
Explaining Decentralized Multi-Agent Reinforcement Learning Policies

Kayla Boggess1, Sarit Kraus2, Lu Feng1

1University of Virginia
2Bar-Ilan University

{kjb5we, lu.feng}@virginia.edu, sarit@cs.biu.ac.il

Abstract

Multi-Agent Reinforcement Learning (MARL) has gained
significant interest in recent years, enabling sequential
decision-making across multiple agents in various domains.
However, most existing explanation methods focus on cen-
tralized MARL, failing to address the uncertainty and non-
determinism inherent in decentralized settings. We propose
methods to generate policy summarizations that capture task
ordering and agent cooperation in decentralized MARL poli-
cies, along with query-based explanations for “When,” “Why
Not,” and “What” types of user queries about specific agent
behaviors. We evaluate our approach across four MARL do-
mains and two decentralized MARL algorithms, demonstrat-
ing its generalizability and computational efficiency. User
studies show that our summarizations and explanations sig-
nificantly improve user question-answering performance and
enhance subjective ratings on metrics such as understanding
and satisfaction.

1 Introduction
Multi-Agent Reinforcement Learning (MARL) has gained
significant interest in recent years, enabling multi-agent se-
quential decision-making across various domains such as
autonomous driving (Dinneweth et al. 2022) and multi-robot
warehousing (Krnjaic et al. 2022). Recent works have ex-
plored generating explanations for MARL policies to en-
hance system transparency, improve user understanding,
and foster human-agent collaboration (Boggess, Kraus, and
Feng 2022, 2023). However, these prior efforts are primarily
limited to centralized MARL frameworks, where joint poli-
cies are learned and executed with full observability. Such
methods cannot adequately address the uncertainty, nonde-
terminism, and limited observability inherent in decentral-
ized MARL settings, which are common in real-world ap-
plications with communication or scalability constraints.

This work addresses this gap by introducing methods for
generating policy summarizations and query-based explana-
tions for decentralized MARL policies. Our approach is the
first to summarize and explain agent coordination and task
ordering under decentralized execution, enabling users to in-
terpret multi-agent behavior even when individual agents act
independently and only have local observations.

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

For example, consider a search and rescue mission where
multiple cooperative robots follow a decentralized MARL
policy. A human operator in the field receives decision-
making support via an explainer that provides high-level
policy summaries and answers user queries using real-time
trajectory data. The summaries help the operator understand
general robot behaviors—task completion, agent coopera-
tion, task order—while the query-based explanations answer
specific questions, such as: “When do [agents] complete
[task]?”, “Why don’t [agents] complete [task] under [con-
ditions]?”, or “What do the agents do after [task]?”. With
this information, the operator can make informed decisions,
such as prioritizing urgent tasks or allocating resources more
effectively.

A key challenge in supporting such explanations is rep-
resenting the uncertain, asynchronous execution of decen-
tralized policies. Each agent’s policy governs only its local
behavior, possibly unaware of others’ actions, making it dif-
ficult to infer global task order or cooperation from raw tra-
jectories alone.

To tackle this, we develop a novel algorithm that con-
structs Hasse diagram-based summarizations from trajecto-
ries generated under decentralized execution. Each diagram
is a directed acyclic graph where nodes represent tasks (an-
notated with the agents that completed them), and edges en-
code partial-order constraints over task completion times.
The resulting diagrams compactly capture both coordination
and uncertainty: branching edges represent nondeterminism
in task order, while nodes annotated with multiple agents in-
dicate cooperation on shared tasks.

Building on this, we develop query-based explanation
methods for three types of user queries: “When?”, “Why
not?”, and “What?”. Given a set of Hasse diagrams, we
derive abstract states that encode key features such as task
completions and agent involvement. To capture uncertainty,
we introduce an uncertainty dictionary derived from par-
tial comparability graphs that summarize unordered task
dependencies across episodes. We then apply the Quine-
McCluskey algorithm (Quine 1952) to extract minimal
Boolean formulas, which are translated into natural lan-
guage explanations using structured templates, with uncer-
tain features explicitly expressed using “may” conditions.

We evaluate our method’s generalizability and computa-
tional efficiency across four benchmark MARL domains,

scaling to settings with up to 19 tasks and 9 agents. To
demonstrate the algorithm-agnostic nature of our method,
we apply it to two distinct MARL algorithms that both yield
decentralized policies but differ in their training paradigms:
centralized training versus decentralized training.

Finally, we assess the effectiveness of our summariza-
tions and explanations via two user studies measuring ob-
jective task performance and subjective ratings. Results
show that our approach significantly improves user question-
answering accuracy and boosts subjective ratings such as un-
derstanding and satisfaction.

Together, these contributions bridge the gap between
opaque decentralized MARL policies and interpretable,
human-centered explanations, enabling effective human-
agent collaboration in multi-agent environments.

2 Related Work
Multi-Agent Reinforcement Learning. MARL algorithms
are commonly categorized by their training and execution
paradigms. Centralized training and centralized execution
(CTCE) methods train a single policy using full observabil-
ity of the environment and agent states (Albrecht, Chris-
tianos, and Schäfer 2023). Centralized training with decen-
tralized execution (CTDE) methods, such as SEAC (Chris-
tianos, Schäfer, and Albrecht 2020), use global information
during training but deploy policies that operate on local ob-
servations at execution time. Decentralized training and de-
centralized execution (DTDE) methods, including indepen-
dent learning approaches (Papoudakis et al. 2021), train each
agent’s policy independently, treating other agents as part of
the environment. This work focuses on post-hoc summariza-
tion and explanation of both CTDE and DTDE policies in
cooperative settings.
Policy Summarization. Explainable RL (XRL) has re-
ceived increasing attention, as surveyed in (Milani et al.
2023; Wells and Bednarz 2021), though most prior work tar-
gets single-agent settings. For instance, (Topin and Veloso
2019) introduces abstract policy graphs, which represent
agent behavior as Markov chains over abstract states, and
(McCalmon et al. 2022) improves their comprehensibility.
(Amir and Amir 2018) visualizes agent behavior via rep-
resentative trajectory videos. In the multi-agent domain,
(Milani et al. 2022) uses intrinsically interpretable deci-
sion trees, while (Boggess, Kraus, and Feng 2022) abstracts
centralized MARL policies into macro-actions over joint
state-action trajectories to identify common agent behaviors.
However, all of these methods assume a single input policy,
whether from a single agent or a centralized multi-agent con-
troller. In contrast, we consider decentralized settings where
each agent has its own policy and actions may require inter-
agent coordination. We develop a scalable method to sum-
marize such decentralized executions using compact, struc-
tured representations.
Query-Based Explanations. Post-hoc explanations in
single-agent RL often rely on abstract state representa-
tions (Hayes and Shah 2017; Sreedharan et al. 2022),
saliency maps (Atrey, Clary, and Jensen 2019), causal mod-
els (Madumal et al. 2020), or reward decompositions (Juoza-

