
Team Member Reallocation via Tree Pruning

Noa Agmon and Gal A Kaminka and Sarit Kraus ∗
Department of Computer Science

Bar Ilan University
Ramat Gan, Israel

{segaln, galk, sarit}@cs.biu.ac.il

Abstract

This paper considers the task reallocation problem, wherek
agents are to be extracted from a coordinated group ofN
agents in order to perform a new task. The interaction be-
tween the team members and the cost associated with this
interaction are represented by a weighted graph. Consider a
group ofN robots organized in a formation, the graph is the
monitoring graph which represents the sensorial capabilities
of the robots, i.e., which robot can sense the other and at what
cost. Following this example, the team member reallocation
problem this paper deals with is the extraction ofk robots
from the group in order to acquire a new target, while mini-
mizing the cost of the interaction of the remaining group. In
general, the method proposed here shifts the utility from the
team member itself to the interaction between the members,
and calculates the reallocation according to this interaction
utility. We found that this can be done optimally by a deter-
ministic polynomial time algorithm under several constraints,
the first constraint is thatk = O(log N). We describe several
other domains in which this method is applicable.

Introduction
This article discusses a team ofN agents engaged in a co-
operative behavior (Kraus 1997). Specifically, we consider
the problem of choosingk team members in order to assign
them to a new task. We assume that all members are capa-
ble of performing the new task, and the cost of the new task
does not depend on the identity of the agents chosen to per-
form it. Therefore this paper concentrates on the problem of
choosingk agents such that the performance of the existing
task, performed by the remaining group members, will be
as efficient as possible. The measure according to which the
reallocation is done is based on the interaction between team
members. Therefore the efficiency in this context refers to
the cost of interaction, i.e., as the team spends less resources
on interaction, the execution of the task is more efficient.
The set of team members and the interaction between them
is represented by a weighted directed graph, where the ver-
tices represent the members, and the edges represent the in-

∗Gal Kaminka is also affiliated with CMU and Sarit Kraus is
also affiliated with UMIACS. This research was supported in part
by NSF grant # IIS−0222914, ISF Grant #1211/04 and by Israel’s
MoST.
Copyright c© 1980, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

teraction and the cost of the interaction between them. As
shown later in this paper, this representation yields an algo-
rithm for choosingk agents while minimizing the interaction
cost of the remaining group. The algorithm is exponential in
k, and under the common assumption thatk = O(log N),
the algorithm is polynomial inN .

For example, consider a group ofN robots organized in
a formation (Naffin & Sukhatme 2004). The graph is the
monitoring graph which represents the sensorial capabilities
of the robots, i.e., which robot can sense the other and on
what cost. The problem discussed here is, then, extracting
k robots in order to acquire a new target while minimizing
the monitoring cost of the remaining group. Another exam-
ple in which the method is applicable is the warehouse as-
sembling problem. Here, given a system ofN warehouses,
trucks should pass through all warehouses on their way to
the main warehouse for storage. The interaction graph rep-
resents the cost of transportation between every two ware-
houses, and the problem is to removek of the warehouses in
order to cut back expenses, hence the cost of the remaining
assembling tree ought to be minimal.

The general problem of choosingk out of N team mem-
bers to perform a new task such that some mutual group-
objective function is optimized is an important problem.
However, it was shown to beNP-hard as a special case
of the Set Partitioning Problem (Garey & Johnson 1979;
Shehory & Kraus 1998). Therefore investigations dealing
with related problems typically focus on theoretical approx-
imation algorithms and heuristic algorithms, e.g. (Shehory
& Kraus 1998; Sander, Peleshchuk, & Grosz 2002).

