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Abstract 

Existing formalisms for default reasoning capture 
some aspects of the nonmonotonicity of human com- 
monsense reasoning. However, Perlis has shown that 
one of these formalisms, circumscription, is subject to 
certain counterintuitive limitations. Kraus and Perlis 
suggested a partial solution, but significant problems 
remain. In this paper, we observe that the unfortunate 
limitations of circumscription are even broader than 
Perlis originally pointed out. Moreover, these prob- 
lems are not confined to circumscription; they appear 
to be endemic in current nonmonotonic reasoning for- 
malisms. We develop a much more general solution 
than that of Kraus and Perlis, involving restricting 
the scope of nonmonotonic reasoning, and show that 
it remedies these problems in a variety of formalisms. 

Introduction 

The search for theories of nonmonotonic reasoning- 
theories of how to reach reasonable conclusions that 
are not &idly entailed by what is known, and hence 
are subject to retraction-has yielded many promising 
formal systems. While these formalisms provide many 
useful insights, each has some persistent problems that 
have, thus far, resisted solution. In many naturally- 
occurring cases, the straightforward encoding of a sit- 
uation either leads these commonsense-reasoning for- 
malisms to quite unintuitive conclusions or prevents 
the derivation of intuitively-obvious conclusions. 

We discuss several such significant problems, and 
show their manifestations in each of the major for- 
malisms. We argue that these problems are actually 
aspects of a single, more general, problem, having more 
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to do with the underlying understanding of the func- 
tion of nonmonotonic reasoning than with the particu- 
lar details of existing frameworks. We then show that a 
simple idea, simple in its realization, solves these prob- 
lems. This not only greatly enhances the usefulness of 
the theories, but seems to bring them into much closer 
harmony with an intuitive understanding of common- 
sense reasoning. 

“Paradoxes” of Nonmonotonic 
Reasoning 

A study of the problems with existing theories of non- 
monotonic reasoning-Default Logic [Reiter 1980b], 
Circumscription [McCarthy 1980; 19861, and Autoepis- 
temic Logic [Moore 1985]-presupposes at least some 
familiarity with those formalisms. Space limitations 
preclude reintroducing the formalisms here; the unfa- 
miliar reader is referred to [Etherington 1988] for a 
detailed introduction. Familiarity with the basics of 
nonmonotonic reasoning should suffice for most pur- 
poses in this paper. 

Different variants of these formalisms have been 
studied for many years. For most of that time it was 
believed that they (or at least some of them) cap- 
tured the essential ideas of nonmonotonic reasoning 
and that it would only be a matter of time before they 
could be adapted to practical reasoning systems. Re- 
cently, problems have been noticed that seem to shake 
these optimistic projections. Some of these-such as 
the “Yale Shooting Problem” [Hanks and McDermott 
1986]-seem more indicative of the difficulty of ade- 
quately axiomatizing even a relatively simple world; 
others seem more paradoxical, since the formalisms’ 
basic mechanisms block the conclusions they were, in- 
tuitively, designed to produce. 

We briefly recount four such “paradoxes” of non- 
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monotonic reasoning, and show how they affect the 
various formalisms. We then argue that the observed 
problems can be viewed as stemming from a com- 
mon root-a misapprehension, common to all the ap- 
proaches, of the principles underlying this type of rea- 
soning. Once identified, this deficiency is readily cor- 
rected with simple tools whose benefits, we believe, 
easily outweigh their cost. 

The Lottery Paradox 

The first problematic example is the “Lottery Para- 
dox” [Kyburg 1961; Perlis 19861. The lottery paradox 
arises in situations in which the conjunction of a set 
of assumptions, each reasonable individually, is incon- 
sistent with what is known about the world. For ex- 
ample, in the paradigmatic case, it is usually safe to 
assume that any particular ticket in a lottery will not 
win-given the overwhelming odds against it. Assum- 
ing the lottery is “fair”, however, the conjunction of 
such an assumption for each ticket with the fact that 
some ticket must win is inconsistent.’ 