paitis et al. 2019). Several works have extended these ideas
to multi-agent systems, but typically assume centralized
control or non-cooperative agents. For example, (Boggess,
Kraus, and Feng 2022) applies abstract policy graphs to cen-
tralized MARL, (Heuillet, Couthouis, and Dı́az-Rodrı́guez
2022; Mahjoub et al. 2024; Chen et al. 2025) compute agent
contributions to joint policies, and (Kottinger, Almagor,
and Lahijanian 2021) visualizes action assignments in joint
plans. (Mualla et al. 2022) proposes a framework for gen-
erating parsimonious explanations for teams of BDI agents.
However, these methods do not support inter-agent cooper-
ation under decentralized policies and often aggregate agent
behavior in a naive or disjointed manner.

To our knowledge, this is the first work to generate both
policy summarizations and query-based explanations for de-
centralized MARL policies.

3 Policy Summarization
Decentralized MARL Policies. Consider N agents, each
with a decentralized MARL policy πi : si → ∆(ai) map-
ping local state si to a distribution over actions ai. Agents
act asynchronously due to decentralized execution without a
global clock. Joint tasks are assumed to be completed simul-
taneously, with each agent observing only its own contribu-
tion and reward. Executing these policies yields trajectories
{ωi}Ni=1, where ωi = si0, a

i
0, r

i
0, s

i
1, · · · records transitions

observed by agent i. A task sequence trace(ωi) = τ i1, τ
i
2, · · ·

can be extracted from each trajectory ωi, where a completed
task τ is inferred from reward signals and state transitions.
Problem Statement. Given decentralized MARL policies
and their execution trajectories, how can we generate a com-
pact, interpretable summary that captures both individual
and joint agent behaviors? We seek a representation that
ensures correctness, meaning each agent’s behavior in the
summary aligns with its actual task sequence, and complete-
ness, meaning each agent’s full task sequence is captured in
at least one path in the summary.
Hasse Diagram Summarization. We propose to summarize
decentralized agent behavior using a Hasse diagram D =
(V, E), a directed acyclic graph that represents a partial order
over task completions (Sarkar 2017). Each vertex denotes a
set of tasks completed simultaneously and the agents that
perform them. Edges encode precedence: v ≺ v′ indicates
that tasks in v must precede those in v′. A path ρ = v0 →
v1 → · · · through D defines a possible task ordering. The
projection of ρ onto agent i, denoted ρi, retains only tasks
performed by agent i. We say ρi conforms to the agent’s
trajectory trace(ωi) if ρi ⊑ trace(ωi)—i.e., the task order is
preserved.

Formally, the diagram D is correct if, for all paths ρ and
agents i, either ρi = ∅ or ρi ⊑ trace(ωi). It is complete
if, for every agent i, there exists a path ρ such that ρi =
trace(ωi).

We present Algorithm 1, which constructs a correct and
complete Hasse diagram D from a single episode of decen-
tralized execution trajectories {ωi}Ni=1, agnostic to how the
policies are trained (e.g., CTDE, DTDE). The algorithm it-
erates through task sequences, creates nodes for new tasks,

Figure 1: Example of Algorithm 1 constructing a Hasse diagram incrementally: steps (a)–(d) incorporate each agent’s task
sequence, and step (e) applies transitive reduction.

Algorithm 1 Hasse Diagram Summarization (HDS)
Input: Agent trajectories {ωi}Ni=1

Output: Hasse DiagramD = (V, E)
1: Initialize: v0 ← ∅; V ← {v0}; E ← ∅
2: for each agent i = 1 to N do
3: T i ← trace(ωi)
4: for each task index k = 1 to |T i| do
5: τ ← T i

k

6: if τ exists in some vertex v ∈ V then
7: Add agent i to v[τ]
8: else
9: Create new vertex v′ with v′[τ] = {i}; V ← V ∪{v′}

10: if k = 1 then
11: Add edge (v0 → v) or (v0 → v′) to E
12: else
13: Let τprev ← T i

k−1

14: Find vertex v̄ ∈ V containing τprev
15: Add edge (v̄ → v) or (v̄ → v′) to E if not present
16: for each edge (u→ v) ∈ E do
17: if a path from u to v exists excluding edge (u→ v) then
18: Remove edge (u→ v) from E
19: return D = (V, E)

identifies agents for shared tasks, and inserts edges to main-
tain local task order. Finally, a transitive reduction is applied
to eliminate redundant edges.

Figure 1 shows an example of applying Algorithm 1, il-
lustrating the incremental construction of a Hasse diagram
summarizing agents’ behavior.
Complexity and Guarantee. The worst-case time complex-
ity of Algorithm 1 is O(N ·|T |2+|T |4), where N is the num-
ber of agents and |T | is the number of tasks. The O(N ·|T |2)
term covers task-wise updates across N trajectories, and the
O(|T |4) term arises from transitive reduction over a graph
with up to |T |2 edges.

