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Abstract

Robot teams are very useful in patrol tasks, where the
robots are required to repeatedly visit a target area in or-
der to detect an adversary. In this work we examine the
Fence Patrol problem, in which the robots must travel
back and forth along an open polyline and the adver-
sary is aware of the robots’ patrol strategy. Previous
work has suggested non-deterministic patrol schemes,
characterized by a uniform policy along the entire area,
guaranteeing that the minimal probability of penetration
detection throughout the area is maximized. We present
a patrol strategy with a non-uniform policy along differ-
ent points of the fence, based on the location and other
properties of the point. We explore this strategy in dif-
ferent kinds of tracks and show that the minimal prob-
ability of penetration detection achieved by this non-
uniform (variant) policy is higher than former policies.
We further consider applying this model in multi-robot
scenarios, exploiting robot cooperation to enhance pa-
trol efficiency. We propose novel methods for calcu-
lating the variant values, and demonstrate their perfor-
mance empirically.

1 INTRODUCTION
The problem of multi-robot patrol has been thoroughly in-
vestigated during the past few years (Agmon et al. 2008;
Hefferan, Cliff, and Fitch 2016; Talmor and Agmon 2017;
Alam et al. 2017; Ivanová and Surynek 2017; Alam et al.
2019). In this problem, a team of robots is required to con-
tinuously travel in an area, in our case a line (fence), while
monitoring it in order to detect changes in state. Many of the
studies in this area have concentrated on assuring optimiza-
tion of frequency criteria (Elmaliach, Agmon, and Kaminka
2009; Collins et al. 2013). However, we follow several stud-
ies that consider the problem of multi-robot patrol in ad-
versarial environments: There is an adversary that wishes
to penetrate this line without being detected. We assume that
the adversary has full knowledge about the patrolling robots
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(their capabilities, their locations and patrolling behavior),
and would take the optimal steps (in his view) in order to
penetrate successfully. Our goal is to set the patrol in a way
that would minimize the adversary’s probability of success.
Naturally, this problem is applicable in many security do-
mains.

In this paper we focus on the problem of patrolling along
an open polyline track. Former studies presented policies
that assigned a uniform policy (probability value) to all of
the segments in the track. We suggest assigning each seg-
ment with a distinct probability value, according to the seg-
ment’s position in the track. We show analytically and em-
pirically that the results obtained by this approach are sig-
nificantly better than those of the former approach.

Moreover, previous studies (e.g. Agmon, Kraus, and
Kaminka 2008) concentrated on symmetric tracks, i.e. all
of the parts of the track are similar in their parameters. This
similarity holds for both the physical properties of the line
and the algorithmic attributes of the robots’ motion. In this
work we challenge this symmetry, from practical consid-
erations (reality often presents asymmetric structures that
should be dealt with) and for optimality calculations. We
show that, in many cases, non-uniform policies yield better
results than uniform ones.

2 RELATED WORK
Systems of multiple robots cooperating in an arena to per-
form a joint mission were studied in recent years in var-
ious contexts. The arena might be an area that should
be watched over, cleaned or monitored (Chevaleyre 2004;
Alam et al. 2017). Alternatively the arena is a line that
should be monitored in order to detect intrusions or to pre-
vent them (Lin 2019). The offered solutions differ in the
ways the quality of patrol is measured: Many of the works
focused on frequency-based patrolling – optimizing the fre-
quency of robot visits in the various locations of the arena
(Almeida et al. 2004; Elmaliach, Agmon, and Kaminka
2009). Sometimes there are vital points that should be mon-
itored in a more frequent manner than other points (Collins
et al. 2013). Other works concentrate on adversarial patrol
schemes (Basilico et al. 2009; Sless, Agmon, and Kraus
2014; Alam et al. 2019). This approach (also addressed in



this paper) assumes an adversary that wishes to penetrate
a line - either an open polyline or a closed perimeter. The
adversary has the time and knowledge to study and under-
stand the properties of the patrol, and to aim its penetration
trials at its weakest points. In this context, an efficient pa-
trol would be the one that makes it harder for the adversary
to locate or exploit its vulnerabilities for penetration. Non-
deterministic approaches may prevent the adversary from as-
suring the success of the penetration by choosing a smart
penetration point. Performance evaluation of models and al-
gorithms is done according to these different definitions of
quality (Portugal and Rocha 2013). In this work we evaluate
the performance by the concept of Probability of Penetra-
tion Detection (ppd) which we wish to maximize (Agmon,
Kaminka, and Kraus 2011).

