
Teaching and Leading an Ad Hoc Teammate:

Collaboration without Pre-Coordination

Peter Stonea, Gal A. Kaminkab, Sarit Krausb,c, Jeffrey S. Rosenscheind,
Noa Agmona,b

aThe University of Texas at Austin
bBar Ilan University

cThe University of Maryland
dHebrew University

Abstract

As autonomous agents proliferate in the real world, both in software and
robotic settings, they will increasingly need to band together for cooperative
activities with previously unfamiliar teammates. In such ad hoc team set-
tings, team strategies cannot be developed a priori. Rather, an agent must
be prepared to cooperate with many types of teammates: it must collaborate
without pre-coordination. This article defines two aspects of collaboration in
two-player teams, involving either simultaneous or sequential decision mak-
ing. In both cases, the ad hoc agent is more knowledgeable of the environ-
ment, and attempts to influence the behavior of its teammate such that they
will attain the optimal possible joint utility.

Keywords: autonomous agents, multiagent systems, teamwork, game
theory, k-armed bandits

1. Introduction

Imagine that you are called to participate in a search and rescue scenario,
where the robots you designed are supposed to help search for survivors in a
major earthquake. Alternately, suppose you are part of a Mars exploration
party, where your rover is sent (as part of a team) to explore the planet. In
both cases, you already deployed an old robot you designed years ago for the
mission, and you want also to use a new robot built by someone else, that has
more information about the environment (but perhaps has poor actuators).
These two robots were designed by different parties in different decades, thus

Preprint submitted to Artificial Intelligence August 4, 2013



cannot communicate directly and do not use the same coordination protocols.
Will you be able to utilize the information gained by the newly designed robot
to make the robots perform better as a team in their mission?

This scenario is an example of an ad hoc team setting. Multiple agents (in
this case robots) with different knowledge and capabilities find themselves in
a situation such that their goals and utilities are perfectly aligned (effectively,
everyone’s sole interest is to help find survivors), yet they have had no prior
opportunity to coordinate. In addition to the setting described above, ad
hoc teams may arise among any robots or software agents that have been
programmed by different groups and/or at different times such that it was
not known at development time that they would need to coordinate.

This article focuses on the subclass of such settings in which we are de-
signing a new agent that has full information about its environment, that
must coordinate with an older, less aware, more reactive agent whose behav-
ior is known. Let A be the ad hoc agent that we control and design, and has
full information about the environment. Let B be the agent that we cannot
control, that adapts to the environment as it perceives it, i.e., it chooses its
next action based on what it observed in the environment (mainly, the ac-
tions of its teammate). A main question that arises is: can A’s information
be used to influence B to perform actions leading to higher team utility?
Given that this is an ad hoc teamwork setting, B can be assumed to choose
actions that it believes to be optimal for the team—based on its limited view
of the world. However, these actions might result in poor team utility in the
long run. For example, the robot with limited information about the search
and rescue environment will choose to help recover one person it can sense,
but will disregard numerous people it cannot currently observe.

While designing the ad hoc agent A, its behavior as an ad hoc agent
must be adept at assessing the capabilities of other agents (especially in
relation to its own capabilities), it must also be adept at assessing the other
agents’ knowledge states, and must be proficient at estimating the effects of
its actions on the other agents.

In this article we address two repeated decision making settings for ad
hoc agents.
1) Simultaneous decision making, in which agents A and B make their deci-
sions at the same time. In this case, agent A could lead agent B to perform
actions resulting in long-term higher team utility. This interaction between
the agents is modeled using game theoretic tools, specifically, by a matrix
game representation.

2



2) Sequential decision making, in which agent B selects its action after ob-
serving the outcome of A’s (and possibly its own past) actions. Here, the
actions chosen by agent A can teach agent B of the optimal action it should
choose, yielding highest possible team utility in the long run. In this case,
we model the interaction between the agents by a novel cooperative k-armed
bandit formalism.

In both cases we can directly control the behavior of agent A, and by
choosing appropriate actions this agent (indirectly) influences the behavior
of agent B, whose decision-making algorithm is assumed to be known and re-
flect its assumption that the environment (specifically, agent A) will continue
to perform similarly to what was observed so far. Computing the optimal
behavior for the ad hoc agent A is done using dynamic programming al-
gorithms, for both leading and teaching agent B. In both cases the agent’s
goal is the same - maximize team utility, where the utility is computed as the
sum of payoffs gained by performing each action (joint action in simultaneous
play, or individual actions in sequential play).

The remainder of this article is organized as follows. Sections 2 and 3
introduce detailed theoretical analysis of these ad hoc teamwork problems.
First, in Section 2, we examine the case of leading ad hoc teams, in which
the two agents act repeatedly and simultaneously in a situation appropri-
ately captured by iterated matrix games. Second, in Section 3, we turn to
the teaching in ad hoc teams, a scenario in which the agents alternate in
their turns to make decisions, as can be captured by a novel cooperative k-
armed bandit formalism. Section 4 discusses prior research most related to
our specific studies and the ad hoc teamwork problem itself; and Section 5
discusses the results in the broad perspective of the general problem of ad
hoc teamwork and concludes.

1.1. Problem Scope and Motivation

The challenge of ad hoc teamwork, as presented in the ad hoc teamwork
introductory paper [1], is:
To create an autonomous agent that is able to efficiently and

robustly collaborate with previously unknown teammates on tasks

to which they are all individually capable of contributing as team

members.

In this article, we analyze the simplest, and in some sense most basic
and fundamental, special case of the ad hoc teamwork problem.To this end,
we strip away as much complexity as possible while still retaining the most

3



essential feature of ad hoc teamwork, namely that an individual agent must
determine on the fly how to cooperate with at least one other teammate.
Specifically, we assume that there is only one teammate, and that its behavior
is fixed and known.

Admittedly, allowing for the teammate’s behavior to be fixed and known
may seem, at first blush, to remove an essential component of the teamwork
being “ad hoc.” However, consider a disaster rescue scenario in which robots
developed by many different people in different parts of the world converge
to work together to locate and extract victims from places that are yet too
dangerous for human rescue teams to enter. The behavior and capabilities of
each type of robot may be known a priori, even if the particular combination
of robots to be contributed is not. In this case, the ad hoc team agent must
determine, on the fly, how to act given the current team composition. The
robots certainly form a team: they are fully cooperative with no notion of
individual self-interest separate from the team’s interest. They all aim to act
so as to maximize the likelihood of finding survivors, even if it means risking
their own safety. More generally, any legacy agent that has been developed in
the past but is no longer easily reprogrammable could become a teammate
with fixed and known behavior to a newer, more intelligent agent that is
capable of reasoning about ad hoc teamwork.

Throughout the article, we will consider Agent A to be the agent that
is within our control, known as the ad hoc agent; whereas Agent B, which
reacts in a fixed way, is given by the environment.

As a second example of ad hoc teamwork with fixed and known Agent
B, consider the problem of robotic exploration.1 Assume that a robot was
deployed on Mars a decade ago for the sole purpose of exploring and retriev-
ing essential information about the soil. When the robot was deployed, its
designers did not know when, if, or to what extent the robot would be able
to interact with other robots as a team. However, since they envisioned the
possibility that other robots would be deployed at some point, its designers
equipped it with basic teamwork capabilities, namely: examining the be-
havior of other possible robots, and making the best decision (in this case
positioning for explorations) based on their observed behavior. For example,
it is aware that the team utility will be greater if the two robots explore
different areas. A decade later, substantially more information about Mars

1This will serve as an example of leading throughout the paper.

4



is available, and another robot is indeed sent to Mars holding that informa-
tion. The mission of this new robot is not only to explore the more fruitful
areas on Mars, but also to influence the exploration pattern of the initial
robot such that it will travel to these areas as well. Since the older robot
(Agent B) cannot communicate directly with the new robot (Agent A), the
only influence can be through the actions of the new robot. If Agents A
and B make decisions simultaneously, then the setting can be modeled as a
simultaneous repeated matrix game, as shown in Section 2. In this case, A
should choose a set of actions leading Agent B to the new area for exploration
yielding optimal utility for the team.

On the other hand, consider a case in which Agents A and B do not act
simultaneously, but they can observe their teammate’s actions and change
their plan for the next day accordingly. Specifically in this example, A and B
need to recharge their battery in a docking station, allowing each one of them
to act sequentially (one robot active while the other recharges). Additionally,
B cannot be maneuvered into exploring areas that it did not know of at the
time of deployment, but chooses to explore each day one of the areas that
(based on its previous observation) will most likely gain highest utility. Agent
A, being recently designed, also receives the chances of getting high utility
from an area of exploration based on new equipment it carries with it. Agent
A can make the obvious choice of exploring only the newly discovered area,
but it can also use its equipment to reveal information for Agent B. In this
case, A should choose each day an action that teaches Agent B the utilities
of its available actions. As shown in Section 3, the interaction between the
agents is captured by a novel cooperative k-armed bandit formalism.

The examples described above serve to emphasize the sense in which the
ad hoc teamwork problem can arise even when the teammates’ behaviors
are fixed and known, specifically by elaborating upon the idea of interacting
with legacy agents. The importance of interaction with such sub-optimal
agents (that, for example, do not use learning algorithms or other intelligent
means for determining optimality of their behavior) is the essence of ad hoc
teamwork: not all teammates can be assumed to be equally capable. In the
following sections we concentrate on technical contributions of each of the
two problems: teaching and leading in ad hoc teamwork, in this simplified,
known, environment.

5



2. Leading a Teammate: Repeated Scenarios with Simultaneous

Actions

In this section, we consider the case of an ad hoc team player, Agent A
that is interacting with a teammate, Agent B, with whom it cannot commu-
nicate directly, but that is capable of adapting to its teammate’s behavior.
Specifically, Agent B observes its teammate as part of the environment, and
adapts its actions according to the best response to some fixed history win-
dow of its observation of the environment (specifically, Agent A’s past moves).
Therefore, Agent A’s goal is to find the sequence of actions that will lead he
team to the highest (expected) payoff in a fully cooperative setting. In the
Mars rover example described in Section 1.1, we would like to find the set of
actions performed by the ad hoc robot that will lead the team to explore the
most beneficial areas on Mars. We discuss in this section several teammate
models for Agent B: a basic case, in which it decides its actions based on the
last state of the environment it observed (specifically, agent A’s last action),
the case in which it can store more information and choose its action based
on a larger memory size, and the case in which its actions could be random.

We begin by abstracting this setting to a game-theoretic formalism in
which the agents interact in a fully cooperative iterative normal form game.

2.1. Formalism

We represent the multiagent interaction of interest as a fully cooperative
iterative normal-form game between two agents, Agent A and Agent B. Let
the x actions available to Agent A be a0, a1, . . . , ax−1 and the y actions avail-
able to its teammate, Agent B, be b0, b1, . . . , by−1. The immediate payoff (a
real number) when A and B select actions ai and bj , mi,j is stored in row i
and column j of the payoff matrix M : M [i, j] = mi,j . In addition we define
the value of the highest payoff in the matrix, which could be realized by mul-
tiple entries, to be m∗. Without loss of generality, throughout this section,
we assume that mx−1,y−1 = m∗.

M1 b0 b1 b2

a0 25 1 0
a1 10 30 10
a2 0 33 40

For example, consider the payoff matrix
M1 for a scenario in which agents A and
B each have three possible actions. If both
agents select action 0 (i.e., their joint ac-
tion is (a0, b0)), then the joint team payoff
is m0,0 = 25. Similarly if their joint action

6



is (a2, b0) their joint payoff is 0. In this case, there is a unique joint action
that leads to m∗: m2,2 = m∗ = 40.

Assume that b0 is Agent B ’s default action or that, for whatever reason,
the agents have been playing (a0, b0) in the past. This could be, for example,
because Agent B is not fully aware of Agent A’s payoffs so that it cannot
unilaterally identify the best joint action, or because B does not fully trust
that A will play its part of the best joint action. In the Mars rover example,
this could be the initial state in which the new rover found the existing rover,
before it realized that the new rover is part of its environment. The question
we examine is what sequence of actions should Agent A take so as to maximize
the team’s undiscounted long-term payoff over iterative interactions using the
identical payoff matrix? The answer to this question depends on Agent B ’s
strategy. For example, if Agent B is non-adaptive and always selects b0, then
the best Agent A can do is always select a0.

However, if Agent B is adaptive, Agent A can lead it towards the optimal
joint action by taking a sequence of actions the responses to which will cause
Agent B to abandon b0 and choose other actions. In order to do so, it may
need to accept short-term losses with respect to the current payoffs (e.g.,
immediate payoffs of less than 25); however in the long run these losses will
be offset by the repeated advantageous payoff of (a2, b2).

2

In this article, we consider a particular class of strategies that Agent B
could be using. Though they may not be the most sophisticated imaginable
strategies, they are reasonable and often studied in the literature. The fact
that they are possibly suboptimal represents the philosophy that Agent A
must be able to adapt to its teammates as they are, not as they should be.
That is, we assume that we have control only over Agent A, not over Agent
B.

In particular, we specify Agent B as being a bounded-memory best re-
sponse agent with an ǫ-greedy action strategy. That is, the agent’s behavior
is determined by two parameters: a memory size mem; and a random action
rate ǫ. The agent considers the most recent mem actions taken by its team-
mate (Agent A), and assumes that they have been generated by the maximum

2In principle, it is possible that the game will not continue long enough to offset these
losses. We assume that the game will be repeated a large enough number of times that it
will not terminate before the agents reach the best joint action in the way that we specify.
In a setting where this is not the case, one would need to include the number of iterations
left as a part of the state.

7



likelihood policy that assigns fixed probabilities to each action. For example,
if mem = 4 and Agent A’s last four actions were a1, a0, a1, a1, then Agent
B assumes that Agent A’s next action will be a0 with probability 0.25 and
a1 with probability 0.75. It then selects the action that is the best response
to this assumed policy with probability 1 − ǫ; with probability ǫ it chooses
a random action. For example, for payoff matrix M1 in this situation, it
would select b1 with probability 1 − ǫ. We denote this best response action
as BR(a1, a0, a1, a1) = b1. Note that when ǫ = 1, the agent acts completely
randomly.

To illustrate, we begin by considering the case of mem = 1 and ǫ = 0.
For the remainder of this section, we consider the same case, in which Agent
B always selects the action that is the best response to Agent A’s previous
action: b0, b1, or b2 depending on whether A’s last action was a0, a1, or a2

respectively.
Now consider Agent A’s possible action sequences starting from the joint

action (a0, b0) with payoff m0,0 = 25. Because its last action was a0, it
knows that B will select b0 on the next play. It could immediately jump
to action a2, leading to the joint action (a2, b0). This action will lead to an
immediate payoff of m2,0 = 0, but then will cause Agent B to select b2 next,
enabling a payoff of 40 on the next turn and thereafter (assuming A continues
to select a2 as it should). The resulting sequence of joint actions would be
S0 = [(a0, b0), (a2, b0), (a2, b2), (a2, b2), . . .] leading to payoffs [25, 0, 40, 40, . . .].

Alternatively, Agent A could move more gradually through the matrix,
first selecting a1 for a joint payoff of 10 and leading B to select b1 on its next
turn. It could then shift to a2 for a payoff of 33, followed by 40 thereafter. The
resulting sequence of joint actions would be S1 = [(a0, b0), (a1, b0), (a2, b1), (a2, b2), (a2, b2), . . .]
leading to payoffs [25, 10, 33, 40, 40, . . .].

We define the cost C(S) of a joint action sequence S to be the loss from
playing S when compared to always playing the joint action (ax−1, by−1),
which leads to payoff m∗ — in the case of M1, 40. Thus

C(S0) = (40−25)+(40−0)+(40−40)+(40−40)+· · · = 15+40+0+0+· · · = 55

and

C(S1) = (40−25)+(40−10)+(40−33)+(40−40)+· · · = 15+30+7+0+0+· · · = 52

In this case, S1 is preferable to S0, and is in fact the optimal (lowest cost)
sequence starting from (a0, b0).

8



We define the length L(S) of a joint action sequence S to be the number
of joint actions prior to the first instance of the infinite sequence of joint
actions that yield m∗.3 Thus L(S0) = 2 and L(S1) = 3. Note that S1 has
lower cost even though it is longer. Note also that sequences that begin with
a joint action (ai, bj) such that mi,j = m∗ have both length 0 and cost 0.

For a given payoff matrix, we define S∗

n(ai, bj) to be the lowest cost se-
quence of length n or less starting from joint action (ai, bj). S∗(ai, bj) is the
lowest cost such sequence of any length. Thus, for matrix M1, S∗

2(a0, b0) = S0

and S∗

3(a0, b0) = S∗(a0, b0) = S1.
For the special case that no sequence of a given length exists (e.g., if

n = 0 or n = 1), we define S∗(ai, bj) = ω and C(ω) = ∞. Thus, for M1,
C(S∗

0(a0, b0)) = C(S∗

1(a0, b0)) = ∞, but C(S∗

1(a2, b1)) = 7 and C(S∗

0(a2, b2)) =
0.

Finally, for a given payoff matrix M , we are interested in the length
of the longest optimal sequence over all the possible starting points. We
define this value as L(M) = maxi,j L(S∗(ai, bj)). For example, in matrix
M1, L(S∗(a0, b0)) = L(S1) = 3, and there is no optimal sequence longer
than 3 starting from any other cell of the matrix (as we will prove below).
Thus L(M1) = 3.

2.2. Finding Optimal Sequences and Analysis

In this section, we develop algorithms for finding S∗(ai, bj) given a payoff
matrix M , and we examine the question of how long these S∗’s can be. We
divide the analysis based on Agent B ’s strategy. First, in Section 2.2.1 we
assume that Agent B has mem = 1 and ǫ = 0 as in Section 2.1. Next
in Section 2.2.2 we consider the more difficult case of mem > 1. Then, in
Section 2.2.3 we allow Agent B ’s actions to be random by considering ǫ > 0.

2.2.1. Deterministic Teammate with 1-Step Memory

We begin by presenting an efficient algorithm for finding all of the S∗’s
for a matrix M when interacting with a deterministic teammate (ǫ = 0)
that always selects the best response to our most recent action (mem = 1).
Detailed in pseudocode as Algorithm 1, it uses dynamic programming, using
the S∗

n−1’s to compute the S∗

n’s.

3The length of the sequence is defined for the purpose of the complexity analysis in the
following sections.