To maintain consistency, some (or all) of the as- 
sumptions about tickets not winning must be fore- 
gone. Since there is no basis for determining which 
assumptions to forego, however, any is as good as any 
other, and none are unequivocally sanctioned. There 
are as many preferred models (or extensions) as there 
are tickets, each with a different ticket chosen as the 
winner. Since nonmonotonic formalisms generally li- 
cense conjectures based on what is true in all preferred 
models (extensions), nothing can be assumed about 
the individual tickets. The most that can be assumed 
is that if some particular ticket wins, it will be the only 
one. 

Counterexample Axioms 

Problems also occur when there are counterexample ax- 
ioms [Perlis 19861 that assert that there are exceptions 
to defaults. Counterexample axioms specify the ex- 
istence of individuals lacking some default property, 
without specifying their identities. For example, given 
the “birds fly” default, a counterexample axiom might 
look like 3~. Bird(x) A +‘Zies(z). Circumscription 
has trouble with such axioms because it stipulates that 
there are as few exceptions as possible, without neces- 
sarily determining which individuals are exceptional. 
Thus, any of a number of individuals might be excep- 
tional without changing the number of exceptions. For 
example, if we minimize the set of flightless birds in the 
theory (Bird(Tweety), 3x. Bird(x) A lFZies(x)}, we 
cannot conjecture that Tweety flies, since there is a 
minimal model in which Tweety is the only bird, and 
hence the flightless bird stipulated by the counterex- 
ample axiom. Even if we posit the existence of other 

’ We assume the set of tickets 
related, problems arise if not. 

is fixed and finite. Other, 

birds different from Tweety,2 circumscription has no 
way to prefer Tweety’s flying to that of any other bird. 

The obvious patch is to try to somehow distin- 
guish Tweety from the existentially-specified flight- 
less bird, for instance by naming the latter (say 
Opus), and replacing the original counterexample ax- 
iom by a Skolemized version such as: Bird(Opus) A 
lFZies(Opus). However, Flies(Tweety) still does not 
follow by circumscription unless the further axiom that 
Tweety # Op us is adopted. But this amounts to as- 
suming that Tweety is not the exceptional bird-which 
seems to obviate the circumscription. 

Default logic and autoepistemic logic are less suscep- 
tible to counterexample axioms, since their conclusions 
can affect the ontology, but they are not immune. The 
peculiar conclusions that sometimes arise, especially 
in the context of domain closure axioms3 or axioms re- 
stricting the reference class (e.g., Bird), are discussed 
in [Etherington et al. 19901. 

Everything. is Abnormal 

Yet another inappropriate result occurs when there are 
defaults describing the typical values of a variety of 
(possibly orthogonal) properties for some class. If that 
class consists of several subclasses, each but one of 
which is atypical with respect to a different property, 
then current nonmonotonic formalisms will conjecture 
that individuals known to belong to the class must be- 
long to the completely typical subclass [Poole 19891. 

For example, imagine that birds typically fly, sing, 
are drab, and build nests, except that penguins don’t 
fly, swans don’t sing, and mynahs don’t build nests. 
Now if birds must be penguins, swans, mynahs, or ca- 
naries, default reasoners of the type envisioned in the 
literature will assume that arbitrary birds are canaries, 
in order to minimize the violation of defaults! 

Even more counterintuitively, if it turns out that all 
subclasses are atypical (e.g., canaries are found to be 
abnormal by virtue of being brightly coloured), then 
nonmonotonic formalisms will suddenly no longer be 
able to make any normality conjectures: different atyp- 
icalities will hold in different minimal models (exten- 
sions); the theory entails that some abnormality holds 
in each. Thus, e.g., learning that canaries are not drab 
blocks the assumption that Tweety flies. 

Poole [1989] and others have noticed that situations 
in which everything is abnormal in some way occur fre- 
quently in practice. This suggests that the problem is 
not an isolated baroque instance where the formalisms 
do not perform well but is, rather, symptomatic of fun- 
damental difficulties. 