Another approach to adversarial patrolling considers the
game theoretic approach based on stochastic Stackelberg
game models. The backbone of this method is defender-
attacker Stackelberg games in which the defender (leader)
first commits to a randomized security policy, and the at-
tacker (follower) uses surveillance to learn about the pol-
icy before attacking. The application might be either attack-
timing indifferent (Basilico, Gatti, and Amigoni 2012), or
with temporal preferences incorporated using exponential
discounting (Vorobeychik, An, and Tambe 2012; Vorobey-
chik et al. 2014). A recent comprehensive survey of many
patrol models is brought in (Huang et al. 2019).

In previous works dealing with optimizing ppd, the prob-
lem of patrolling along a fence (an open polyline) has been
studied under the assumption that the robots use one proba-
bility variable p in all of their decisions (Agmon, Kaminka,
and Kraus 2008). Although more complex possibilities were
mentioned, they were neither investigated nor analyzed. In
this paper we revisit the problem and consider more com-
plex strategies of multiple probability variables.

3 MODELS AND NOTATIONS
We are given a team of k identical robots that are required
to patrol along an open polyline. The line (track) is divided
into N segments, S = {s1, . . . , sN}, and each robot trav-
els through one segment in one time-cycle. Note that the
segments are not required to be of the same length or the
same orientation: Some of them may be longer than oth-
ers, contain turns, obstacles or other special characteristics,
according to the conditions of the target area. However, all
segments are set with proper length and robot velocity such
that each robot traverses each segment in one time-cycle. We
presume that robots travel on a predesignated track and their
movement is not interrupted by passersby.

In the disjoint sectors policy (Agmon, Kaminka, and
Kraus 2008; 2011), the N segments are divided into k dis-
joint sectors, C = {c1, . . . , ck}, where each sector ci ∈ C
contains d = N/k segments (d is assumed to be an integer).
Each sector is patrolled by exactly one robot, and the robots
do not enter each others’ sectors. In this policy we focus
our analysis of the system on the analysis of a single sector,
since the behavior is equivalent in all sectors. In section 5 of
this paper we also discuss the non-disjoint policy, in which
sectors have one or more overlapping segments which are

monitored by more than one robot. In this policy there may
be several ways to divide a given track into sectors.

The robots have directionality associated with their move-
ment. In each time-cycle, a robot has to decide where it
should go - to either continue in its current direction or to
turn around and go in the opposite direction. Turning around
might be costly, i.e. if the robot decides to change its direc-
tion, it takes τ time-units to perform the turning and start
the patrol in the opposite direction. In this paper, for sim-
plicity, we demonstrate the movement with τ = 0 (a real-
istic scenario for rail-mounted robots, for example), but the
model can be applied for any τ ∈ N: (Agmon, Kaminka,
and Kraus 2011) present several movement models, includ-
ing ones with τ > 0, and show how to convert calculations
from one model to the other.

A robot configuration (Rconfigj) is defined as the pair
< si, dir >, where si indicates the location of robot j (the
segment in which it resides), and dir ∈ {right, left} is the
robot’s direction. For example, Rconfig7 =< s2, right >
means that robot number 7 is located in the second segment
in the sector, and is moving to the right.

The patrol algorithm of the robots is characterized by a
probability, i.e., in each step a robot continues in its current
direction with some probability p, and turns around with
probability 1 − p. There are various models for assigning
the probability to a specific robot configuration and they are
elaborated on below. Finding the optimal value of p for
each robot configuration is the essence of the adversarial
patrol problem.

Penetration configuration is defined as the tuple
< sadversary, Rconfig1, . . . , Rconfigj >, where j ≥ 1,
sadversary indicates the segment through which the adver-
sary is going to penetrate, and Rconfigi indicates the con-
figuration of robot i just before the penetration begins. For
example, the penetration configuration < s1, < s3, right >
,< s7, left >> describes the situation in which there are
two robots in the track, the adversary tries to penetrate seg-
ment 1, starting as robot No. 1 is in segment 3 moving to the
right and robot No. 2 is in segment 7 moving to the left.