9



The algorithm takes as input an x × y dimensional payoff matrix M
and begins by initializing the optimal sequence of length 0 for every cell in
the matrix according to the definition (lines 1–5). It then enters the main
loop (7–21) that successively finds the best sequences of increasingly longer
lengths (as indicated by the variable len).

A key insight that aids efficiency is that for a given ai, the optimal se-
quences for b1–by are the same as the optimal sequence starting from (ai, b0),
other than the first joint action. The reason is that ai determines Agent B ’s
next action independently from Agent B ’s current action: in all cases, its
next action will be bBR(ai). Thus, Agent A’s task is to select its action, aact,
that leads to the best possible joint action of the form (aact, bBR(ai)).

Algorithm 1 Find S∗’s (M)
1: for i = 0 to x − 1 do

2: for j = 0 to y − 1 do

3: S∗

0(ai, bi) =

{

[(ai, bi), (ai, bi), . . .] if mi,j = m∗

ω if mi,j < m∗

4: end for

5: end for

6: len = 0
7: repeat

8: len = len + 1
9: for i = 0 to x − 1 do

10: S∗

len
(ai, b0) = S∗

len−1(ai, b0)
11: for act = 0 to x − 1 do

12: S′ = S∗

len−1(aact, bBR(ai))
13: if m∗ − mi,0 + C(S′) < C(S∗

len
(ai, b0)) then

14: S∗

len
(ai, b0) = PREPEND((ai, b0), S

′)
15: end if

16: end for

17: for j = 1 to y − 1 do

18: S∗

len
(ai, bj) = REPLACEHEAD(S∗

len
(ai, b0), (ai, bj))

19: end for

20: end for

21: until len = UPPERBOUND(L(M))

This very computation is carried out in lines 10–16, specifically for Agent
B ’s action b0. First, it is possible that the optimal sequence of length len,
S∗

len
(ai, b0) is the same as that of length len-1. Thus it is initialized as such

(line 10). Then for each possible next action on the part of Agent A, denoted

10



aact, the cost of the resulting sequence is simply the cost of the current joint
action (ai, b0), which is m∗−mi,0, plus the cost of the best possible sequence
of length len − 1 that starts from (aact, bBR(ai)). If that cost is less than the
cost of the best sequence of length len found so far, then the running best
sequence is updated accordingly by prepending joint action (ai, b0) to the
sequence S∗

len−1(aact, bBR(ai)) (lines 14–16).
The resulting optimal sequence is then used to determine the optimal

sequence starting from all other values of (ai, bj) for 1 ≤ j < y by simply
replacing the first joint action in the sequence S∗

len
(ai, b0) with the joint action

(ai, bj) (lines 17–19). At the end of this loop, the optimal sequence of length
len starting from any joint action (ai, bj) (S∗

len
(ai, bj)) is known and stored.

The computational complexity of the main loop of Algorithm 1 (lines
7–21) is quadratic in x and linear in y. Assuming x and y are of similar
dimension (Agents A and B have roughly the same number of possible ac-
tions), we can call the dimensionality of M to be d = max(x, y). In that case,
the main loop has complexity O(d2). Note that sequence costs C(S) can be
calculated incrementally in constant time as the sequences are constructed.

The only thing left to determine is how many times this main loop needs
to be run. In particular, for what value of len is it no longer possible to
find a better sequence than the best of length len − 1. We denote this value
UPPERBOUND(L(M)). The following two theorems prove that this value
is exactly min(x, y). Thus the overall computational complexity of algorithm
1 is O(d3).

First, in Theorem 2.1, we prove that there is no need to consider sequences
of length greater than min(x, y): UPPERBOUND(L(M)) ≤ min(x, y). Then,
in Theorem 2.1, we show that it is necessary to to consider sequences up to
length min(x, y):
UPPERBOUND(L(M)) ≥ min(x, y).

Theorem 2.1. When interacting with a teammate with mem = 1 and ǫ = 0
based on an x × y dimensional payoff matrix M , L(M) ≤ min(x, y)

Proof. We argue that ∀M, L(M) ≤ min(x, y) by first showing that L(M) ≤ x
and then showing that L(M) ≤ y. Intuitively, both cases hold because an
optimal sequence can visit every row and column in the matrix at most once.
If there were multiple visits to the same row or column, any steps in between
could be excised from the sequence to get a lower-cost sequence. The formal
arguments for the two cases are quite similar, though with a couple of subtle
differences.

11



Case 1: L(M) ≤ x. This is equivalent to proving ∀n ≥ x, and ∀i, j, S∗

n+1(ai, bj) =
S∗

n(ai, bj). Suppose not. Then ∃k and a corresponding sequence S ′ such
that S ′ = S∗

n+1(ai, bj) = PREPEND((ai, bj), S
∗

n(ak, bBR(i))) with C(S ′) <
C(S∗

n(ai, bj)). Since S∗

n(ai, bj) is the optimal sequence of length n or less,
L(S ′) = n + 1. n + 1 > x, so by the pigeonhole principle, ∃q such that
Agent A selects aq more than once in S ′ prior to the first instance of the
terminal joint action with value m∗. Assume that (aq, br) appears earlier in
the sequence than (aq, br′). In both cases, Agent B ’s next action in the se-
quence must be BR(aq). Thus after joint action (aq, br), Agent A could have
continued as it actually did after (aq, br′). This revised sequence would have
cost less than S ′, violating the assumption that S ′ = S∗

n+1(ai, bj). Therefore
L(M) ≤ x.

Case 2: L(M) ≤ y. Similarly, this case is equivalent to proving that
∀n ≥ y, and ∀i, j, S∗

n+1(ai, bj) = S∗

n(ai, bj). Suppose not. Then ∃k and a cor-
responding sequence S ′ such that S ′ = S∗

n+1(ai, bj) = PREPEND((ai, bj), S
∗

n(ak, bBR(i)))
with C(S ′) < C(S∗

n(ai, bj)). Since S∗

n(ai, bj) is the optimal sequence of length
n or less, L(S ′) = n + 1. n + 1 > y, so by the pigeonhole principle, ∃r such
that Agent B selects br more than once in S ′ after the first entry (ai, bj) and
up to and including the first instance of the terminal joint action with value
m∗.4 Assume that (aq, br) appears earlier in the sequence than (aq′, br). Then
at the point when Agent A selected aq leading to (aq, br), it could have instead
selected aq′ , and then finished the sequence as from (aq′, br) in S ′. Again,
this revised sequence would have cost less than S ′, violating the assumption
that S ′ = S∗

n+1(ai, bj). Therefore L(M) ≤ y.
Therefore ∀M, L(M) ≤ min(x, y).

Theorem 2.2. ∀x, y, ∃ x × y dimensional matrix M such that, when inter-
acting with a teammate with mem = 1 and ǫ = 0, L(M) = min(x, y).

Proof. To prove existence, we construct such a matrix.
Case 1: x = y. Consider the matrix M2 where δ = 10/x. All cells on the

diagonal are 100−δ except for the bottom right corner, mx−1,y−1 = m∗ = 100.
All cells below this diagonal are 100− 2δ, and all other cells are 0. We show
that for M2, L(S∗(a0, b0)) = x. Specifically,

S∗(a0, b0) = [(a0, b0), (a1, b0), (a2, b1), . . . , (ax−2, by−3), (ax−1, by−2), (ax−1, by−1)].

4This portion of the sequence still includes n + 1 elements, since we are ignoring the
first element (ai, bj), but then including the first instance of the terminal joint action.

12



M2 b0 b1 b2 · · · by−3 by−2 by−1

a0 100 − δ 0 0 · · · 0 0 0

a1 100 − 2δ 100 − δ 0
.
.. 0 0

a2 0 100 − 2δ 100 − δ
... 0

...
...

. . .
. . .

...

ax−3 0
..
.

. . . 100 − δ 0 0

ax−2 0 0
... 100 − 2δ 100 − δ 0

ax−1

...0 0 0 · · · 0 100 − 2δ 100

To see that this sequence is optimal, note that its cost is δ+(x−1)∗2δ <
2xδ = 20. Note further, that ∀i,BR(ai) = bi. Now working backwards, in or-
der to reach the optimal joint action (ax−1, by−1), Agent A must have selected
action ax−1 in the iteration prior to the first appearance of (ax−1, by−1) in the
sequence. When that happened, if Agent B had selected anything other than
by−2 (by−1 is not an option since we are considering the iteration prior to the
first appearance of by−1 in the sequence), then there would have been a pay-
off of 0, leading to a sequence cost of ≥ 100. Thus joint action (ax−1, by−2)
must appear in the optimal sequence. Similarly, considering the first appear-
ance of this joint action, for Agent B to have selected by−2, Agent A must
have selected ax−2 on the prior iteration. Again, any joint action other than
(ax−2, by−3) (here by−2 is not an option for the same reason as above) leads to
a payoff of 0 and a sequence cost of ≥ 100. Continuing this line of reasoning,
we can see that all the cells under the diagonal must appear in the optimal
sequence starting from joint action (a0, b0). Furthermore, adding any ad-
ditional joint actions (including those on the diagonal) only raise the cost.
Therefore the sequence presented above, of length x, is indeed S∗(a0, b0). It
is easy to see that no optimal sequence from any other cell is longer.5 Thus
∀x, ∃x × x dimension matrix M such that L(M) = x = min(x, y).

Case 2: x < y. If x < y we can construct a matrix M2′ that includes the
x × x dimensional version of M2 as a submatrix and contains an additional
y − x columns of all 0’s. By the same argument as above, S∗(a0, b0) is the
same sequence as above, which is of length x: L(M2′) = x = min(x, y).

5To be precise, ∀i, j, L(S∗(ai, bj)) = x − i with one exception: L(S∗(ax−1, by−1)) = 0.

13



Case 3: x > y. In this case, we can construct a matrix M2′ based on
the y × y dimensional version of M2 that adds x − y rows of all 0’s. Again,
S∗(a0, b0) is the same as above and L(M2′) = y = min(x, y).
Therefore, ∀x, y, ∃ an x×y dimensional matrix M such that L(M) = min(x, y).

Theorems 2.1 and 2.2 establish that the value of the call to the function
UPPERBOUND in line 21 of Algorithm 1 is min(x, y).

Note that in our analysis of this case in which Agent B has mem = 1 and
ǫ = 0, all of the arguments hold even if there are multiple cells in the payoff
matrix M with value m∗. Furthermore, Algorithm 1 computes the optimal
sequence of joint actions from all starting points, not just a particular starting
point, all in polynomial time in the dimensionality of the matrix.

2.2.2. Longer Teammate Memory

In this section we extend our analysis from the previous section to con-
sider interacting with teammates with mem > 1. This case presents consid-
erably more difficulty than the previous one in two ways. First, though the
algorithm can be naturally extended, it is no longer polynomial, but rather
exponential in mem. Second, it is no longer straightforward to compute
UPPERBOUND(L(M)), the maximum value of L(S∗(ai, bj)). We identify
a lower bound on this maximum value, but can only conjecture that it is a
tight bound.

Since the algorithm and analysis is so similar to that in Section 2.2.1,
rather than presenting them fully formally, we discuss how they differ from
the previous case.

To begin with, we need an added bit of notation for indicating sequences.
Because Agent B ’s actions are now no longer determined by just Agent
A’s previous action, but rather by Agent A’s history of previous mem ac-
tions, we keep track of these actions in the sequence, indicating a step as
(ai, bj)[h0; h1; . . . ; hmem−1] where h0 = ai is Agent A’s most recent action, h1

is its prior action, etc. Then Agent B ’s next action in the sequence must be
br = BR(h0, h1, . . . , hmem−1) and if Agent A’s next action is aq, then the next
element in the sequence is (aq, br)[aq; ai; h1; . . . ; hmem−2].

For example, returning to matrix M1 from Section 2.1, consider the case
in which Agent B has mem = 3 (and still ǫ = 0 throughout this section). A
valid sequence starting from (a0, b0)[a0; a0; a0] is

S2 = [(a0, b0)[a0; a0; a0], (a2, b0)[a2; a0; a0], (a2, b0)[a2; a2; a0], (a2, b2)[a2; a2; a2]]

14



Note that because BR(a2, a0, a0) = b0, Agent A needs to select a2 twice before
Agent B will shift to b2. C(S2) = 15+ 40 + 40 = 95. As in Section 2.1, there
is another valid sequence S3 in which Agent A leads Agent B through joint
actions (a1, b0) and (a2, b1) on the way to (a2, b2). But now, Agent A must
select a1 twice before B will switch to b1 and then a2 three times before B
will switch to b2. Thus C(S3) = 25 + 2 ∗ 30 + 3 ∗ 7 = 106. Hence, unlike
in Section 2.1, when Agent B has mem = 3, Agent A is best off jumping
straight to a2.

The first necessary alteration to Algorithm 1 in this case is that it is
no longer sufficient to simply calculate S∗

len
for every joint action (ai, bj) on

each loop of the algorithm. Rather, we must now calculate such values for
each joint action-history (ai, bj)[h0; . . . ; hmem-1]. Since h0 is constrained to
be the same as ai, there are xmem−1 such histories for each joint action,
leading to a total of xmemy optimal sequences computed on each main loop
of the algorithm. To accommodate this alteration, we simply need to nest
additional for loops after lines 2 and 10 of Algorithm 1 that iterate over the
(exponential number of) possible histories.

The second necessary alteration to Algorithm 1 in this case is that it is no
longer sufficient to simply arrive at a joint action (ai, bj) such that mi, j = m∗.
Rather, the agents must arrive at such an action with a history of Agent A’s
actions such that if it keeps playing ai, Agent B will keep selecting bj . We
define such a joint action-history to be stable.

M3 b0 b1 b2

a0 0 30 50
a1 41 20 0
a2 99 20 100

To see why the concept of stability is
necessary, consider matrix M3. A valid se-
quence starting from (a2, b2)[a2; a1; a0] pro-
ceeds to (a2, b2)[a2; a2; a1] if Agent A selects
a2. However from there, Agent B ’s best re-
sponse is b0, not b2. Thus the agents do not
remain stably at joint action (a2, b2).

To accommodate this situation, the only change to Algorithm 1 that is
needed is that in line 3, only stable joint-action histories such that mi,j =
m∗ should be initialized to the sequence of repeated terminal joint actions.
Unstable ones should be initialized to ω (along with all instances such that
mi,j < m∗, no matter what the history). We can check stability by computing
the best response to all histories that result from repeating action ai until
the entire history window is full of action ai. If any of these best responses
is not bj , then the joint action-history is not stable.

Third, the main loop of Algorithm 1 needs to be altered to accommodate

15



the inclusion of histories. In particular, in line 12, care needs to be taken to
compute S ′ correctly, with Agent B ’s action being based on the best response
to the current history, and the history being the result of taking action ai

from the current history. Furthermore the PREPEND and REPLACEHEAD
operators must manipulate the histories (and incremental cost computations)
in the appropriate, obvious ways.

Finally, and most significantly, the value of UPPERBOUND in line 21 of
Algorithm 1 must be altered. Unfortunately, we only can prove a lower bound
of this value and a loose upper bound (min(x, y) ∗ xmem−1). We conjecture,
but have not proven, that the lower bound is tight as it is in Section 2.2.1.

Theorem 2.3. ∀x, y, ∃ x × y dimensional matrix M such that, when inter-
acting with a teammate with mem > 1 and ǫ = 0, L(M) = (min(x, y) − 1) ∗
mem + 1.

Proof. (sketch) This theorem, which is the analog of Theorem 2.2, can be
proven using a similar construction. In particular, redefining δ as δ =
10/((x − 1) ∗ mem + 1), the same matrix M2 serves as our existence proof.
Consider the optimal sequence starting from (a0, b0) with history full of a0’s.
In that case, Agent A needs to select action a1 mem times before Agent B
will switch to b1. Similarly, it then needs to select a2 mem times before B
will switch to b2, and so on until A has selected each of the actions a1–ax−1

mem times. The additional one is for the initial action (a0, b0) which appears
only once in the sequence. As before, any joint actions with payoff 0 will lead
to a higher sequence cost than this entire sequence, and any additional joint
actions also increase the cost.

Also as before, the cases of x 6= y are covered by simply adding extra
rows or columns of 0’s to M2 as needed.

M5 b0 b1 b2 b3 b4

a0 98 0 96 97.2 0
a1 96 98 0 0 0
a2 0 96 98 97.2 0
a3 0 0 0 96 100

In [2], we conjectured that the
lower bound from Theorem 2.3 was
tight. That is, we conjectured that
it was always the case that L(M) ≤
(min(x, y)− 1) ∗mem+1. The intu-
ition was that neither Agent A nor
Agent B would ever select any one
action more than mem times with-
out foregoing some repetitions of its
other actions. However, we now know that there are counterexamples to

16



that conjecture. For example, consider the 4 × 5 matrix, M5.6 If Agent B ’s
mem = 2 (and its ǫ = 0), the optimal sequence from (a0, b0) starting with
history [a0; a0] ends at (a3, b4) and has length 8: L(S∗(a0, b0)[0; 0; 0]) = 8 >
(min(x, y) − 1) ∗ mem + 1 = 7. Specifically, in S∗ Agent A selects a1 twice,
then a2 twice, but then returns to a0 before selecting a3 thereafter. Due to
this example, and others like it, we revise our previous conjecture as follows.

Conjecture 2.1. When interacting with a teammate with mem > 1 and ǫ =
0 based on an x×y dimensional payoff matrix M , L(M) ≤ (y−1)∗mem+1.

Proving or disproving this conjecture is left as an important direction for
future work. It may also be possible to find a tighter bound, particularly
for matrices such that y > x. An additional important direction for future
work is developing heuristics for more efficiently finding the S∗’s when mem
> 1. Unfortunately, the problem is NP hard — see Appendix A for a proof.
The exponential runtime in mem of the algorithm for finding the S∗’s is of
practical significance. Our algorithm finds all the best sequences for a 60×60
matrix in less than 30 seconds of user time on a 1GHz laptop (calculated by
the Unix time command) when mem = 1, but it can only handle an 18× 18
matrix in that time when mem = 2, a 9×9 matrix when mem = 3, 6×6 when
mem = 4, and 4 × 4 when mem = 5. For larger matrices than those listed,
java ran out of heap space with the default settings, often after running for
more than 10 minutes.

2.2.3. Teammate Randomness

Until this point, we have assumed that Agent B acts deterministically:
Agent A could predict Agent B ’s next action with certainty based on its own
previous actions. In this section we relax that assumption by allowing B ’s ǫ
to be greater than 0.