Theorem 1. Given a set of agent trajectories {ωi}Ni=1 pro-
duced by executing decentralized MARL policies {πi}Ni=1 in
a single episode, the Hasse diagram D = (V, E) constructed

by Algorithm 1 is both a correct and complete policy sum-
marization. (Proof provided in Appendix A.)

Practical Considerations. In large environments, users are
often interested in only a subset of agents or tasks (e.g.,
nearby robots in a search and rescue scenario). Our method
supports selective summarization by restricting input to rel-
evant agent trajectories and applying task filters during se-
quence extraction.

Because decentralized execution is stochastic, different
episodes may yield different Hasse diagrams. To summa-
rize observed behaviors, we rely on actual trajectories; to
capture potential future behaviors, we can simulate multi-
ple episodes and report a representative diagram, such as the
most frequent one.

4 Query-Based Explanations
While Hasse diagrams summarize global behavior, they do
not explain local decisions—such as when agents choose to
perform a task, why they fail to do so under certain condi-
tions, or what they do next. To address this gap, we develop
methods that generate language-based explanations in re-
sponse to user queries. Our approach builds on prior work in
query-based explanations for single-agent (Hayes and Shah
2017) and centralized multi-agent settings (Boggess, Kraus,
and Feng 2022), but introduces new techniques to address
the uncertainty and partial observability inherent in decen-
tralized execution.

4.1 Answering “When” Queries
We consider queries of the form: “When do agents Gq per-
form task τq?”, aiming to identify the necessary conditions
under which τq is completed by agent group Gq across mul-
tiple simulated executions. Algorithm 2 outlines our method
for generating language-based explanations for such queries.

We begin by extracting a subset of features Fq ⊆ F that
are relevant to the query task, using domain knowledge. For
example, for the query “When do agents 2 and 4 do task C?”,
relevant features may include boolean predicates indicating

Algorithm 2 “When” Query-Based Explanation
Input: Agent group Gq , query task τq , Hasse diagrams {Dj}, and
feature set F
Output: Language-based explanationX
1: Extract relevant features Fq ⊆ F for τq
2: Initialize uncertainty dictionary U ← ∅
3: for each diagram Dj do
4: if τq completed by Gq in Dj then
5: Let vτ be the node where τq is completed
6: Compute partial comparability graph from vτ
7: for each node v not reachable to/from vτ do
8: Add features associated with v to U [Dj]
9: Label nodes as targets (containing τq by Gq) or non-targets

10: Encode nodes as boolean vectors over Fq using U
11: Apply Quine-McCluskey to distinguish targets/non-targets
12: Translate resulting formula into explanation X
13: return X

whether agents 2 or 4 complete task C, as well as whether
potentially prerequisite tasks (e.g., task A, B, etc.) have been
completed.

Given a set of Hasse diagrams {Dj} summarizing multi-
ple episodes of decentralized policy execution, we check,
for each diagram Dj , whether the query task τq is com-
pleted by the queried agent group Gq . If so, we identify the
corresponding node vτ and construct a partial comparabil-
ity graph (Kelly 1985) centered at vτ , which includes only
nodes with a known ordering relative to vτ (i.e., those reach-
able via the Hasse diagram’s edges in either direction).

To handle partial observability and structural ambiguity
in decentralized execution, we introduce an uncertainty dic-
tionary U . Any node that is not reachable to or from vτ is
considered unordered with respect to the query task. Fea-
tures associated with such nodes are marked as uncertain
and stored in U [Dj]. For example, if task B appears in a
node unconnected to the node where agents 2 and 4 com-
plete task C, we cannot determine whether task B occurred
before or after task C. As a result, the feature “task B com-
pleted” is added to U [Dj] and treated as a possible—but not
confirmed—precondition for task C.

We then label nodes as targets if they satisfy the query
(i.e., they contain τq completed by Gq), and as non-targets
otherwise. Each node is encoded as a boolean vector over the
relevant feature set Fq , where each bit indicates whether the
corresponding feature is satisfied along a path to that node.
To avoid underestimating dependencies, features marked
as uncertain in U are conservatively treated as true in the
boolean encoding.

To identify distinguishing conditions, we apply Quine-
McCluskey (Quine 1952) to derive a minimal boolean for-
mula that separates targets from non-targets. Finally, we
translate the resulting formula into a language explanation
using a structured language template, mapping certain fea-
tures to “must” and uncertain ones to “may”.

An example of a generated explanation is: “For agents 2
and 4 to complete task C, agent 2 must complete task C,
agent 4 must complete task C, and task A must be completed.
Additionally, task B may need to be completed.”

While prior methods (Hayes and Shah 2017; Boggess,

Algorithm 3 “What” Query-Based Explanation
Input: Query task τq , Hasse diagrams {Dj}
Output: Language-based explanationX
1: Initialize sets T c ← ∅, T u ← ∅
2: for each diagram Dj do
3: for each node v ∈ Dj do
4: if v contains τq completed by any agent group then
5: Add tasks from all immediate children of v to T c

6: Compute partial comparability graph from v
7: for each node v′ not reachable to/from v do
8: Add tasks from v′ to T u

9: Translate T c and T u into explanation X
10: return X

Kraus, and Feng 2022) also use Quine-McCluskey mini-
mization followed by language translation, they do not ac-
count for the uncertainty introduced by decentralized exe-
cution. In contrast, Algorithm 2 incorporates partial compa-
rability graphs and an uncertainty dictionary to capture un-
ordered task dependencies, enabling “may” conditions in the
resulting explanations.
Complexity. The dominant cost of Algorithm 2 is
Quine-McCluskey minimization with worst-case complex-
ity O(3|Fq|/ ln |Fq|). Other steps scale linearly with the
number of Hasse diagrams and nodes. The method is
tractable in practice for moderate feature sizes.