2 Since circumscription cannot generate new equality 
facts without resorting to variable terms [Etherington et 
al. 19851, explicit inequalities are needed to rule out models 
where only Tweety is a bird, but she goes by various aliases. 

3 A domain-closure aza’om (DCA) [Reiter 1980a] is a 
formula of the form Vx. x = tl V . . . V I: = t,, for some set 
of ground terms, tl, . . . . t,. 
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There’s Nobody Here But Us Chickens4 

Another counterintuitive aspect of some nonmonotonic 
formalisms is that, in their efforts to maximize typical- 
ity, they conjecture that exceptional classes are empty. 
Since belonging to an exceptional class entails violating 
a default, they naturally infer that exceptional classes 
have as few members as possible. This is both rea- 
sonable and nonsensical: reasonable because default 
reasoning does seem to involve assuming things are as 
normal as possible; nonsensical because the assump- 
tion that some object of interest is typical should not 
necessarily rest on the absence of atypicality elsewhere 
in the world. 

Circumscription is particularly susceptible, explic- 
itly stating that there is no less exceptional world than 
this; its semantics explicitly prefers those models where 
all exceptions are forced. For example, if we are told 
that penguins are flightless birds, that birds normally 
fly, and that Tweety is a bird: 

Qx. Penguin(x) > Bird(x) A iFlies 
Qx. Bird(x) A TAbnormal > Flies(x) 

Bird(T’weety) 

and minimize the set of abnormal individuals, we con- 
elude that Tweety flies, and hence is not a penguin- 
but also that there are no penguins! Conversely, if 
the objection to this conclusion is made explicit, by 
asserting 3x. Penguin(x), the enriched theory implies 
the counterexample axiom, 3x. Bird(x) A lFlies(x), 
and FZies(Tweety) is no longer conjectured. 

The obvious answer, including Penguin in the set of 
fixed predicates, prevents the conclusion that there are 
no penguins, at the expense of the ability to conclude 
that Tweety flies. With Penguin fixed, the strongest 
conjecture that can be made about Tweety is that she 
flies unless she is a penguin, which seems unsatisfac- 
tory. 

The problem is more subtle in default logic, since the 
effects of default reasoning are conditioned by the prov- 
ability of the prerequisites of defaults, and the form 
of the default plays a greater role. For example, the 

Bird(x) : Flies(x) 
default: 

Flies(x) 
will sanction the conjec- 

ture that none of the known birds are penguins, but 
not that there are no penguins at all. The former seems 
more innocuous, although perhaps less so as the num- 
ber of known birds becomes very large. If all birds 
are known, the conclusion that there are no penguins 
follows. Other popular default representations (e.g., 
“abnormality” theories) can exaggerate the problem. 
This is discussed in detail in [Etherington et al. 19901, 
where similar problems with autoepistemic logic are 
also outlined. 

4 Or whatever class of birds is quintessentially 

A Common Thread 
Each of the above difficulties with existing theories of 
nonmonotonic reasoning can be attributed to a sin- 
gle cause-overzealousness. In the attempt to capture 
default reasoning, a subtle twist has been introduced. 
The commonsense notion that such reasoning is es- 
sentially the elimination of unforced abnormalities has 
become the notion of the introduction of forced nor- 
malities. 

Assumptions are necessary in everyday reasoning be- 
cause what follows from what we know about the world 
leaves too many questions undecided. Paradoxically, 
the mechanisms developed to redress this shortcoming 
leave too few questions undecided. Using such tools to 
decide whether Tweety flies is akin to cracking walnuts 
with a cannon-not only are there likely to be unde- 
sired side-effects, but the meat of the matter may be 
much harder to find among the irrelevant fragments. 

We frequently know that there are exceptional indi- 
viduals without knowing who they are. If defaults are 
applied injudiciously, paradoxes are bound to arise- 
yet paradoxes rarely arise in people’s default reasoning. 
It seems clear that defaults are usually not broadly ap- 
plied. 