Once again, Algorithm 1 needs to be changed minimally to accommodate
this case, so we just describe the changes. In fact, here, the only change
necessary is that costs of joint actions be computed as expected values in
comparison to the expected value of the optimal joint action.

The expected value of a joint action EV (ai, bj) = (1−ǫ)mi,j+
ǫ
y
(
∑y−1

k=0 mi,k).
m∗ is then defined to be the maximum expected value of a joint action in
M . The cost of a sequence C(S) is then the sum of the differences between

6Thanks to Leonid Trainer for this example.

17



m∗ and the expected values of the joint actions in the sequence. After these
changes in notation, which simply generalize our previous notation (all prior
definitions hold for the case when ǫ = 0), the only change necessary to Al-
gorithm 1 is in line 13: the term mi,0 must be replaced by EV (ai, b0). The
notion of stable joint action-histories remains unchanged from Section 2.2.2.

M4 b0 b1 b2 b3

a0 25 0 0 0
a1 88 90 99 80
a2 70 98 99 80
a3 70 70 98 100

Note that as ǫ changes, both the
optimal sequence of joint actions and
the “target” joint actions (the ones
that lead to expected value of m∗)
can change. For example, consider
the 4 × 4 matrix, M4. If Agent B ’s
mem = 3, then if its ǫ = 0, the
optimal sequence from (a0, b0) start-
ing with history [a0; a0; a0] ends at
(a3, b3) and has length 10: L(S∗(a0, b0)[0; 0; 0]) = 10. When ǫ = 0.1, and
ǫ = 0.3 the optimal lengths are 8 and 3 respectively, still ending at (a3, b3).
When ǫ = 0.4, the optimal sequence is of length 3, but now ends at (a2, b2).
All of these sequences have different costs.

The intuitive reason for these changes is that as ǫ increases, it is no longer
sufficient to reach a good cell in the matrix, but rather Agent A must aim
for a good row: any value in the row is possible to be the payoff of the joint
action. For this reason, with high ǫ, the row corresponding to a2 is preferable
to that corresponding to a3 (the sum of the values is higher).

The analysis of the algorithmic runtime remains mostly unchanged. For
efficiency, the expected values of joint actions can be cached so that they only
need to be computed once. However ǫ does have some effects on the value
of UPPERBOUND in line 21 of the algorithm. For ǫ < 1, Theorems 2.1–
2.3 all hold, though δ in the example matrix M2 needs to be generalized to
δ = 20(1−ǫ)

((x+1)∗mem)(2−2ǫ+ ǫ
y
)
. However when ǫ = 1, UPPERBOUND(L(M)) = 1:

Agent A can always jump immediately to the action that leads to the row
with the highest expected value, which will be attained by all joint actions
in that row. It is not clear whether ǫ has any effect on Conjecture 2.1.

2.3. Empirical Results

All variations of the algorithm presented in Section 2.2 are fully imple-
mented. In this section, we present some brief empirical results from running
them in various settings that shed some light on the nature and prevalence
of our problem of interest.

18



In particular, we consider how frequently action sequences of various
lengths appear in random matrices. At first blush, it may seem that when
interacting with an agent with mem = 1, matrices for which there ∃(ai, bj)
such that L(S∗(ai, bj)) > 2 (such as M1 in Section 2.1) would be relatively
rare in practice.

To test this hypothesis, we generated random x × y matrices such that
mx−1,y−1 = 100 and all other values mi,j are generated uniformly randomly
from [0, 100]. Table 1 shows the distribution of L(M) for x×x matrices when
Agent B ’s mem = 1 or 3. For matrices larger than 7 × 7, the mem = 3 case
takes more than a day to run on a modern laptop, so we stop at that point.
Matrices such that x 6= y did not show any interestingly different patterns.

mem=1 1 2 3 4 5 6 7 8 9 10

3 × 3 104 852 44
4 × 4 12 825 158 5
5 × 5 3 662 316 19 0
6 × 6 0 465 489 45 1 0
7 × 7 0 349 565 81 5 0 0
8 × 8 0 236 596 159 8 1 0 0
9 × 9 0 145 640 193 20 2 0 0 0
10 × 10 0 72 636 263 29 0 0 0 0 0

mem=3 1 2 3 4 5 6 7 8 9 10 11

3 × 3 98 178 344 340 28 8 4 0 0 0 0
4 × 4 15 76 266 428 134 60 21 0 0 0 0
5 × 5 1 19 115 408 234 145 71 7 0 0 0
6 × 6 0 0 22 282 272 222 164 27 11 0 0
7 × 7 0 0 5 116 293 282 220 55 17 10 1

Table 1: Distribution of L(M) for 1000 randomly generated matrices of various sizes. top:
Agent B ’s mem = 1. No entries are shown for values that we know to be impossible from
Theorem 2.1. bottom: mem = 3. No values greater than 11 were found.

From these results we see that even in 3 × 3 matrices with mem = 1, it
is not uncommon for Agent A to need to reason about the cost of various
sequence lengths: In 44 of 1000 cases, there is at least one joint action from
which Agent A is best off not jumping immediately to action a2. In 104 of

19



the cases, all optimal sequences are of length 1, which occurs exactly when
b2 is the best response to all of A’s actions: ∀0 ≤ i < x,BR(ai) = by−1 (as
expected, this occurrence becomes less common as the matrix size increases).
In the other 852 cases, Agent A is best off switching to a2 immediately, leading
to longest sequences of length 2.

Though matrices such that L(M) > 2 are not uncommon, it is also notice-
able that matrices with optimal sequences of lengths close to the theoretical
maximum do not occur naturally as the matrix size increases. A carefully se-
lected construct such as M2 in Section 2.2 is required to find such sequences.

2.4. Simultaneous Action Summary

A brief summary of the results from this section on repeated scenarios
with simultaneous actions is as follows, both as a table, and also with slightly
more explanation of each item, as a bulleted list.

Efficiency of finding optimal ac-
tion sequence

Maximum length of optimal se-
quence

Deterministic
Teammate,
1-Step Memory

O(d3) d = min(x, y)

Deterministic
Teammate, Longer
Memory

NP Hard Open problem; Between
(min(x, y) − 1) ∗ mem + 1 and
min(x, y) ∗ xmem−1

Random Teammate Same as deterministic Same as deterministic

Deterministic teammate with 1-Step memory:

• Can find optimal action sequence efficiently: O(d3)

• Maximum length of optimal sequence: min(x, y)

Longer teammate memory:

• Cannot find optimal action sequence efficiently: NPhard

• Maximum length of optimal sequence: open problem — between
(min(x, y) − 1) ∗ mem + 1 and min(x, y) ∗ xmem−1

Random teammate:

• Same as deterministic teammate: depends on teammate memory
size, with same bounds above applying.

20



3. Teaching a Teammate: Sequential Scenarios with Differing Abil-

ities

Section 2 explored the scenario in which Agent B is fixed and known and
the two agents repeatedly take simultaneous actions. This section maintains
the assumption that Agent B is fixed and known, but now considers the
case in which the teammates interact in a sequential turn-taking scenario, as
motivated in Section 1.1. This scenario can be formalized as a finite-horizon
cooperative k-armed bandit [3] in a way that, to the best of our knowledge,
has never been considered before in the literature. The formalism can be
applied to any multiagent decision-making setting that shares the essential
characteristics of the scenario described above, and can also be generalized
to ad hoc teamwork settings.

In this section, we characterize the conditions under which certain ac-
tions are potentially optimal in such a finite-horizon, cooperative k-armed
bandit, and we present a dynamic programming algorithm that solves for
the optimal action when the payoffs come from a discrete distribution. For
Gaussian distributions we present some theoretical and experimental results
and identify an open problem. While k-armed bandits are often used to
study the exploration versus exploitation challenge, nobody has previously
considered a multiagent cooperative setting in which the agents have dif-
ferent knowledge states and action capabilities. Thus our formalization is
simultaneously a practical method for multiagent team decision-making, and
a novel contribution to the literature on k-armed bandits.

3.1. Formalism

The k-armed bandit problem [3] is a much-studied problem in sequen-
tial decision making. The basic setting is as follows. At each time step, a
learning agent selects one of the k arms to pull. The arm returns a payoff
according to a fixed, but generally unknown, distribution. Similar to the
problem of leading teammates presented in section 2.1, the agent’s goal is to
maximize the team utility, specifically, to maximize the sum of the payoffs
it receives over time. The k-armed bandit is a classic setting for studying
the exploration vs. exploitation problem: at any given time, the agent could
greedily select the arm that has paid off the best so far, or it could select a
different arm in order to gather more information about its distribution. It
is also the basis for reinforcement learning theory, representing the stateless
action selection problem [4].

21



In order to study the ad hoc team problem laid out in this section we
extend the standard setting to include two distinct agents, known as the
teacher (agent A) and the learner (agent B), who select arms alternately,
starting with the teacher. We initially consider a bandit with just three
arms such that the teacher is able to select from any of the three arms,
while the learner is only able to select from among the two arms with the
lower expected payoffs. We consider the fully cooperative case such that the
teacher’s goal is to maximize the expected sum of the payoffs received by the
two agents over time (the teacher is risk neutral). Specifically, we make the
following assumptions:

• The payoff distributions of all arms are fully known to the teacher, but
unknown to the learner.

• The learner can only select from among the two arms with the lower
expected payoffs.

• The results of all actions are fully observable (to both agents).

• The number of rounds (actions per agent) remaining is finite and known
to the teacher.

We assume that the learner’s behavior (Agent B) is fixed and known:
it acts greedily, always selecting the arm with the highest observed sample
average so far. Any arm that has never been pulled is assumed to have a
sample average of ∞. Thus, the learner always prefers selecting an arm that
has not been selected previously. If there is more than one such arm, it
selects randomly from among them. This assumption reflects optimism in
the face of uncertainty on the part of the learner (optimistic initialization).

The teacher must then decide whether to do what is best in the short term,
namely pull the arm with the highest expected payoff; or whether to increase
the information available to its teammate, the learner, by pulling a different
arm. Note that if the teacher were acting alone, trivially its optimal action
would be to always pull the arm with highest expected payoff. Referring to
the Mars rover example from Section 1.1, the new rover should decide whether
to explore alone areas that are more beneficial for the mission and disregard
the existing robots’ whereabouts, or try to influence the area the old robot is
exploring, by choosing to explore a less beneficial zone. The arms here refer
to the possible zones the robots can explore with their possible benefits to
the team.

22



By these assumptions, the learner is both less capable and less knowl-
edgeable than the teacher, and it does not understand direct communication
from the teacher. It is tempting to think that we should begin by improving
the learner. But in the ad hoc team setting, that is not an option. The
learner “is what it is” either because it is a legacy agent, or because it has
been programmed by others. Our task is to determine the teacher’s best
actions given such learner behavior.

We use the following notation for the three arms. The learner selects
between Arm1 and Arm2, while the teacher can additionally choose Arm∗.
While we consider two different forms of distributions for the payoffs, through-
out the section we use the following notation:

• µi is the expected payoff of Armi (i ∈ {1, 2, ∗}).

• ni is the number of times Armi has been pulled (observed) in the past.

• mi is the cumulative payoff from all the past pulls of Armi.

• x̄i = mi

ni
is the observed sample average so far.

• r is the number of rounds left.

Throughout the section we assume that µ∗ > µ1 > µ2. If µ∗ is not the largest,
then the teacher’s choice is trivially to always select the arm with the largest
expected payoff. The ordering of Arm1 and Arm2 is without loss of generality.
In this setting, the question we ask is, which arm should the teacher pull, as
a function of r and all the ni, x̄i, and Armi payoff distributions (including
µi)?

We will consider two different forms of payoff distributions for the arms.
First, in the simpler “discrete” case, each Armi returns either a 1 or a 0
with probability pi. Thus µi = pi and mi is the number of times the arm
has yielded a payoff of 1. In this case, we derive a polynomial memory and
time algorithm for determining the teacher’s optimal action in any situation.
The analysis generalizes naturally to any discrete distribution. Second, in
the more difficult “normal” case, each Armi returns a value from a Gaussian
distribution with standard deviation σi (and mean µi). In this case, we can
only determine the optimal action efficiently when r = 1, though the optimal
action can be estimated numerically when r > 1.

We begin with theoretical results that hold for any type of distribution
in Section 3.2. We then present the complete solution to the discrete case in
Section 3.3 followed by our analysis of the normal case in Section 3.4.

23



3.2. Arbitrary Distribution Arms

In this section, we present theoretical results that apply regardless of the
forms of the distributions of the payoffs from the three arms.

3.2.1. The teacher should consider pulling Arm1

First, to understand that the problem specified in Section 3.1 is not trivial,
we show that there are situations in which the teacher should not greedily
optimize its short-term payoff by pulling Arm∗, but rather should increase
the amount of information available to the learner by pulling Arm1.

In fact, even with just one round remaining (r = 1), it is not difficult
to construct such a case. For example, suppose that µ∗ = 10, µ1 = 9, µ2 =
5, x̄1 = 6, x̄2 = 7, n1 = n2 = 1. Suppose further that the distribution of
payoffs from Arm1 is such that the probability of obtaining a value greater
than 8 is η > 1

2
. Thus with probability η, after an agent selects Arm1, its

sample average will be greater than x̄2.
Should the teacher select Arm∗, then the learner will select Arm2 (because

x̄1 < x̄2), yielding an expected total payoff during the round of µ∗ +µ2 = 15.
On the other hand, should the teacher select Arm1, there is a greater than
50% chance that the learner will select Arm1 as well. The expected payoff is
then µ1 + ηµ1 + (1 − η)µ2 > 9 + 9

2
+ 5

2
= 16.

Therefore there are situations in which it is better for the teacher to pull
Arm1 than Arm∗. This article is devoted to characterizing exactly what those
situations are.

3.2.2. The teacher should never pull Arm2

Second, we argue that the teacher should only consider pulling Arm∗ or
Arm1. On the surface, this result appears obvious: why should the teacher
pull Arm2 just to prevent the learner from doing the same? In fact, there is
a relatively straightforward proof that applies when x̄1 < x̄2 (similar to our
proof of Theorem 3.2 below). However the proof of the fully general result
that includes the seemingly simpler case that x̄1 > x̄2 is surprisingly subtle.
We sketch the proof below. The full proof appears in Appendix B.

Theorem 3.1. It is never optimal for the teacher to pull Arm2.

Proof sketch. The proof uses induction on r.
Base case: r = 1. If the teacher starts by pulling Arm2, the best expected
value the team can achieve is µ2 +µ1. Meanwhile, if it starts with Arm∗, the
worst the team expects is µ∗ + µ2. This expectation is higher since µ∗ > µ1.

24



Inductive step: Assume that the teacher should never pull Arm2 with
r − 1 rounds left. Let π∗ be the optimal teacher action policy that maps the
states of the arms (their µi, ni, and x̄i) and the number of rounds left to the
optimal action: the policy that leads to the highest long-term expected value.
Consider the sequence, S, that begins with Arm2 and subsequently results
from the teacher following π∗. To show: there exists a teacher action policy
π′ starting with Arm∗ (or Arm1) that leads to a sequence T with expected
value greater than that of S. That is, the initial pull of Arm2 in S does not
follow π∗.

The underlying idea is that the sequence T should start with the teacher
pulling Arm∗ repeatedly, and tracking the values obtained by the learner to
see if it can ever discern what the sequence S would have looked like after
some number of rounds (it simulates sequence S). This may not be possible,
for example if sequence S begins with a pull of Arm1, whereas after the initial
pull of Arm2 in T , the values are such that Arm1 is never pulled.

If the teacher ever does get to the point that all of the learner’s pulls
of Arm1 and Arm2 in T can be used in simulating S, then the teacher can
mimic S from that point until it runs out of rounds (we can prove that the
simulation necessarily ends with fewer rounds executed in S than in T ). Then
nothing that would have happened after the mimicking ended (that is that
will happen in S) could have higher expected value than all the extra pulls
of Arm∗ that came before the mimicking started in T .

If, on there other hand, there is never a point that all the pulls of Arm1

and Arm2 can be used in the simulation, then sequence T must have more
pulls of Arm∗ and fewer pulls of Arm2 than sequence S (which itself requires
some care to prove rigorously).

Either way, the sequence T has higher expected value than sequence S,
so the initial pull of Arm2 in S was suboptimal.

Thus, when the teacher decides to teach the learner, it does so by pulling
Arm1. Pulling Arm∗ can be thought of as exploiting, or maximizing short-
term payoff. In the remainder of this section, we sometimes refer to the
teacher pulling Arm1 as “teaching,” and pulling Arm∗ as “not teaching.”

3.2.3. Never teach when x̄1 > x̄2

Third, we show that the teacher’s choice is clear whenever x̄1 > x̄2. That
is, if the current sample average of Arm1 is greater than that of Arm2 such
that the learner will choose Arm1 next, then the teacher should always choose
Arm∗: it should not teach.

25



Theorem 3.2. When x̄1 > x̄2, it is always optimal for the teacher not to
teach (to pull Arm∗).

Proof. When r = 1, the theorem is clearly true: the expected reward for
the round when not teaching is already the maximum possible: µ∗ + µ1.
When r > 1 the argument is a simpler version of the proof to Theorem 3.1.
Consider the sequence S that begins with Arm1 and then follows the optimal
policy π∗ thereafter. Compare it with the sequence T that results from the
teacher pulling Arm∗ in the first two rounds, then mimicking sequence S
thereafter: following π∗ as if there were one more round remaining than is
actually remaining. Since the first two values in S are equivalent to the
learner’s first two values in T (it will begin with Arm1 because x̄1 > x̄2),
the sequences are identical other than the teacher’s first two pulls of Arm∗

in T and the last action of each agent in S. Thus the expected value of
T − S ≥ (µ∗ + µ∗) − (µ∗ + µ1) > 0. Since S is the best the teacher can do if
it starts with Arm1, and T is a lower bound on how well it can do otherwise,
the teacher should never pull Arm1 when x̄1 > x̄2.

3.2.4. Do not teach when n1 = 0 and/or n2 = 0

When starting a new task such that the learner has no experience with
any of its arms, the teacher should pull Arm∗: it should not teach. The proof
proceeds similarly to the proof of Theorem 3.2. In fact, the proof generalizes
to the statement that the teacher should never do what the student is about
to do anyway.