4.2 Answering “Why Not” Queries
To answer queries of the form: “Why don’t agents Gq do
task τq under conditions Φq?”, we adapt the procedure used
for “When” queries. Instead of identifying preconditions for
successful completions, the goal is to isolate the minimal set
of missing conditions that prevent τq from occurring under
the given scenario.

The key difference lies in how we define the target and
non-target sets: the user-provided condition Φq is encoded
as the target (i.e., a case where the task did not occur),
while nodes from Hasse diagrams where τq is successfully
completed by Gq serve as non-targets. As in the “When”
query, we construct partial comparability graphs to iden-
tify ordering uncertainty and maintain an uncertainty dictio-
nary to track ambiguous dependencies. These are incorpo-
rated into the boolean encoding, allowing us to apply Quine-
McCluskey minimization to identify which missing features
distinguish the query condition from successful executions.
The full algorithm pseudocode is provided in Appendix B
and shares the same complexity as Algorithm 2.

For instance, for the query “Why don’t agents 2 and 4
complete task C when only task A is completed?”, the result-
ing explanation could be: “Task B may need to be completed
for agents 2 and 4 to complete task C.”

4.3 Answering “What” Queries
To answer queries of the form: “What do the agents do

after task τq?”, we analyze the successors of τq across mul-
tiple Hasse diagrams. Our goal is to identify which tasks oc-
cur after τq , distinguishing between those that are certainly

ordered afterward and those that may follow, but whose or-
dering is ambiguous due to decentralized execution.

Given a set of Hasse diagrams {Dj} generated from sim-
ulated episodes, we first locate all nodes where τq is com-
pleted. For each such node, we add the tasks from its im-
mediate children, representing actions that are explicitly or-
dered after τq , to a set of certain successors T c.

To identify uncertain successors T u, we construct a par-
tial comparability graph rooted at each node where τq is
completed. We then collect tasks from nodes that are not
ordered with respect to it. These tasks are added to a set T u

as possible, but not guaranteed, successors of τq .
We generate an explanation using a language template

that reports both the certain and uncertain successor sets.
For example, for the query “What do agents do after task C
is completed?”, the explanation could be: “After task C is
completed, tasks D and E are completed. Additionally, task
B may be completed.”
Complexity. The worst-case time complexity of Algo-
rithm 3 is O(|{Dj}| · |V|2(|V| + |E|)), where |{Dj}| is the
number of Hasse diagrams, and |V| and |E| are the number
of nodes and edges in each diagram, respectively.

5 Computational Experiments
MARL Domains. We evaluate our approaches on four
benchmark domains: (1) Search and Rescue (SR) (Boggess,
Kraus, and Feng 2022), where agents rescue victims and
fight fires; (2) Level-Based Foraging (LBF) (Papoudakis
et al. 2021), where agents collect food; (3) Multi-Robot
Warehouse (RW) (Papoudakis et al. 2021), where agents pick
up and deliver items; and (4) Pressure Plate (PP) (McInroe
and Christianos 2022), where agents open doors to enable
others’ navigation. All domains are gridworld-based. Agents
observe nearby grid cells only: up to four per direction in PP
and one per direction in other domains, reflecting the partial
observability of decentralized execution.
Experimental Setup. We train policies using two MARL
algorithms: Shared Experience Actor-Critic (SEAC) (Chris-
tianos, Schäfer, and Albrecht 2020) for CTDE, and Inde-
pendent Advantage Actor-Critic (IA2C) (Papoudakis et al.
2021) for DTDE. Each model is trained until convergence or
for up to 400 million steps. All experiments are conducted
on a machine with a 2.1 GHz Intel CPU, 132 GB RAM, and
Ubuntu 22.04.

5.1 Evaluation on Policy Summarization
Summarization Baseline. Since no existing methods sum-
marize decentralized MARL policies, we adapt the single-
agent approach from (McCalmon et al. 2022) as a base-
line. For each agent, we construct an abstract policy graph
that summarizes task sequences observed over 100 episodes,
using the same abstract features as our HDS method for
fair comparison. The resulting agent-specific graphs are dis-
played side-by-side and annotated with task sequence prob-
abilities (see Figure 5 in Appendix C).
Results. Table 1 compares CTDE policy summarization
sizes (number of nodes and edges) produced by our HDS
method and the baseline for the largest configuration in each

Domain HDS Baseline
(N, |T |) |V| |E| |V| |E|

SR (9,7) 8 7.88 534 525
LBF (9,9) 10 10.83 723 714
RW (4,19) 20 19 1,274 1,270
PP (7,6) 7 6 265 258

Table 1: Summarization sizes for HDS and the baseline on
the largest setting in each domain, based on 100 episodes
executed using CTDE policies trained with SEAC.

Domain HD-When Baseline
(N, |T |) |Fc| |Fu| |Fc| |Fu|

SR (9,7) 9 2 54 0
LBF (9,9) 13 11 104 0
RW (4,19) 0 153 267 0
PP (7,6) 8 3 20 0

Table 2: Explanations sizes for our method and the baseline
on the largest setting in each domain, based on 100 episodes
executed using CTDE policies trained with SEAC.

domain (i.e., with the most agents and tasks). HDS generates
one Hasse diagram per episode, each representing a com-
plete summary of all agents’ behavior in that episode; we
report average size over 100 episodes. In contrast, the base-
line displays all observed task sequences across episodes for
all agents, resulting in large visualizations with hundreds of
nodes and edges, which are significantly harder to interpret
than the compact Hasse diagrams. Similar results hold for
DTDE policies trained with IA2C (see Appendix C).

Both HDS and the baseline are computationally efficient,
each processing 100 episodes and generating summariza-
tions in under one second across all domains.

Additionally, while HDS often produces unique Hasse di-
agrams across episodes, they typically fall into a small num-
ber of structural types based on edge counts. For example,
SR(9,7) yields 100 unique diagrams but only 6 distinct edge
counts. Figure 6 in Appendix C illustrates the distribution of
diagram types across domains, highlighting HDS’s ability to
capture both behavioral diversity and structural regularity.

