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ABSTRACT
Adaptive Cruise Control (ACC) is a technology that allows a vehi-
cle to automatically adjust its speed to maintain a preset distance
from the vehicle in front of it based on the driver’s preferences. In-
dividual drivers have different driving styles and preferences. Cur-
rent systems do not distinguish among the users. We introduce a
method to combine machine learning algorithms with demographic
information and expert advice into existing automated assistive sys-
tems. This method can reduce the number of interactions between
drivers and automated systems by adjusting parameters relevant to
the operation of these systems based on their specific drivers and
context of drive. We also learn when users tend to engage and dis-
engage the automated system. This method sheds light on the kinds
of dynamics that users develop while interacting with automation
and can teach us how to improve these systems for the benefit of
their users. While accepted packages such as Weka were success-
ful in learning drivers’ behavior, we found that improved learn-
ing models could be developed by adding information on drivers’
demographics and a previously developed model about different
driver types. We present the general methodology of our learning
procedure and suggest applications of our approach to other do-
mains as well.

1. INTRODUCTION
Cruise control is a known technology that aids drivers by reducing
the burden of controlling the car manually. This technology con-
trols the vehicle speed once the user sets a desired speed. Cruise
control is not only convenient, but it has the potential to improve
the flow of traffic [15], and can be effective in reducing driver fa-
tigue and fuel consumption [1]. In this paper, we focus on a second
generation of cruise controls– adaptive cruise control (ACC). ACC
is designed as a comfort-enhancing system, which is an extension
of conventional cruise control (CC). The ACC system relieves the
driver from some of the longitudinal-control tasks by actually con-

trolling speed and headway keeping, but the driver can choose to
engage or disengage the ACC at any time. The major difference
between ACC and CC is the use of radar technology to maintain a
preset distance between the vehicle with the ACC and other vehi-
cles on the road. This distance is controlled by a "gap" parameter
which sets the minimum gap (headway distance) to the vehicle in
front of it. Figure 1 shows a picture of a steering wheel with the
ACC technology. Note the existence of a "gap" switch on the left
side of the figure.

While ACC adds more automation to the driving experience, it typ-
ically also requires the driver to set and adjust one more parame-
ter, the gap setting. The current approach is to preset the gap set-
ting to a default value which can be adjusted by the driver man-
ually based on his driving preferences. Another approach taken
in previous published attempts was to learn this setting focusing
on mechanisms such as fuzzy logic [8, 9]. In these previous ap-
proaches, rules were learned manually after having interviewed
human drivers. Based on these rules the gap setting value was ad-
justed automatically to the conditions of the drive without consider-
ing the particular driver in the vehicle. Individual drivers, however,
differ in their driving styles and preferences. Therefore, a person-
alized learning approach may be valuable.

In this paper, we primarily focus on a method that learns how to
quickly and accurately adjust the gap setting based on the specific
driver and context of a drive. To accomplish this task, we created
general driver profiles based on an extensive database of driving
information that had been collected from 96 drivers [5]. We used
post-processing of data from that study. Our general method is
that once a new driver is identified we classify this driver as being
similar to previously known drivers and set the initial gap setting
accordingly.

The challenge of this study was to process real world data so as to
obtain the most accurate and practical rules from the learning algo-
rithms. We found that the information gleaned from demographics
and the driver’s type was crucial for creating more accurate learn-
ing models. This work focuses on which attributes will help, and a
general methodology for adding them. By following this method-
ology, we found that a better application could be created in this
domain, and are confident that better applications can be created in
other domains as well.



Figure 1: A steering wheel fitted with ACC technology.

This paper is organized as follows. In Section 2 we introduce re-
lated work and specify the driver type information that aided in
modeling driving behavior. Then, Section 3 describes the theoret-
ical and implementation challenges the ACC learning agent must
overcome. Section 4 details the extensive database used to create
the ACC agent. Section 5 provides empirical support for the suc-
cess of effectiveness of this agent. Finally, Section 6 concludes and
presents possible directions for future research.