3.3. Discrete Distribution Arms

In Section 3.2, we presented theoretical results that do not depend in any
way on the form of the distributions governing the payoffs from the various
arms: the teacher should never pull Arm2, and it should only consider Arm1

when x̄1 < x̄2. In this section and the next, we analyze when exactly the
teacher should select Arm1, which depends on the exact distributions of the
payoffs. We first restrict our attention to binary distributions such that each
Armi returns a 1 with probability pi, and a 0 otherwise. Referring to the
Mars rover example, this case is equivalent to a “success” and “failure” in
the exploration mission in the zone: was the robot able to produce valuable
information today in its exploration mission, or not? Here, µi = pi, and mi is
the number of times the arm has yielded a payoff of 1 thus far. In this setting
we can solve for the optimal teacher action using finite horizon dynamic
programming. The algorithm generalizes to any discrete distribution.

26



3.3.1. x̄1 < x̄2, r = 1

To develop intuition, we begin by considering what the teacher should do
when r = 1 (one action remaining for each agent). As shown in Section 3.2,
the teacher should never teach when x̄1 > x̄2.

When x̄1 < x̄2 (i.e., m1

n1
< m2

n2
), there are two conditions that must hold

for it to be worthwhile for the teacher to teach. First, it must be the case
that pulling Arm1 could change the learner’s action from Arm2 to Arm1; and
second, it must be the case that the expected cost of teaching is less than
the expected benefit of teaching. Specifically, we need the following to hold:

1. m1+1
n1+1

> m2

n2

2. p∗ − p1 < p1(p1 − p2)

The right hand side of the second inequality is the probability that Arm1 will
yield a 1 multiplied by the difference in expected values between Arm1 and
Arm2.

Note that we can also explicitly calculate the expected values of both not
teaching (EVnt) and teaching (EVt). EVnt = p∗ + p2 and EVt = p1 + p2

1 +
(1 − p1)p2.

3.3.2. Algorithm

Building on the intuition from Section 3.3.1, this section presents our
fully-implemented polynomial memory and time dynamic programming al-
gorithm for determining the teacher’s optimal action with any number of
rounds left. It takes as input initial values for m1, n1, m2, n2, and r, which
we denote as M1, N1, M2, N2, and R respectively, and it outputs whether the
teacher’s expected value is higher if it teaches by pulling Arm1 or if it exploits
by pulling Arm∗.

The dynamic programming algorithm works backwards from smaller to
bigger values of r, computing the expected value of the optimal action from
any possible values of m1, n1, m2, and n2 that could be reached from the
initial values.

First, consider the values that m1, n1, m2, and n2 can take on when there
are r rounds left.

• Because both agents can pull Arm1 any number of times, with r rounds
left (after R − r rounds have passed), n1 can range from N1 (if Arm1

was never selected) to N1 + 2(R − r).

27



• Any number of the n1−N1 times that Arm1 was pulled, m1 could have
increased by 1. Thus m1 can range from M1 to M1 + (n1 − N1).

• Because only the learner pulls Arm2, it will be pulled at most once per
round. But the range of n2 depends on the value n1, because the learner
only pulls Arm2 when it does not pull Arm1. Thus n2 can range from
N2+max(0, R−r−(n1−N1)) to N2+(R−r)−max(0, n1−N1−(R−r)).

• Similarly to m1, m2 can range from M2 to M2 + (n2 − N2).

The algorithm, detailed as pseudocode in Algorithm 2, is structured as
nested for loops using these ranges. For each reachable combination of val-
ues, the algorithm computes the teacher’s optimal action (Arm1 or Arm∗),
denoted Act[·]; and the expected long-term value of taking that action, de-
noted Val[·]: the expected sum of payoffs for the optimal action and all future
actions by both the teacher and the learner.

First, in Line 1, the expected value with zero rounds remaining is defined
to be 0 since there are no more actions to be taken. Then, in the body of
the nested for loops (Lines 7–45), the expected values of both teaching by
pulling Arm1 (EVt) and not teaching by pulling Arm∗ (EVnt) with r rounds
remaining are computed based on the stored values for the possible resulting
states with r − 1 rounds remaining.

The values of these possible resulting states are denoted as EVabcd where
a, b, c, and d denote the increments to m1, n1, m2, and n2 respectively between
rounds r and r−1 (Lines 7–17). For example, Line 25 computes the expected
value for not teaching when n1, n2 > 0 and m1

n1
> m2

n2
. In the current round,

the teacher exploits (does not teach) by pulling Arm∗ and the learner pulls
Arm1, leading to an expected return of p∗ + p1. This value is then added to
the expected value of the resulting state with r−1 rounds remaining. Due to
the learner’s action, the value of n1 is incremented by 1. With a probability
of p1, this action returns a payoff of 1, causing m1 to be incremented as well.
With a probability of 1−p1, m1 is not incremented. Thus the expected value
after the current round is p1EV1100 + (1 − p1)EV0100. Note that there are
special cases for the situations in which n1 and/or n2 are 0 corresponding to
the assumed learner behavior as specified in Section 3.1.

Once the expected values of teaching and not teaching have been com-
puted, they are compared in Line 38, and the Act[·] and Val[·] entries are
set according to the result. Finally, the appropriate action with R rounds
remaining is returned (Line 50). Note that by storing the optimal actions

28



along the way (Act[·]), the algorithm eliminates the need to do any addi-
tional computations in the future as the number of rounds remaining (r)
decreases to 1. For all possible results of the teacher’s and learner’s actions,
the optimal teacher action in all future rounds is already stored.

3.3.3. Algorithm analysis

In this Section we analyze the memory and runtime properties of Algo-
rithm 2, specifically showing that it is polynomial in R in both respects.

First, notice that both the memory and the runtime complexity is de-
termined by the number of iterations through the nested for loop. Each
iteration through the loop requires that one expected value and one opti-
mal action be stored; and the computation within the loop is constant with
respect to r.

Thus the relevant quantity is the number of combinations of values m1, n1, m2, n2,
and r can take in the body of the loop. Looking at their ranges as laid out at
the beginning of Section 3.3.2, it is clear that this number is bounded above
by 2R ∗ 2R ∗ R ∗ R ∗ R = 4R5. Therefore both the memory and runtime
complexities of this algorithm for computing the optimal teacher action with
R rounds remaining for any starting values of the other variables are O(R5).

Although the algorithm runs iteratively, using dynamic programming, in
principle we can convert the stored data structure into closed form com-
putations of both teaching and not teaching. This conversion is based on
the probabilities of the various possible outcomes of the pulls of the arms.
However the closed form equations will be dependent upon m1, n1, m2, and
n2.

3.3.4. Other Discrete Distributions

The algorithm and analysis to this point in this section all deal with
the binary case in which each arm returns either 1 or 0 on each pull: 1 for
a success and 0 for a failure. However, the algorithm and analysis extend
trivially to distributions in which the success and failure payoffs from each
arm differ from 1 and 0 and differ across the arms. The key property is
that each arm has a success payoff that is realized with probability pi and a
(lower) failure payoff that is realized otherwise. Either or both of the payoffs
can even be negative, representing an action penalty. In order to adapt the
algorithm, the calculations of the expected values in lines 18–37 need to be
changed to reflect the revised payoffs, and the calculations of the sample
average (e.g. in Line 24), need to reflect the revised payoffs by multiplying

29



Algorithm 2 TeachOrExploit(M1, N1,M2, N2, R)
Require: p1, p2, p∗

1: Define Val[m1, n1, m2, n2, 0] = 0, ∀m1, n1, m2, n2

2: for r = 1 to R do

3: for n1 = N1 to N1 + 2(R − r) do

4: for m1 = M1 to M1 + (n1 − N1) do

5: for n2 = N2 + max(0, R − r − (n1 − N1)) to N2 + (R − r) − max(0, n1 − N1 − (R − r)) do

6: for m2 = M2 to M2 + (n2 − N2) do

7: EV1100 = Val[m1 + 1, n1 + 1, m2, n2, r − 1]

8: EV0100 = Val[m1, n1 + 1, m2, n2, r − 1]

9: EV0011 = Val[m1, n1, m2 + 1, n2 + 1, r − 1]

10: EV0001 = Val[m1, n1, m2, n2 + 1, r − 1]

11: EV2200 = Val[m1 + 2, n1 + 2, m2, n2, r − 1]

12: EV1200 = Val[m1 + 1, n1 + 2, m2, n2, r − 1]

13: EV0200 = Val[m1, n1 + 2, m2, n2, r − 1]

14: EV1111 = Val[m1 + 1, n1 + 1, m2 + 1, n2 + 1, r − 1]

15: EV1101 = Val[m1 + 1, n1 + 1, m2, n2 + 1, r − 1]

16: EV0111 = Val[m1, n1 + 1, m2 + 1, n2 + 1, r − 1]

17: EV0101 = Val[m1, n1 + 1, m2, n2 + 1, r − 1]

18: if n1 = 0 and n2 = 0 then

19: EVnt = p∗ + .5(p1(1+EV1100) + (1 − p1)EV0100) + .5(p2(1+EV0011) + (1 − p2)EV0001)

20: else if n1 = 0 then

21: EVnt = p∗ + p1(1+EV1100) + (1 − p1)EV0100

22: else if n2 = 0 then

23: EVnt = p∗ + p2(1+EV0011) + (1 − p2)EV0001

24: else if
m1
n1

>
m2
n2

then

25: EVnt = p∗ + p1 + p1EV1100 + (1 − p1)EV0100

26: else

27: EVnt = p∗ + p2 + p2EV0011 + (1 − p2)EV0001

28: end if

29: if n2 = 0 then

30: EVt = p1 +p2 +p1p2EV1111 +p1(1−p2)EV1101 +(1−p1)p2EV0111 +(1−p1)(1−p2)EV0101

31: else if
m1

n1+1
>

m2
n2

then

32: EVt = 2p1 + p1p1EV2200 + 2p1(1 − p1)EV1200 + (1 − p1)(1 − p1)EV0200

33: else if
m1+1

n1+1
<

m2
n2

then

34: EVt = p1 +p2 +p1p2EV1111 +p1(1−p2)EV1101 +(1−p1)p2EV0111 +(1−p1)(1−p2)EV0101

35: else

36: EVt = p1(1 + p1(1+EV2200) + (1 − p1)EV1200) + (1 − p1)(p2(1+EV0111) + (1 − p2)EV0101)

37: end if

38: if EVnt >EVt then

39: Act[m1, n1, m2, n2, r] =Arm∗

40: Val[m1, n1, m2, n2, r] =EVnt

41: else

42: Act[m1, n1, m2, n2, r] =Arm1

43: Val[m1, n1, m2, n2, r] =EVt

44: end if

45: end for

46: end for

47: end for

48: end for

49: end for

50: Return Act[M1, N1, M2, N2, R]

m1 and m2 appropriately and computing the weighted averages with n1−m1

and n2 − m2 respectively.
The results can also be generalized from binary distributions to any dis-

crete distribution. In this case the algorithm includes extra nested for loops

30



for each possible outcome of pulling an arm (not just two per arm). The
exponent of the space and runtime complexities of the algorithm is increased
accordingly, but the algorithm remains polynomial.

3.3.5. Numerical Results and Experiments

With the aid of the algorithm presented in Section 3.3.2, we tested sev-
eral conjectures experimentally. In this section we consider the following
questions:

1. Are there any patterns in the optimal action as a function of r when
all other parameters are held constant?

2. How sensitive is the expected value computation to the relationship
between m1, n1, m2, n2, p1, p2, and p∗?

3. When Algorithm 2 is run, how many of the states tend to have Arm1

(teaching) as the optimal action?

First, consider the effect of increasing the number of rounds remaining
to be played, r. Intuitively, as r increases, the more time there is to benefit
from teaching. For example, consider the case in which p∗ = .5, p1 = .4, and
p2 = .16. Suppose that the learner has observed Arm1 being pulled 3 times,
one of which successfully gave a payoff of 1 (m1 = 1, n1 = 3) as well as Arm2

being pulled 5 times, two of which succeeded (m2 = 2, n2 = 5).
In this case, with one round left the teacher should not teach: although

condition 1 from Section 3.3.1 holds, condition 2 does not. In particular the
probabilities are such that the cost of teaching (.5−.4 = .1) is not outweighed
by the expected benefit of teaching (.4 ∗ (.4 − .16) = .096). However, when
r = 2, there is enough time for the learner to take advantage of the added
knowledge. In this case, the expected value of teaching, EVt = 1.3544 is
greater than that of not teaching, EVnt = 1.32.

Though this result matches intuition, there are also cases such that in-
creasing r changes the optimal action from teaching to not teaching. In fact,
with r = 3 or 4 and all other values above unchanged, the optimal action of
the teacher is again not to teach. For r > 4 (at least up to 16), the optimal
action is to teach. However, there are even cases such that increasing r from
1 to 2 leads to a change in optimal action from teaching to not teaching.
We will revisit this phenomenon in Section 3.4.3 in the context of arms with
Gaussian distributions. The intuition is that with just one round remaining,
there is a small enough cost to teaching that the teacher ought to try to get
the learner to forgo Arm2 even though the chances of succeeding are small;

31



but with two rounds remaining, the learner’s initial selection of Arm2 will
almost surely be sufficient for it to “teach itself” that it should select Arm1

on the next round. This scenario is exemplified by the following parameters:
p∗ = .076075, p1 = .076, p2 = .075, m1 = 3020, n1 = 40000, m2 = 910, n2 =
12052.7 In this case, both constraints from Section 3.3.1 are satisfied, thus
the optimal action when r = 1 is Arm1 (teach). However when r = 2,
EVt = .302228 < EVnt = .303075: the optimal teacher action is Arm∗.

Second, note that the optimal action is very sensitive to the exact values
of all the parameters. For example, when p∗ = .5, p1 = .4, p2 = .16, r =
4, m2 = 2, and n2 = 5, (the same parameters considered at the beginning of
this section), the teacher’s optimal action can differ even for identical values
of x̄1. When m1 = 1 and n1 = 3, the optimal action is not to teach (Arm∗),
but when m1 = 2 and n1 = 6, the optimal action is to teach (Arm1) — even
though x̄1 is 1

3
in both cases. Similarly small changes in any of the other

parameter values can change the teacher’s optimal action.
Third, we consider how many of the states tend to have Arm1 (teaching)

as the optimal action when running Algorithm 2. For example, when p∗ =
.5, p1 = .4, p2 = .16, m1 = n1 = m2 = n2 = 1, solving for the optimal
action with 15 rounds to go (r=15) leads to 81600 optimal actions computed
(iterations through the for loops), 80300 of which are not to teach (Arm∗).
In general, it seems that at least 90% of the optimal actions are Arm∗, even
when the ultimate correct action is to teach, and usually significantly more
than that. This observation perhaps suggests that in the Gaussian case
below, when the optimal action cannot be solved for so easily, the default
heuristic should be not to teach. We examine this hypothesis in Section 3.4.3.

3.4. Normal Distribution Arms

In Section 3.3, we focused on arms with discrete payoff distributions.
However in general ad hoc team settings, action payoffs may come from
continuous distributions. In this section we turn to the case in which the dis-
tributions are Gaussian. Now, in addition to the expected value µi, which is
the mean of the distribution, arms are characterized by a standard deviation,
σi.

There are two main reasons that this case is more complicated than the
discrete case. First, rather than a discrete set of possible future states, there

7Note that this scenario is not particularly unlikely: m1

n1
≈ p1,

m2

n2
≈ p2.

32



are infinitely many possible outcomes from each pull. Second, in contrast to
the constraints laid out in Section 3.3.1 for when it is worthwhile to teach, in
the Gaussian case the µ’s and the x̄’s (which correspond to the p’s and the
m’s and n’s in the binary case) interact in the same inequality, rather than
constituting independent constraints.

Both of these complications are readily illustrated even with r = 1. We
thus begin by analyzing that case in Section 3.4.1. Recall that all the results
from Section 3.2 still apply in this case. For example, it is only worth con-
sidering teaching when x̄1 < x̄2. We then consider the case when r = 2 in
Section 3.4.2 and present some empirical data in Section 3.4.3. In contrast
to the discrete case, we do not have an algorithm for exactly computing the
optimal action when r > 1. In principle it can be estimated numerically,
though with increasing inefficiency as r increases.

3.4.1. x̄1 < x̄2, r = 1

In order to analyze this case, we make use of the cumulative distribution
function (CDF) of the normal distribution, denoted as Φµ,σ(v). Exactly as
in the binary case, with one round left, the teacher should teach when the
expected cost of teaching, µ∗ − µ1, is less than the probability that teaching
will successfully cause the learner to switch its choice from Arm2 to Arm1,
Φµ1,σ1(y), multiplied by the benefit of successful teaching, µ1 − µ2. Here y
is the minimum return from Arm1 that would cause the sample average of
Arm1 to surpass that of Arm2:

m1+y

n1+1
= x̄2.

Therefore, the teacher should pull Arm1 if and only if

1 − Φmu1,σ1(x̄2(n1 + 1) − x̄1n1) >
µ∗ − µ1

µ1 − µ2
(1)

(recall that x̄1 = m1

n1
by definition). Otherwise, the teacher should pull Arm∗.

We can then compute the expected value of the optimal action as:

• If x̄1 > x̄2, EVnt = µ∗ + µ1

• Else, if the optimal action is to teach,
EVt = µ1 +µ2Φmu1,σ1(x̄2(n1 +1)− x̄1n1))+µ1(1−Φmu1,σ1(x̄2(n1 +1)−
x̄1n1))

• Else EVnt = µ∗ + µ2.

Since there are readily available packages, for example in Java, for com-
puting Φµ1,σ1(y), this result can be considered a closed form solution for
finding the optimal teacher action and its expected value when r = 1.

33



3.4.2. x̄1 < x̄2, r ≥ 2

In contrast, when r > 1, there is no such closed form method for finding
the optimal action. Rather, integrals over functions need to be estimated nu-
merically. For example, consider the case in which r = 2. In this case, EVnt

and EVt can be estimated numerically by sampling from the arms’ distribu-
tions and using the results to compute a sample EV based on the appropriate
case from the expected value computation from Section 3.4.1. The resulting
sample EV’s can then be averaged. Doing so is akin to computing the value
of a double integral (since the definition of Φ also includes an integral). As
r increases, the inefficiency of this process compounds: for each sample, and
at each round, it is necessary to estimate the values of both EVnt and EVt

so that the optimal action from that point can be determined. In a sense,
the value of a nested integral, with a total of r levels of depth, needs to be
computed. Alternatively, the continuous distribution can be approximated
with a discrete distribution and then solved as in Section 3.3. To date, we
have not been able to characterize anything more formal or concrete about
this case. Instead we discuss some conjectures and heuristics in the following
section.