5.2 Evaluation on Query-Based Explanations
Explanation Baseline. Since no existing methods gener-
ate query-based explanations for decentralized MARL, we
adapt the single-agent explanation approach from (Hayes
and Shah 2017) by applying it independently to each agent’s
abstract policy graph (described in Section 5.1). The result-
ing per-agent explanations are then merged using simple
union-based aggregation as a baseline.
Results. Table 2 compares explanation sizes for “When”
queries on CTDE policies, measured by the number of cer-
tain (|Fc|) and uncertain (|Fu|) features extracted by our
method and the baseline. These features are derived from
boolean formulas obtained through Quine-McCluskey min-

imization. In all cases, both methods generate explanations
in under one second.

The baseline includes only certain features, as it does not
capture task ordering uncertainty. It also produces signifi-
cantly larger explanations due to the size of its aggregated
policy graphs and union-based merging of per-agent results.
In contrast, our HD-When method yields more compact and
informative explanations, balancing certain and uncertain
features. In RW(4,19), all features are marked uncertain due
to highly asynchronous execution.

Similar trends are observed for DTDE policies and for
other query types (see Appendix C).

6 User Studies
We conducted two user studies (with IRB approval) to evalu-
ate the effectiveness of our proposed policy summarizations
and query-based explanations.

For both studies, we recruited participants via university
mailing lists to answer surveys via Qualtrics. Eligible par-
ticipants were fluent English speakers over 18 years old and
were incentivized with bonus payments for correctly an-
swering questions based on the provided summarizations or
explanations. The summarization study included 20 partici-
pants (10 males, 9 females, 1 other), with an average age of
22.55 years (SD = 2.89). The explanation study included 21
participants (14 males, 6 females, 1 other), with an average
age of 24 years (SD = 3.95).

We describe the study design and results for each study in
Sections 6.1 and 6.2, respectively.

6.1 Summarization Study
Independent Variables. The independent variable in this
study was the summarization generation approach: our HDS
method or the baseline described in Section 5.1. The base-
line displays side-by-side abstract policy graphs for each
agent, with each agent’s most likely task sequence high-
lighted (Figure 5, Appendix C). To aid interpretation, the
HDS interface presents a table of agent-task assignments
and a list of task-ordering rules converted from each Hasse
diagram. It shows the top three most frequent plans from 100
episodes, annotated with empirical likelihoods, and high-
lights the most likely one in red (Figure 7, Appendix D).
Procedures. The study followed a within-subject design
where each participant completed two trials, one per summa-
rization method (HDS and baseline). Each trial consisted of
two summarizations, and each summarization was followed
by three questions (12 questions total). Participants were
randomly assigned to one of two groups to counterbalance
ordering effects (HDS first or baseline first). All questions
were randomized. Prior to each trial, participants received
a brief tutorial and passed attention-check questions to en-
sure engagement. Bonus incentives and timing were used to
promote data quality.
Dependent Measures. We assessed user performance based
on the number of correctly answered questions in three cate-
gories: assignment (e.g., “Can [robot(s)] complete [task]?”),
likelihood (e.g., “What are the most likely robot(s) to com-
plete [task]?”), and order (e.g., “Must [task 1] always

Figure 2: Mean and standard deviation of participant ratings
on policy summarizations (* indicates statistically signifi-
cant difference).

be completed before [task 2]?”). Response time was also
recorded for each question.

At the end of each trial, participants rated the summa-
rization quality on a 5-point Likert scale across seven met-
rics (Hoffman et al. 2018): understanding, satisfaction, de-
tail, completeness, actionability, reliability, and trustworthi-
ness. Participants were informed of their accuracy before
providing ratings.
Hypotheses. We hypothesized that, compared to baseline
summarizations, HDS would (H1) improve user question-
answering performance and (H2) receive higher ratings on
summarization quality metrics.
Results. We found that users answered significantly more
questions correctly using HDS (M=4.25 out of 6, SD=0.83)
than with the baseline (M=3.1 out of 6, SD=1.04). A
paired t-test confirms this difference is statistically signifi-
cant (t(19)=4.2, p ≤ 0.01, d=0.96). The data supports H1.

Regarding user-perceived summarization quality, HDS
was rated slightly higher in completeness (Wilcoxon signed-
rank, W=16.0, Z=-2.07, p ≤ 0.04, r=-0.33), but not signifi-
cantly different in other dimensions (see Figure 2). The data
partially supports H2.
Discussion. These results suggest that HDS improves ob-
jective user performance in answering questions that require
understanding task coordination across agents. Because the
baseline does not explicitly model inter-agent cooperation,
users must compare across graphs to infer coordination,
which can be cognitively demanding. Moreover, the baseline
may mislead by showing each agent’s most likely task se-
quence independently, which may not reflect the most likely
joint behavior in coordination.

Subjective ratings show limited preference for HDS, pos-
sibly due to user familiarity with the baseline’s flowchart-
style layout despite its reduced clarity on coordination.

Finally, we note that users’ response times remained com-
parable between methods. In some cases, HDS enabled
faster responses (e.g., for likelihood queries).

6.2 Explanation Study
Independent Variables. The independent variable was the

Figure 3: Mean and standard deviation of participant perfor-
mance on query-based explanations (* indicates statistically
significant difference).

explanation generation method: our proposed approach ver-
sus the baseline described in Section 5.2. Example interfaces
for all three query types (“When,” “Why Not,” and “What”)
are shown in Appendix D.

For “When” queries, users viewed a map of a search-and-
rescue scenario (with four agents and four tasks) and an ac-
companying explanation. Our method outputs both required
(certain) and possible (uncertain) conditions, while the base-
line includes only certain ones.

For “Why Not” queries, users were shown two maps: the
first with a failed task and an explanation of the violated con-
ditions, and the second used to test whether the explanation
helped predict behavior.