2. RELATED WORK

The concept of using a group of characteristics to learn people’s
behavior has long been accepted by the user modeling community.
Many recommender systems have been built on the premise that
a group of similar characteristics, or a stereotype, exists about a
certain set of users [12]. Even more similar to our work, Paliouras
et. al [10] suggested creating questionnaires, distributing them, and
then creating decision trees to automatically define different groups
of users. Similarly, our application assumes that some connection
exists between users, which can be learned using machine learning
techniques. We propose that this approach be applied to customize
settings within an application, here ACC, and not within recom-
mender systems.

Previously, Fancher et. al [7], analyzed a group of 36 drivers and
their acceptance of adaptive cruise control (ACC). While all drivers
enjoyed and accepted the ACC, they found that drivers could be di-
vided into three types with each group demonstrating specific driv-
ing tendencies which impact their headway and closing speeds, rel-
ative to vehicles ahead. In very general terms, these groups were
assumed to be: one that is most aggressive, another that is least
aggressive, and a third that is in between. Although it is clear that
more detailed grouping may exist, and that a different profiling of
the drivers’ population can be made, for the purpose of this study
the characterization analysis was aimed at identifying the above
three grouping types. The three driving styles are: 1. Hunters (ag-
gressive drivers who drive faster than most other traffic and use
short headways); 2. Gliders (the least aggressive drivers who drive
slower than most traffic or commonly have long headways); and
3. Followers (whose headways are near the median headway and
usually match the speed of surrounding traffic). In this scheme of
things, Hunters are drivers who tend to drive faster than the sur-
rounding flow and they tend to travel at shorter headway times than

those adopted by other drivers. In contrast, at the other end of driver
characteristics, Gliders tend to travel slower than the surrounding
flow and they tend to travel at longer headway times than those
adopted by other drivers. Between the Hunters and Gliders lie the
Followers who tend to go with the flow of traffic. They tend to
adapt their driving behavior to the situation they are in.

The idea of assisting the driver in the task of longitudinal control
has been the focus of research in the last decade [8, 9]. Opera-
tion tests have given insight into this task. However, the goal of
this project was to attempt to create an intelligent ACC agent that
could potentially set this longitudinal value autonomously through
adjusting its gap setting per each driver.

In this paper, we use driver characterization into types (hunter,
glider or follower) in addition to other demographic information
to attempt to build an application that predicts how the ACC should
set its gap (headway) given this information and road situation. In
general, other research has previously found that we can better pre-
dict people’s behavior by combining relevant behavior theory, here
about people’s driving type and demographics, in conjunction with
machine learning methods. These studies have included how other
behavior theories: Aspiration Adaptation [14] and the Focal Points
[18] could be used in conjunction with machine learning algorithms
to create an improved classifier. These results also showed some
positive correlation between the complexity of the problem domain
and the improvement in performance when augmenting the behav-
ior model. Thus, the more complex the learning task, the added
gain in the learning model by adding behavior information. This
paper explores how the behavior model of a driver’s type impacts
their gap setting.

3. LEARNING METHOD

Current ACC systems allow the user to choose a value for the gap
setting between six possible values (1–6). These values control the
distance the ACC autonomously maintains with the vehicle in front
of it. Currently, one value is set as default (in our case this value
was 6) and the user may change it during his drive as he wishes.
In order to study the problem of predicting what gap setting a per-
son would select, we constructed two different types of models.
The first type of model was a regression model which attempted
to predict the number a given driver would select given the current
driving conditions. The second type of model was a decision tree
model which treats each number within the system as discrete val-
ues representing different categories a driver can choose. Our goal
was to use the output of either model to automatically set the gap
setting. Towards this goal, the second model is seemingly the better
choice as its output directly correlates to a value within the system.
In contrast, the regression model outputs a decimal value (e.g. 3.5)
that must be first rounded to the closest value within the system to
be used. However, the advantage of this model is that a mistake
between two close values (e.g. 3.5 being close to 3 and 4) is not as
mathematically significant as mistakes between two extreme val-
ues (e.g. between 2 to 6). In contrast, the discrete decision tree
model weighs all types of errors equally. In practice, the regres-
sion model will likely be more useful if the user is willing to accept
errors between two similar values.