3.4.3. Numerical Results and Experiments

Even if we cannot practically determine in general what the teacher’s
optimal action is, it may be possible to find some reasonable heuristics. To
this end, in this section we consider the following questions, the first of which
is parallel to the first question considered in Section 3.3.5:

1. Are there any rules or patterns in the optimal action as a function of r
(when all other parameters are held constant)?

2. How do various teacher heuristics compare to one another in perfor-
mance?

First, just as in the binary case, intuition suggests that increasing r should
make it more beneficial to teach since there is more time for the added infor-
mation to be used by the learner. However again, we can find a counterex-
ample even with r = 1 and 2.

Consider the case in which (µ∗, σ∗) = (10, 0), (µ1, σ1) = (9, 2), and (µ2, σ2) =
(7, 2). Suppose that the learner has observed Arm1 being pulled once when
it got a payoff of 6.99 (x̄1 = 6.99, n1 = 1), and it observed Arm2 once for a
payoff of 8 (x̄2 = 8, n2 = 1).

34



With these values it is barely not worth it for the teacher to teach with
r = 1. That is, with these values, Inequality 1 is not satisfied, but if x̄1

were 7.01, then it would be satisfied. Thus we know with certainty that the
teacher’s optimal action is Arm∗.

When r = 2, we can determine experimentally what the teacher’s optimal
action is by averaging the results of multiple trials when the teacher starts
by teaching vs. not teaching and then acting optimally in the last round. In
this case, when averaging over 2000 samples, the teacher reliably does better
teaching (34.4 average return over the last 2 rounds) than when not teaching
(34.2). Though the numbers are close and have high variance within a set of
2000 samples, the result is robust across multiple sets of 2000 samples.

When doing these experiments, we can gain a deeper understanding by
considering the average situation after the teacher and learner have each
taken one action, such that there is one more round remaining. First, consider
the case in which the teacher does not teach with two rounds remaining. Thus
it selects Arm∗ and the learner selects Arm2. Though the teacher’s action
has no impact on the relationship between x̄1 and x̄2 for the final round, the
learner’s action does. In one set of 2000 samples, the status after the first
round was as follows:

• x̄1 > x̄2: 29.5%

• x̄1 < x̄2, Inequality 1 true (worth teaching): 39.2%

• x̄1 < x̄2, Inequality 1 false (not worth teaching): 31.4%

Weighting all three cases by their frequency, the total average expected value
during the last round was 17.737.

On the other hand, when the teacher selects Arm1 with two rounds re-
maining, we see the following breakdown after the first round:

• x̄1 > x̄2: 64.0%

• x̄1 < x̄2, Inequality 1 true (worth teaching): 14.1%

• x̄1 < x̄2, Inequality 1 false (not worth teaching): 22.0%

Again weighting the three cases by their frequency, the total average expected
value during the last round was 18.322.

So in this case, after teaching in the second last round, the expected value
of the last round is higher than when not teaching in the second last round.

35



Most of this advantage comes because it is more likely that x̄1 > x̄2 prior to
the final round. This advantage makes up for the slight cost of teaching in
the initial round.

Though perhaps typical, it is not always the case that increasing r in-
creases the benefit of teaching. Just as we found in the binary case in Sec-
tion 3.3.5, in the Gaussian case it is also possible that increasing r from 1
to 2 and holding all other parameters constant could cause a switch from
teaching being optimal to not teaching being optimal.

For example, consider the case in which (µ∗, σ∗) = (2.025, 0),
(µ1, σ1) = (2, 1), and (µ2, σ2) = (1, .0001). Suppose that x̄1 = 3, n1 = 1,
and x̄2 = 3.4, n2 = 1. Inequality 1 holds because the cost of teaching,
µ∗ − µ1 = .025, is less than the potential benefit, µ1 − µ2 = 1, times the
probability that teaching will succeed, 1−Φµ,σ(.38) = .036. Thus the optimal
action when r = 1 is Arm1.

However with two rounds remaining, the optimal action is Arm∗. Again
considering sets of 2000 samples, the expected value of teaching is reliably
8.85 (4.025 of which comes from the last round), while that of not teaching is
8.70 (3.750 from the last round). Intuitively in this case, teaching is generally
unlikely to help, and is also generally unnecessary: the learner will “teach
itself” that Arm1 is better than Arm2 when it selects Arm2 the first time.
However with just one round remaining, it is worth it for the teacher to take
a chance that teaching will help because even though the odds are low, so is
the cost.8

Second, in addition to being of theoretical interest, the phenomenon that
increasing r can cause teaching to be less worthwhile also has practical im-
port, in particular in the context of considering possible heuristics for the
teacher when r > 1. Specifically, we tested the following three heuristic
teacher strategies under a variety of conditions:

1. Never teach;

2. Teach iff x̄1 < x̄2;

3. Teach iff it would be optimal to teach if r = 1 and all other parameters
were unchanged.

Heuristic 3 would be particularly appealing were it the case that increasing
r always made teaching more worthwhile. As it is, we found that none of

8Thanks to Daniel Stronger for this example.

36



these heuristics consistently outperforms the others.
Specifically, we compared the three heuristics under the six possible re-

lationships of µ1, µ2, x̄1, and x̄2 subject to the constraint that x̄1 < x̄2 (e.g.
x̄1 < x̄2 < µ1 < µ2, or µ1 < x̄1 < µ2 < x̄2). For each comparison, we
sampled µ1 and µ2 uniformly at random from [0, 10], setting the lower of the
two draws to be µ2; sampled σ1 and σ2 uniformly at random from [0, 1]; set
n1 = n2 = 1; and drew m1 and m2 from their respective distributions until
the required relationship between µ1, µ2, x̄1, and x̄2 was satisfied. Holding
all of these values constant, we then tested all three heuristics for 9 different
values of r ranging from 2 to 500.9 Each test consisted of 10 trials, with the
results being averaged. We then repeated the entire process with new draws
of µ1, µ2, x̄1, and x̄2 five times for each of the six relationships.

An analysis of these results revealed that each heuristic outperforms the
other two under some circumstances. Finding more sophisticated heuristic
and/or principled teacher strategies that perform consistently well is one of
the main open directions of future work in the context of this research.

3.5. More than Three Arms

To this point, we have assumed that the learner has only two arms avail-
able and the teacher has only one additional arm. In this section we generalize
to the case in which there are more than three arms total.

Observe that adding additional arms that are only available to the teacher
does not change anything. Only the best such arm (the one with the greatest
expected value) should ever be considered by the teacher. We continue to
call that arm Arm∗; the others can be ignored entirely.

Thus, we focus on the case in which there are additional arms available
to both the teacher and the learner: Arm1, Arm2, . . . , Armz such that µ1 >
µ2 > . . . > µz. In brief, the results we presented in Sections 3.2–3.4 all
extend naturally to this more general case.We generalize the notation from
Section 3.1 in the obvious ways.

3.5.1. It can be beneficial for the teacher to pull Arm1–Armz−1

Now it is not only Arm1 that the teacher needs to consider teaching with.
For instance, consider any Armc, 1 ≤ c < z. By way of intuition, suppose
that the arms that are better in expectation than Armc are only barely so,

92,3,4,5,10,20,50,100, and 500.

37



and that their current sample averages (x̄’s) are much less than x̄c. Suppose
further that the learner would currently select Armc+1 (x̄c+1 is higher than
any of the other x̄’s). It can then be best for the teacher to target elevating
Armc’s sample average so as to make it the learner’s next choice.

Extending the example from Section 3.2.1, let r = 1, µ∗ = 10, µ1 =
9.1, µc = 9, µc+1 = 5, x̄c = 6, x̄c+1 = 7, nc = nc+1 = 1. Let all the other
sample averages x̄i = −100, ni = 1. The remaining expected values can be
anything subject to the constraint that µi > µi+1. As in Section 3.2.1, sup-
pose that the distribution of payoffs from Armc is such that the probability
of obtaining a value greater than 8 is η > 1

2
. Thus with probability η, after

an agent selects Armc, its sample average will be greater than x̄c+1. Sup-
pose further that none of the distributions of Arm1–Armc−1 are such that
the probability of obtaining a value greater than 114 (as would be needed to
raise the sample average over 7) is small.

Carrying through as in Section 3.2.1, it is clear that the teacher pulling
Armc yields a higher expected team value than pulling Arm∗ or any other
arm. Thus the learner needs to consider pulling at least Arm∗ and Arm1–
Armz−1.

3.5.2. The teacher should never pull Armz

The proof of Theorem 3.1 that the teacher should never pull the arm
with the worst expected value extends to the case with more than two leaner
arms, but becomes even slightly more subtle. The key is to consider Arm1–
Armz−1 as a single arm with an irregular distribution. Since pulling Armz

does not affect the sample averages of any of the other arms, the sequence
of draws from Arm1–Armz−1 is constant regardless of whether or not there
are points in time at which Armz appears to be best (x̄z is highest). Thus
throughout the proof, the v values can represent the sequence of pulls from
Arm1–Armz−1, and S1(n) and T1(n) can represent the number of pulls of
those arms in the two sequences, while S2(n) and T2(n) can represent the
number of pulls of Armz . At the end of case 2 of the proof, there will be at
least one extra pull of Armz in sequence S corresponding to a pull of Arm∗

in sequence T .
For the remainder of this section, we continue to refer to pulling Arm∗

as “not teaching,” but now must specify with which arm when referring to
“teaching.”

38



3.5.3. Never teach with Armi when x̄i > x̄j, ∀j 6= i

The proof of Theorem 3.2 from Section 3.2.3 generalizes directly to the fol-
lowing statement. The teacher should never take the action that the learner
would take next on its own if the teacher were to pull Arm∗.

3.5.4. Do not teach when n1 = n2 = . . . = nz = 0

This result carries through from Section 3.2.4. The teacher is best off
selecting Arm∗ while the learner selects each arm for the first time, rather
than selecting one of those arms itself and shortening the period of time
that it takes the learner to do so. Nothing can happen in the final rounds
to compensate for the lost chances to get an expected value of µ∗ at the
beginning.

3.5.5. No other distribution-independent constraints

Other than the constraints Sections 3.5.2–3.5.4, any action could be op-
timal for the teacher. For example, there are situations in which the teacher
should teach with Armj even when ∃i < j s.t. x̄i > x̄j . That is, pulling Arm2

may be optimal, even when x̄1 > x̄2.
This last fact is perhaps somewhat surprising. It arises when r ≥ 2 and

∃k > j s.t. µk << µj and x̄k > x̄j (the learner mistakenly believes that
Armk is better than Armj, when in fact it is much worse). Then it can be
better to ensure that Armj is pulled as many times as possible, to minimize
the chance that Armk is ever pulled. For example, if x̄1 > x̄z > x̄2, but the
distributions of Arm1 and Arm2 are such that there is a chance that Arm1’s
sample average will dip below Armz’s, but Arm2’s sample average could be
first elevated above Armz’s, then it could be optimal for the teacher to teach
with Arm2. Similarly for any other arm other than Armz itself.

More concretely, consider arms with binary distributions in which p∗ =
.101, p1 = .1, p2 = .095, and p3 = .0001. Assume further that m1 = 1,
n1 = 3, m2 = 1, n2 = 4, m3 = 7, and n3 = 24, so that x̄1 > x̄3 > x̄2. In
this case, when there are 2 rounds remaining (r = 2), the expected value of
selecting Arm2 is higher (.3215) than the expected value of selection Arm∗

(.3202). We know that the teacher shouldn’t select Arm3 ever, nor in this
case Arm1, since that is the arm that the learner would select next on its
own.

Similarly, one can construct an example using arms with normal distri-

39



butions.10 Let the (µ∗, σ∗) = (10, 0), (µ1, σ1) = (9, 100), (µ2, σ2) = (8, 2),
and (µ3, σ3) = (−1010, 1). Furthermore, assume that n1 = n2 = n3 = 1 and
x̄1 = 5.02, x̄2 = 5, and x̄3 = 5.01. Again in this case, if r = 2, it is best to
pull Arm2 so as to minimize the probability that the learner will ever pull
Arm3.

One commonality between the above two examples, is that it would be
quite unlikely to ever get into the state described from having pulled the
arms listed. That is, given that µ3 = −1010, it’s extremely unlikely that x̄3

would ever be 5.01. However, it’s also possible to construct an example in
which the starting state is quite likely. For the purpose of this example, we’ll
use simple discrete distributions of the arms (neither binary nor normal).
Assume the following distributions of the arms:
Arm∗: always yields a payoff of 1 µ∗ = 1
Arm1: 50% chance of 10 or -9 µ1 = .5 n1 = 2 x̄1 = .5
Arm2: 50% chance of 1 or -1 µ2 = 0 n2 = 1 x̄2 = −1
Arm3: 50% chance of −106 or 0 µ3 = −500, 000 n3 = 1 x̄3 = 0

In this case, the x̄’s all have a 50% chance of arising after the listed number
of pulls. And once again, if r = 2, it is best to pull Arm2 so as to minimize
the probability that the learner will ever pull Arm3.

3.5.6. Discrete distributions, x̄1 < x̄i for some i, r = 1

The results from Section 3.3.1 generalize directly. In particular, let Armi

be the learner’s arm with the highest sample average x̄i. The teacher should
consider teaching with any Armj , j < z, j 6= i such that:

1.
mj+1

nj+1
> mi

ni

2. p∗ − pj < pj ∗ (pj − pi)

Those are the arms with higher expected value than Arm∗. From among those
arms, it should select the Armj with the highest expected value EV=pj +
p2

j + (1 − pj)pi.

3.5.7. Discrete distributions, algorithm

Similarly, the algorithm generalizes directly. Expected values and optimal
actions must now be calculated for all reachable values of m1–mz and n1–nz.
Since the teacher could teach with any arm other than Armz, the ranges of the

10Thanks to Reshef Meir for this example.

40



variables m1–mz−1 and n1–nz−1 match those of m1 and n1 in Section 3.3.2.
The range of mz matches that of m2 in Section 3.3.2, and nz is similar to n2,
except that the two occurrences of n1 − N1 (both inside “max” operators)
need to be changed to

∑z−1
i=1 ni − Ni.

Beyond that, the inner loop need only be extended to compute and com-
pare the expected values of all z possible teacher actions, in all cases storing
the maximum such value.

3.5.8. Discrete distributions, algorithm analysis and generalization

Both the memory and runtime bounds of the extended algorithm gener-
alize naturally to O(R2z+1). The extended algorithm generalizes to arbitrary
success and failure payoffs exactly as in Section 3.3.4.

3.5.9. Normal distributions, x̄1 < x̄i for some i, r = 1

Exactly as the results from Section 3.3.1 generalize as described in Sec-
tion 3.5.6, the results from Section 3.4.1 generalize as well. Specifically, let
Armi be the learner’s arm with the highest sample average x̄i. The teacher
should consider teaching with any Armj , j < z, j 6= i such that the equivalent
of Inequality 1 is satisfied:

1 − Φmuj ,σj
(x̄i(nj + 1) − x̄jnj) >

µ∗ − µj

µ1 − µi

(2)

Those are the arms with higher expected value than Arm∗. From among
those arms, it should select the Armj with the highest expected value EV=
µj + µiΦmuj ,σj

(x̄i(nj + 1) − x̄jnj)) + µj(1 − Φmuj ,σj
(x̄i(nj + 1) − x̄jnj)).

3.5.10. Normal distributions, x̄1 < x̄i for some i, r ≥ 2

Similarly to Section 3.4.2, we do not have any closed form solution to this
case.

3.6. Sequential Action Summary

A brief summary of the results from this section on sequential (turn-
taking) scenarios with differing abilities is as follows.

Arms with any payoff distributions:

• x̄1 > x̄2: do not teach

• n1 = 0 and/or n2 = 0: do not teach

41



Arms with discrete payoff distributions:

• Polynomial algorithm for optimal teacher action

Arms with normal payoff distributions:

• x̄1 < x̄2, r = 1: closed form solution for optimal teacher action

• x̄1 < x̄2, r ≥ 2: only numerical solutions

4. Related Work

The broad context for this research is ad hoc teams in which teammates
need to work together without any prior coordination. This perspective is
complementary with most prior treatments of agent teamwork. For example,
frameworks such as STEAM [5], and BITE [6] define explicit coordination
protocol and languages. SharedPlans [7] specifies the intentions the members
of the team must all adopt and about which they all must be mutually aware.
In applications such as the annual RoboCup robot soccer competitions, entire
teams of agents are designed in unison, enabling explicit pre-coordination via
structures such as “locker room agreements” [8].

The concept of ad hoc human teams has arisen recently in military and
industrial settings, especially with the rise of outsourcing. There have also
been autonomous agents developed to help support human ad hoc team for-
mation [9, 10, 11]. This work relies on an analysis of the sources of team
variability, including member characteristics, team characteristics, and task
characteristics [10]. In addition, software agents have been used to support
the operation of human teams [12], and for distributed information gathering
from distinct, otherwise independent information sources [13].

There are only a few examples of prior research that we are aware of that
take a perspective similar to our ad hoc team perspective. The most closely
related examples have been referred to as pickup teams [14] and impromptu
teams [15]. Both pickup teams and impromptu teams are defined in the same
spirit as our ad hoc teams. However both focus on tightly coordinated tasks
in which there are well-defined roles for the various agents, and therefore a
higher degree of common knowledge. Pickup teams, as defined in [14] build
on market-based task allocation schemes to enable heterogeneous robots to
work together on highly synchronized actions. The work is implemented
in a treasure hunt domain. Similarly, impromptu teams assume that the
teammates, other than the impromptu player, are all members of a coherent

42



team that actively consider the impromptu player as a part of the team.
Their approach is based on a “playbook” formalism that defines roles and
behaviors for each team player. That work is implemented in a robot soccer
domain.