For “What” queries, users received an explanation about
what tasks could occur next. Our method distinguishes cer-
tain and uncertain tasks; the baseline lists only certain ones.
Procedures. The study followed a within-subject design,
where each participant completed two trials—one using our
method, and one using the baseline. Each trial included
two questions per query type (“When,” “Why Not,” and
“What”), totaling 12 questions. Method order was counter-
balanced across participants to mitigate ordering effects. The
study included a demonstration, attention-check questions,
bonus incentives, and timing to ensure data quality.
Dependent Measures. User performance was measured by
the number of correctly answered prediction questions, re-
ported separately for each query type. Response time per
question was also recorded. After each trial, participants
rated explanation quality on a 5-point Likert scale (Hoffman
et al. 2018) using the same seven metrics described in Sec-
tion 6.1.
Hypotheses. We hypothesized that, compared to the base-
line, our generated explanations would (H3) improve user
question-answering performance and (H4) receive higher
ratings on explanation quality metrics.
Results. As shown in Figure 3, users answered signifi-
cantly more questions correctly using our HDE explana-
tions compared to the baseline across all three query types.
Paired t-tests (α = 0.05) confirm the improvement for when
(t(20)=9.65, p ≤ 0.01, d=2.16), why not (t(20)=13.23, p ≤
0.01, d=2.96), and what (t(20)=12.05, p ≤ 0.01, d=2.69).
The data supports H3.

Figure 4 shows participant ratings on explanation qual-

Figure 4: Mean and standard deviation of participant ratings
on query-based explanations (* indicates statistically signif-
icant difference).

ity. Wilcoxon signed-rank tests (α = 0.05) indicate signifi-
cantly higher ratings for HDE across all seven metrics: un-
derstanding (W=3.5, Z=-3.02, p ≤ 0.01, r=-0.47), satisfac-
tion (W=5.0, Z=-3.01, p ≤ 0.01, r=-0.46), detail (W=4.5,
Z=-3.02, p ≤ 0.01, r=-0.47), completeness (W=0.0, Z=-3.21,
p ≤ 0.01, r=-0.49), actionability (W=4.0, Z=-2.53, p ≤ 0.02,
r=-0.39), reliability (W=3.0, Z=-2.78, p ≤ 0.01, r=-0.43),
and trust (W=0.0, Z=-2.68, p ≤ 0.01, r=0.41). The data sup-
ports H4.
Discussion. The improvement in user performance is likely
due to our explanation method’s ability to present both cer-
tain and uncertain features, enabling users to more accu-
rately predict if and what tasks will occur. In contrast, the
baseline captures only agent-specific behavior and lacks
inter-agent context. It may omit shared task dependen-
cies or include irrelevant conditions observed by individ-
ual agents, requiring users to reconcile fragmented informa-
tion—reducing its effectiveness in decentralized settings.

Participants also gave higher subjective ratings to our ex-
planations across all goodness metrics, suggesting they val-
ued access to decentralized task dependencies and uncer-
tainty, even if the explanations were more complex. No-
tably, the inclusion of uncertain features did not increase re-
sponse time, indicating that users could efficiently interpret
the richer information.

7 Conclusion
We presented novel approaches for summarizing and ex-
plaining decentralized MARL policies. Computational ex-
periments across four MARL domains and two learning al-
gorithms show that our method is scalable and efficient, gen-
erating compact summarizations and meaningful explana-
tions even in large environments with many agents and tasks.
User studies further demonstrate that our approach improves
user performance and perceived explanation quality, without
increasing response time.

Future work includes integrating these explanations into
interactive human-agent systems, supporting more expres-
sive user queries, and leveraging large language models to
enhance explanation clarity and usability.

Acknowledgements
This work was supported in part by the U.S. National Sci-
ence Foundation grant CCF-1942836, and Israel Ministry
of Innovation, Science & Technology grant 1001818511.
The opinions, findings, conclusions, or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the sponsoring agencies.

References
Albrecht, S. V.; Christianos, F.; and Schäfer, L. 2023. Multi-
Agent Reinforcement Learning: Foundations and Modern
Approaches. MIT Press.
Amir, D.; and Amir, O. 2018. Highlights: Summarizing
agent behavior to people. In Proceedings of the 17th Inter-
national Conference on Autonomous Agents and MultiAgent
Systems, 1168–1176.
Atrey, A.; Clary, K.; and Jensen, D. 2019. Exploratory Not
Explanatory: Counterfactual Analysis of Saliency Maps for
Deep Reinforcement Learning. In International Conference
on Learning Representations.
Boggess, K.; Kraus, S.; and Feng, L. 2022. Toward Policy
Explanations for Multi-Agent Reinforcement Learning. In
International Joint Conference on Artificial Intelligence.
Boggess, K.; Kraus, S.; and Feng, L. 2023. Explainable
Multi-Agent Reinforcement Learning for Temporal Queries.
In Proceedings of the Thirty-First International Joint Con-
ference on Artificial Intelligence.
Chen, J.; Wang, Y.; Wang, J.; Xie, X.; Hu, J.; Wang, Q.; and
Xu, F. 2025. Understanding Individual Agent Importance in
Multi-Agent System via Counterfactual Reasoning. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 39, 15785–15794.
Christianos, F.; Schäfer, L.; and Albrecht, S. 2020. Shared
experience actor-critic for multi-agent reinforcement learn-
ing. Advances in neural information processing systems, 33:
10707–10717.
Dinneweth, J.; Boubezoul, A.; Mandiau, R.; and Espié, S.
2022. Multi-agent reinforcement learning for autonomous
vehicles: A survey. Autonomous Intelligent Systems, 2(1):
27.
Hayes, B.; and Shah, J. A. 2017. Improving robot controller
transparency through autonomous policy explanation. In
2017 12th ACM/IEEE International Conference on Human-
Robot Interaction (HRI), 303–312.
Heuillet, A.; Couthouis, F.; and Dı́az-Rodrı́guez, N. 2022.
Collective explainable AI: Explaining cooperative strategies
and agent contribution in multiagent reinforcement learning
with shapley values. IEEE Computational Intelligence Mag-
azine, 17(1): 59–71.
Hoffman, R. R.; Mueller, S. T.; Klein, G.; and Litman, J.
2018. Metrics for explainable AI: Challenges and prospects.
arXiv preprint arXiv:1812.04608.
Juozapaitis, Z.; Koul, A.; Fern, A.; Erwig, M.; and Doshi-
Velez, F. 2019. Explainable reinforcement learning via re-
ward decomposition. In IJCAI/ECAI Workshop on explain-
able artificial intelligence.