The directed nature of reasoning seems to have been 
ignored. We contend that the intention of default rea- 
soning is generally not to determine the properties of 
every individual in the domain, but rather those of 
some particular individual(s) of interest. Incorporat- 
ing uncertain beliefs into a belief system when those 
beliefs are not of direct interest is likely to be coun- 
terproductive, simply increasing the probability tha.t 
some beliefs will have to be retracted. 

Reconsider the paradoxes discussed above. In each 
case, problems arise because something atypical must 
exist and default reasoning might encompass it. In 
the case of the lottery paradox, by considering the fate 
of every ticket, we face the problem that some ticket 
must win-giving rise to numerous “preferred” mod- 
els. If we could reason about only the small set of 
tickets we might consider buying, there would be no 
problem with assuming that none of them would win, 
and we would find ourselves safely past the lottery ven- 
dor. Similarly, faced with a counterexample axiom, so 
long as there was no expectation that the posited coun- 
terexample was among the individuals of interest, one 
could make assumptions about the interesting cases 
without wrestling with the identity of the counterex- 
ample. Analogously, when everything is abnormal in 
some aspect or other, it should be possible to reason 
about a few aspects of interest, and ignore all the oth- 
ers. Finally, when the scope of interest does not cover 
whole domains, conjectures to the effect that atypical 
classes are empty would not arise. 

The risk associated with making any particular con- 
jecture on the basis that it is supported by all exten- 
sions of a scoped theory is generally higher than the 

prototypical. correspond risk for standard default reasoning. How- 
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ever, provided the scope of interest is sufficiently nar- 
row vis B vis the antecedent class(es) for the defaults, 
the risk does not seem disproportionate to that of doing 
default reasoning in the first place. Intuitively, since 
fewer substantive default conclusions are made, it is 
reasonable to believe that the net result is more prob- 
able. Of course, if the scope is too broad, or there is 
evidence that exceptional cases are within the scope, 
the advisability of making assumptions decreases pro- 
portionally. 

Scope in Nonmonotonic Reasoning 

At the conceptual level, then, it is clear that making 
the default reasoning processes dependent on the scope 
of interest enables intuitively-desirable conclusions in 
otherwise intransigent cases. We next show that this 
can be done easily for the existing formalisms, that 
more powerful conjectures obtain, and that appropri- 
ate notions of consistency are preserved. 

As a methodological point, we require that the scope 
of reasoning be narrow. We do not attempt to de- 
fine or enforce this, beyond noting that the scope of 
interest should not include a “significant fraction” of 
whatever reference class we are drawing default con- 
clusions about. Our approach to limiting the scope of 
reasoning ensures that-even when this requirement is 
violated-performance and consistency will be at least 
as good as that of the unscoped approaches, however. 

The technical requirements for limiting the scope of 
default reasoning are methodological rather than struc- 
tural. The contribution of this work is not sophisti- 
cated new versions of the formalisms-developing yet 
another nonmonotonic formalism is unnecessary. The 
important result is that a simple, uniform, represen- 
tational technique provides significant leverage on a 
variety of problems across a variety of formalisms. 

Scoped Circumscription 

Circumscription can accommodate scope by minimiz- 
ing only within the extent of a predicate represent- 
ing the scope of interest. Specifically, we minimize 
W[P, y] A Scope(y) rather than just W[P, y], resulting 
in the scoped circumscription schema, CIRCS,,,~,:~ 

A[P’] A [Qy.W[P’, y] Mcope’(y) --) W[p, ?/I~Scope(~)l 
+ [VY.VV[P, y] A Scope(y) -+ W[P’, ~1 A SCOP’(Y)] - 

Scoped circumscription overcomes many of the limi- 
tations of its unscoped counterpart. For example, it 
provides a solution to the counterexample problem. 
Given a nontrivial domain with Tweety in the scope 
of concern, it is possible to conclude that Tweety flies 

5 Notice that this is not a new form of circumscription. 
Rather, the circumscription is made relative to the Scope 
predicate. This approach can be used independently of 
which major variant of circumscription is chosen. 

from Bird(Tweety), despite the presence of a coun- 
terexample axiom. To see this, consider the following 
axioms, A[Scope, Bird, Flies] : 

Bird(Tweety) 

3x. Bird(x) A lFlies(x) 

Charlie # Tweety 

Scope(Tweety). 