In this article, we define ad hoc teamwork very broadly, in a way that
is able to accommodate the assumptions made by both pickup teams and
impromptu teams, as well as scenarios that include many types of team-
mates. Our definition of ad hoc teamwork encompasses role-based and
tightly-coupled tasks as well as loosely-coupled tasks with agents that barely
interact. It also covers many types of teammates: those with which the ad hoc
team player can communicate and those with which it cannot; those that are
more mobile and those that are less mobile; those with better sensing capa-
bilities and those with worse capabilities. Following on this broad definition,
we then focus in on a particularly fundamental type of ad hoc teamwork,
namely settings with just one teammate that has fixed and known behavior.
We consider both a simultaneous, repeated action scenario (in Section 2) and
a sequential, turn-taking scenario in which the agents have different action
capabilities (Section 3).

Another piece of prior work that takes a perspective similar to ours is
that of Brafman and Tennenholtz [16] in which they consider a teacher agent
and a learner agent repeatedly engaging in a joint activity. While the learner
has no prior knowledge of this activity, the teacher understands its dynamics.
As in our models, the teacher’s goal is also to lead the learner to adopt a
particular behavior.

They focus on settings in which the agents play a 2×2 matrix game. While
the teacher knows the matrix, the learner does not know the payoff function,
although he can perceive the payoff he receives. For example, the teacher
may try to teach the learner to cooperate in the Prisoner’s dilemma game.
Unlike our k-armed bandit model, Brafman and Tennenholtz consider only
situations in which the outcome of their agents’ actions is deterministic. This
limitation makes teaching considerably easier. Brafman and Tennenholtz also
mainly considered situations where teaching is not costly: the goal of their
teacher is to maximize the number of times that the learner chooses the
“right” action. Thus in some sense, the teacher is not “embedded” in the
environment. For this problem they propose an optimal teaching policy using
MDPs. For the more challenging situations where teaching is costly, as in our
model, they propose a teaching policy that is evaluated via experimentation
in a simple coordination game.

43



A recent study by Wu et al. [17] investigates the problem of online plan-
ning for ad hoc teamwork, and examine it as an optimization problem. As-
suming they have access to drawing samples of team actions, they learn
possible teammate’s actions, modeled by a Multiagent Markov Decision Pro-
cess (MMDP). This model allows the agent to choose a best response to the
teammate’s action. Their goal, similar to our work, is to maximize the team’s
joint utility. Their assumption that samples of teammates’ actions are avail-
able in a simulated environment makes it impossible to use their methods in
the problems described in this article, in which learning (or leading) is costly.

Liemhetcharat and Veloso [18] suggest a new method for modeling the
performance of a team of agents using synergy graphs. In a team of het-
erogenous agents, the performance of several agents that are teamed up is
not necessarily based only on their individual capabilities, but on how they
interact as a team (synergy). The synergy graphs model this interaction.
Based on its structure, a subgroup of the agents, that are most appropriate
for performing a task, is chosen. Modeling interaction between team mem-
bers in ad hoc teamwork can also benefit from using this synergy measure.
However, in their work, Liemhetcharat and Veloso are interested in building
an optimal team (or subteam), and not in influencing the given team to per-
form as well as possible (without the ability to choose specific team members
for the mission).

Related to the concept of teacher/learner is also the work by Zilles et al.
[19]. In their work, they seek to be sample efficient in the learning process of
the learner by knowing that the samples are given by a cooperative teacher.
Unlike the work presented here, they focus their control over the learner
rather than on the teacher, i.e., they do not answer the question on how
to better teach a cooperative agent in ad hoc teamwork, but how to better
utilize information coming from a knowledgeable, cooperative source.

Also somewhat related is the recent work of Zhang et al. [20] on “environ-
ment design.” Here, the controlling agent can alter aspects of the environ-
ment for a learning agent in an MDP so as to influence its behavior towards
a particular goal. Once again, the controlling agent is not itself embedded in
the environment and taking actions itself.

Finally, our own recent work has explored role-based approaches to ad
hoc teamwork [21]; ad hoc teamwork to influence a flock of simple agents [22];
and empirical studies of ad hoc teamwork [23], including experiments with
learning teammate models from observations [24].

Though there has been little other work on the ad hoc teamwork problem

44



itself, the specific scenarios we consider touch upon vast literatures in iterated
game theory and in k-armed bandits. Nonetheless, our work introduces new
ways of looking at both types of formalisms. In the remainder of this section,
we focus in on work that relates to each type of formalism separately.

4.1. Repeated Scenarios with Simultaneous Actions

Our work in Section 2 builds on existing research in game theory and in
opponent modeling. Game theory [25] provides a theoretical foundation for
multiagent interaction, and though originally intended as a model for human
encounters (or those of human institutions or governments) has become much
more broadly applied over the last several decades. In particular, the field of
multiagent systems within artificial intelligence has adopted game theory as
one of its primary tools for modeling interaction among automated agents,
or interaction in mixed human-automated agent encounters [26].

There is a vast research literature covering iterated play on normal form
game matrices, the overall framework that we explore in Section 2. Some
of that research focuses on automated players, while other work focuses on
human players. Many of these papers have examined the specific questions
of what, and how, agents can learn when repeatedly playing a matrix game;
special emphasis has been given to developing learning algorithms that guar-
antee convergence to an equilibrium in self-play, or that converge to playing
best response against another player that is using one of a fixed set of known
strategies.

For example, Powers and Shoham [27] considered multiagent learning
when an agent plays against bounded-memory opponents that can themselves
adapt to the actions taken by the first agent. They presented an algorithm
that achieved an ǫ-best response against that type of opponent, and guar-
anteed a minimum payoff against any opponent. A small selection of other
research on multiagent learning includes Jürgens’ work on Bayesian learning
in repeated games [28], Conitzer and Sandholm’s work [29] on a learning
algorithm that converges in self-play, Young’s examination of the kinds of
learning that lead to a Nash equilibrium or other types of equilibria [30],
Littman’s multiagent reinforcement learning algorithm [31], and Chakraborty
and Stone’s [32] presentation of an algorithm that aims for optimality against
any learning opponent that can be modeled as a memory-bounded adversary.
Shoham et al. provide a survey of multiagent reinforcement learning [33].

There are also a large number of articles in the economics and game
theory literature on repeated matrix games, also often focused on issues

45



related to reaching equilibria. Hart and Mas-Colell [34] presented an adaptive
procedure that leads to a correlated equilibrium among agents playing a
repeated game, while Neyman and Okada [35] considered two-player repeated
games in which one agent, with a restricted set of strategies, plays against
an unrestricted player (and considered the asymptotic behavior of the set of
equilibrium payoffs).

Axelrod [36] conducted several well-known computer tournament exper-
iments on repeated play of the Prisoner’s Dilemma, pitting computer pro-
grams playing various strategies against one another. These strategies were
evaluated on the basis of their overall success in the tournaments, as well as
other factors (e.g., given a population that is playing some strategy, what is
that population’s resistance to invasion by a competing strategy, assuming
that winning strategies reproduce more successfully).

A popular game theoretic model that may lead agents to converge to an
equilibrium is that of fictitious play [37], in which agents play best response
under the assumption that their opponents have a unchanging (though pos-
sibly mixed) strategy. At each step, each agent imagines that others will play
as they have played up to this point, and responds according to the empirical
frequency of those opponents’ past play. Young [38, 39] explored a related
concept called “adaptive play”, which similarly models a dynamic process
whereby agents, each employing bounded-memory best-response algorithms
based upon a random sample of past plays of the game, may gradually move
towards an equilibrium (the specific choice of equilibrium by a population
of agents may be affected by small amounts of noise, which are part of the
adaptive play model).

Much of the research above focused specifically on automated agent re-
peated play; similar questions have been taken up by researchers who have
considered repeated play among humans. For example, a seminal paper by
Nyarko and Schotter [40] investigated the beliefs that humans have as they
repeatedly play a constant-sum two-person game; the authors elicited the
players’ beliefs during play, and factored those beliefs into the model of how
players chose their moves.

All of the research mentioned above differs in fundamental ways from
the work presented in this article. First, our model assumes that the agents
are cooperative; we are not considering general payoff matrices that model
opponent rewards, nor zero sum games. Second, we are not examining the
learning behavior of our agent (or agents), but rather are assuming that one
agent is playing some variant on a best-response strategy, and its partner

46



is fashioning its play accordingly, for their mutual benefit. This lack of
symmetry between agents’ algorithms distinguishes our model from that of,
for example, the fictitious play model as well as Young’s adaptive play model.
In addition, we are exploring different aspects of the interaction than do those
models.

More closely related to our current work is research by Claus and Boutilier [41]
that, first of all, considers cooperative agents with identical payoffs, and then
considers how (using reinforcement learning) these agents can converge to the
maximal payoff. That research considers the dynamics of the convergence
(e.g., speed of convergence), and the sliding average rewards that agents
accrue as they explore their payoffs. What distinguishes our work is its em-
phasis on the path through matrix payoffs imposed by a reasoning Agent A,
faced with a best-response Agent B as its partner. The process of movement
through the matrix is deliberate and optimal, the path “searched-for,” based
on knowledge of partner behavior, rather than the Q-learning techniques
explored by Claus and Boutilier.

Indeed, the algorithms in this article make an explicit assumption that
the teammate observing the agent is playing a best-response policy to the
observed actions of the agent. In doing so, the agent is actually planning
its actions intending for them to be observed and interpreted. Intended plan
recognition (in contrast to keyhole recognition) is the term used when the
observed agent knows that it is being observed, and is acting under the
constraints imposed by this knowledge [42].

Much of the work on planning for intended recognition settings has fo-
cused on natural language dialogue systems. Here, one agent plans its utter-
ances or speech acts intending for them to be interpreted and understood in
specific ways. Seminal work in this area was carried out by Sidner [43] and
later Lochbaum [44], who have focused on collaborative dialogue settings.
However, unlike our work, their focus is on the interpretation (the recog-
nition), rather than on the planning of observed actions. Lochbaum later
investigated planning [45], but here the focus was on natural language, and
did not involve any notion of game-theory.

The SharedPlans framework [46, 7, 47] summarizes the set of beliefs and
intentions needed for collaborative activity, and provides the rationale for the
process of revising beliefs and intentions. Partial SharedPlans allows agents,
as in an ad hoc team, to differ not only in their beliefs about the ways to
perform an action and the state of the world, but also in their assessments of
the ability and willingness of an individual to perform an action. However,

47



while SharedPlans specifies a logical framework which provides guidelines
informing agent design, it does not provide detailed algorithms for specific
cases, such as the cases covered in this article.

Because our Algorithm 1 is—to a limited extent—reasoning about the
teammate reasoning about itself, it is in fact engaged in a special case of
recursive modeling. Among the first to consider such deep nesting were Vidal
and Durfee (in particular, their Recursive Modeling Method—RMM [48])
and Gmytrasiewicz and Durfee (e.g., [49]). The first focused on algorithms
that allow the agent to decide how deep to continue the recursive modeling,
such that it does not spend precious resources on recursive modeling that
does not provide gains. The latter focused on efficient representations that
allow rational modeling of others, including recursion. Ultimately, however,
it is the case that it is not always beneficial to engage in deeper nesting of
models [50]. We thus choose to leave this issue open for future investigation.
Specifically, an interesting question is what happens when the teammate is
also trying to select actions that would cause the agent to shift policies. In
this case, our agent would have to address 3-level recursive modeling.

Han et al. [51] examined a closely related problem of controlling the col-
lective behavior of self-organized multi-agent system by one agent. They
consider self organized teams of physically interacting agents, concentrating
on flocking of birds, where their goal is to design an agent, denoted as a
shill agent, that will be able to gradually change the heading of the entire
team to a desired heading. They evaluate the system in terms of physical
capabilities of the shill agent and the team (velocity, initial heading) and
provide theoretical and simulation results showing that it is possible, under
some conditions, for one agent to change the heading of the entire team.
Different from our approach, they do not consider game theoretic evaluation
of the individual actions and their impact on the team behavior, nor do they
examine uncertain behavior.

4.2. Sequential Action Scenarios with Differing Abilities

In the context of our k-armed bandit instantiation of ad hoc teams from
Section 3, our research is characterized by cooperative agents with asymmet-
ric information and asymmetric capabilities which are acting in an uncertain
environment in which both agents are embedded in the environment (their
actions affect the team’s payoff) but the agents cannot communicate directly.
To the best of our knowledge, no prior research meets all of the above char-
acteristics. Here we mention the most closely related work that has some of

48



these characteristics.
As in the matrix game setting, some of this related work has been done

within the context of multiagent reinforcement learning, a generalization of
k-armed bandits in which there are multiple states where the actions have
different effects. For example, Lin [52] describes an approach to integrat-
ing teaching with reinforcement learning in which the learner is given some
successful action trajectories. In the survival task studied by Lin, teaching
did not make a significant improvement, but this approach appeared benefi-
cial with learning robots [53]. The teacher in Lin’s model is not embedded
in the environment and it does not face the dilemma of exploitation versus
teaching. Similarly, most other work on imitation learning or learning by
demonstration similarly considers scenarios in which the teacher, sometimes
a human, is not embedded in the environment, but rather tries to train the
learner to improve its individual actions, e.g., [54, 55, 56, 57].

There are two sources of incomplete information in cooperative reinforce-
ment learning: whether the agents can observe the state of the environment
and whether they are able to observe the reward obtained by the other agents.
Schneider et al. [58] considered distributed reinforcement learning, in which
agents have complete information about the state of the environment, but
only observe their own reinforcement reward. They investigate rules that al-
low individual agents to share reinforcement with their neighbors. Peshkin et
al. [59] considered the complementary problem in which the agents receive a
shared reward but have incomplete information about the world state. They
propose a gradient-based distributed policy search method for cooperative
games.

Schaerf et al. [60] study the process of multiagent reinforcement learning
in the context of load balancing of a set of resources when agents cannot
observe the reward obtained by others. They show that when agents share
their efficiency estimation of the different resources (as in our model) the
system efficiency may not improve, and might even be harmed. The reason
for this findings is that Schaerf et al.’s agents compete over the resources.
Thus, having a better picture of the system leads to all of them competing
over the “good” recourses and thus decreasing the overall performance of the
system. They conclude that a better load-balancing mechanism is needed
when communication is possible.

There are many other approaches for cooperative multiagent learning (see
surveys at [61, 62, 63]). But to the best of our knowledge, none covers any
work with cooperative agents with asymmetric information and asymmetric

49



capabilities which are acting in an uncertain environment in which the teacher
is embedded in the environment but the agents cannot communicate.

The k-armed bandit problem has been extensively studied (see a survey
at [64]), but also in this literature we are not familiar with any work that con-
sidered a teacher and a student with asymmetric capabilities and information
who aim to maximize the joint reward. There are several models that have
been considered in which players can observe the choices or the outcomes of
other players. Such models have been used for modeling experimentation in
teams. In these settings, as in ours, a set of players choose independently
between the different arms. The reward distributions of each arm is fixed,
but characterized by parameters that are initially unknown to the players.
Most of the works consider the case where each player tries to maximize its
own expected reward and thus if the outcome of other players are observable
a free riding problem is created since each wants the others to try the risky
arms (e.g., [65, 66]).

Aoyagi [67] studies a model of a two-armed bandit process played by
several players, where they can observe the actions of other players, but not
the outcome of these actions. He proved that under a certain restriction on
the probability of distribution of the arms, the players will settle on the same
arm in any Nash equilibrium of the game. This shows that each agent learns
from the behavior of the other agents, even if communication is not possible.

A study in which the agents are cooperative is presented in [68]. They
study a two-armed bandit situation with multiple players where the risky arm
distributes lump-sum payoffs according to a Poisson process. They show that
if the agents try to maximize the average expected payoff then the efficient
strategy is one with a common cut-off for which if the belief about the risky
arm is above the cut-off all the agents will choose the risky arm. Otherwise,
all of them will choose the other arm.

Situations in which the agents do not have symmetric roles are studied in
the context of the principal-agent problem where the arms of the bandit are
analogous to different effort levels of the agent and the principal would like
the agent to choose the highest level effort [69]. The principal has the option
to obtain the true value of each arm. It is shown that, if the information
acquisition decision is observable by the agent, in every refined equilibrium,
the principal delays information acquisition until the agent’s beliefs become
pessimistic enough. If this decision is unobservable, the timing of the infor-
mation acquisition is indeterminate. This setting is much different than ours
because of the conflicting utilities of the principal and the agent.

50



Multi-player multi-armed bandit problems have been also used to model
the challenges facing users of collaborative decision-making systems such as
reputation systems in e-commerce, collaborative filtering systems, and re-
source location systems for peer-to-peer networks. Here the main challenge
is deciding which player to trust [70]. We assume that the learner sees the
actual outcomes of the teacher and no issues of trust arise.

There are several additional approaches taken in game-theoretic research
that have potential relevance to our overall scenario of collaboration in ad-hoc
settings, although they remain outside the scope of our current work.

Cooperative (coalitional) game theory is concerned with groups of self-
interested agents that work together to increase their utility; much of the
research in this area is concerned with how a group’s “profit” from joint
activity can be divided among its members in a way that motivates them
to remain in the group. The models used differ from those explored in this
paper, but future work could profitably explore connections between these
areas. Classic foundational work in this area includes [71], but there continues
to be important research in recent years exploring new models of coalitional
games (including from a computational perspective) [72].

Finally, there are classic game theory solution concepts that appear to
have relevance in future research on ad hoc teams. For example, Aumann’s
notion of “strong Nash equilibrium” [73], a Nash equilibrium where no coali-
tion can cooperatively deviate in a way that benefits all members assuming
that non-member actions are fixed (i.e., an equilibrium defined in terms of
all possible coalitional deviations, rather than all possible unilateral devia-
tions), could be applied to interactions among agents in ad hoc encounters.
In addition, Aumann’s later solution concept of “correlated equilibrium” [74],
where agents do not want to deviate from a strategy recommended by (or
associated with) the value of a public signal (assuming that others do not
deviate), could also be applied to ad hoc cooperation.

5. Summary and Discussion

The main contributions of this article are in the contexts of two specific
instantiations of ad hoc teamwork chosen to represent the simplest, most
fundamental cases. Specifically, we focused our attention on cases with a
single teammate that exhibits fixed and known behavior, and then examined
two variations on this theme. First, in Section 2, we considered simultaneous,
repeated action settings by adopting the iterated matrix game formalism.

51



Second, in Section 3, we considered a turn-taking scenario by adopting, and
adapting, the k-armed bandit formalism.

In both cases, we proved several theorems regarding situations in which
we know which actions are or cannot be optimal for the ad hoc team agent. In
both cases, we supplemented our theoretical results with some experiments
analysis designed to test the aspects of the problems that were not analyzable
theoretically.