Kelly, D. 1985. Comparability graphs. Graphs and Order:
The Role of Graphs in the Theory of Ordered Sets and Its
Applications, 3–40.
Kottinger, J.; Almagor, S.; and Lahijanian, M. 2021. MAPS-
X: Explainable multi-robot motion planning via segmenta-
tion. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), 7994–8000. IEEE.
Krnjaic, A.; Steleac, R. D.; Thomas, J. D.; Papoudakis, G.;
Schäfer, L.; To, A. W. K.; Lao, K.-H.; Cubuktepe, M.; Ha-
ley, M.; Börsting, P.; et al. 2022. Scalable multi-agent rein-
forcement learning for warehouse logistics with robotic and
human co-workers. arXiv preprint arXiv:2212.11498.
Madumal, P.; Miller, T.; Sonenberg, L.; and Vetere, F. 2020.
Explainable reinforcement learning through a causal lens.
In Proceedings of the AAAI conference on artificial intelli-
gence, volume 34, 2493–2500.
Mahjoub, O.; de Kock, R. J.; Singh, S.; Khlifi, W.; Vall, A.;
ab Tessera, K.; Gorsane, R.; and Pretorius, A. 2024. Effi-
ciently Quantifying Individual Agent Importance in Coop-
erative MARL. In eXplainable AI approaches for Deep Re-
inforcement Learning.
McCalmon, J.; Le, T.; Alqahtani, S.; and Lee, D. 2022.
Caps: Comprehensible abstract policy summaries for ex-
plaining reinforcement learning agents. In nt’l Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS).
McInroe, T.; and Christianos, F. 2022. PRESSURE-
PLATE. https://github.com/uoe-agents/pressureplate.
Accessed: 2022-11-22.
Milani, S.; Topin, N.; Veloso, M.; and Fang, F. 2023. Ex-
plainable reinforcement learning: A survey and comparative
review. ACM Computing Surveys.
Milani, S.; Zhang, Z.; Topin, N.; Shi, Z. R.; Kamhoua, C.;
Papalexakis, E. E.; and Fang, F. 2022. MAVIPER: Learn-
ing Decision Tree Policies for Interpretable Multi-agent Re-
inforcement Learning. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases,
251–266.
Mualla, Y.; Tchappi, I.; Kampik, T.; Najjar, A.; Calvaresi,
D.; Abbas-Turki, A.; Galland, S.; and Nicolle, C. 2022.
The quest of parsimonious XAI: A human-agent architec-
ture for explanation formulation. Artificial intelligence, 302:
103573.
Papoudakis, G.; Christianos, F.; Schäfer, L.; and Albrecht,
S. V. 2021. Benchmarking multi-agent deep reinforcement
learning algorithms in cooperative tasks. In Thirty-fifth Con-
ference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 1).
Quine, W. V. 1952. The problem of simplifying truth func-
tions. The American mathematical monthly, 59(8): 521–531.
Sarkar, S. K. 2017. A Textbook of Discrete Mathematics,
chapter 9.4 “Hasse Diagram”, 339–341. S. Chand Publish-
ing, 9th edition.
Sreedharan, S.; Soni, U.; Verma, M.; Srivastava, S.; and
Kambhampati, S. 2022. Bridging the Gap: Providing
Post-Hoc Symbolic Explanations for Sequential Decision-
Making Problems with Inscrutable Representations. In In-
ternational Conference on Learning Representations.

Topin, N.; and Veloso, M. 2019. Generation of policy-level
explanations for reinforcement learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33,
2514–2521.
Wells, L.; and Bednarz, T. 2021. Explainable ai and re-
inforcement learning—a systematic review of current ap-
proaches and trends. Frontiers in Artificial Intelligence, 4:
48.

A Proof of Theorem 1
Theorem 1. Given a set of agent trajectories {ωi}Ni=1 pro-
duced by executing decentralized MARL policies {πi}Ni=1 in
a single episode, the Hasse diagram D = (V, E) constructed
by Algorithm 1 is both a correct and complete policy sum-
marization.

Proof. (Correctness) Suppose, for contradiction, that the
Hasse diagram D = (V, E) produced by Algorithm 1 is not
a correct policy summarization. Then there exists a path ρ
through D such that its projection ρi onto some agent i does
not conform to the agent’s task sequence trace(ωi).

This implies that in ρi there is a task τ ik that precedes
another task τ ik′ with k > k′, yet τ ik appears earlier in the
path than τ ik′ . Let v and v′ be the nodes in ρ that contain
τ ik and τ ik′ , respectively. Since ρ is a valid path, it must be
that v ≺ v′, meaning tasks in v occur before those in v′.
But then τ ik should occur before τ ik′ in trace(ωi), contradict-
ing k > k′. Hence, all projections must conform, and the
diagram is correct.

(Completeness) The algorithm explicitly iterates over
each trajectory ωi and processes its task sequence trace(ωi)
in order. For every consecutive pair of tasks (τ ik−1, τ

i
k), an

edge is added from the vertex containing τ ik−1 to the one
containing τ ik. Thus, for each agent, a path through the DAG
is constructed that corresponds exactly to trace(ωi).