The adversary has to decide on its preferred penetration
configuration before time-cycle 0. It may take several time-
cycles for this penetration configuration to form, and the ad-
versary will wait for it to arrive. At time-cycle 0 the adver-
sary will be ready, in place, and in time cycle 1 the pene-
tration will begin. We assume that the time it takes the ad-
versary to penetrate, penetration time, is not instantaneous,
and lasts t > 0 time-units, from time-cycle 1 to time-cycle
t. Note that in time-cycle 0 the adversary has not yet pene-
trated, and the robots are still in the starting segments that
were chosen by the adversary. At time-cycle 1 the penetra-
tion commences, and the robots are no longer at their starting
positions – all of them have already moved, either to the left
or to the right, according to the stochastic decision each of
them made independently.

The robots succeed in their detection mission if (at least)
one of them traverses a segment while the adversary is in
this segment. If t time-units have passed since the adver-
sary commenced its penetration and none of the robots have
traversed this segment, then the penetration is classified as



successful and the robots fail. The adversary does not have
another chance, nor is the adversary allowed to stop the pen-
etration attempt after it has commenced and retry later.

The concept of Probability of Penetration Detection (ppd)
is essential to our analysis: In general, ppd is the probabil-
ity of detecting a penetration. When applied to a specific
penetration configuration, ppdconf is the probability that an
adversary, commencing penetration in configuration conf ,
is detected by some robot during its penetration attempt.
When referring to a discreet segment si, ppdsi is the mini-
mal ppd of all the penetration configurations with this seg-
ment as the penetrated segment. In other words, ppdsi is the
minimal probability that a patrol path of any robot will pass
through segment si during the time that a penetrator is pass-
ing through that segment. Note that ppdconf and ppdsi are
functions of the probability values of the track.

In this work we concentrate on assigning optimal prob-
ability values to track segments in order to maximize the
minimal ppdsi , ∀si ∈ S, namely MaxMinppd. With these
values, the adversary, although knowing all of the patrol pa-
rameters and choosing the weakest point, i.e., the segment sj
with the lowest ppdj value, as its penetration attempt arena,
would have the minimal probability of succeeding in his at-
tempt to penetrate the line.

4 UNIFORM VS. NON-UNIFORM P
POLICY IN A DISJOINT MODEL

In an open polyline track there are two extreme segments
(at both ends of the line) in which the robot movement is
constrained, as it cannot continue in its current direction. In
these segments p = 0 and the robot turns around with the
probability 1 − p = 1, no matter what the probability val-
ues in the non-extreme segments are. All of the non-extreme
segments, however, may be assigned a p value of our choice
in order to maximize Minppd in the track. In earlier works
(Agmon, Kaminka, and Kraus 2008; 2011) the case of uni-
form p policy was analyzed, i.e., the probability value p in
all of the non-extreme segments is equal (Fig. 1). The robot
would “flip a coin” with probability p to decide whether to
continue in its current direction or to turn around, regardless
of the current segment and direction. This policy is practiced
in the case of a closed perimeter track and is very reason-
able there, since in a closed perimeter there is full symmetry
between all of the segments and there is no way to distin-
guish between them (Agmon, Kraus, and Kaminka 2008).
Nevertheless, this is not the case in the open polyline track,
whereas there are extreme segments which force the robot to
change its direction, hence the distance of a specific segment
from the edge influences its ppd.

Figure 1: The uniform p policy in an open polyline.

For this reason it seems that a non-uniform P policy, in
which P = {p1, . . . , pd} and each segment si is assigned
the probability value pi, would be more appropriate and

might yield better results (i.e., higher MaxMinppd in the
track). Although mentioned in the aforementioned works,
no analysis of the non-uniform P policy in an open poly-
line was introduced. Specifically, neither a practical method
to calculate the values of P nor a comparison between the
results of both policies was presented.