First, we introduced (Section 2) a novel game theoretic formulation for
modeling ad hoc teamwork for simultaneous decision making. We focused
on the case in which an intelligent agent interacts repeatedly in a fully coop-
erative setting with a teammate that responds by selecting its best response
to a fixed history of actions, possibly with some randomness. Based on its
teammate’s behavior, the intelligent agent can lead it to take a series of joint
actions that is optimal for their joint long-term payoff. The length of this
series was proven to be linear in the minimal number of actions of agent A
or B when B’s memory is of size 1, leading to a polynomial time complexity
for determining the optimal set of actions for the ad hoc agent. When B
bases its decisions on a longer memory size, this time complexity cannot be
guaranteed. Specifically, we have shown that determining the maximal size
of an optimal series of joint actions is NP hard.

We then presented (Section 3) a multiagent cooperative k-armed ban-
dit for modeling sequential decision making in ad hoc teamwork. Here, the
agents have different knowledge states and different action capabilities. We
have studied in detail the task of a teacher that knows the payoff distribu-
tions of all of the arms as it interacts with a learner that does not know the
distributions, and that can only pull a subset of the arms. The teacher’s
goal is to maximize the expected sum of payoffs as the two agents alternate
actions. At any point, it can either exploit its best available action or in-
crease the learner’s knowledge by demonstrating one of the learner’s actions.
Within the specific scenario examined in this article, we proved several the-
orems regarding situations in which we know which actions are or cannot
be optimal for the teacher. We then narrowed our focus to two different
types of probability distributions for the arms. For discrete distributions, we
presented a polynomial memory and time algorithm for finding the teacher’s
optimal action. When the arms have Gaussian distributions, we can only
find the optimal action efficiently when there is one round left. In both cases
we augment the theoretical results with some experimental analysis using
our fully-implemented algorithms.

52



Our analysis—both in matrix game representation and in the k-armed
bandit— opens up various exciting directions for future research. In both
models of ad hoc teamwork, it is assumed that the ad hoc agent is well
aware of the its teammate behavior (although little of our analysis relies on
the fact that agent B is following a specific policy). Examining unknown
behavior is a key factor in ad hoc teamwork, that should be addressed in
the future. Similarly, leading and teaching more sophisticated agents—those
that may explore independently—is also an important future direction. Our
current approaches are limited to leading or teaching one teammate. Facing
multiple teammates in ad hoc settings is a fundamental problem that will
open various interesting research directions in the future, that include, other
than the simplest, yet challenging, case of multiple agents as described in this
article, also multiple possible teammate behavior, uncertainty in teammate
behavior and more (note that initial results for leading multiple teammates in
ad hoc settings can be found in [75]). In addition, our proposed algorithm for
leading a teammate is exponential in the teammate’s memory size, making
solutions to interaction scenarios with more than a few possible actions per
agent intractable. Heuristics enabling a streamlining of this algorithm would
be very useful.

Many other generalizations to this cooperative k-armed bandit are pos-
sible. For example, we have verified that at least some of our results can be
extended to the discounted, infinite horizon case [76]. Specifically, we verified
that in the 3-arm case, the teacher should still consider pulling Arm1, but
should never pull Arm2, and that it should never pull Arm1 when n1 = 0
and/or n2 = 0. The results for more than three arms from Section 3.5 were
also verified in the discounted, infinite horizon case. One could also consider
arms with additional types of distributions, or types of distributions that
differ among the arms (e.g. some discrete and some Gaussian). Additionally,
our algorithm for computing the optimal teaching algorithm is exponential
in the number of arms. Exploring possible approximation algorithms could
be beneficial.

In the broader context, this research is just one step towards the long-
term goal of creating a fully capable ad hoc team player. In order to achieve
this goal, many more studies of this magnitude will be needed that consider
situations in which, for example, there are more than two teammates, the
teammates can communicate directly, the teammates’ behaviors are not fully
known, or some teammates have more knowledge and/or capabilities than
our agent. We intend to follow up on these challenges in our future research

53



and hope that this research will inspire others to also work towards the
eventual creation of fully general ad hoc team players.

Appendix A. NP-hardness of finding S∗’s when mem > 1

In Section 2.2.2, we examined the complexity of finding the optimal (low-
est cost) path through a matrix when Agent B ’s mem > 1. Here we prove
that the problem is NP-hard by a reduction from the Hamiltonian Path prob-
lem:11 Given an n-node unweighted, undirected graph G, an initial node and
a destination node, is there a simple path from initial to destination of length
n? That is, can we visit each node exactly once? This decision problem is
NP-complete.

Here we will show that if it were possible to find S∗ for a given matrix M
with Agent B ’s mem > 1 (as defined in Section 2) in polynomial time, then
it would also be possible to find a Hamiltonian path in polynomial time. To
do so, we assume that we are given an n-node graph G such that Gij = 1
if and only if there is an edge in G connecting nodes i and j. Otherwise,
Gij = 0. We construct a matrix M in a particular way such that there is
a path through the matrix of cost (as per Section 2) no more than a target
value of n ∗ (n4 − 1), if and only if there is a Hamiltonian Path in graph
G. Note that we focus on NP-completeness of the decision problem, which
establishes NP-hardness of the optimization problem (since the optimal cost
path through the matrix answers the question of whether or not there exists
a path with cost less than n ∗ (n4 − 1). Note also that, as required, the
construction of the matrix can be done in time polynomial in all the relevant
variables.

We let Agent B ’s mem = n and we construct Matrix M as follows.

• Agent A has (n−1) ∗n+2 actions. The first action is a “start” action,
and Agent B ’s memory is initialized to n copies of that action. Each
of the next (n− 1) ∗ n actions represents a combination (i, t) of a node
i in the graph and a time step t ≥ 2. M ’s payoffs will be constructed
so that if the sequence satisfying the maximum cost requirement in M
(if any) includes action (i, t), then the corresponding Hamiltonian path
passes through node i on timestep t. Finally, there is a “done” action
to be taken at the end of the path.

11Thanks to Michael Littman for the idea behind this proof.

54



• Agent B has n ∗ n + n + 1 actions. The first n ∗ n actions are similar
to Agent A’s: one for each combination of j ∈ G and t ≥ 1. If the
satisfying sequence through M includes Agent B taking action (j, t),
then the Hamiltonian path visits node j at time t. The next n actions
are designed as “trap” actions which Agent B will be induced to play
if Agent A ever plays two actions corresponding to the same node in
the graph: actions (i, s) and (i, t). There is one trap action for each
node, called action j. Finally, the last action is the “done” action to
be played at the end of the sequence.

• M ’s payoffs are constructed as follows, with the nodes named as indi-
cated in the bullets above. The initial node in the Hamiltonian path
(the one visited on time step 1) is called “initial.”
a) M [(i, t + 1), (j, t)] = 1 if Gij = 1
b) M [(i, t + 1), (j, t)] = −n5 if Gij = 0
c) M [(i, t), (i, t)] = tn
d) M [(i, t), (j, s)] = −n5 if t ≥ s
e) M [(i, t), (j, s)] = 0 if t < s
f) M [(i, t), i] = tn − 1

3n

g) M [(i, t), j] = 0
h) M [(i, t), done] = 0
i) M [start, (initial, 1)] = 1
j) M [start, initial] = 1

2

k) M [start, done] = −n4

l) M [start, j] = 0 for all actions j other than initial and done
k) M [done, (j, n)] = 1
l) M [done, (j, t)] = −n5 if t < n
m) M [done, done] = n4

For example, for this 4-node graph, with A given as the initial node of a
potential Hamiltonian path,

A B

C D

the resulting matrix M would be constructed as follows (with n = 4).

55



M A,1 A,2 A,3 A,4 B,1 B,2 B,3 B,4 C,1 C,2 C,3 C,4 D,1 D,2 D,3 D,4 A B C D done

start 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

0 0 0 −n4

A,2 −n5 2n 0 0 1 0 0 0 1 0 0 0 −n5 0 0 0 2n −
1
3n

0 0 0 0

A,3 −n5
−n5 3n 0 −n5 1 0 0 −n5 1 0 0 −n5

−n5 0 0 3n −
1
3n

0 0 0 0

A,4 −n5
−n5

−n5 4n −n5
−n5 1 0 −n5

−n5 1 0 −n5
−n5

−n5 0 4n −
1
3n

0 0 0 0

B,2 1 0 0 0 −n5 2n 0 0 1 0 0 0 −n5 0 0 0 0 2n −
1
3n

0 0 0

B,3 −n5 1 0 0 −n5
−n5 3n 0 −n5 1 0 0 −n5

−n5 0 0 0 3n −
1
3n

0 0 0

B,4 −n5
−n5 1 0 −n5

−n5
−n5 4n −n5

−n5 1 0 −n5
−n5

−n5 0 0 4n −
1
3n

0 0 0

C,2 1 0 0 0 1 0 0 0 −n5 2n 0 0 1 0 0 0 0 0 2n −
1
3n

0 0

C,3 −n5 1 0 0 −n5 1 0 0 −n5
−n5 3n 0 −n5 1 0 0 0 0 3n −

1
3n

0 0

C,4 −n5
−n5 1 0 −n5

−n5 1 0 −n5
−n5

−n5 4n −n5
−n5 1 0 0 0 4n −

1
3n

0 0

D,2 −n5 0 0 0 −n5 0 0 0 1 0 0 0 −n5 2n 0 0 0 0 0 2n −
1
3n

0

D,3 −n5
−n5 0 0 −n5

−n5 0 0 −n5 1 0 0 −n5
−n5 3n 0 0 0 0 3n −

1
3n

0

D,4 −n5
−n5

−n5 0 −n5
−n5

−n5 0 −n5
−n5 1 0 −n5

−n5
−n5 4n 0 0 0 4n −

1
3n

0
done −n5

−n5
−n5 1 −n5

−n5
−n5 1 −n5

−n5
−n5 1 −n5

−n5
−n5 1 −n5

−n5
−n5

−n5 n4

Following a path through the matrix that corresponds to a Hamiltonian
path (if one existed) would give payoffs of 1 at every step until reaching m∗

(n4) and staying there forever. Thus the cost of the n-step path would be
n ∗ (n4 − 1).

Because there is no positive payoff in the matrix greater than n2, any
path longer than n steps must have a cost of at least (n + 1)(n4 − n2) =
n5 + n4 − n3 − n2 > n5 − n = n ∗ (n4 − 1). In other words, if there is a path
through the matrix corresponding to a Hamiltonian path in the graph, then
any longer path through the matrix must have higher cost.

Furthermore, the matrix is carefully constructed such that any diversion
from the path corresponding to a Hamiltonian path either will get a payoff of
−n5 on at least one step (which by itself makes the target cost impossible to
reach), will prevent us from getting one of the 1’s, or else will make it so that
the path to (done,done) will require more than n total steps. In particular,
if Agent A ever takes two actions that lead Agent B to select a trap action,
then Agent B will not take a different action until the n + 1st step after the
first action that led to the trap, causing the path to (done,done) to be at least
n + 2 steps long. By this construction, it follows trivially also that if there
existsk a Hamiltonian path in G, then there is a path of cost ≤ n ∗ (n4 − 1)
in the matrix.

In this context, the purpose of the numbers in the graph, as indicated by
the list of items a)–m) above can be understood as follows.

a) These payoffs are the 1’s for each “correct” step in the path

b) These large negative payoffs prevent taking a step when there is no
corresponding edge in the graph.

56



c) These payoffs lure Agent B to do what Agent A did last.

d) These payoffs prevent Agent A from skipping to an action corresponding
to a later time step.

e) These payoffs ensure that it is still attractive for Agent B to copy Agent
A’s last move.

f) These payoffs are chosen carefully so that it Agent B doesn’t move to
a trap action after Agent A takes just a single action corresponding to
a given node, but if it ever takes two such actions, then Agent B will
be lured into the trap.

g) The payoffs for other trap actions are 0.

h) The payoff for selecting done only comes at m∗.

i) The payoff that induces Agent B to take its initialize action on the first
step.

j) A payoff that prevents Agent A from taking an action corresponding
to the initial node ever again (lest Agent B take the trap action).

k) This payoff prevents Agent B from taking the done action until all
memory of Agent A taking the start action is past, i.e. after at least
n=mem steps.

l) These payoffs play no special role.

m) These payoffs are for taking the last step on the Hamiltonian path
(reaching the destination node).

n) These payoffs ensure that if Agent A takes the done action before step
n, then the cost is already higher than the target of n ∗ (n4 − 1).

Therefore, if we could find the optimal sequence through any matrix in
polynomial time, then we could use this ability to also solve the Hamiltonian
path problem. That is, finding S∗ when mem > 1 is NP-hard.

57



Appendix B. Proof of Theorem 3.1

Theorem Appendix B.1. It is never optimal for the teacher to pull Arm2.

Proof. By induction on the number of rounds left, r.
Base case: r = 1. If the teacher starts by pulling Arm2, the best expected
value the team can achieve is µ2 +µ1. Meanwhile, if it starts with Arm∗, the
worst the team expects is µ∗ + µ2. This expectation is higher since µ∗ > µ1.
Inductive step: Assume that the teacher should never pull Arm2 with
r − 1 rounds left. Let π∗ be the optimal teacher action policy that maps the
states of the arms (their µi, ni, and x̄i) and the number of rounds left to the
optimal action: the policy that leads to the highest long-term expected value.
Consider the sequence, S, that begins with Arm2 and subsequently results
from the teacher following π∗. To show: there exists a teacher action policy
π′ starting with Arm∗ (or Arm1) that leads to a sequence T with expected
value greater than that of S. That is, the initial pull of Arm2 in S does not
follow π∗.

In order to define such a policy π′, we define S1(n) and S2(n) as the
number of pulls of Arm1 and Arm2 respectively after n total steps of S. As
shorthand, we denote S(n) = (S1(n), S2(n)).

Similarly, define the number of pulls of Arm1 and Arm2 after n steps of
T (e.g. when using π′) as T (n) = (T1(n), T2(n)).

Next, define the relation > such that T (n) > S(m) iff T1(n) ≥ S1(m)
and T2(n) ≥ S2(m) where at least one of the inequalities is strict. That is
T (n) > S(m) if at least one of the arms has pulled more times after n steps
in T than after m steps in S, and neither arm has been pulled fewer times.

Finally, we define the concept of the teacher simulating sequence S based
on the knowledge of what values would have resulted from each of the actions,
starting with the teacher’s pull of Arm2 at step 1.12 It can only do that as
long as it has already seen the necessary values — otherwise it does not know
what the state of the sample averages would be when it is the learner’s turn
to act. After n steps of the sequence T , let the number of steps that it can

12Such simulation relies on an assumption that the payoffs from an arm are queued up
and will come out the same no matter when the arm is pulled: they are not a function of
the times at which the arm is pulled, or the payoffs from any other arms. However, our
argument still holds if the payoffs are time-dependent and/or dependent on other arms as
long as the teacher has no knowledge of the nature of this dependency.

58



simulate in the S sequence be Sim(n). Specifically, Sim(n) is the largest
value m such that T (n) ≥ S(m).

By way of illustration, let the values that will be obtained from the first
pulls of Arm2 be u0, u1, u2, . . . and let those that will be obtained from the
first pulls of Arm1 be v0, v1, v2, . . .. Consider the following possible beginning
of sequence S where pulls of Arm∗ are marked with a∗, n is the step number,
the teacher’s actions are in the row marked “T” and the learner’s actions are
in the row marked “L” (note that by the induction hypothesis, the teacher
never pulls Arm2 after the first step).

n: 1 2 3 4 5 6 7 8 9 10 . . .
Teacher: u0 v1 a∗ a∗ v4 . . .
Learner: v0 v2 u1 v3 v5 . . .

In this sequence, S(0) = (0, 0), S(1) = (0, 1), S(2) = (1, 1), S(3) = (2, 1), S(4) =
S(5) = (3, 1), etc.
Meanwhile, suppose that the teacher’s first action in sequence T is Arm∗ and
the learner’s first action is Arm1, leading to v0. Then T (0) = T (1) = (0, 0)
and T (2) = T (3) = (1, 0).
Until the learner sees a pull from Arm2 in sequence T , it cannot simulate
any steps of S: Sim(1) =Sim(2) =Sim(3) = 0. If the teacher’s second action
in T is Arm∗ and learner’s 2nd action is Arm2, then in the example sequence
above, Sim(4) = 2.

We are now ready to define the teacher’s policy π′ for generating T . Let
n be the total number of actions taken so far. Then:

1. If n = 0, T (n) > S(Sim(n)) or Sim(n) is odd, then select Arm∗;

2. Else (T (n) = S(Sim(n)) and Sim(n) is even), select the next action of

S (i.e. the action π would select if there were r − Sim(n)
2

rounds left).

Note that by the definition of Sim, it is always the case that T (n) ≥ S(Sim(n)).
Further, note that at the beginning we are in step 1 of the strategy: T (2) =
(1, 0) > (0, 0) = S(Sim(2)). It remains to show that the sequence T resulting
from using this policy π′ has an expected value greater than that of S. We
prove this in two cases.

Case 1: There is a least n, call it n′, such that T (n) = S(Sim(n)) and
Sim(n) is even.

Until that point, the teacher keeps pulling Arm∗. We can thus show that
Sim(n′) < n′ as follows. After n′ steps, there are exactly n′

2
u’s and v’s in the

59



T sequence (T1(n
′)+T2(n

′) = n′

2
). But after n′ steps, there are at least n′

2
+1

u’s and v’s in the S sequence (S1(n
′)+S2(n

′) ≥ n′

2
+1) because the first value

is a u and all the learner’s actions are u’s or v’s. Thus the simulation of S
always lags behind T in terms of number of steps simulated: Sim(n′) < n′.

Note that if it is ever the case that T (n) = S(Sim(n)) and Sim(n) is odd
(it is the learner’s turn to act in S), then the teacher will pull Arm∗ once
more after which the learner will do what it would have done in sequence S
after Sim(n) steps. That will cause both T (n) and S(Sim(n)) to increment
by the same amount, and Sim(n) to be even. Thus in the subsequent round,
the teacher will switch to step 2 of its strategy.

Once the teacher has switched to step 2 of its strategy, then it will continue
using that step: sequence T will follow S exactly for its remaining 2r − n′

steps. To see that, observe that in each round, T (n) and S(n) will increment
by the same amount, and Sim(n) will increment by exactly 2, thus remaining
even.

Now compare the sequences T and S. Up until the point of step n′ in T
and Sim(n′) in S, the only difference between the sequences is that there are
n′ − Sim(n′) extra pulls of Arm∗ in T . There then follow 2r− n′ steps in the
two sequences that are identical. The final n′−Sim(n′) steps in S include at
least one pull of Arm1 or Arm2 (the learner’s first action). Thus the expected
value of T − S (the difference between the sum of their expected values) is
at least µ∗ − µ1 > 0.

Case 2: It is never the case that T (n) = S(Sim(n)) and Sim(n) is
even. Then the teacher continues playing Arm∗ throughout the T sequence
(r times).

First, by the same argument as above, since the teacher always pulls
Arm∗, it is always the case that Sim(n′) < n′.

Next, we argue that T2(2r) = S2(Sim(2r)). That is, after Sim(2r) steps,
the next step in S is a pull of Arm2 (because x̄2 > x̄1). Otherwise, S could
be simulated another step further by consuming another v value from T . We
show this by induction on the number of steps in the T sequence i, showing
that it is always the case that T2(i) = S2(Sim(i)).

This equation holds at the beginning (e.g. when i = 2): T (2) = (1, 0),
S(Sim(2)) = (0, 0), so T2(2) = S2(Sim(2)) = 0.

Now assume T2(i − 1) = S2(Sim(i − 1)). There are three possibilities for
the next action in T . If it is a pull of Arm∗ or Arm1, then T2(i) = T2(i − 1)
and Sim(i) = Sim(i − 1) =⇒ S2(Sim(i)) = S2(Sim(i − 1)), so the condition

60



still holds. If it is a pull of Arm2, then T2(i) = T2(i−1)+1 and S2(Sim(i)) =
S2(Sim(i − 1)) + 1 because the new u value can be used to continue the
simulation of S by at least one step, and there are no additional u’s in T to
increase S2(Sim(i)) any further. Therefore T2(i) = S2(Sim(i)).

Note that in general, S1(Sim(i)) could be much greater than S1(Sim(i −
1)): there could be several v values from T that are then able to be used
for simulating S. But if all of the available v’s from T are used, we get that
T (i) = S(Sim(i)), which violates the Case 2 assumption and puts us into
Case 1 above (or will put us there one round later if Sim(i) is odd).

Thus we have shown that after all 2r steps of T , the next action in the
simulated version of S (step Sim(2r) + 1) must be Arm2.

Finally, we compare the expected values of T and S. As above, there are
several values in common between the two sequences, namely exactly the u’s
and v’s from T that were used to simulate the first Sim(2r) steps of S (as
well as possibly some pulls of Arm∗). Let the sum of these u and v values be
called common.

Now consider the values of T and of S that are not in common: those
values from T that were not used to simulate S, and those values in S that
come after the simulation ended (after step Sim(2r)), plus all of the pulls of
Arm∗. All of these “uncommon” values in T are from Arm∗ and Arm1. In
fact, exactly r of the values are from Arm∗ and exactly T1(2r)−S1(Sim(2r))
of them are from Arm1. The uncommon values from S include at most r− 1
from Arm∗ (because the first teacher action was Arm2), and at least one from
Arm2 (step Sim(2r) + 1).

Thus the expected values of the two sequences satisfy the following in-
equalities.
EV(T ) ≥ r ∗ µ∗ + [T1(2r) − S1(Sim(2r))] ∗ µ1+ common

EV(S) ≤ (r − 1) ∗ µ∗ + [T1(2r) − T1(Sim(2r))] ∗ µ1 + µ2+ common

Thus EV(T )-EV(S) ≥ µ∗ − µ2 > 0.
Therefore in both cases, the expected value of sequence T exceeds that

of sequence S. Since S is the best the teacher can do if it starts with Arm2,
and T is a lower bound on how well it can do otherwise, the teacher should
never pull Arm2.

Acknowledgements

Thanks to Michael Littman and Jeremy Stober for helpful comments per-
taining to Section 2. Thanks to Yonatan Aumann, Vincent Conitzer, Reshef

61



Meir, Daniel Stronger, and Leonid Trainer for helpful comments pertain-
ing to Section 3. Thanks also to the UT Austin Learning Agents Research
Group (LARG) for useful comments and suggestions. This work was partially
supported by grants from NSF (IIS-0917122, IIS-0705587), DARPA (FA8650-
08-C-7812), ONR (N00014-09-1-0658), FHWA (DTFH61-07-H-00030), Army
Research Lab (W911NF-08-1-0144), ISF (1357/07, 898/05), Israel Ministry
of Science and Technology (3-6797), and the Fulbright and Guggenheim
Foundations.

Bibliography

References

[1] P. Stone, G. A. Kaminka, S. Kraus, J. S. Rosenschein, Ad hoc au-
tonomous agent teams: Collaboration without pre-coordination, in:
Proceedings of the Twenty-Fourth Conference on Artificial Intelligence,
2010.

[2] P. Stone, G. A. Kaminka, J. S. Rosenschein, Leading a best-response
teammate in an ad hoc team, in: E. David, E. Gerding, D. Sarne,
O. Shehory (Eds.), Agent-Mediated Electronic Commerce: Designing
Trading Strategies and Mechanisms for Electronic Markets, 2010, pp.
132–146.

[3] H. Robbins, Some aspects of the sequential design of experiments, Bul-
letin of the American Mathematical Society 58 (5) (1952) 527–535.

[4] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction,
MIT Press, Cambridge, MA, 1998.

[5] M. Tambe, Towards flexible teamwork, Journal of Artificial Intelligence
Research 7 (1997) 81–124.

[6] G. A. Kaminka, I. Frenkel, Integration of coordination mechanisms in
the bite multi-robot architecture, in: IEEE International Conference on
Robotics and Automation (ICRA’07), 2007.

[7] B. J. Grosz, S. Kraus, Collaborative plans for complex group actions,
Artificial Intelligence 86 (1996) 269–358.

62



[8] P. Stone, M. Veloso, Task decomposition, dynamic role assignment, and
low-bandwidth communication for real-time strategic teamwork, Artifi-
cial Intelligence 110 (2) (1999) 241–273.

[9] J. Just, M. Cornwell, M. Huhns, Agents for establishing ad hoc cross-
organizational teams, in: IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, 2004, pp. 526–30.

[10] R. Kildare, Ad-hoc online teams as complex systems: agents that cater
for team interaction rules, in: Proceedings of the 7th Asia-Pacific Con-
ference on Complex Systems, 2004.

[11] J. A. Giampapa, K. Sycara, G. Sukthankar, Toward identifying pro-
cess models in ad hoc and distributed teams, in: K. V. Hindriks, W.-P.
Brinkman (Eds.), Proceedings of the First International Working Con-
ference on Human Factors and Computational Models in Negotiation
(HuCom 2008), Delft University of Technology, Mekelweg 4, 2628 CD
Delft, The Netherlands, 2008, pp. 55–62.

[12] H. Chalupsky, Y. Gil, C. Knoblock, K. Lerman, J. Oh, D. Pynadath,
T. Russ, M. Tambe, Electric elves: Applying agent technology to sup-
port human organizations, in: International Conference of Innovative
Application of Artificial Intelligence, 2001.

[13] K. Sycara, K. Decker, A. Pannu, M. Williamson, D. Zeng., Distributed
intelligent agents, IEEE Expert 11 (6).

[14] E. Jones, B. Browning, M. B. Dias, B. Argall, M. M. Veloso, A. T.
Stentz, Dynamically formed heterogeneous robot teams performing
tightly-coordinated tasks, in: International Conference on Robotics and
Automation, 2006, pp. 570 – 575.

[15] M. Bowling, P. McCracken, Coordination and adaptation in impromptu
teams, in: Proceedings of the Twentieth National Conference on Artifi-
cial Intelligence (AAAI), 2005, pp. 53–58.

[16] R. I. Brafman, M. Tennenholtz, On partially controlled multi-agent sys-
tems, Journal of Artificial Intelligence Research 4 (1996) 477–507.

[17] F. Wu, S. Zilberstein, X. Chen, Online planning for ad hoc autonomous
agent teams, in: Proceedings of the Twenty-Second International Joint

63



Conference on Artificial Intelligence, Barcelona, Spain, 2011.
URL http://rbr.cs.umass.edu/shlomo/papers/WZCijcai11.html

[18] S. Liemhetcharat, M. Veloso, Modeling and learning synergy for team
formation with heterogeneous agents, in: Proc. of 11th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2012), 2012.

[19] S. Zilles, S. Lange, R. Holte, M. Zinkevich, Models of cooperative teach-
ing and learning, Journal of Machine Learning Research 12 (2011) 349–
384.

[20] H. Zhang, Y. Chen, D. Parkes, A general approach to environment de-
sign with one agent, in: International Joint Conference on Artificial
Intelligence, 2009.

[21] K. Genter, N. Agmon, P. Stone, Role-based ad hoc teamwork, in: Pro-
ceedings of the Plan, Activity, and Intent Recognition Workshop at the
Twenty-Fifth Conference on Artificial Intelligence (PAIR-11), 2011.

[22] K. Genter, N. Agmon, P. Stone, Ad hoc teamwork for leading a flock,
in: Proceedings of the 12th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2013), 2013.

[23] S. Barrett, P. Stone, S. Kraus, Empirical evaluation of ad hoc teamwork
in the pursuit domain, in: Proc. of 11th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS), 2011.

[24] S. Barrett, P. Stone, S. Kraus, A. Rosenfeld, Learning teammate models
for ad hoc teamwork, in: AAMAS Adaptive Learning Agents (ALA)
Workshop, 2012.

[25] K. Leyton-Brown, Y. Shoham, Essentials of Game Theory: A Concise,
Multidisciplinary Introduction, Synthesis Lectures on Artificial Intelli-
gence and Machine Learning, Morgan and Claypool Publishers, 2008.

[26] N. Nisan, T. Roughgarden, E. Tardos, V. V. Vazirani (Eds.), Algorith-
mic Game Theory, Cambridge University Press, 2007.

[27] R. Powers, Y. Shoham, Learning against opponents with bounded mem-
ory, in: IJCAI’05, 2005, pp. 817–822.

64



[28] E. Jürgen, Bayesian learning in repeated normal form games, Games
and Economic Behavior 11 (2) (1995) 254–278.

[29] V. Conitzer, T. Sandholm, Awesome: A general multiagent learning al-
gorithm that converges in self-play and learns a best response against
stationary opponents, in: Proceedings of the 20th International Confer-
ence on Machine Learning, 2003, pp. 83–90.

[30] H. P. Young, The possible and the impossible in multi-agent learning,
Artificial Intelligence 171 (7) (2007) 429–433.

[31] M. L. Littman, Friend-or-foe Q-Learning in general-sum games, in: Pro-
ceedings of the Eighteenth International Conference on Machine Learn-
ing, 2001, pp. 322–28.

[32] D. Chakraborty, P. Stone, Online multiagent learning against memory
bounded adversaries, in: Proceedings of the 2008 European Conference
on Machine Learning and Knowledge Discovery in Databases, 2008, pp.
211–226.

[33] Y. Shoham, R. Powers, T. Grenager, Multi-agent reinforcement learning:
a critical survey, in: AAAI Fall Symposium on Artificial Multi-Agent
Learning, 2004.

[34] S. Hart, A. Mas-Colell, A simple adaptive procedure leading to corre-
lated equilibrium, Econometrica 68 (5) (2000) 1127–1150.

[35] A. Neyman, D. Okada, Two-person repeated games with finite au-
tomata, International Journal of Game Theory 29 (2000) 309–325.

[36] R. Axelrod, The Evolution of Cooperation, Basic Books, New York,
1984.

[37] G. W. Brown, Iterative solutions of games by fictitious play, in: T. C.
Koopmans (Ed.), Activity Analysis of Production and Allocation, Wiley,
New York, 1951.

[38] H. P. Young, The evolution of conventions, Econometrica 61 (1993) 57–
84.

65



[39] H. P. Young, Individual Strategy and Social Structure: An Evolution-
ary Theory of Institutions, Princeton University Press, Princeton, New
Jersey, 1998.

[40] Y. Nyarko, A. Schotter, An experimental study of belief learning using
elicited beliefs, Econometrica 70 (3) (2002) 971–1005.

[41] C. Claus, C. Boutilier, The dynamics of reinforcement learning in coop-
erative multiagent systems, in: In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, AAAI Press, 1998, pp. 746–752.

[42] S. Carrbery, Techniques for plan recognition, User Modeling and User-
Adapted Interaction 11 (2001) 31–48.

[43] C. L. Sidner, Plan parsing for intended response recognition in discourse,
Computational Intelligence 1 (1).

[44] K. E. Lochbaum, An algorithm for plan recognition in collaborative
discourse, in: ACL, 1991, pp. 33–38.

[45] K. E. Lochbaum, A collaborative planning model of intentional struc-
ture, Computational Linguistics 24 (4) (1998) 525–572.

[46] B. J. Grosz, C. L. Sidner, Plans for discourse, in: P. R. Cohen, J. Mor-
gan, M. Pollack (Eds.), Intentions in Communication, MIT Press, Cam-
bridge, MA, 1990, pp. 417–445.

[47] B. J. Grosz, S. Kraus, The evolution of SharedPlans, in: M. Wooldridge,
A. Rao (Eds.), Foundations and Theories of Rational Agency, 1999, pp.
227–262.

[48] J. M. Vidal, E. H. Durfee, Recursive agent modeling using limited ratio-
nality, in: Proceedings of the First International Conference on Multi-
Agent Systems, AAAI/MIT press, 1995, pp. 125–132.
URL http://jmvidal.cse.sc.edu/papers/vidal95.pdf

[49] P. J. Gmytrasiewicz, E. H. Durfee, Rational coordination in multi-agent
environments, Journal of Autonomous Agents and Multi-Agent Systems
3 (4) (2000) 319–350.

66



[50] E. H. Durfee, Blissful ignorance: Knowing just enough to coordinate
well, in: Proceedings of the First International Conference on Multi-
Agent Systems, 1995, pp. 406–413.

[51] J. Han, M. Li, L. Guo, Soft control on collective behavior of a group of
autonomous agents by a shill agent, Systems Science and Complexity
19 (1).

[52] L. ji Lin, Self-improving reactive agents based on reinforcement learning,
planning and teaching, Machine Learning 8 (3/4) (1992) 293–321.

[53] L.-J. Lin, Self-improving reactive agents: Case studies of reinforcement
learning frameworks, in: From Animals to Animats: Proceedings of
the First International Conference on Simulation of Adaptive Behavior,
1991.

[54] C. G. Atkeson, A. W. M. Y, S. S. Z, Locally weighted learning for
control, Artificial Intelligence Review 11 (1997) 75–113.

[55] D. Pomerleau, ALVINN: An autonomous land vehicle in a neural net-
work, in: Advances in Neural Information Processing Systems 1, Morgan
Kaufmann, 1989.

[56] D. Grollman, O. Jenkins, Dogged learning for robots, in: International
Conference on Robotics and Automation (ICRA 2007), Rome, Italy,
2007, pp. 2483–2488.
URL http://www.cs.brown.edu/~cjenkins/papers/dang_ICRA_

2007%.pdf

[57] L. Csató, M. Opper, Sparse online gaussian processes, Neural Compu-
tation.

[58] J. Schneider, W.-K. Wong, A. Moore, M. Riedmiller, Distributed value
functions, in: In Proceedings of the Sixteenth International Conference
on Machine Learning, Morgan Kaufmann, 1999, pp. 371–378.

[59] L. Peshkin, K. eung Kim, L. Kaelbling, N. Meuleau, L. P. Kaelbling,
Learning to cooperate via policy search, in: In UAI, 2000, pp. 489–496.

[60] A. Schaerf, Y. Shoham, M. Tennenholtz, Adaptive load balancing: A
study in multi-agent learning, Journal of Artificial Intelligence Research
2 (1995) 475–500.

67



[61] P. Stone, M. Veloso, Multiagent systems: A survey from a machine
learning perspective, Autonomous Robots 8 (3) (2000) 345–383.

[62] L. Panait, S. Luke, Cooperative multi-agent learning: The state of the
art, Autonomous Agents and Multi-Agent Systems 11 (2005) 387–434.

[63] E. Yang, D. Gu, Multi-robot systems with agent-based reinforcement
learning: evolution, opportunities and challenges, International Journal
of Modelling, Identification and Control 6 (4) (2009) 271–286.

[64] D. Bergemann, J. Valimaki, Bandit problems, Tech. rep., Cowles Foun-
dation Discussion Paper (2006).

[65] P. Bolton, C. Harris, Strategic experimentation, Econometrica 67 (1999)
349–374.

[66] M. Cripps, G. Keller, S. Rady, Strategic experimentation with exponen-
tial bandits, ECONOMETRICA 73 (2005) 39–68.

[67] M. Aoyagi, Mutual observability and the convergence of actions in a
multi-person two-armed bandit model, Journal of Economic Theory 82
(1998) 405–424.

[68] G. Keller, S. Rady, Strategic experimentation with poisson bandits,
Tech. rep., Free University of Berlin, Humboldt University of Berlin,
University of Bonn, University of Mannheim, University of Munich, dis-
cussion Papers 260 (2009).

[69] A. Kayay, When does it pay to get informed?, International Economic
ReviewForthcoming.

[70] R. D. Kleinberg, Online decision problems, Ph.D. thesis, Department of
Mathematics (2005).

[71] L. S. Shapley, A Value for n-person Games, Vol. 2, 1953, pp. 307–317.

[72] G. Chalkiadakis, E. Elkind, M. Wooldridge, Computational Aspects of
Cooperative Game Theory, Synthesis Lectures on Artificial Intelligence
and Machine Learning, Morgan & Claypool Publishers, 2011.

[73] R. J. Aumann, Acceptable points in general cooperative n-person games,
Contributions to the Theory of Games 4.

68



[74] Subjectivity and correlation in randomized strategies, Journal of Math-
ematical Economics 1 (1) (1974) 67–96.

[75] N. Agmon, P. Stone, Leading ad hoc agents in joint action settings with
multiple teammates, in: Proc. of 11th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2012), 2012.

[76] S. Barrett, P. Stone, Ad hoc teamwork modeled with multi-armed ban-
dits: An extension to discounted infinite rewards, in: Tenth Interna-
tional Conference on Autonomous Agents and Multiagent Systems -
Adaptive Learning Agents Workshop (AAMAS - ALA), 2011.

69