Our approach, which concentrates on the minimization of
the cost of interaction between the entities, makes it feasible
to solve the problem both optimally and efficiently. In par-
ticular, this paper makes the following four contributions.
First, we introduce a new method in which the problem of
choosingk out of N agents is modeled by a graph, and the
decision is taken while emphasizing the cost of interaction
between the agents.Second, we describe a deterministic
polynomial time algorithm for choosingk agents while min-
imizing the cost of interaction between the members of the
remaining group, assuming thatk = O(log N) and that the
group has one possible leader.Third, we later broaden the
algorithm for the case in which the group has more than one
leader. This case is significantly more complex, as it re-

quires checking possible leader replacements; yet we show
that it can still be done optimally by a polynomial time algo-
rithm. Finally, we show that the basic algorithm can be used
as a base for cases in which not all chosen agents are equally
fit, either for the mission or for the original task (remaining
group). If not all agents can be chosen for the new task,
we show that in some cases the basic algorithm can still be
used. In the case where choosing some robots may under-
mine the execution of the original task, we give an example
from the multi robot domain, for which we describe an ex-
tension of the original algorithm that takes into account the
stability of the remaining formation. This algorithm works
in polynomial time as well, again under the assumption that
k = O(log N).
Related work
The class of agreement and pattern formation problems of
multi robot systems is discussed by (Suzuki & Yamashita
1999; Balch & Arkin 1998; Naffin & Sukhatme 2004). They
describe possible creation protocols of formations and main-
tenance and control schemes of robots in a formation. In our
work, we consider the situation in which the formation al-
ready exists, and we need to extract from itk team members.
Our problem does not resemble the problem in which agents
fail to operate (Kumar & Cohen 2000), as we are able to
choose thek agents, an act that results in the maximization
of the actions of the remaining team members.

Studies that discussed the problem of choosingk out of
N agents in order to perform a new task concentrated on
maximizing the profit gained by the optimal performance
of the new task, for example (Gerkey & Matarić 2000) use
publish/subscribe messaging paradigm for suitably and ef-
ficiently assigning robots to a given task. We, on the other
hand, concentrate in maximizing the benefit (minimizing the
cost) gained by the optimal execution of the original task.

Other studies discussed allocation of agents between sev-
eral given tasks. These studies mostly provide heuristic al-
gorithms for efficient allocation of agents to tasks. (Sander,
Peleshchuk, & Grosz 2002) describe task allocation heuris-
tic algorithms for settings in which the agents and tasks are
geographically dispersed in the plane. Work by (Diaset
al. 2004; Dias & Stentz 2000) discusses task allocations
between robots using auctions. Finding the optimal assign-
ment using combinatorial auctions, where bidders can bid
on combinations of items, was proven to beNP-hard as
well (Sandholm 2002). The problem of designing and form-
ing groups of agents while maximizing some mutual objec-
tive is usually referred to as coalition formation. (Tosic &
Agha 2004) describe a distributed algorithm for generating
coalitions based on the current physical configuration of the
agents, using maximal cliques. They show that the agents
convert to the same coalitions, but their work do not refer to
any kind of group utility, as opposed to our work that max-
imizes the joint utility of the agents performing the original
task. Close to the scenario discussed in this paper is the
work by (Shehory & Kraus 1998) that suggests algorithms
for coalition formation among agents, where an agent can
be either a member of only one coalition (similar to the case
discussed here), or coalitions may overlap. (Sandholm &
Lesser 1997) also dealt with coalition formation, but of self

interested agents. Our problem can be thought of as a private
case of those studies, for example two tasks - new and old
or two coalitions. Although the problem is still hard, we are
able to provide an optimal polynomial time solution under
several constraints, the first constraint is thatk = O(log N).

Problem definition
Let G = {P1, . . . , PN} be a group ofN homogenous team
members. The interaction between team members can be
represented by a cost function. The group has one root -
a team member that acts as the leader. The set of mem-
bers and the interaction between them can be presented as
a directed graphG = (V, E), wherev ∈ V are the team
members, and the edges represent the interaction. Meaning,
(vi, vj) ∈ E if there exists an interaction betweenvi andvj

with cost(v1, v2), which is the weight of the edge(vi, vj). If
an edge betweenva andvb does not exist, i.e., there is no in-
teraction between agentsPa andPb, thencost(va, vb) = ∞.
Upon this graph anOptimal Interaction Tree(OIT) is built
by simply running Dijkstra’s shortest path algorithm be-
tween all vertices of the graph and the leader. The one main
constraint required from this graph is as follows.

Constraint A: If (v1, v2) ∈ E(OIT) and (v2, v3) ∈
E(OIT), thencost(v1, v2) + cost(v2, v3) < cost(v1, v3).

Note that the edge(v1, v3) does not necessarily exist, i.e.,
cost(v1, v3) = ∞ and in such case the constraint comes
straightforward. An additional property can be added to the
problem, given in the following definition.
Definition: In a graphG = (V, E), V = {v1, . . . , vN}, a
potential leadergroupL = {ṽ1, . . . , ṽM}, 1 ≤ M ≤ N is a
subset ofV containing possible leaders from the group. We
further denote the size of the potential leader group byM .

Having theOIT of the group,k < N vertices should be
extracted from the graph. The extraction should be done
while satisfying the following basic objectives.
1. The cost of the remainingOIT is minimal.
2. At least one of the vertices from the potential leader group

of G will remain in the graph.
It is assumed that allN team members can be extracted,

hence if dealing with acquiring a new target or performing a
new task, then it means that all are compatible for the mis-
sion. Therefore, potentially, the number of different possi-
bilities for extracting thek team members from the group is(
N
k

)
. The algorithms described later on substantially reduces

the complexity under several assumptions, the first assump-
tion is thatk = O(log N).

The first example for a problem that matches the de-
scription above comes from themulti robot task allocation
(MRTA) world. Following the taxonomy for MRTA systems
given by (Gerkey & Mataríc 2004), this paper deals with
instantaneous assignments of single-task robots performing
multi-robot tasks. Given a group ofN robots that move in a
specified formation,k of them should be extracted from the
group in order to acquire a new target. Here, the root of the
tree is the formation leader, the original graph is the monitor-
ing multigraph where each vertex represents the location of
a robot, and the edges represent the monitoring capabilities
and cost of each robot of its peers. As proposed by (Kaminka
& Glick 2005), an Optimal Monitoring Tree (OMT, which

is equivalent to ourOIT) is built upon the monitoring multi-
graph. TheOMT describes for each entity whom it should
monitor in order to minimize the cost of the sensing path
from itself to the leader. The value of monitoring multi-
graphs and specificallyOMTs, is that it is compatible with
real world scenarios, i.e., in the real world robots usually
have limited sensing capabilities and the cost of sensing
varies from one sensed object to another—depending on its
distance and angle with respect to the sensing robot. When
extracting thek robots, it is clear that the objective is to min-
imize the cost of sensing of the remaining group.
As we are not interested in the utility of the new task but only
in improving the utility of the original task by the extraction
of k members, problems concerning removal of agents while
optimizing the utility of the remaining group are considered.
An additional example is a variation of thedependency tree
(Sevcik 1989). A dependency treeG = (V,E) describes a
group ofN tasks (vertices) with prerequisite relation, i.e., an
edge(u, v) ∈ E exists ifu has to be executed beforev. The
root of the tree is, then, the task that has to be executed last.
In our case, we use a slight variation of the dependency tree.
Here, we are given one task that should be conducted last
and the interaction between all other tasks. If two tasksv1

andv2 are independent, then ifv1 is executed before or after
v2 their cost will be the same. Ifv1 andv2 are dependent,
then without loss of generality,v1 can rely on the fact thatv2

will perform a part of its task, thuscost(v1, v2) in this case
is smaller than the cost in the independent case. TheOIT
describes the optimal tree of execution of the tasks. The re-
quirement is to removek tasks from the group such that the
cost of the remaining execution tree is minimized.
Thewarehouse assemblingproblem presents an additional
example in which theOIT is applicable. In the warehouse
assembling problem we are given a set ofN warehouses lo-
cated inN distinct positions, with one main warehouse to-
wards which all trucks are heading. The vertices of the graph
represent the warehouses, and edges represent the distances
between two warehouses (note that triangle inequality does
not apply). The objective is to visit all warehouses in the
fastest way by any number of trucks. TheOIT represent
the optimal tree of paths from all warehouses to the main
warehouse. The number of truckst is, then, the number
of leaves in theOIT. The requirement is to closek ware-
houses in order to cut back expenses while not increasing
the valuet, thus remain with the lowest cost assembling
tree. The last problem is thebroadcastproblem, in which
we are given a network with one source vertex that should
constantly broadcast messages to the rest of the group. The
edges represent the cost of the link between every two ver-
tices, and theOIT is the optimal broadcast tree. Again here,
we are required to removek vertices in order to cut back
expenses, thus remain with the lowest cost broadcast tree.

Team member reallocation focused on
minimizing the cost of remainingOIT

Member reallocation with a single possible leader
In this section we describe an algorithm that finds the opti-
mal k vertices that should be extracted from the graph in a

way that minimizes the cost of the remainingOIT. The al-
gorithm described here,Tree Pruning, finds the optimalk
vertices to be extracted, assuming that the leader cannot be
changed.

Lemma 1. Consider anOIT(G), satisfying Constraint A. If
a vertexv that is not a leaf nor the leader is removed, then
the sum of weights of edges ofOIT(G \ v) will not decrease.

Proof. In a DAG, every vertex that is not a leaf is an ar-
ticulation vertex, meaning, removing it will disconnect the
graph. Letu be the vertex thatv was connected to, i.e.,
(v, u) ∈ OIT(G). Therefore all vertices connected tov
should find another node to connect to, i.e., allui ∈ V such
that (ui, v) ∈ OIT(G) should find a new vertexvj to con-
nect to, thus creating a new edge(ui, vj) ∈ OIT(G\v) such
that the cost ofOIT(G \ v) is minimized.

If vj = u then we are done, as by Constraint A
cost(ui, u) > cost(ui, v) + cost(v, u). If vj 6= u then by
the minimality ofOIT(G) it follows that if cost(ui, vj) <
cost(ui, v) then it would have chosen to point tovj in
the first place, contradicting the minimality ofOIT(G). If
by removingv vertex uj remains disconnected inG \ v,
then∀vj ∈ V , cost(uj , vj) = ∞, hencecost(uj , vj) <
cost(ui, v).

Corollary 2. In an OIT(G), satisfying Constraint A, the
benefit gained from removing a leaf is greater than the ben-
efit gained from removing one of its ancestors.

The following definitions are used later throughout the al-
gorithm description.

Definitions:

1. A palindromic compositionof a numberk is a collection
of one or more positive integers whose sum isk. The
number of palindromic compositions of a numberk is 2

k
2

(Chinn, Grimaldi, & Heubach 2003).
2. A bundleoriginated in vertexv is the subtree rooted in

vertexv. Vertexv nests a bundleof sizet if the bundle
originated in it hast vertices, includingv. See example
in Figure 1. The bundle of sizet is built bottom-up, i.e.,
from the leaves up.

3. In a directed treeG = (V, E) where all paths are directed
to the root of the tree, if(v, u) ∈ E thenu is calledv’s
pivot.

We introduce an algorithm that finds the optimalk ver-
tices to be removed from the tree. Following Corollary
2 of Lemma 1, this algorithm has to choose a subgroup
of k vertices that include either leaves or bundles of the
OIT. Each choice of vertices results in differently-structured
trees, and thus results in a different utility value. Algorithm
Tree Pruning first creates a table in which it stores the ver-
tices in levels1, . . . , k, where each leveli, 1 ≤ i ≤ k, con-
tains vertices that nest a bundle of sizei (see example in
Figure 1). For each such element it indicates the gain from
removing the bundle originating in that vertex. This gain is
simply the sum of all costs of edges in this subtree, includ-
ing the cost of the edge going from the root of the subtree
to its pivot. After the table is created, the algorithm starts
checking all palindromic compositions of the numberk. For

each compositionα1 + α2 + . . . + αt the algorithm first
checks whether it is feasible, i.e., whether there are compo-
nents of sizesα1, . . . , αk. If so - for eachαi it checks for
the element with maximal gain in levelαi of the table. If
the algorithm picks up non-disjoint bundles, then it checks
the gain of removing each element of the non-disjoint set
alone. Summing up the gains from removing the compo-
sition is compared to the current maximal gain, and the set
resulted in higher gain is saved. Finally, after all palindromic
compositions ofk are examined, then the set whose removal
results with the highest cost reduction is returned from the
algorithm.
Algorithm Teamk = Tree Pruning(G = (V, E), k)
For each leafv ∈ V , start building ak-bundle bottom-up:

1. Cbest ←∞ andTeamk ← ∅.
2. Add each subtree of size1 ≤ t ≤ k to the table in rowt and

calculate its cost.

3. Sort all elements in each row according to their cost.

4. Generate a palindromic composition of the numberk and sort
each composition from left to right in decreasing order.

5. For each possible compositionCj of k = α1 + α2 + . . . + αt

do:

(a) Check whether the composition is feasible.

(b) For eachαi in the composition,i = 1, 2, . . . , t pick highest
order unmarked element from rowti and mark it.

(c) If the elements are not disjoint, then check all possibilities:
First pick element with highestαi, next don’t pick it and pick
element with next highestαi and so on.

(d) Calculate the cost of the compositionCj . If cost(Cj) ≥
Cbest, thenCbest ← Cj and Teamk ← current composi-
tion.

6. ReturnTeamk

o
4

l

87
3

214 931210

p

o

a

e

f

g

h i

j

k

p
q

s t

u

m n

j

7

5

6

4

3

2

1

rg

f

e

tl q

r
12

15

2

14

203

20

15
30 11

a b c d h i m n
db c

Figure 1: An example for7-bundling of a tree.

Theorem 3. Algorithm Tree Pruning finds the optimalk
vertices to be removed from the group such that the cost of
the remainingOIT is minimized.

Proof. As seen in Corollary 2, the optimal benefit to the re-
maining tree is obtained by removing vertices that are not
articulation points in the graph. Therefore the examination
of all removal possibilities of leaves and bundles, as done by
the algorithm, assures that the optimal group ofk vertices
will indeed be removed.

Time Complexity: The preliminary work of building the
table will cost up toO(N) time, as each vertex is vis-
ited once. The sorting of the rows will cost additional
O(N log N) time. The number of palindromic compositions
of a numberk is 2

k
2 (Chinn, Grimaldi, & Heubach 2003).

The algorithm might check each composition (worst case)N
times, in case that the chosen elements are not disjoint. As-
suming that each approach to an element takesO(1) steps
(depends on the data structure used), each composition is
calculated in (worst case)O(N) steps.

Therefore the total time complexity of the algorithm is
N log N + N2

k
2 . Assuming thatk is in order log N ,

then the time complexity of the algorithm isO(N log N +
N
√

N) = O(N1.5).

Team member reallocation with multiple possible
leaders
Removing the leadervlead can significantly decrease the to-
tal cost of the graph in cases where the weights of edges en-
teringvlead are considerably higher than the other weights in
the graph. Therefore when examining the vertices, it can be
highly profitable to examine removal of both leaves (or bun-
dles) and the leader. The removal of the leader is possible
only in cases where the potential leader group of the forma-
tion is of size greater than one. Such cases can be considered
in all the problems mentioned earlier. In the problem involv-
ing robots, it is possible that several robots in the formation
can act as the leader. In the warehouse assembling problem,
several warehouses can be the target of the trucks and in the
broadcast problem there can be more than one main source
of broadcast information. The order of extraction is impor-
tant. If we wish, for example, to extract three vertices from
the graph, the result may vary if we pick a leaf, leader and
a leaf from the new tree, as opposed to picking, say, two
leaves and then the leader. The reason lies in the fact that
the optimal tree might have different edges and leaves when
the leader is different. Note that removal of a leaf might re-
sult in changing the leader, depending on the leader election
algorithm. However, we assume that this does not happen
here.

In the extreme case in whichM = N , the number of
different possibilities for choosingk vertices - combination
of leaves and leaders, isO(2k). See Figure 2 for an example.

In the first level,l = 1, we can either pickk vertices
using algorithmTree Pruning (meaning, we do not change
the leader), or change the leader first, second and so on until
picking it as thek’th vertex. Each such option but the former
branches out similarly in the next level (l = 2) where the
k decreases by one. IfM ≥ k − 1 then the formal time
complexity analysis is as follows.

Assume that a leader is chosen in a round wheret ver-
tices are remained to be chosen,1 ≤ t ≤ k. It is pos-
sible to pickp vertices before the leader is replaced andq
afterwards,0 ≤ p, q ≤ t − 1 andp + q = t − 1. There-
fore there aret different choices of the order in which the
leader is extracted, plus the one where the leader is not re-
placed. When a leader is replaced, the calculation of the
p vertices chosen prior to it is simply obtained by running
Tree Pruning for p. The remainingq launch an additional

01 = 2
12 = 2
24 = 2
38 = 2

1

lead 1

lead 1

lead

416 = 2

38 = 2

24 = 2

12 = 2

01 = 2

lead 1

3

5

4

p

q
lead

1

without extracting leader
only option

5

5-bundle + new leader

32

4 2

recalculations
leader

number of
to

number of calls

Tree_Pruning q

1

2

3

4

5

p

1
lead

4
lead

lead
lead

12

lead

1
lead

1

2

lead
2

lead
3

1
lead

1

2

lead
2

lead
3

1

2
lead

3

lead
4

1

3
lead

3

lead

2

1
lead

lead

1

1

lead
2 1

lead

1

lead 1 lead 1 lead
1

lead

1

lead
2 1

2

1

lead
2 1

lead

1

lead

Figure 2: An example for the search tree of all possibilities of
extractingk = 5 vertices from the graph where the leader can be
elected as well in each step.

level where, again, it branches intoq +1 new options. In or-
der to calculate the complexity of finding the best allocation,
we need to calculate the number of times eachp appears (the
q is calculated in the next level). As demonstrated in the
table below, each numberi = 1, . . . , k appears asp, i.e.,
above the leader line,2k−i times. UsingTree Pruning, the
complexity of each extraction of sizei is N log N + N2

i
2 ,

therefore the total complexity is
∑k

i=1 2k−i · (N log N +
2

i
2) = O(2kN log N)+N

∑k
i=1 2k− i

2 = O(2kN log N)+
O(2kN) = O(2kN log N). If k = O(log N), then the
complexity of choosing the members isO(N2 log N).

To this complexity we need to add the cost of recalcu-
lating the graph after a leader is extracted. As shown in
(Cormen, Leiserson, & Rivest 1990), the complexity of cal-
culating theOIT of a graph of sizeÑ given the identity of
the leader vertex is simply running Dijkstra’s shortest paths
algorithm that takesO(Ñ3). If there areM̃ potential lead-
ers, then the complexity isO(Ñ3M̃). Hence here the time
complexity can be bounded from above by the total number
of qs, timesO(N3M). The total number ofqs, as demon-
strated in Figure 2, is

∑k−1
i=1 2(k−1)−i, therefore the total

time complexity isN3M
∑k−1

i=1 2(k−1)−i = O(N3M2k).
Again, in our casek = O(log N), hence the final complex-
ity of the algorithm isO(N4M).
An algorithm variation, in which not all vertices
can be extracted
In some cases, either some team members are required ro re-
main in the group and cannot be extracted from it. For exam-
ple, in a formation of robots in whichk robots are required
to acquire a new target, it is possible that not all robots are
compatible for that mission, hence only the ones who are
compatible can be extracted from the group. Converting it to
our graph problem, if it is required to extract nodes (proces-
sors/robots/agents) with specific capabilities such that only
a subgroupG1 ⊆ G satisfy those demands and|G1| ≥ k,
then a small variation of the basic algorithm can be used in

some cases. First, if|G1| is exactlyk, then there is no option
but that all vertices inG1 will be extracted.

Definition: In anOIT graphG, a vertexv ∈ V (G) is called
a bundle blockerif it cannot be extracted from the graph,
hence the bundle stops spreading up above it.

In the case discussed here, the bundle blockers are all ver-
ticesui such thatui /∈ G1. If the bundle blockers lie in accu-
mulating levels of depthk or more, then a simple variation
of Tree Pruning can be used in order to find the optimalk
vertices to be extracted. In this variation ofTree Pruning,
the algorithm should be ran on theOIT graphG, but should
stop at bundle blockers or on depthk, whichever comes first.

Domain specific Team member reallocation:
example on robot formation

In this section we show that the basicTree Pruning algo-
rithm can be used as a base for team member reallocation
problems involving other considerations. We illustrate this
proposition on the example from the robotic world, in which
theOIT represents the optimal sensorial and monitoring ca-
pabilities of the robots towards the leader. We assume that
the robots leaving the formation move in a straight line to-
wards the new target. Although this assumption is not neces-
sarily required, it allows us to nicely illustrate the idea of ad-
ditional considerations incorporated in the algorithm. In this
variation of the algorithm we wish to extract robots from the
group while minimizing events that might undermine for-
mation stability in the following two ways. First, we want to
cause minimal changes to the currentOIT. For that it is re-
quired that only leaves or bundles will be removed, and the
leader will remain intact. Second, we wish to minimize col-
lisions (actual robot intersections) between the robots leav-
ing for the new target and the ones remaining in the forma-
tion. Moreover, we want to minimize the incidents of robots
leaving the formation while, at some point, crossing anOIT
edge, thus hiding the pivot of some robot remaining in the
formation and potentially causing it to divert from the group
formation.

Algorithm Stable Pruning works as follows. First,
assuming that the robots are homogeneous, it is simple
to calculate the expected intersections between paths of
robots leaving the formation and the remainingOIT vertices
(robots) and edges. For each robotri (vertexvi) the algo-
rithm checks against all other vertices but the leader whether,
if ri leaves towards the goal pointpG, its path hides the out-
going edge from the vertexvj . If so, it addstj to the entry
of vi in a prespecified tableTable with the markE (see for
example Figure 3). If the robots themselves intersect, then
vj is added toTable with the markI. After creating this ta-
ble, Tree Pruning is ran on the graph where three features
are examined in each step:I intersections,E intersections
which are extracted fromTable, and the remainingOMT
cost (in this order).
Algorithm Teamk = Stable Pruning(G = (V,E), k, tG)

1. For each vertexvi ∈ V such thatvi is not the leader, do:

(a) Go over all vertices of the graph except for vertices in the
bundle originated invi.

(b) If the outgoing edge of vertexvj intersects the path ofvi on
its course towardstG, then addvj to Table(vi, E).

5vv4

3v 2

direction of movement

Table:
I intersectionE intersection

v O

v4

O

5v

v4

3v
2v

G
t

1v

6v

v4 5v 6v O

O

O

O

3vO

Figure 3: An example for path/edge intersection.

(c) If vi on its course towardstG intersectsvj , then add vj to
Table(vi, I).

2. Run procedureTree Pruning(G, k) with the following modifi-
cations.
• SetEbest ←∞, Ibest ←∞ andTeamk ← ∅.
• Check the number ofE andI intersections between members

of the current chosen elements and the remaining ones and
store them inEcur andIcur, respectively.

• If Icur < Ibest, then Ibest ← Icur and
Teamk ← current composition.

• If Icur = Ibest and ifEcur < Ebest then Ibest ← Icur

andTeamk ← current composition.
• If Icur = Ibest andEcur = Ebest, then check the difference

between the cost of the composition and save the best of two
choices, as done inTree Pruning .

3. ReturnTeamk.

Algorithm Stable Pruning is guaranteed to find thek
robots that will minimize the potential disturbance to the for-
mation satisfying the criterions we defined. The time com-
plexity of the algorithm is composed of the two steps. In
stage1, a simple brute force algorithm that finds the inter-
sections will takeO(N2) steps by simply comparing each
pair of robots. Stage2 is similar to theTree Pruning al-
gorithm with an addition of maximumO(k) comparisons at
each step, hence the complexity isO(N1.5 log N) (assum-
ing thatk = O(log N)), and altogether the complexity is
O(N2).

Conclusions and future work
We have presented algorithms for optimal team-member re-
allocation based on optimal interaction graphs. We have
shown that these graphs are applicable in several differ-
ent domains. We further expanded the algorithms to cases
where the graphs can have more than one leader, and (under
some conditions) cases with heterogenous entities. Finally,
we have shown that the team-member reallocation algorithm
can be be used as a base for reallocation problems that can
consider, in addition to the optimality of the cost of remain-
ing group, also other domain-specific constraints. Thus, our
main contributions are the introduction of a new method for
modeling and solving the problem of choosingk out of N
agents by a polynomial time algorithm on graphs, assuming
that k = O(log N) and that constraint A applies, and that
the group has either one or more than one possible leaders.

There are several areas we plan to pursue in future work.

• Examine empirically the case in which weighted compo-
nents of the utility function according to which the agents
are chosen are considered.

• Examine the case of greaterk, for examplek = N
2 , and

see whether a polynomial time algorithm exists for find-
ing an optimal allocation.

• Consider the case in which Assumption A is removed,
where probably a polynomial time algorithm does not ex-
ist, hence approximations should be given and tested em-
pirically.

• Thoroughly investigate domain-specific problems based
on this algorithm, and further adapt it to those scenarios.
For example, in the robotic problem we can try making
the algorithm robust to sensory failures.

References
Balch, T., and Arkin, R. 1998. Behavior based formation control
for mutlirobot systems.IEEE Trans. on Robotics and Automation
14(12):926 – 939.
Chinn, P.; Grimaldi, R.; and Heubach, S. 2003. The frequency of
summands of a particular size in palindromic compositions.Ars
Comb.69.
Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1990.Intro-
duction to Algorithms. MIT Press.
Dias, M. B., and Stentz, A. 2000. A free market architecture
for distributed control of a multirobot system. InProc. IAS-6,
115–122.
Dias, M. B.; Zlot, R.; Zinck, M.; Gonzalez, J. P.; and Stentz, A.
2004. A versatile implementation of the traderbots approach for
multirobot coordination. InProc. IAS-8.
Garey, M. R., and Johnson, D. S. 1979.Computers and In-
tractability; A Guide to the Theory of NP-Completeness. W. H.
Freeman & Co.
Gerkey, B. P., and Matarić, M. J. 2000. Murdoch: pub-
lish/subscribe task allocation for heterogeneous agents. In
AGENTS, 203–204.
Gerkey, B. P., and Matarić, M. J. 2004. A formal analysis and tax-
onomy of task allocation in multi-robot systems.The Int. Journal
of Robotics Research23:939–954.
Kaminka, G. A., and Glick, R. 2005. Reasoning about sensors in
selective montoring.Bar Ilan University Tech. Report.
Kraus, S. 1997. Negotiation and cooperation in multi-agent envi-
ronments.Artif. Intell. 94(1-2):79–97.
Kumar, S., and Cohen, P. R. 2000. Towards a fault-tolerant multi-
agent system architecture. InAGENTS ’00, 459–466.
Naffin, D. J., and Sukhatme, G. S. 2004. