explore the
entire landscape. Specifically, when ε is sufficiently large,
EGL can locate lower regions in the function. Conversely,
when ε → 0, it converges to a local minimum. Leverag-
ing this property, the paper shows it is possible to determine
both the algorithm’s convergence rate and the estimated gra-
dient’s error rate. See App. of (Kfir et al. 2025).

CMA-ES: Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) builds and updates a multivariate Gaus-
sian distribution to guide optimization. The key element is
the covariance matrix, which captures the shape and orien-
tation of the search distribution based on selected samples.

For each generation g, the algorithm samples x1, ..., xλ ∼
N (m,σ2C), where m,σ and C are the evolving mean, stan-
dard deviation, and covariance matrix parameters. The sam-
pled points are then sorted according to their fitness function

1Code implementation:https://github.com/yedidyakfir/egl



values, i.e. [x1, ...xλ] s.t. (f(xi) ≤ f(xj) : ∀i < j, and
a set of recombination weights w1, . . . , wn is assigned for
each individual. These weights are positive, decreasing with
rank (w1 ≥ w2 ≥ · · · ≥ wn > 0), and normalized such
that

∑µ
i=1 wi = 1. These samples are then used to update

and improve the evolved parameters m,σ, and C for the
next generation g + 1. For example, the covariance matrix
is updated by first calculating an estimated statistic of the g
generation covariance:

C ′ =

µ∑
i=1

wi ·
(
xi −m

σ

)(
xi −m

σ

)⊤

and then applying a weighted update to construct the new
generation covariance matrix

Cg = (1− cµ)C
g−1 + cµC

′

. Here Cg−1 and Cg are the previous and updated matri-
ces, and cµ is a hyperparameter. Likewise, m and σ are up-
dated to refine the population statistics and guide conver-
gence (usually defined as m or x1 of the last generation).

Trust Region: A powerful tool for BBO algorithms is
a trust region (TR), which restricts the search to a local-
ized area around the current estimate. By constraining the
optimization steps and standardizing the input-output statis-
tics. (Sarafian et al. 2020) showed the usefulness of gradi-
ent learning with neural-networks. In our work, we applied
TR also to CMA-ES to create strong baseline algorithms,
see Algorithm in App. (Kfir et al. 2025). This modifica-
tion, though conceptually simple, leads to significant per-
formance gains, especially in high-dimensional settings.

3 Gradient Learning with Evolutionary
Weights

Local search algorithms are based on the notion that the
gradient descent path is the optimal search path. However,
this assumption often proves suboptimal as it can lead to
inefficient sampling and susceptibility to local minima. To
address this, we design a gradient learning algorithm that
incorporates global statistics measured by statistical algo-
rithms like CMA-ES. To that end, we introduce an impor-
tance weighting function W that assigns a higher weight to
directions leading to lower values of the objective function.
This encourages the algorithm to prioritize descent direc-
tions that not only follow the gradient but also align with
globally favorable outcomes.

We define the Evolutionary Gradient Learning objective
by adding an importance sampling weight to the integral of
Eq. 2

gEvoGrad
ε (x) = argmin

gθ:Rn→Rn

∫
τ∈Bε(0)

W (x+ τ) ·REGL
gθ,x

(τ)2dτ

(3)
The importance sampling factor W should be chosen s.t. it
biases the optimization path towards lower regions regard-
less of the local curvature around x, i.e. W (x1) ≥ W (x2)
for f(x1) ≤ f(x2).

In our implementation, we train a CMA-ES with the sam-
ples generated by our uniform acquisition function around
xk (where k is the iteration index), and we use the evolved
CMA distribution parameters as the integral weights, i.e.

W (x) ∼ exp

(
− 1

2σ2
(x−m)TC−1(x−m)

)
(4)

Where m,σ and C are the CMA-ES evolving statistics as
defined in Sec. 2. This choice shifts the focus from the uni-
form acquisition function around xk to a higher quality area
and biases the gradient towards the current global minimum
inside the trust region.

Notice that in practice, the theoretical objective in Eq. 3 is
replaced by a sampled Monte-Carlo version (see Sec. 5) s.t.
the sum of all weights across the sampled batch is smaller
than 1. Additionally, to prevent the loss of gradient informa-
tion during sampling, the function ensures that no sample
is assigned a weight of exactly zero. Therefore, a minimum
weight is enforced for each sample. This lower bound guar-
antees that all sampled directions contribute to the gradient
estimate, and it also enables the proof for the controllable
accuracy (Appendix in (Kfir et al. 2025)) property of Evo-
Grad, which implies that the mean-gradient converges to the
true gradient, still holds for our biased version, s.t. when
ε → 0, gEvoGrad

ε → ∇f(x), this guarantees that the con-
vergence properties of the mean-gradient still hold.
Theorem 3.1. (Evolutionary Gradient Controllable Accu-
racy) For any differentiable function f with a continuous
gradient, there exists κEvoGrad > 0 such that for any ε > 0,
gEvoGrad
ε (x) satisfies

∥gEvoGrad
ε (x)−∇f(x)∥ ≤ κEvoGradε for all x ∈ Ω.

Corollary 3.2 (Approximate Convergence of EvoGrad). Let
f and gEvoGrad

ε satisfy the assumptions of Theorem 3.1, and
consider the iteration

xk+1 = xk − α gEvoGrad
ε (xk).

For a suitable fixed step size α > 0, this update gener-
ates a descent sequence and converges to a point x⋆ with
∥∇f(x⋆)∥ = O(ε); in particular, as ε → 0 the procedure
approaches a (local) minimum. A complete statement with
explicit conditions and constants is given in the Appendix.

To demonstrate the practical benefits of our evolutionary
weighting approach, we plot 4 typical trajectories of EGL
and EvoGrad in an environment with multiple local minima
in Fig. 1. The trajectory of the weighted gradient is more di-
rect, focusing on the global minimum, and is less easily dis-
tracted by nearby local minima. We also find that the biased
version has a significantly higher probability of detecting the
global minimum across different epsilon sizes, regardless of
the starting point. In Fig. 2, we show 2 1D functions and
the probability for each algorithm to find the direction to the
global minimum (relative to epsilon). For each value of ε,
we sampled 500 random points, trained the gradient network
gEvoGrad
ε (x), and evaluated the resulting gradient direction.

We can see that EvoGrad rapidly outperforms EGL, which
is far more likely to get stuck in the local minimum, achiev-
ing substantially higher convergence rates to the global min-
imum, particularly as ε increases.



Figure 1: EvoGrad vs EGL trajectories. 1st row: Gallagher’s
Gaussian 101-me. 2nd row: 21-hi.

4 Gradient Learning with Hessian
Corrections

To learn the mean-gradient, EGL minimizes the first-order
Taylor residual (Sec. 2). Higher-order approximations can
yield more accurate models, with the second-order Taylor
expansion being

f(x+τ) = f(x)+∇f(x)⊤τ+
1

2
τ⊤∇2f(x)τ+R2(x, x+τ)

Here R2(x, y) = O(∥x− y∥3) is the second order residual.
By replacing ∇f with a surrogate model gθ and minimizing
the resulting surrogate residual, we obtain our Higher-order
Gradient Learning (HGrad) variant

gHGrad
ε (x) = argmin

gθ:Rn→Rn

∫
τ∈Bε(0)

RHGrad
gθ,x

(τ)2dτ (5)

RHGrad
gθ,x

(τ) = f(x)− f(x+ τ) + gθ(x)
⊤τ +

1

2
τ⊤Jgθ (x)τ

The new higher-order term Jgθ (x) is the Jacobian of
gθ(x), evaluated at x which approximates the function’s
Hessian matrix in the vicinity of our current solution, i.e.,
Jgθ (x) ≈ ∇2f(x). Next, we show theoretically that, as ex-
pected, HGrad converges faster to the true gradient, which
amounts to lower gradient error in practice.2

Theorem 4.1. (Improved Controllable Accuracy): For any
twice differentiable function f ∈ C2, there exists κHGrad >
0 such that for any ε > 0, the second-order mean-gradient
gHGrad
ε (x) satisfies

∥gHGrad
ε (x)−∇f(x)∥ ≤ κHGradε

2 for all x ∈ Ω.

In other words, in HGrad, the model’s error is of an order
of magnitude ε2 instead of ε in EGL and EvoGrad.

2Notice that, while HGrad incorporates Hessian corrections
during the gradient learning phase, unlike Newton’s methods, it
is not used for scaling the gradient step size. Scaling the gradient
requires calculation of the inverse Hessian, which is prone to nu-
merical challenges and instabilities, and in our experiments was
found less effective than the HGrad approach of minimizing the
Taylor residual term.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

4

3

2

1

0

f(x)

1 0 1 2 3 4 5 6
x

1

0

1

2

f(x)

0.2 0.4 0.6 0.8 1.0
Epsilon

0.6

0.8

Di
re

ct
io

n 
Ac

cu
ra

cy

EGL
EvoGrad

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.4

0.6

Di
re

ct
io

n 
Ac

cu
ra

cy

EGL
EvoGrad

Figure 2: The probability for each algorithm to find the cor-
rect direction to the global minimum at a randomly selected
starting point, based on the epsilon size.

Learning the gradient with the Jacobian corrections intro-
duces a computational challenge, as double backpropagation
can be expensive. This overhead can hinder the scalability
and practical application of the method. A swift remedy is
to detach the Jacobian matrix from the computation graph.
While this step slightly changes the objective’s gradient (i.e.,
the gradient through (RHGrad), it removes the second-order
derivative, and in practice, we found that it achieves simi-
lar results compared to the full backpropagation through the
residual RHGrad, see Tab. 1.

5 EvoGrad2 - Combining Evolutionary and
Higher-Order Gradient Learning

Finally, we combine the Evolutionary Weighting method
(Sec. 3) with the Hessian corrections (Sec. 4), presenting
a practical implementation where integrals are replaced by
Monte-Carlo sums over sampled pairs. The resulting loss
function defines the Evolutionary Higher-order Gradient
(EvoGrad2) model

LEvoGrad2
ε (θ) =

∑
∥xi−xj∥≤ε

W (xj)RHGrad
gθ,xi

(xi−xj)
2 (6)

The summation is over sampled pairs which satisfy ∥xi −
xj∥ ≤ ε. As explained in Sec. 4, we detach the Jacobian
of gθ from the computational graph to avoid second-order
derivatives. Our final algorithm, including the technical de-
tails on CMA integration with gradient learning, is outlined
in the appendix (See Alg. in (Kfir et al. 2025) appendix).

6 Experiments in the COCO test suite
We evaluated the EvoGrad, HGrad, and EvoGrad2 algo-
rithms on the COCO framework (Hansen et al. 2021) and
compared them to EGL and other strong baselines: (1) CMA
and its trust region variant CMA-TR, (2) Implicit Gradi-
ent Learning (IGL), where we train a model for the objec-
tive function and obtain the gradient estimation by back-
propagation as in DDPG (Lillicrap 2015), and (3) a va-
riety of known algorithms (BFGS (Nocedal and Wright
2018), Nelder-Mead (Nelder and Mead 1965), Powell (Pow-
ell 1964), SLSQP (Kraft 1988)), Using Scipy3 python pack-
age’s implementation. We also adjusted EGL hyperparame-
ters (See App. in (Kfir et al. 2025)) and improved the trust

3https://scipy.org/



Metric EvoGrad2 EvoGrad EvoGrad-0.1 HGrad HGrad-Attached EGL IGL

Budget to solve 44,712 51,859 54,972 61,147 61,221 58,488 75,031

Mean 0.003(0.02) 0.007(0.04) 0.072(0.1) 0.014(0.07) 0.013(0.07) 0.020(0.07) 0.044(0.10)

Solved Functions 0.949 0.917 0.71 0.858 0.858 0.821 0.674

Metric CMA-TR CMA BFGS SLSQP Nelder-Mead Powell

Budget to solve 53,569 71,855 89,667 117,172 102,783 69,205

Mean 0.047(0.16) 0.090(0.22) 0.159(0.31) 0.363(0.42) 0.216(0.36) 0.070(0.19)

Solved Functions 0.740 0.612 0.502 0.296 0.435 0.631

Table 1: Comparison of different metrics: Budget used to find value of 0.01 or lower (↓), the mean normalized results (↓), std
(↓); and percentage of solved problems (↑).

region (See App. in (Kfir et al. 2025)) to reduce the budget
usage.

We use the following evaluation metrics:
• Performance: The lowest objective value found within

the given budget.
• Success Rate: Percentage of problems solved within a

fixed budget.
• Robustness: Performance stability across different hy-

perparameter settings.
Performance was normalized against the best-known

solutions to minimize bias: normalized value =
y−ymin

ymax−ymin
. A function was considered solved if the nor-

malized value was below 0.01.

Success Rate and Performance
For the first experiment, observe Figure 3, where we com-
pare the success rates of the benchmark algorithms by di-
mension. The dimensional analysis shows that as the dimen-
sion grows, traditional optimization methods suffer. While
the trust region was able to improve the results of the CMA
variants, it still has a drop in performance in the dimensions
above 40. This performance degradation reflects the funda-
mental challenge facing sample-based BBO methods: the
curse of dimensionality demands exponentially more eval-
uations as problem size grows. Traditional approaches that
work effectively in lower-dimensional spaces become in-
creasingly sample-inefficient in higher dimensions. On the
other hand, using gradient learning, we found multiple meth-
ods to reduce the samples required for an effective search, as
EvoGrad and EvoGrad2 both maintain a steady success rate
across dimensions.

Budget-Constrained Applications
In our second experiment, we analyze how different algo-
rithms perform under varying application constraints to un-
derstand which method is most suitable for specific use
cases. Figure 4 presents an analysis across critical consider-
ations that directly impact real-world deployment decisions.
Fig. 4(a) illustrates algorithm performance under different
budget constraints. While the gradient-based method has
a slower start (Due to warm-up training, which consumes
early budget), both EvoGrad and EvoGrad2 quickly pick up
the pace, finally outperforming the competitors around 8K
samples. While CMA has an advantage in the low-budget

regime, our algorithm shines when high-accuracy solution is
needed, as shown in Table 1, EvoGrad and EvoGrad2 have a
clear advantage for solving the function in a minimum bud-
get. For low-budget applications where function evaluations
are expensive, the results show that while CMA variants
are initially efficient at improving performance, they plateau
earlier. In contrast, EvoGrad and EvoGrad2 demonstrate su-
perior long-term performance, making them ideal for appli-
cations where the total budget allows for extended optimiza-
tion runs.

High-Accuracy Requirements
Figure 4(b) examines success rates as a function of distance
to the optimal solution, which is crucial for applications re-
quiring high precision. The results demonstrate that Evo-
Grad and EvoGrad2 consistently maintain higher success
rates across all accuracy thresholds. This is particularly im-
portant for applications such as adversarial attack generation
or hyperparameter tuning, where finding near-optimal solu-
tions is critical.

Finally, Fig. 4(c) and our t-test analysis (See App. in full
paper (Kfir et al. 2025)) confirm that our gains are statisti-
cally significant. For all baseline, the p-value is below 10−6,
indicating that both EvoGrad and EvoGrad2 outperform al-
ternative methods well beyond the α = 0.05 threshold.

Ablation
For EvoGrad algorithm (Sec. 5), we explored different
weighting schemes for biased sampling. Our final approach
uses CMA’s covariance matrix to create the importance sam-
pler, which adapts to the local geometry. We compared this
against simpler alternatives: EvoGrad-0.1 uses the softmax
function to create W . Assigning probabilities for each sam-
ple x ∈ Dk based on f(x). Table 1 shows that the adaptive
covariance matrix significantly outperforms simpler weight-
ing schemes, particularly in higher dimensions.

For HGrad (Sec. 4), computing second-order derivatives
can be memory-intensive. We found that detaching the Ja-
cobian from the computational graph (HGrad vs HGrad-
Attached in Tab. 1) maintains nearly identical performance
while reducing memory overhead, to improve scalability.

Hyperparameter Tolerance
We assess the algorithm’s robustness to hyperparameter tun-
ing. Our objective is to show which hyperparameters have



2 10 20 40 80 160 320 640
Problem Dimension

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
at

e

EvoGrad2

EvoGrad
EGL

IGL
CMA
CMA-TR

BFGS
SLSQP

Nelder-Mead
Powell

Figure 3: The probability of each algorithm to solve a problem in each dimension

101 102 103 104 105

Budget

10 2

10 1

Va
lu

e

(a)

EvoGrad2

EvoGrad
EGL
IGL
CMA
CMA-TR

10 4 10 3 10 2 10 1 100

Distance to Minimum

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

(b)

EvoGrad2

EvoGrad
EGL
IGL
CMA
CMA-TR

Algorithm
0.44
0.50
0.56
0.63
0.69
0.75
0.81
0.88
0.94
1.00

Su
cc

es
s R

at
e

0.95 0.92

0.82

0.68 0.70
0.61

(c)

EvoGrad2

EvoGrad
EGL

IGL
CMA-TR
CMA

Figure 4: Experiment results against the baseline: (a) Convergence for all our algorithms against baseline algorithms, (b) Success
rate as a function of the normalized distance from the best-known solution, (c) Percentage of solved algorithms when the
distance from the best point is 0.01

an impact on the algorithm’s performance and how to set
those parameters. We conducted systematic experiments to
assess this, modifying several hyperparameters and analyz-
ing their effects. Table 2 (Also, see App. in full paper (Kfir
et al. 2025)) reports the coefficient of variation (CV), defined
as CV = σ

µ , across different hyperparameter sweeps, high-
lighting the algorithm’s stability under varying conditions.

Our findings show that hyperparameters such as the ep-
silon factor, shrink factor, and learning rate (LR) have cu-
mulative effects: small variations may seem negligible but
can significantly impact performance over time. In the App.
(See full paper (Kfir et al. 2025)), we establish the step
size–epsilon relationship needed for progress, while the
shrink factor should align with the budget to maximize ex-
plored sub-problems. Thus, fine-tuning these parameters is
critical. By contrast, network structure (layers and size) had
little effect, suggesting that the Taylor loss enables effective
learning even with simple architectures, and greater com-
plexity does not necessarily improve results.

Metric Networks ε ε-Factor TR SF LR Gradient LR
CV 0.0429 0.013 0.1676 0.1691 0.2328 0.1263

Table 2: Coefficient Variation (CV = σ
µ ) over Hyperparam-

eter sweep experiment. TR SF = trust region shrink factor.

7 High Dimensional Applications
Adversarial Attacks
As powerful vision models like ResNet (Targ, Almeida, and
Lyman 2016) and Vision Transformers (ViT) (Han et al.
2022) grow in prominence, adversarial attacks have become
a significant concern. These attacks subtly modify inputs,
causing models to misclassify them, while the perturbation
remains imperceptible to both human vision and other clas-
sifiers (Tang et al. 2019). We can define it formally:

x∗
a = argmin

x
d(x, xa) s.t.f(x) ̸= f(xa) (7)

f is the classifier and d a distance metric between elements.
Recent studies have extended adversarial attacks to do-

mains like AI-text detection (Sadasivan et al. 2024) and au-
tomotive sensors (Mahima et al. 2024). These attacks pre-
vent tracking and detection, posing risks to both users and
pedestrians. Adversarial attacks are classified into black-
box and white-box methods. Black-box attacks only require
query access, while white-box methods use model gradients
to craft perturbations (Machado, Silva, and Goldschmidt
2021; Cao et al. 2019). Despite some black-box methods
relying on surrogate models (Dong et al. 2018; Xiao et al.
2018; Madry et al. 2017; Goodfellow, Shlens, and Szegedy
2014), approaches like (Tu et al. 2019) generate random
samples to approximate gradient estimation, though they are



computationally expensive. Other methods use GAN net-
works to search latent spaces for adversarial examples (Liu
et al. 2021; Sarkar et al. 2017). Still, they depend on existing
GANs and their latent space diversity.

Our EvoGrad2 method offers a true black-box approach
with precise perturbation control, avoiding gradient back-
propagation. EvoGrad2 directly optimizes perturbations to
maintain low distortion while fooling the model, handling
high-dimensional spaces with over 30K parameters.

Metric CMA EvoGrad HGrad EvoGrad2 CMA+EvoGrad
Accuracy 0.02 0.02 0.02 0.02 0.02
MSE 0.05 0.001 0.002 0.001 0.001
Time (Until Convergence) 20m 6H 7H 7H 3H

Table 3: Methods’ comparison on Accuracy, MSE, Time.

(a) Original (b) CMA (c) EvoGrad (d) EvoGrad2

Figure 5: Adversarial examples generated by EvoGrad and
CMA against the ImageNet model.

Methodology: We tested our algorithms against classi-
fiers trained on MNIST, CIFAR-10, and ImageNet, aiming
to minimize Eq. (7). To generate adversarial images with
minimal distortion, we developed a penalty that jointly min-
imizes MSE and CE-loss (See appendix in full paper (Kfir
et al. 2025)). This approach successfully fooled the model,
evading the top 5 classifications.

Results: We evaluated five different configurations:
CMA, EvoGrad, HGrad, EvoGrad2, and a combination of
both (CMA+EvoGrad), where the CMA run provides the
initial guess for an EvoGrad run. While CMA alone was
not able to converge to a satisfying adversarial example, the
combined CMA+EvoGrad enjoyed the rapid start of CMA
with the robustness of EvoGrad, s.t. it was able to find a
satisfying adversarial example half the computation time of
EvoGrad and EvoGrad2.

Code Generation
The development of large language models (LLMs) such as
Transformers (Vaswani 2017) have advanced code genera-
tion (Dehaerne et al. 2022). Despite these strides, fine-tuning
outputs based on parameters measured post-generation re-
mains challenging. Recent algorithms have been developed
to generate code tailored for specific tasks using LLMs. For
instance, FunSearch (Romera-Paredes et al. 2024) generates
new code solutions for complex tasks, while Chain of Code
(Li et al. 2023) incorporates reasoning to detect and correct
errors in the output code. Similarly, our method uses black-
box optimization to guide code generation for runtime effi-
ciency. Building on (Zhang et al. 2024), which links LLM
expertise to a small parameter set, we fine-tuned the embed-
ding layer to reduce Python code runtime. Using LoRA (Hu

0 10 20 30 40 50
Epoch

0

2

4

6

8

10

12

Pe
na

lty

Functional Code Reward Threshold

EvoGrad2-Fibonacci
EvoGrad2-Line-Level Efficiency
EvoGrad2-Count triplets
CMA-Fibonacci
CMA-Count triplets
CMA-Line-Level Efficiency

Figure 6: Code generation experiments: penalty over time.

et al. 2021), we optimized the generated code based on exe-
cution time, scaling up to ∼ 200k parameters.

Fibonacci: We tested this approach by having the model
generate a Fibonacci function. Initial results were incorrect,
but optimization guided the model to a correct and efficient
solution. In the appendix (See (Kfir et al. 2025)), we illus-
trate this progression, with the 25th step showing an opti-
mized version.

Line-Level Efficiency Enhancements: We tested the
model’s ability to implement small code efficiencies, such
as replacing traditional for-loops with list comprehen-
sions. The algorithm optimized the order of four func-
tions—‘initialize‘, ‘start‘, ‘activate‘, and ‘stop‘—each with
eight variants, minimizing overall runtime by optimizing the
function order.

Code Force: For a more complex problem, we used
the Count Triplets challenge from Codeforces(https://
codeforces.com/). While the model initially struggled, once
it found a correct solution, the algorithm further optimized
it for runtime performance (See Appendix in the full paper
(Kfir et al. 2025)).

Discussion: Our method demonstrates the ability to gen-
erate correct solutions while applying micro-optimizations
for efficiency. In simple tasks like Fibonacci, EvoGrad2 con-
verged on an optimal solution (See Fig. 6), and in more com-
plex problems, it improved the initial solutions. However, in
more complex tasks, the LLM may generate code that fails
to solve the problem, hindering the optimization of the run-
time. To address this, either stronger models or methods fo-
cused on optimizing solution correctness are needed. This
would ensure that valid solutions are generated first, which
can then be further optimized for performance.

8 Conclusion
We introduced EvoGrad2, a novel black-box optimizer that
integrates local gradient learning with global evolutionary
statistics, making it well-suited for high-dimensional, non-
convex problems. By incorporating 2nd-order Taylor approx-
imation with Hessian correction, it improves gradient esti-
mation and, to our knowledge, is the first method to com-
bine neural gradient learning with evolutionary algorithms.
EvoGrad2 also opens promising avenues for core learning
problems, such as RLVR tuning of LLMs and accelerating
gradient-based generation in diffusion models.



References
Alarie, S.; Audet, C.; Gheribi, A. E.; Kokkolaras, M.; and
Le Digabel, S. 2021. Two decades of blackbox optimization
applications. EURO Journal on Computational Optimiza-
tion, 9: 100011.
Anil, R.; Gupta, V.; Koren, T.; Regan, K.; and Singer, Y.
2020. Scalable second order optimization for deep learning.
arXiv preprint arXiv:2002.09018.
Audet, C.; Hare, W.; Audet, C.; and Hare, W. 2017a. Chap-
ter 1: The begining of DFO algorithms in derivative-free and
blackbox optimization. Derivative-Free and Blackbox Opti-
mization, 11–15.
Audet, C.; Hare, W.; Audet, C.; and Hare, W. 2017b. Chap-
ter 3: The begining of DFO algorithms in derivative-free and
blackbox optimization. Derivative-Free and Blackbox Opti-
mization, 33–47.
Audet, C.; Hare, W.; Audet, C.; and Hare, W. 2017c. DI-
RECT search in derivative-free and blackbox optimization.
Derivative-Free and Blackbox Optimization, 93–156.
Audet, C.; Hare, W.; Audet, C.; and Hare, W. 2017d. Ge-
netic methods in derivative-free and blackbox optimization.
Derivative-Free and Blackbox Optimization, 57–73.
Audet, C.; Hare, W.; Audet, C.; and Hare, W. 2017e. Model-
based methods in derivative-free and blackbox optimization.
Derivative-Free and Blackbox Optimization, 156–218.
Back, T. 1996. Evolutionary algorithms in theory and prac-
tice: evolution strategies, evolutionary programming, ge-
netic algorithms. Oxford university press.
Bai, Y.; Jones, A.; Ndousse, K.; Askell, A.; Chen, A.; Das-
Sarma, N.; Drain, D.; Fort, S.; Ganguli, D.; Henighan, T.;
et al. 2022. Training a helpful and harmless assistant with re-
inforcement learning from human feedback. arXiv preprint
arXiv:2204.05862.
Bertsekas, D. 2015. Convex optimization algorithms.
Athena Scientific.
Bischl, B.; Binder, M.; Lang, M.; Pielok, T.; Richter, J.;
Coors, S.; Thomas, J.; Ullmann, T.; Becker, M.; Boulesteix,
A.-L.; et al. 2023. Hyperparameter optimization: Founda-
tions, algorithms, best practices, and open challenges. Wi-
ley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 13(2): e1484.
Bouneffouf, D.; Rish, I.; and Aggarwal, C. 2020. Survey on
applications of multi-armed and contextual bandits. In 2020
IEEE Congress on Evolutionary Computation (CEC), 1–8.
IEEE.
Braun, C. V.; Lange, R. T.; and Toussaint, M. 2024.
Stein Variational Evolution Strategies. arXiv preprint
arXiv:2410.10390.
Busetti, F. 2003. Simulated annealing overview. World Wide
Web URL www. geocities. com/francorbusetti/saweb. pdf, 4.
Cao, Y.; Xiao, C.; Yang, D.; Fang, J.; Yang, R.; Liu,
M.; and Li, B. 2019. Adversarial objects against
lidar-based autonomous driving systems. arXiv preprint
arXiv:1907.05418.

Chen, P.-Y.; Zhang, H.; Sharma, Y.; Yi, J.; and Hsieh, C.-
J. 2017. Zoo: Zeroth order optimization based black-box
attacks to deep neural networks without training substitute
models. In Proceedings of the 10th ACM workshop on arti-
ficial intelligence and security, 15–26.
Clerc, M. 2010. Particle swarm optimization, volume 93.
John Wiley & Sons.
Dehaerne, E.; Dey, B.; Halder, S.; De Gendt, S.; and Meert,
W. 2022. Code generation using machine learning: A sys-
tematic review. Ieee Access, 10: 82434–82455.
Ding, Y.; Zhang, L. L.; Zhang, C.; Xu, Y.; Shang, N.; Xu,
J.; Yang, F.; and Yang, M. 2024. Longrope: Extending llm
context window beyond 2 million tokens. arXiv preprint
arXiv:2402.13753.
Dong, Y.; Liao, F.; Pang, T.; Su, H.; Zhu, J.; Hu, X.; and Li,
J. 2018. Boosting adversarial attacks with momentum. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 9185–9193.
Gehring, C.; Coros, S.; Hutter, M.; Bloesch, M.; Fankhauser,
P.; Hoepflinger, M. A.; and Siegwart, R. 2014. Towards
automatic discovery of agile gaits for quadrupedal robots.
In 2014 IEEE international conference on robotics and au-
tomation (ICRA), 4243–4248. IEEE.
Golovin, D.; Karro, J.; Kochanski, G.; Lee, C.; Song,
X.; and Zhang, Q. 2019. Gradientless descent: High-
dimensional zeroth-order optimization. arXiv preprint
arXiv:1911.06317.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572.
Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.;
Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. 2022. A survey on
vision transformer. IEEE transactions on pattern analysis
and machine intelligence, 45(1): 87–110.
Hansen, N. 2016. The CMA evolution strategy: A tutorial.
arXiv preprint arXiv:1604.00772.
Hansen, N.; Auger, A.; Ros, R.; Finck, S.; and Pošı́k, P.
2010. Comparing results of 31 algorithms from the black-
box optimization benchmarking BBOB-2009. In Proceed-
ings of the 12th annual conference companion on Genetic
and evolutionary computation, 1689–1696.
Hansen, N.; Auger, A.; Ros, R.; Mersmann, O.; Tušar, T.;
and Brockhoff, D. 2021. COCO: A Platform for Comparing
Continuous Optimizers in a Black-Box Setting. Optimiza-
tion Methods and Software, 36: 114–144.
Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; and Chen, W. 2021. Lora: Low-rank adaptation
of large language models. arXiv preprint arXiv:2106.09685.
Kfir, Y.; Sarafian, E.; Kraus, S.; and Louzoun, Y. 2025. Evo-
Grad: Evolutionary-Weighted Gradient and Hessian Learn-
ing. arXiv:2502.04829.
Kraft, D. 1988. A software package for sequential quadratic
programming. Forschungsbericht- Deutsche Forschungs-
und Versuchsanstalt fur Luft- und Raumfahrt.
Kunpeng, P.; Yugang, L.; and Xiabi, L. 2012. Descent search
with mean direction evolution strategies based on GPU with



CUDA. In 2012 13th International Conference on Parallel
and Distributed Computing, Applications and Technologies,
298–304. IEEE.
Lesage-Landry, A.; Taylor, J. A.; and Shames, I. 2020.
Second-order online nonconvex optimization. IEEE Trans-
actions on Automatic Control, 66(10): 4866–4872.
Li, C.; Liang, J.; Zeng, A.; Chen, X.; Hausman, K.;
Sadigh, D.; Levine, S.; Fei-Fei, L.; Xia, F.; and Ichter,
B. 2023. Chain of code: Reasoning with a lan-
guage model-augmented code emulator. arXiv preprint
arXiv:2312.04474.
Lillicrap, T. 2015. Continuous control with deep reinforce-
ment learning. arXiv preprint arXiv:1509.02971.
Liu, B.; Guo, Y.; Jiang, J.; Tang, J.; and Deng, W. 2021.
Multi-view correlation based black-box adversarial attack
for 3D object detection. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Min-
ing, 1036–1044.
Liu, F.-Y.; Li, Z.-N.; and Qian, C. 2020. Self-Guided Evo-
lution Strategies with Historical Estimated Gradients. In IJ-
CAI, 1474–1480.
Liu, Q.; and Wang, D. 2016. Stein variational gradient de-
scent: A general purpose bayesian inference algorithm. Ad-
vances in neural information processing systems, 29.
Liu, S.; Chen, P.-Y.; Kailkhura, B.; Zhang, G.; Hero III,
A. O.; and Varshney, P. K. 2020. A Primer on Zeroth-Order
Optimization in Signal Processing and Machine Learning:
Principals, Recent Advances, and Applications. IEEE Sig-
nal Processing Magazine, 37(5): 43–54.
Loshchilov, I.; Schoenauer, M.; and Sebag, M. 2013. Bi-
population CMA-ES agorithms with surrogate models and
line searches. In Proceedings of the 15th annual confer-
ence companion on Genetic and evolutionary computation,
1177–1184.
Machado, G. R.; Silva, E.; and Goldschmidt, R. R. 2021.
Adversarial machine learning in image classification: A sur-
vey toward the defender’s perspective. ACM Computing Sur-
veys (CSUR), 55(1): 1–38.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2017. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083.
Maheswaranathan, N.; Metz, L.; Tucker, G.; Choi, D.; and
Sohl-Dickstein, J. 2019. Guided evolutionary strategies:
Augmenting random search with surrogate gradients. In In-
ternational Conference on Machine Learning, 4264–4273.
PMLR.
Mahima, K. T. Y.; Perera, A. G.; Anavatti, S.; and Garratt,
M. 2024. Toward Robust 3D Perception for Autonomous
Vehicles: A Review of Adversarial Attacks and Countermea-
sures. IEEE Transactions on Intelligent Transportation Sys-
tems, 1–27.
Nelder, J. A.; and Mead, R. 1965. A Simplex Method for
Function Minimization. Comput. J., 7: 308–313.
Nocedal, J.; and Wright, S. J. 2018. Numerical Optimiza-
tion. In Fundamental Statistical Inference.

Olof, S. S. 2018. A comparative study of black-box opti-
mization algorithms for tuning of hyper-parameters in deep
neural networks.
Powell, M. J. D. 1964. An efficient method for finding the
minimum of a function of several variables without calculat-
ing derivatives. Comput. J., 7: 155–162.
Prabhu, S. G. R.; Seals, R. C.; Kyberd, P. J.; and Wether-
all, J. C. 2018. A survey on evolutionary-aided design in
robotics. Robotica, 36(12): 1804–1821.
Rimon, Z.; Jurgenson, T.; Krupnik, O.; Adler, G.; and
Tamar, A. 2024. Mamba: an effective world model ap-
proach for meta-reinforcement learning. arXiv preprint
arXiv:2403.09859.
Romera-Paredes, B.; Barekatain, M.; Novikov, A.; Balog,
M.; Kumar, M. P.; Dupont, E.; Ruiz, F. J.; Ellenberg, J. S.;
Wang, P.; Fawzi, O.; et al. 2024. Mathematical discoveries
from program search with large language models. Nature,
625(7995): 468–475.
Sadasivan, V. S.; Kumar, A.; Balasubramanian, S.; Wang,
W.; and Feizi, S. 2024. Can AI-Generated Text be Reliably
Detected? arXiv:2303.11156.
Sarafian, E.; Sinay, M.; Louzoun, Y.; Agmon, N.; and Kraus,
S. 2020. Explicit Gradient Learning for Black-Box Opti-
mization. In ICML, 8480–8490.
Sarkar, S.; Bansal, A.; Mahbub, U.; and Chellappa, R. 2017.
UPSET and ANGRI: Breaking high performance image
classifiers. arXiv preprint arXiv:1707.01159.
Tang, S.; Huang, X.; Chen, M.; Sun, C.; and Yang, J. 2019.
Adversarial attack type I: Cheat classifiers by significant
changes. IEEE transactions on pattern analysis and ma-
chine intelligence, 43(3): 1100–1109.
Tang, Y. 2021. Guiding Evolutionary Strategies with Off-
Policy Actor-Critic. In AAMAS, 1317–1325.
Targ, S.; Almeida, D.; and Lyman, K. 2016. Resnet in
resnet: Generalizing residual architectures. arXiv preprint
arXiv:1603.08029.
Tu, C.-C.; Ting, P.; Chen, P.-Y.; Liu, S.; Zhang, H.; Yi,
J.; Hsieh, C.-J.; and Cheng, S.-M. 2019. Autozoom:
Autoencoder-based zeroth order optimization method for at-
tacking black-box neural networks. In Proceedings of the
AAAI conference on artificial intelligence, volume 33, 742–
749.
Vaswani, A. 2017. Attention is all you need. Advances in
Neural Information Processing Systems.
Xiao, C.; Li, B.; Zhu, J.-Y.; He, W.; Liu, M.; and Song, D.
2018. Generating adversarial examples with adversarial net-
works. arXiv preprint arXiv:1801.02610.
Zhang, W.; Wan, C.; Zhang, Y.; Cheung, Y.-m.; Tian, X.;
Shen, X.; and Ye, J. 2024. Interpreting and Improving Large
Language Models in Arithmetic Calculation. arXiv preprint
arXiv:2409.01659.
Zhen, L.; Wang, K.; Hu, H.; and Chang, D. 2014. A simula-
tion optimization framework for ambulance deployment and
relocation problems. Computers & Industrial Engineering,
72: 12–23.