In the non-uniform P policy there is a set P =
{p1, . . . , pd} of probabilities rather than a single p value in
the uniform p policy. In our track notation, the leftmost seg-
ment is segment s1 and the rightmost one is segment sd.
Both extreme values of P are preset: p1 = 1, pd = 0. The
rest of the values p2, . . . , pd−1 should be determined such
that the MaxMinppd of the track is maximal. When its cur-
rent direction is to the right, a robot that resides in segment
si uses pi as its coin value to decide whether to continue in
its current direction or to turn around. When its current di-
rection is to the left, a robot in segment si uses pd+1−i (its
mirror-image index) as its coin value (Fig. 2).

Figure 2: The non-uniform P policy in an open polyline.
When the current direction is to the right the robot uses pi
as its coin value in segment si. When the direction is to the
right the robot uses pd+1−i in segment si.

4.1 Calculating the ppd
The ppds of the segments in the track are probability func-
tions: ∀i ∈ {1, . . . d}, ppdsi : [0, 1]d → [0, 1]. In order to
compute the ppd functions, given a set P of track segment
probabilities, we deploy the method described in section 4.2
in (Agmon, Kaminka, and Kraus 2011) as Algorithm 1. We
build a Markov Chain G in which, for each segment si in
the original track, two states of G are created: One for mov-
ing to the right and the other for moving to the left. If the
robot reaches the segment through which the adversary tries
to intrude within t time-units, then the adversary is caught.

From Markov chain G we derive the respective stochastic
matrix M. The algorithm as described in (Agmon, Kaminka,
and Kraus 2011) is set for the uniform p policy for the closed
perimeter track, hence it results in a set of d single-variable
ppd functions. In the variant P policy of an open sector with
d segments, we have d2 configurations: d possible segments
for the adversary to penetrate, while the robot might reside
in d possible segments at time-cycle 0. ppd values might be
calculated regardless of robot direction: Due to symmetry
considerations, calculations may be made assuming a spe-
cific direction (e.g. to the right) and these values hold also
for the opposite direction. Therefore, we use the algorithm d
times, for every segment through which the adversary may
intrude, and combine the sets of functions we get as a re-
sult to form a d× d matrix of non-linear ppd functions with
d − 2 variables p2, p3, . . . , pd−1 (recall: p1 = 1, pd = 0 are
constants).



4.2 Calculating P for MaxMinppd in
non-uniform P policy

The algorithms described in former works to calculate the
value of p for MaxMinppd were designed for the uni-
form p policy (one-variable functions) and are not appli-
cable here (d-variable functions). Numerical methods may
be used to find an approximation to the MaxMinppd, e.g.
the downhill simplex (Nelder-Mead) method (Nelder and
Mead 1965) or the sequential quadratic programming (SQP)
method (Bonnans et al. 2006). In our implementation we
used the Nelder-Mead and the SLSQP methods of the func-
tion optimize.minimize() in the Python SciPy library for sci-
entific computing (Gao and Han 2012; Kraft 1988). These
numeric methods yielded good results in less than 24 hours
in the lower values of track configurations (d and t).

For higher values (t ≥ 8), using numeric methods for
identifying (semi-)optimal P might take too long for prac-
tical use. For these cases we propose an Asymmetric Track
Adversarial Patrol Search (ATAPS) heuristic that scans parts
of the possible range of values in adjustable resolution and
finds a policy within a given time frame. ATAPS receives
as input a track configuration (d and t values) and a time-
frame – the given time for calculation, at the end of which
the result is required. According to the time-frame it decides
which one of the three methods would be most appropriate
for the case: (1) Numeric method as described above; (2)
exhaustive search of the space using relevant resolution (ad-
just the range r = [left, right] ⊆ [0, 1] and the resolution
τ ∈ [0, 1], and evaluate (rright − rleft)/τ possible values
for each pi); or (3) random search using random restart hill
climbing search. It also decides which verification method
– the aforementioned matrix calculation or a fast simulation
tool of patrols that we implemented – is faster for the spe-
cific task. These decisions are made considering the number
of steps required for the calculation and the time needed for
each step. For each possible set P = {p1 . . . pd} ATAPS
evaluates the ppds using the chosen tool. An outline of the
ATAPS algorithm is provided in the supplemental material.

Fig. 3 demonstrates various cases and the consequences
of applying different calculation methods to them. We mea-
sure the calculation time (in seconds) of each method, and
the cases are shown by their sector configuration – the
pair < d, t > (for simplicity denoted as d/t) where d is
the number of segments in a sector and t is the penetra-
tion time. In track configuration 6/7 (Fig. 3a) the numeric

methods (Nelder-Mead, SLSQP) are the most efficient: They
yield a high Minppd and do so in a short span of time,
compared to an exhaustive search with matrices verification
(XS+Matrices) and exhaustive search with simulation veri-
fication (XS+Simulation). In configuration 7/8 (Fig. 3b) we
present results of eXhaustive Search with High Resolution
(XSHR: r = [0.5, 1], τ = 0.03) and eXhaustive Search
with Low Resolution (XSLR: r = [0.5, 1], τ = 0.035).
The exhaustive search is faster than the numeric methods,
but yields a lower Minppd. Random Search (RS) is even
faster but yields even lower results. In configuration 8/10
(Fig. 3c) all search methods (exhaustive and random) yield
results in practical time (r = [0.5, 1], XSHRτ = 0.035,
XSLRτ = 0.04), and the random search does it faster and
better than the exhaustive search, whereas the numeric meth-
ods fail to return a result at all even after 9 days of running.

4.3 Advantage of the Non-Uniform P Policy:
Experimental Results

In open polyline tracks we are only interested in t values in
the range d− 1 ≤ t ≤ 2d− 3. Lower t values will allow the
adversary to find a segment to penetrate with a probability of
0 of being caught. Higher values of tmean that deterministic
movement would catch the adversary with a probability of 1
and would be better than our stochastic model.

The results presented in the figures throughout the paper
were obtained in computational experiments performed us-
ing the methods described in Section 4.2. Fig. 4 shows the
results of the non-uniform p policy in comparison with the
uniform p policy. It is clear that the Minppd of the non-
uniform p policy is higher than that of the uniform p pol-
icy for all sizes of sectors d and all relevant t values. It can
be seen that the advantage of the non-uniform p policy is
greater in the “difficult” cases, when t is small, i.e. the ad-
versary needs only a short period of time to penetrate. In
reality, such cases occur when the fence is weak or low, or
when the adversary has a knack for penetration.

It should be noted that as d increases, the MaxMinppd
in the track decreases. For practical use, high values of d
(i.e. fences with many segments equipped with few robots)
would not be appropriate since the adversary would have a
very low probability of getting caught. For example, facing
a fence with 7 segments and a penetration time of 7 time-
units, a smart adversary who cleverly chooses his penetra-
tion segment would only have a 25% probability of being

Figure 3: Minppd calculation results using different methods as a function of calculation time (in seconds).



Figure 4: Comparison between the uniform p model and the
variant P model in different polyline track configurations.
Each configuration is characterized by its d and t values
(e.g., configuration 5/7 means an open polyline with 5 seg-
ments and a penetration time of 7 time-units).

caught even when the robots deploy the better non-uniform
P policy. Nevertheless, a little improvement in fence prop-
erties that slightly increases the penetration time from 7 to 8
time-units would increase the probability of catching the ad-
versary to 50% using a non-uniform P policy, much better
than 30.3% with a uniform p policy.

4.4 Advantage of the Non-Uniform P Policy:
Theoretical Study

As shown in Fig. 4, the non-uniform P policy yields better
results (i.e. higher Minppd) than the uniform p policy for
all track configurations that were checked. In the following
theorem and supporting lemmas we show that, when con-
sidering the basic configuration (i.e. minimal relevant t), the
non-uniform P policy will always overtake the uniform p
policy. To prove this property, we first consider the best seg-
ment for the adversary to penetrate in such settings.
Lemma 1. In a uniform p policy, when moving with an op-
timal p value that yields MaxMinppd, the Minppd will oc-
cur at the extreme segment/s, i.e. the best segment through
which to intrude (from the adversary’s point of view) is one
(or both) of the extreme segments.

Proof. Assume, towards contradiction, that the minimal
probability of penetration detection is ppd(j,i), where (j, i)
is the configuration in which the robot resides in segment
sj , the adversary intrudes in segment si, and si is not an
extreme segment, i.e. 1 < i < d. ppd(j,i) is the sum of
all path-probabilities from sj to si whose length ≤ t. In
this configuration, observe the extreme segment on the other
side of si from sj (if sj is itself one of the extreme seg-
ments, then observe the other extreme segment), segment s1
in Fig. 5. ppd(j,1) is the sum of all path-probabilities from
sj to s1 whose length ≤ t. Note that each path in ppd(j,1) is
an extension of a path in ppd(j,i) and ppd(j,1) has a lower
probability than its corresponding path beginning in ppd(j,i)

since it was multiplied by p < 1 at least once. Therefore
ppd(j,1) < ppd(j,i), thus a contradiction. �

In the following lemma we show that if the adversary
chose one of the extreme segments as his penetration point,

Figure 5: Open polyline, s1 and sd are extreme segments.

then the best situation for him to commence the penetration
is when the robot is in the farthest non-extreme segment and
its direction is towards the far extreme segment.
Lemma 2. In the uniform p policy, in a track of length d
with the optimal p value for MaxMinppd and t = d − 1,
MaxMinppd is achieved when the robot is in sd−1 and p =
(d− 3)/(d− 2).

The outline of the proof shows that due to the low t value
there is only one possible path from sd−1 to the penetrated
segment (while other segments have more than one), and this
path’s ppd is lower than any other path’s in the track. The
full proof is presented in the supplemental material.

Note that for d > 4, the optimal p value in the uniform p
policy will always be p > 0.5.
Theorem 1. In an open polyline track with t = d− 1, given
an optimal p value in the uniform p policy, decreasing pd−2

(while leaving all other pis as they are) will increase the
Minppd.

The intuition behind the proof is that ppdd−1 is the
Minppd in the case of t = d − 1, and decreasing pd−1 in-
creases ppdd−1. We show that ppdd−1 is still the Minppd
even after decreasing pd−1, thus increasing the total Minppd
of the track. The outcome of the theorem is that a non-
uniform P policy can always yield better results (i.e. higher
MaxMinppd) than the best result of the uniform p policy in
the case of t = d − 1. Again, the full proof is presented in
the supplemental material due to lack of space.

4.5 Tracks with an irregular segment
In this section we discuss a case in which there is an irregular
segment in the track – one specific segment is different from
all the other segments in the sense that it has a shorter pen-
etration time: Due to a lower fence, bad visibility by guards
or other assisting conditions, the adversary needs less time
to penetrate this segment. The penetration time of this seg-
ment is tirreg < t. A track with at least one segment that has
a different penetration time value than the other segments is
denoted an asymmetric track. The specific location of the ir-
regular segment is significant. An irregular segment located
at the extremity of the track is much more problematic than
one located in the middle of the track.
Lemma 3. When moving with optimal P values that yield
MaxMinppd, a Minppd will occur at the extreme segment/s,
i.e. one of the best segments through which to intrude (from
the adversary’s point of view) is one (or both) of the extreme
segments.

Proof. The proof is similar to the proof of Lemma 1, which
considered uniform p, with the exception that in the non-
uniform model P values might be 1, and in this case the
extreme segment indeed has a Minppd value, but other seg-
ments adjacent to the extreme segment might have the same
value as well. �



This lemma shows that, in an open polyline track, the
most difficult areas to monitor are the extremities. Unlike
a closed perimeter, where every segment might be visited by
robots coming from both sides, an extreme segment of an
open polyline track is guarded by just one robot. As shown
in Fig. 6, the non-uniform P model has a significant advan-
tage over the uniform p model in asymmetric tracks because
assigning different P values can help balance this inequality
between segments. Using segment-specific probability val-
ues might enhance the presence of the robot in the extrem-
ities at the expense of reducing the presence in the middle
area, thus yielding a more balanced set of ppds with a higher
Minppd. Fig. 6 demonstrates that the closer the irregular
segment is to the track’s extremities, the more substantial
the advantage of the non-uniform model.

Figure 6: Comparison between the uniform p model and the
non-uniform P model in an open polyline track, d = 6, t =
8, with a single irregular segment. The configuration notes
the irregular segment penetration time value according to its
location in the track (7/1 means a segment with t = 7 which
is located in the first segment in the track).

5 NON-DISJOINT MODEL
5.1 Dual robot track
As mentioned above, former works dealing with optimizing
Minppd in adversarial patrol (Agmon, Kaminka, and Kraus
2008; 2011) concentrated on a disjoint model, i.e. divid-
ing the track into disjoint sectors with one robot patrolling
along each sector. Other work, focusing on visit frequency
as the patrol-quality measurement, suggested overlap of the
assigned patrol areas of the robots (Elmaliach, Shiloni, and
Kaminka 2008). We now introduce the non-disjoint division
into the MaxMinppd arena, and show that this model may
achieve higher Minppd values.

Consider a track with d segments. As long as t ≥ d − 1,
one robot can patrol the track and achieve positive Minppd.
If t is smaller, Minppd = 0 and an additional robot must
be added to the system. A similar situation happens when
the Minppd is positive but is too low for practical use (for
example, a single robot in a d = 9, t = 8 track would yield
Minppd = 0.057, which is usually too low to be considered
as proper monitoring). In the disjoint model, the track is di-
vided into two disjoint sectors with one robot in each sector,
and each sector is managed independently. The Minppd of
the track is the minimal Minppd of the two sectors.

In the non-disjoint model we divide the track into two
equal partly-overlapping sectors, making one segment (if
d is odd) or two segments (if d is even) patrolled by both
robots. The robots cooperate in monitoring the mutual seg-
ment(s), while each of the other segments is monitored by a
single robot (see Fig. 7).

Figure 7: Dual robot patrol in an open polyline with d = 9:
Top – non-disjoint scheme; bottom – disjoint scheme. The
dark segment is monitored by two robots.

For example, consider a track with d = 9 and t = 6.
This track cannot be properly monitored by one robot be-
cause the adversary can easily penetrate with probability 1
(e.g. commencing penetration of sector 9 when the robot is
in sector 1). The disjoint model would add a robot and di-
vide the track into two disjoint sectors, one of length 4 and
the other of length 5. In the first sector the ppd is 1 in all
of the segments, and in the second the Minppd is 0.48 (us-
ing uniform p policy) or 0.52 (using non-uniform p policy,
as described in Fig. 4), so a knowledgeable adversary would
penetrate the second sector in the optimal robot configura-
tion. A better solution would be to form two sectors, each
of them 5 segments long, and to include the middle seg-
ment in both sectors. Analysis shows that this configuration
achieves Minppd = 0.62, much higher than in the former
model. The reason for the significant improvement is that
the weak points of an open polyline track are its extreme
segments (as proven in Lemma 3). In the non-disjoint model
the robots “help” each other in monitoring one of the ex-
treme segments (the mutual middle one) which is patrolled
by both of them, thus allowing an enhanced presence in the
other extreme segments.

Calculation of the optimal P values for the non-disjoint
model is done again using the ATAPS heuristic, but with
essential adaptations: The two sectors are mirror-symmetric
to each other, but the movement in a sector in one direction
is asymmetric to the movement in the opposite direction,
since the extreme segment in the inner part of the track is
monitored by both robots and needs less presence by each
of them than the other (non-middle) sector-ends. Therefore
we look for 2(dd/2e − 2) p values. In the aforementioned
example (d = 9, t = 5, two sectors with 5 segments each)
we need to calculate 6 p values, 3 for the movement from
the edge towards the middle and another 3 for the movement
from the middle towards the edge (again, the p values of the
extreme segments of each sector are preset). Fig. 8 shows
the results of the calculations by ATAPS.

Naturally, when using the disjoint schemes, the non-
uniform model always yields a higher Minppd than the uni-
form model. The non-disjoint model produces even higher
results in some of the cases. There are two cases, however,
in which the non-disjoint model does not overpower the dis-
joint model: (a) In even d tracks when the t values are low:



Figure 8: Comparison between different patrol schemes in
an open polyline track with two robots. Each configuration
is characterized by its d and t values.

Odd d tracks are divided into two uneven disjoint sectors
(e.g., a 9-segment track is divided into a 4-segment sec-
tor and a 5-segment sector). The longer of these two newly
formed sectors is the weak link, whereas it competes with
a sector of the same length but with “help” from the other
robot in the non-disjoint model (e.g. two 5-segment sectors
with a mutual segment). Unlike this, even d tracks are di-
vided into two equal-length sectors, both of them shorter
than the sectors of the non-disjoint division, thus having an
advantage. In low t values (e.g. 10/5) this advantage suffices
to yield a better result, but in higher t values (e.g. 10/7) the
non-disjoint model’s robot cooperation overpowers this ad-
vantage and produces a higher Minppd. (b) In special cases,
when the single robot mode achieves its MaxMinppd in
multiple points in the track: There are specific tracks where
the MaxMinppd in the track is achieved in many places in
the track, i.e. there are multiple penetration configurations
that have the same MaxMinppd. In such cases, trying to
increase the ppd in the non-mutual edge automatically de-
creases the ppd in other segments and yields a lower total
Minppd in the track. An example of such a case is an open
polyline with d = 5 and t = 5 (see Fig. 4). As a result, the
dual robot mode with d = 9 and t = 5, which is divided in
the non-disjoint division into two d = 5, t = 5 segments,
cannot overpower the disjoint model and they both achieve
the same MaxMinppd (see Fig. 8). A similar situation oc-
curs in the d = 6, t = 7 case that affects the dual robot
mode with d = 11, t = 7: Here the non-disjoint model man-
ages to achieve an advantage over the disjoint model, but it
is a minor advantage.

5.2 Numerous robots track
A similar concept can be applied to tracks with more than
two robots. The non-disjoint model is even more efficient
in these tracks, since all of the non-extreme sectors have
their extreme segments monitored in cooperation with their
neighbours. Only the extreme sectors of the track have real
single-robot-monitored extreme segments, and we can make
these sectors shorter in order to compensate for the lack of
neighbours. For example, a track with d = 11, t = 4 cannot
be properly monitored by less than 3 robots (due to the low
t value). The disjoint model would divide the track into two
4-segment sectors and one 3-segment sector, and its weak
point would have Minppd = 0.5 (see Fig. 4). Using the
non-disjoint model, we divide the track into a middle sec-
tor of 5 segments and two extreme sectors of 4 segments
each, whereas at every connection point there is one mu-
tual segment (see Fig. 9). The middle sector is indeed longer
but it gets “a little help from his friends” at both edges, thus
achieving Minppd = 0.528. When choosing a patrol scheme

Figure 9: Triple robot patrol in an open polyline track with
d = 11: Top – non-disjoint scheme; bottom – disjoint
scheme. Dark segments are monitored by two robots each.

for a given track, there are several parameters that should be
taken into consideration. Some of them, like the movement
model, have no cost aspect, and the decision would be made
according to the results only (i.e. the model that yields the
highest Minppd is preferable). On the other hand, the num-
ber of robots to deploy in the track is an important factor that
has costly consequences: Adding more robots would signif-
icantly improve the quality of the patrol, but is more expen-
sive and complicated. Improving the quality of the patrol
without adding robots to the track is an important practical
feature.

To wrap up the concepts presented in this article, review
Fig. 10. The table presents 6 different solutions to patrolling
an open polyline track with 11 segments and a penetration
time of 5. The solutions differ in the number of robots de-
ployed, in the way the track is divided into sectors, in the
schemes that are used to govern the movement of the robots
and, of course, in the quality of the patrol – the Minppd. The
contribution of the ideas from this work can be recognized
in the table.

Figure 10: Optional solutions to patrol an open polyline
track d = 11, t = 5. In light grey – dual robot configu-
rations; in dark grey – triple robot configurations. Division
indicates the way the track is divided into segments.

6 Conclusion
We presented a non-uniform P model for the movement
of robots in adversarial patrolling of an open polyline. We
showed that this model is significantly better than the former
uniform model in regards to achieving maximal Minppd.
We also suggested ways to calculate the optimal p values in
order to apply the model to specific scenarios. In addition,
multi-robot cooperation schemes were presented, showing
that collaborative patrol between neighbouring robots can
yield better results than deploying them disjointly.
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