We introduce Charlie here to ensure an ontol- 
ogy rich enough to allow the formation of various 
interpretations. In particular, we need an object 
other than Tweety that we can at least imagine to 
be a potential flightless bird, to let Tweety off the 
hook. However, Charlie’s role as “scapebird” is quite 
limited-we do not conclude lFlies(Charlie) nor even 
Bird(CharZie). It would even suffice to have simply 
3x. x # Tweety instead of Charlie # Tweety. Since, 
in general, we expect any realistic ontology to provide 
many individuals, this requirement presents no partic- 
ular hardship. 

From A and CIRCscope, with W[Bird, Flies, y] 
being -Flies(y), FZies(Tweety) follows. The nec- 
essary substitutions are x = x for Bird’(x), and 
X = Tweety for Scope’(x) and Flies’(x). We get 
Qx. Flies(x) V +Scope(x)-all non-fliers are outside 
the scope of reasoning-and so Flies(Tweety), since 
we have Scope(Tweety). 

More generally, even given some known scoped ex- 
ceptions, scoped circumscription can frequently pre- 
elude unknown exceptions 
theorem shows. 

in the scope, as the following 

Theorem 1 If A I- W(P, cq) A Scope(cq), for 
ground terms CV~ E { ~1, . . . . on}, and no consis- 
tent extension of A by ground (in)equalities entails 
3x. x # crl A . . . A x # a, A W(P,x) A Scope(x), 
then CIRCs,,,[A] t- Qx. [x # al A . . . A x # 
on A Scope(x)] 3 lW(P, x), provided all predi- 
cates are variable, and A entails a domain-closure 
axiom. 

It is easily seen that scoped circumscription 
larly effective in the other paradoxical cases. 

is 

As the example just above shows, the restrictions in 
Theorem 1 are stronger than necessary. Essentially, 
what is required is an ontology with “enough” distinct 
individuals, but in which exceptions and the scope do 
not depend on the ontology of the model. Thus, for 
example, the result cannot be generalized to cover the- 
ories such as: 

afb 
[Qx. x = aVx = b] > P(a) A Scope(a), 

where P is to be minimized since, in models with 
domain {a, b}, a must be a scoped exception, even 
though a need not be exceptional (nor scoped) in gen- 
eral. The need for “domain independence”, captured 
in the conditions imposed on equality in the theorem, 
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is a consequence of circumscription’s inability (without 
use of variable terms) to produce conjectures entailing 
new facts about the ontology [Etherington 19881. It 
may be possible to relax this requirement by allowing 
variable terms, or using “Equality Circumscription” 
[Rathmann and Winslett 19891. This remains to be 
investigated. 

Although the necessary conditions for effective 
scoped circumscription are difficult to make precise, 
the problematic cases do not seem particularly trou- 
blesome. It seems likely that a realistic theory of 
a reasonably-complex problem domain will have an 
abundance of individuals known to be distinct from 
those known to be in the scope. Similarly, predicating 
exceptionalness on what, exists or what, things are iden- 
tical seems inappropriate for commonsense theories. 

It is crucial that the theory not entail that the 
unknown exceptional individuals claimed to exist are 
also in the scope; otherwise the problem resurfaces. 
We argue that it is unreasonable for an agent to use 
a default while believing that an anonymous object 
of concern is a counterexample to that default. No- 
tice that there is no problem, however, in believing 
that there are known exceptions in the scope (e.g., 
Bird(Opus) A -Flies(Opus) A Scope(Opus)). 

Is scoped circumscription consistent, however? This 
question is important because inconsistency has 
plagued certain applications of circumscri tion [Ether- 
ington et al. 19851. Etherington [1988 P shows that 
theories without existential quantifiers have consistent 
circumscriptions, but counterexample axioms take us 
out, from under this umbrella of safety. Nevertheless, 
scoped circumscription is consistent, regardless of the 
form of the original theory, provided the scope is finite. 

Theorem 2 If A has a model in which Scope is 
finite, then CIRCscope[A] is consistent. 

We consider other cases that are “well-behaved”, 
and what can be said about them, in [Etherington e2 
al. 19901. 

Scoped Default Logic 

The greater expressive power of default logic [Ethering- 
L ton 19871 means there are many more candidate meth- 

ods for restricting the scope of reasoning in default 
logic than were available in circumscription. In [Ether- 
ington et al. 19901, we study a variety of possibilities, 
and compare their representational power. Here, we 
restrict our attention to one particular representation, 
and say the scoped representation of a normal default, 
CYX : ~x,is 

BX 
cyx * Scope(z) ’ Ox .6 The latter default 

BX 
says that individuals known 
be assumed to be p’s. 

to be CY’S in the scope can 

6 (Y and p may be 
free. 

arbitrary formulae in which 2: occurs 

The introduction of scope to default logic is sufficient 
to circumvent, the lottery paradox, as the following ex- 
ample shows. Imagine a lottery with 10,000 tickets, 
t1 , .-.,t10,000, and imagine we are considering buying 
one of the tickets, t100-4175, available at the corner 
store. This corresponds to the theory with the axioms: 

Vt. Ticket(t) E t = tl V . . . V t = tlo,ooo 

Scwe(tl00), . . . . Scope(tl75) 

3. Ticket(t) A Wins(t) 

and the default: 
Ticket(t) A Scope(t) : -Wins(t) 

-Wins(t) 
. 

This theory has a unique extension in which 
-Wins(t~00), . . . . -Wins(tl75), but the fate of the re- 
maining tickets is undecided. Conversely, the unscoped 
theory has 10,000 extensions, including 76 in which one 
of the tickets of interest wins. 

It is no accident that the desired result holds; we 
have proved that ground terms in the scope are con- 
jectured to be unexceptional whenever possible. 

Theorem 3 If D = 1 
Qx AScope : Qx 

I 
1 YX J 

and W y 3x. @x/l-\ExAScope(x), then any exten- 
sion, E, for A = (D, W) has no scoped exceptions. 
Specifically, if E I- iPa A Scope(a) then E I- Qa , 
for any ground term, (Y. m 

Analogous results hold for the other representations, 
and the results generalize to cases where there are 
known exceptions, and/or multiple defaults. 

It can be shown, in many cases, that every extension 
of the scope-limited theory is a subset, of an extension 
of the unscoped version. These results are comfort- 
ing, since they mean that narrowly-scoped reasoning 
does not lead in directions that would be rejected as 
unreasonable if the scope of reasoning were broader. 

Theorem 4 Let A = (D, W) be a normal default 
theory, and let D’ be t‘he res&lt of replacing each 
default in D with its scoped counterpart. Then 
every extension of A’ = (D’, W) is contained in 
an extension of A. 

Scoped Autoegistemic Logic 

Unscoped reasoning also presents problems in au- 
toepistemic logic which are ameliorated by restrict- 
ing the scope of reasoning. However, since a fully- 
quantificational first-order autoepistemic logic has not 
yet been formalized (but see [Konolige 1988; Levesque 
19871 for suggestions), we restrict our discussion to a 
propositional version that approximates quantification 
by grounding variables over a closed domain. 

First, consider the Lottery Paradox again. As in 
the previous section, suppose we have 10,000 lottery 
tickets, and wish to buy one among the 76 from 
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ilOO* 475. The only change required for autoepis- 
temic logic is that, instead of a default rule, we use the 
schema: 

LTicket(t) A LScope(t) A -LWins(t) --) Twins(t) 

where t ranges over the 10,000 ticket constants. In such 
a case, as with default logic, we get only one extension, 
in which we have -Wins(t) for the 76 scoped tickets 
but not for the rest. 

To see how multiple, orthogonal, properties can be 
handled in this framework, suppose there are only 
three kinds of bird, Canary, Mynah, and Penguin, and 
that canaries are typical but mynahs and penguins are 
not, since mynahs do not build nests and penguins do 
not fly, as in [Poole 19891: 

Vx. Mynah(x) > -Nests(x) 
Vx. Penguin(x) 2 -Flies(x) 

Vx. Bird(x) G Mynah(x) V Penguin(x) 

VCanary(x). 

We certainly do not want to conclude that all birds are 
canaries, although that is the result of straightforward 
application of autoepistemic logic. Specifically, from 
the above axioms and the defaults that birds typically 
fly and build nests: 

LBird(b) A ILlFlies -+ Flies(b) 

LBird(b) A -L-Nests(b) ---t Nests(b) 

(where again b ranges over the finite set of constants), 
we get that there are no mynahs or penguins-i.e., all 
birds are canaries. Scope can help if we employ the 
two scope-limited schemata: 

LBird(b) A LScope(b) A LScope(flying) 

AlL+‘Zies( b) + Flies(b) 

LBird(b) A LScope(b) A LScope(nesting) 

AlLyNests + Nests(b). 

The new constants, flying and nesting, represent par- 
ticular aspects of the descriptions of birds that might 
be of interest at a particular time (see, for example, 
[McCarthy 1986]). P rovided scope is narrow and in- 
cludes nesting and flying, there will be only one ex- 
tension, in which all scoped birds are canaries, but un- 
scoped birds are indeterminate as to species (as well as 
flying and nesting behaviours). If Scope only includes 
flying, we conclude that birds in the scope fly and 
are not penguins, but remain agnostic on their nesting 
behaviour . 

The examples suggest that scoped autoepistemic 
reasoning provides an intuitively-plausible solution to 
the paradoxes. Obviously, general results would be 
better, even if based on strong restrictions. For the 
case of strongly-grounded autoepistemic extensions 
(see [Konolige 1988]), we can provide such results. We 
begin with a sufficiency result,. 

Theorem 5 If W entails a domain closure axiom, 
W I/ 3x. @XA -\Ex~Scope(x), and D = {L@(c) A 
LScope(c)AlLlQ(c) > U(c)} is a schema over all 
the constants, c, of W, then no strongly grounded 
autoepistemic extension of W U D contains any 
scoped exceptions. 

The obvious generalizations to n-ary predicates and 
multiple scope terms follow directly. Similarly, we get 
a consistency result analogous to Theorem 4. 

Theorem 6 Suppose W entails a DCA and is 
L-free, and D consists of schemata of the form 
L@(c) A-L-G(c) > XI!(c). Let D’ be the result of 
replacing each schema in D by LQi(c)ALScope(c)A 
lL+JF(c) > e(c). Th en the L-free subtheory 
of any strongly-grounded autoepistemic extension 
of W U D’ is contained in the L-free subtheory 
of a strongly-grounded autoepistemic extension of 
WuD. 

These results are not as broad as those above for 
circumscription or default logic; however, they suggest 
the same trend, indicating that a Scope predicate can 
be useful in treating the “paradoxes” of overzealous- 
ness (forced normalities) surveyed above. 

Related Work 

Kraus and Perlis [1988] suggest restricting default rea- 
soning to “named” individuals (individuals for whom 
the reasoner has a standard name) in order to solve 
the counterexample problem in a particular variant of 
circumscription. This approach does not seem to gen- 
eralize to the other problems we addressed here, nor 
has it been worked out for the other formalisms we 
treat. Furthermore, the notion of limiting the scope of 
reasoning seems to be more flexible and intuitive than 
that of restricting reasoning to named individuals. 

Poole’s [1988] THEORIST system provides for. goal- 
directed default reasoning by searching for eqlanu- 
tions for goals. An explanation consists of a set of 
defaults which are mutually consistent with the known 
facts and jointly entail the goal. In paradoxical sit- 
uations such as those we have discussed, however, 
THEORIST can generally explain both a goal (e.g., 
lWins(ticketl)) and its negation (Wins(ticketl)), de- 
pending on which defaults it chooses to apply. Based 
on the correspondence between THEORIST'S defaults 
and those of default logic [Poole 19881, it appears that 
our notion of scope can be added directly to THEORIST, 
providing both more tightly focused reasoning and an 
alternative to paradox. Similarly, Ginsberg’s [1988] 
circumscriptive theorem prover provides facilities for 
goal-directed nonmonotonic reasoning, but the conclu- 
sions it reaches are circumscriptively sound and hence 
subject to paradox. It seems, therefore that Ginsberg’s 
system might also benefit from our approach. 
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Conclusions and Future Work 
We have pointed out common roots underlying four 
significant problems with existing approaches to non- 
monotonic reasoning. We showed that these problems 
visit all the major current approaches, and argued that 
they were real impediments to using these formalisms 
for commonsense reasoning. 

We then introduced the idea of restricting the scope 
of reasoning, providing powerful leverage on the prob- 
lems. This idea has direct application in the variants of 
circumscription, in default logic, and in autoepistemic 
logic; it is similarly effective in each. Even more satis- 
fying, we showed that what is required to achieve these 
benefits involves simple methodological changes, rather 
than development of new formalisms or new variants 
of existing formalisms. 

We outlined how restricting the scope of nonmono- 
tonic reasoning provides acceptable, commonsensical, 
solutions to the problems in question. These include 
the lottery paradox, the problem of anonymous excep- 
tions to defaults, the problems arising when almost ev- 
erything is atypical in some respect, and the tendency 
to conjecture typicality by rejecting the existence of 
atypicality. 

For the formalisms in question, we showed that the 
conclusions sanctioned by our strengthened, scope- 
limited, approach are generally in accord with (some 
subset of) the preferred models of the original the- 
ory. This is comforting, since it means that we have 
strengthened the theories, rather than simply subvert- 
ing them. We also showed that appropriate notions of 
consistency are preserved. 

Our framework not only avoids paradox, but also 
adapts naturally to goal-directed reasoning. Assump- 
tions are sanctioned only about objects of interest; 
this appears to be much more natural than current 
maximal-consistent-set approaches. This focussing of- 
fers promise for the development of practical nonmono- 
tonic reasoning systems. 

The most obvious outstanding question concerns the 
nature of the scope theory. Ideally, it should be pos- 
sible to determine scope from the current context, at- 
tention, and goals of the agent, although we have not 
yet worked on this. Among other things, we imagine 
that the individuals mentioned in a query or goal state- 
ment, or attended to as the result of recent discourse 
or experience will be scoped. We sus 
work such as [Halpern and Rabin 1987 , [Halpern and P 

ect, too, that 

McAllester 19891, [Halpern and Moses 19841, [Drapkin 
et al. 19871, and [Nutter 19831 will be relevant. In par- 
ticular the notion of an awareness set seems to have a 
similar spirit. We imagine “scope” to be slightly dif- 
ferent, however-more like “of concern” or “relevant 
to making a decision”. In this respect, it is encourag- 
ing that the approach seems robust enough to tolerate 
fairly gross determinations of scope. 

In this paper, we have skirted some of the difficult 
issues of equality and domain closure that face theories 

of nonmonotonic reasoning. Some of these are taken up 
in [Etherington et al. 19901 -in particular, we consider 
the effects of various ontological assumptions on the 
relationship between scoped and unscoped nonmouo- 
tonic reasoning. Much work, however, remains to be 
done in pursuit of a commonsense theory of ontology. 
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