Additionally, we focus on two secondary goals, when the ACC is
first engaged, and when the ACC is disengaged. Here, the goal was
not to create an agent to autonomously engage or disengage the
ACC. However, by analyzing when people are most comfortable



with the ACC, we hope to understand the user acceptance of such
systems.

In both of these learning tasks, we are confronted by the known
dataset imbalance problem [2]. In many real-world problems, as
is the case here, each class is not equally represented. In fact, in
the specific case of the ACC engagement task, over 90% of manual
driving cases continue their manual driving, and in only a small per-
centage of cases do people engage the ACC. From a statistical per-
spective, a classifier could then naively classify all cases as being in
the majority case and still have extremely high accuracy. However,
because only the "minority" cases are relevant, novel methods are
needed to find them. While several algorithms exist, we specifically
focused on the MetaCost algorithm [4] because of its flexibility in
controlling the bias size given to the minority case.

A second key implementation challenge lie in the algorithms them-
selves. While we used the popular Weka learning package [16]
to implement all learning algorithms, the content experts often be-
lieved that the resulting models were extremely overfitted. Unfor-
tunately, many theoretical learning algorithms are prone for over-
fitting when applied to real-world datasets [17] and the content ex-
perts involved with the project found this to be the case in this do-
main as well. To overcome this challenge we used simplified deci-
sion trees. The idea of using simplified decision trees is not new,
and a variety of algorithms have been developed for simplifying
decision trees [6]. However, these algorithms were developed for
increased performance. In this application, we intentionally sac-
rificed a certain level of performance to reduce overfitting. Thus,
we applied these algorithms for a different reason than the one they
were developed for, but still achieved the desired result – a non-
overfitted decision tree.

Specifically, we used the reduced error pruning method developed
by Quinlan [11], named REPTree with in the Weka learning pack-
age [16]. According to this approach, a decision tree of maximum
height Tmax is reduced to TDepth, with TDepth ≤ Tmax, ostensi-
bly to produce improved performance. In our application we chose
the maximum value for TDepth that the content experts deemed was
not overfitted, as we found that the best performance was achieved
when TDepth = Tmax and our goal was to achieve the best per-
formance within the model without producing an overfitted model.
Empirical results detailing specifics of the models used to create
the ACC’s agent are explained in the next section.

4. EXPERIMENTAL SETUP

Data for our analysis were taken from the Automotive Collision
Avoidance System Field Operational Test (ACAS FOT) [5]. In that
study, to understand how different drivers use an ACC, each of 96
drivers was presented with a vehicle fitted with the ACC which they
used for a period of 4 weeks. During the first week the ACC system
was not available. That is, if the driver engaged the cruise control,
it simply maintained speed just like the conventional system (CC).
During the next three weeks, if the driver chose to engage the cruise
control, it functioned as ACC. In general, three different datasets
were considered. The first, and most basic, dataset were objec-
tive characteristics that can be studied based on the location of the
vehicle itself, e.g., headway distance to the lead vehicle, vehicle
speed, longitudinal acceleration, road type (country, city, or high-
way), weather (including day or night) and road density (is there
traffic). A second dataset added driver characteristics. These prop-
erties focus on driver demographics such as age, sex, income level

Figure 2: The importance of driver type and demographics in
predicting the gap setting within the ACC for a discrete deci-
sion tree model.

(high, medium, low), and education level (High School, Under-
graduate, and Graduate ). The ACAS FOT data consists of a good
mixture of these demographics with a 51% male to 49% female
split, 31% young (aged 20–30), 31% middle aged (aged 40–50),
and 38% older drivers (aged 60–70), and people from a variety of
education and socioeconomic levels. The last dataset also logged a
previously developed measure used to quantify a driver’s behavior
[7].

The experimental design of the ACAS FOT was a mixed-factors
design in which the between-subjects variables were driver age and
gender, and the within-subject variable was the experimental treat-
ment (i.e. ACAS-disabled and ACAS-enabled). The disabled pe-
riod was treated as a baseline measure, since the research vehicle
operated like a conventional passenger vehicle. The drivers oper-
ated the vehicles in an unsupervised manner, simply pursuing their
normal trip-taking behavior using the ACAS test vehicle as a sub-
stitute for their personal vehicle. Use of the test vehicles by anyone
other than the selected individuals was prohibited. The primary em-
phasis on user selection for the field operation test was to roughly
mirror the population of registered drivers, with simple stratifica-
tion for age and gender. No attempt was made to control for ve-
hicle ownership or household income levels. Thus, although the
ACAS FOT participants may not be fully representative of drivers
who might purchase such a system, they were selected randomly
and represent a wide range of demographic factors.

5. RESULTS

In this section we present results for the three previously defined
problems: predicting a driver’s gap setting within the ACC using
both discrete and regression models, predicting when a driver will
engage the ACC, and predicting when a driver will disengage the
ACC. In all three problems we present how the driver type and
other demographic information helped improve the model’s accu-
racy. Additionally, we analyze which attributes were most signifi-
cant in this application, how we avoiding overfitting, and how we
addressed the dataset imbalance problem within this application.

5.1 Setting the ACC’s Gap Setting

Figure 2 presents the accuracy of the decision tree model to learn a
driver’s preferred gap setting in the discrete model. Clearly, adding



the demographic data here is crucial, as the model’s accuracy drops
from over 66% accuracy with this data to less than 37% accuracy
without this. As a baseline, we also include the naive classifier,
which is based on the most common gap setting– here the value
of 6, which is also the system’s default. Note that the naive model
had an accuracy of nearly 27%, far less than other models. The
user’s type did improve accuracy, as adding this information to the
type increased accuracy to near 70%. In line with our previous
work [13], we hypothesized that adding this behavior model yields
less significant increases if it can be learned from other attributes
within the data. Here, we believed that adding information about
drivers’ type is less important, as their type was already evident
from information such as the driver’s demographics.

To support this hypothesis, we constructed a decision tree (again
C4.5) to learn the driver’s type. We found that this value could be
learned with over 95% accuracy (95.22%) when learned with the
full Reptree (Tmax)– which strongly supports our hypothesis. We
present a pruned version of this tree (TDepth = 4) within Figure 3.
From an application perspective, we were not shocked to find that
a driver’s age factored heavy in their driving behavior. This charac-
teristic is factored in actuary’s insurance tables, and is a known fac-
tor in car insurance premiums [3]. Note that this characteristic was
the first level below the root of the tree, demonstrating this quality.
However, possibly equally interestingly is that we found education,
not gender to be the next most important factor as it formed the
second level within the decision tree. This factor is typically not
considered by insurance companies [3], but may be worth consid-
ering. Only in the third level did we find the popular characteristic
of gender to factor in, but income also weighed in as an equally
important important factor. Overall, we found that young men or
women with only a high school degree tended to "hunters" or those
with extremely aggressive driving habits, college educated women,
and people with higher degrees but lower paying jobs tended to be
the less aggressive "gliders". Middle aged men with high school
degrees, all middle aged people with college degrees, and people
with higher degrees buy lower paying jobs also typically belonged
to the middle "gliders" category. But older women with college
degrees, people with low or medium paying jobs with only high
school degrees, and all older people with higher degrees tend to be
of the least aggressive "follower" type. Naturally, exceptions ex-
isted, and this simplified tree only is approximately 75% accurate.
Nonetheless a general direction is evident from this tree, and was
one that the content experts felt was not overfitted.

TDepth Accuracy [%]
2 47.55%
3 56.41%
4 62.43%
5 65.46%
6 67.51%
7 68.50%

Table 1: Analyzing the tradeoff between the model’s accuracy
and the height of the tree TDepth.

Similarly, it was important to find a decision tree that models drivers’
gap settings that is not overfitted as well. Note that the accuracy of
the Figure 2 given all data is nearly 70%. However, while this value
is based on the mathematically sound C4.5 algorithm [11], the con-
tent experts again felt this decision model was overfitted. We then
proceeded to reduce the size of the tree as to generalize the model,
thus preventing this phenomenon. However, as Table 5.1, demon-

Figure 5: The importance of driver type and demographics
in predicting the gap setting within the ACC for a regression
model.

strates reducing the table size does not improve the model’s ac-
curacy, as previous theoretical works suggest [6], but did produce
trees that were acceptable to the content experts. Note that raising
TDepth yields marginal increases in model accuracy with TDepth

= 7 being nearly accuracy to the result in Figure 2. In general,
we found that the experts were happy with much smaller trees, but
those with similar accuracy. For this problem, we display in Figure
4 the resultant tree of TDepth = 4 which is only 6% less accurate
the full tree in Figure 2. However, for comparison, the full tree pro-
duced with the unpruned C4.5 algorithm has a total size of 1313
leaves and branches, while the pruned tree only has a total size of
50 leaves and branches. Thus, from an application perspective, this
tree was strongly favored by the experts, even at the expense of a
slightly less accurate model. Note that the rules themselves are still
heavily influenced by the driver type and demographic information,
with driver type being the first level of the tree and the second and
third levels of the tree again being primarily based on demograph-
ics such as age, gender, education, and income level.

Similarly, we were able to create an accurate regression model,
the results of which are found in Figure 4. Within these models,
correlation values can range from 1.0 (fully positive correlated)
to -1.0 (fully negatively correlated) with 0 be with no correlation.
We found a model with both demographic and type data yielded
a correlation of 0.78, while without this information the accuracy
dropped to 0.75. Using only vehicle specific data yielded a model
of only 0.4, and the naive model (here using the average gap value
of about 3.5) yielded a value of nearly 0. Again, we found that the
type only slightly improved the model’s accuracy, as much of this
information was already subsumed within the drivers’ demograph-
ics. Here again, the experts opted for a reduced model, despite the
sacrifice of slightly less accuracy.

5.2 Predicting when the Driver will Engage
and Disengage the ACC

While the focus of the ACC is on the gap setting that differentiates
the adaptive cruise control, from the "standard" cruise control, we
also considered two additional problems: when people activate the
ACC and when they deactivate it. The goal behind the gap value
task was to allow an autonomous agent to set, at least initially, this
value within the ACC. However, by understanding when people
are more likely to use this product we can hopefully increase its



Figure 3: The decision tree for learning a driver’s "type".

acceptability and use. Similarly, by understanding when people
disengage the ACC we can hopefully create new generations of this
technology where people will use it longer and not feel compelled
to disengage it.

In both of these learning tasks, we are confronted by the known
dataset imbalance problem [2]. In this paper, we constructed two
models for these two problems based on the same three types of
datasets. The first model is a basic C4.5 without any modification.
As was the case in gap setting task, we considered attributes based
on the behavior type model, driver demographics and the vehicle’s
characteristics. In the second model, we again used the same three
datasets, but created a learning bias to find the important minority
cases. We specifically focused on the MetaCost algorithm [4].

Table 2 displays the complete results demonstrating the tradeoff
between a model’s accuracy and the success in finding the minor-
ity cases in the task of predicting when a driver engages or dis-
engages the ACC. The first four rows represent different models
created to predict when a person would activate the ACC. The first
model is the standard decision tree algorithm C4.5. In addition,
we considered three weight biases within the MetaCost algorithm:
0.5, 0.7 and 0.9. Note that raising these weights allows us to give
greater weight to the minority case, thus increasing the recall of
cases found, but at a cost to the overall accuracy of the model.
For each of these models we trained four different models: one
created with all information, one without the type information but
with the demographic information, one without the type and with-
out the demographic information, and a naive model that assumes
the majority case– that a person continues driving in manual mode.

The accuracy of each of these models are found within the first four
columns in Table 5.2, and the corresponding recall levels for these
models are found in the last four columns of the table. Similarly,
we also considered the task of predicting when a person turns off
the ACC, and trained models based on the same four algorithms
with the same four datasets. The results for the accuracy and the
recall of these models are found in the last four rows of Table 2.

Ideally, one would wish for a perfect model: e.g. one with 100%
accuracy and recall of all cases. Unfortunately, this is unrealistic,
especially in tasks involving people which are prone to variations
due to noise. Nonetheless, the overall conclusion is that by adding
more information, and specifically about a person’s demographics,
we were able to achieve higher overall accuracies with better recall.

We would like to present the driver for a recommendation as to
when to engage the ACC. Towards this goal, we wish to build a
model that is as accurate as possible, but with a minimum thresh-
old. Thus, we wished to set the desired confidence level of the
model, as found based on the recall of the minority class, before
presenting a recommendation to the user. Figure 6 displays the in-
terplay between the overall model’s accuracy and the recall within
the minority cases in the task of predicting when a driver engages
the ACC. Again, the most desirable result is one in the upper right
corner– high accuracy and recall. However, as one would expect,
and as evident from Table 2, the naive case of continuing with-
out engaging the ACC constitutes over 91% of the cases, but this



Figure 4: The decision tree for learning the ACC’s Gap Setting for TDepth =4.

Figure 6: Comparing the overall model accuracy and recall for
cases for engaging the ACC

model will have recall of 0 for the minority case. By modifying
the weights within the MetaCost algorithm we are able to get pro-
gressively higher recall rates over the basic decision tree algorithm.
Also note that the model trained with all information achieves sig-
nificantly better results than one without the type and demographic
information.

Similarly, Figure 7 displays the same interplay between the overall
model’s accuracy and the success in finding the minority cases in
the task of predicting when a driver disengages the ACC. In this
task, the naive case assumes that the driver will continue with the
ACC constitutes over 86% of the cases, but this model will have
recall of 0 for the minority case (see the left side of Figure 7). Note
that we were again able to raise the recall within the minority case
by creating weight biases of (0.5, 0.7 and 0.9), but again at the ex-
pense of a lower overall accuracy. However, as opposed to the en-
gage ACC task, we noticed that the gain from the demographic and
type information was not very significant. In fact, upon inspection
of the output trees, we noticed to our surprise that people’s deci-
sion to disengage the ACC was more dependent on how quickly the
ACC slowed the vehicle down, and not on the overall behavior of
the driver. Thus, it should be noticed that simply adding attributes
is not a panacea for higher accuracy– it only improves accuracy
when relevant to the learning task at hand.

Overall, these results suggest that finding attributes beyond the ob-
served data can be critical for accurately modeling a person’s be-



ACC On All Info Without Type Without Demo Naive All Info Without Type Without Demo Naive
C4.5 92.67 92.32 91.22 91.27 0.35 0.32 0.07 0
MetaCost 0.5 92.42 91.97 90.97 91.27 0.40 0.36 0.13 0
MetaCost 0.7 91.93 91.38 90.37 91.27 0.45 0.42 0.18 0
MetCost 0.9 87.99 86.60 77.12 91.27 0.63 0.61 0.51 0
ACC Off All Info Without Type Without Demo Naive All Info Without Type Without Demo Naive
C4.5 88.71 88.64 88.42 86.37 0.37 0.37 0.35 0
MetaCost 0.5 88.59 88.55 88.14 86.37 0.43 0.42 0.41 0
MetaCost 0.7 87.68 87.49 87.31 86.37 0.49 0.49 0.49 0
MetCost 0.9 82.03 82.23 81.15 86.37 0.66 0.67 0.66 0

Table 2: Analyzing the tradeoff between overall model accuracy (left side of table) and recall of the minority cases (right side) in
both the task of when people turn the ACC on (top) and off (bottom).

Figure 7: Comparing the overall model accuracy and recall for
cases for disengaging the ACC

havior. Similar to previous studies that found that other behavior-
ial theories can better predict people’s actions [14, 18], this work
found that a driver’s preferred gap setting could be better predicted
by using a model of driving behavior [7]. Even if this measure was
not readily available, an accurate estimate of this value could be
learned based on a driver’s demographic data.

Generally, one of the goals of this paper is to encourage people
who build applications to consider incorporating data from exter-
nal measures, such as psychological or behaviorial models. As was
true in other domains as well [14, 18], exclusively using behav-
ior models alone, such as the driver type possible in this domain
[7], is not sufficient. By combining the driver type with other data,
we achieved a prediction accuracy of nearly 70% within the dis-
crete decision tree model (Figure 2) and a correlation of 0.78 within
the regression model (Figure 4). However, when we used only the
driver type information and removed the demographic information
these models dropped to an accuracy of 46% and 0.55 respectively.
This suggests that exclusively using behavior models is not as ef-
fective as the approach we present. Thus, we advocate for synthe-
sizing data gleaned from behaviorial models in conjunction with
observed domain data, something we believe can be effective in
many other domains as well.

Practically, we are studying how either or both of these attributes
can be used in the company’s ACC. The advantage to using the
demographic data alone is that ostensibly it can be provided before
the driver begins using the car (e.g. in the showroom) and thus can
be used to accurately model the driver from the onset. However,

people may be reluctant to provide this information due to privacy
concerns. Using driver profiling information is relatively difficult
to calculate and is based on observed behavior over a period of time
[7]. Thus, this value cannot be used to initially set values within the
ACC. However, this data can be collected without privacy concerns
and can be used to further improve the system’s accuracy over time.

6. CONCLUSIONS

This paper presents an in-depth analysis into how learning approaches
could be applied to create an intelligent Adaptive Cruise Control
(ACC) agent that learns a driver’s profile – both in terms of what
gap setting she will chose, and when she is likely to engage or dis-
engage their ACC. To create this agent we used real-world data
from the past experience of many drivers from the ACAS field test
data [5]. Specifically, we created driver models based on two learn-
ing approaches: regression and decision trees. Both were able to
learn accurately the gap setting of an individual given his demo-
graphics characterization and driving type (hunter, glider or fol-
lower) with nearly 70% for the decision tree model and with a
correlation of 0.78 for the regression model. These experiments
emphasized the need for driver information including a behavior
model about the driver’s type [7] in addition to the information
collected on the trips themselves and their demographic informa-
tion. These results stress the fact that drivers may be very different
from each other and previous approaches that set the gap setting
similarly for all drivers [8, 9] are less effective. Therefore, driver
characterization is essential for adapting automated systems in the
vehicle. These differences among humans are made more salient
when trying to learn when users engage or disengage from an auto-
mated system such as the ACC. Reactions could be very different
teaching us also about the tendencies of users towards automation.

We present solutions for two practical challenges in applying learn-
ing algorithms to this challenging domain: preventing overfitted
models, and creating effective models in cases where a strong ma-
jority category existed but the important events were in the minority
category. We address the overfitting issue by created simplified de-
cision trees, and we use the MetaCost algorithm [4] to learn from
unbalanced data sets. We present extensive results details specifics
of this application and how these algorithms were used within this
challenging transportation domain.

More generally, adapting automated processes to better serve hu-
mans is a challenging task because humans are characterized by
inconsistent behaviors, have difficulties in defining their own pref-
erences, are affected by their emotions, and are affected by the
complexity of the problems they face within the context of these



problems. By understanding the current state of acceptance of auto-
mated systems and learning about differences among human users,
we can improve the next generations of adaptive automated systems
adjusted to their particular human users.
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