In the transitive reduction step, an edge (v, v′) is removed
only if there already exists an alternative path from v to
v′. Hence, the path corresponding to trace(ωi) is preserved.
Therefore, for every agent i, there exists at least one path ρ
in D such that ρi = trace(ωi), proving completeness.

B Algorithm for “Why Not” Queries
The pseudocode below outlines our method for answering
“Why don’t agents Gq do task τq under conditions Φq?”
queries, as described in Section 4.2.

C Details on Computational Experiments
Baseline Summarization Visualization. Figure 5 shows an
example of the baseline summarization used throughout our
evaluations. Each agent’s abstract policy graph summarizes
its possible task sequences over 100 execution episodes,
with sequence-level probabilities. These per-agent graphs
are displayed side-by-side, requiring users to manually in-
fer inter-agent task coordination, which is a key limitation
compared to our HDS method.
DTDE Policy Summarization Results. Table 3 reports
summarization statistics for HDS and the baseline using

Figure 5: Example of baseline summarization.

DTDE policies trained with IA2C. Due to convergence is-
sues of training IA2C in larger environments, we report re-
sults only for LBF(5,5) and RW(3,4), rather than LBF(9,9)
and RW(4,19) used in the CTDE setting with SEAC. As
in all CTDE cases, HDS yields substantially more compact
summarizations, whereas the baseline produces significantly
larger graphs.

Domain HDS Baseline
(N, |T |) |V| |E| |V| |E|

SR (9,7) 8 7.79 350 341
LBF (5,5) 6 5.62 151 146
RW (3,4) 5 4 69 66
PP (7,6) 7 6 107 100

Table 3: Summarization sizes for HDS and the baseline on
selected domain settings, based on 100 episodes executed
using DTDE policies trained with IA2C.

Hasse Diagram Diversity. Figure 6 shows the distribution
of Hasse diagram types across 100 episodes for selected
domain-policy pairs. Although individual executions often
yield unique diagrams, they typically fall into a small num-

Algorithm 4 “Why Not” Query-Based Explanation
Input: Agent group Gq , query task τq , query conditions Φq , Hasse
diagrams {Dj}, and feature set F
Output: Language-based explanationX
1: Extract relevant features Fq ⊆ F for τq
2: Initialize uncertainty dictionary U ← ∅
3: for each diagram Dj do
4: if τq completed by Gq in Dj then
5: Let vτ be the node where τq is completed
6: Compute partial comparability graph from vτ
7: for each node v not reachable to/from vτ do
8: Add features associated with v to U [Dj]
9: Encode Φq as boolean vector B1 over Fq

10: Encode non-target nodes as boolean vectors B0 using U
11: Apply Quine-McCluskey to distinguish B1 from B0

12: Translate resulting formula into explanation X
13: return X

ber of structural categories based on edge count. For in-
stance, SR(9,7) has 100 unique diagrams but only 6 distinct
edge counts. This highlights HDS’s ability to preserve be-
havioral variation while maintaining structural compactness.

Figure 6: Distribution of Hasse diagram types across 100
episodes for each domain and training method. Each slice
represents a unique diagram type categorized by edge count,
illustrating structural diversity captured by HDS.

Additional Explanation Results. Tables 4, 5 and 6 pro-
vide additional explanation statistics for HD-When and HD-
What under DTDE policies, and HD-What under CTDE
policies. These tables report the number of certain and un-
certain features or tasks included in the explanations, based
on 100 episodes. Results in Table 4 show trends consistent
with those observed in Table 2 for CTDE “When” queries:
our methods produce compact, structured explanations with
meaningful uncertainty, while the baseline includes more
features but no uncertainty terms. Results in Tables 5 and
6 show explanations with increased information due to cap-
tured coordination and task order not present in the baseline.

Domain HD-When Baseline
(N, |T |) |Fc| |Fu| |Fc| |Fu|

SR (9,7) 5 5 45 0
LBF (5,5) 14 4 41 0
RW (3,4) 0 2 2 0
PP (7,6) 8 3 19 0

Table 4: Explanations sizes for our method and the baseline
on selected domain settings, based on 100 episodes executed
using DTDE policies trained with IA2C.

Domain HD-What Baseline
(N, |T |) |T c| |T u| |T c| |T u|

SR (9,7) 1 7 3 0
LBF (5,5) 4 0 3 0
RW (3,4) 1 3 2 0
PP (7,6) 2 3 2 0

Table 5: Explanations sizes for our method and the baseline
on selected domain settings, based on 100 episodes executed
using DTDE policies trained with IA2C.

D Details on User Studies
Summarization Study Interface Example. Figure 7 shows
an example of the user interface used in the summariza-
tion study for presenting HDS-generated summaries. Each
summary consists of a table showing agent-task assignments
and a list of natural language rules representing partial task
order, converted from a Hasse diagram. The interface dis-
plays the top three most frequent summaries (based on 100
episodes), with empirical likelihoods shown beneath each.
The most likely summary is visually emphasized with a red
border.

Figure 7: Example user interface displaying an HDS-
generated summarization and associated question.

Explanation Study Interface Examples. Figures 8, 9 and
10 show example user interfaces used in the explanation

Domain HD-What Baseline
(N, |T |) |T c| |T u| |T c| |T u|

SR (9,7) 3 0 2 0
LBF (9,9) 8 0 6 0
RW (4,19) 9 11 10 0
PP (7,6) 1 5 2 0

Table 6: Explanations sizes for our method and the baseline
on the largest setting in each domain, based on 100 episodes
executed using CTDE policies trained with SEAC.

study for the “When,” “Why Not,” and “What” queries, re-
spectively. Each interface presents a scenario with agents
and tasks, along with an HD-generated explanation and a
follow-up question for participants to answer.

Figure 8: Example user interface displaying an HD-When
explanation and associated question.

Figure 9: Example user interface displaying an HD-WhyNot
explanation and associated question.

Figure 10: Example user interface displaying an HD-What
explanation and associated question.

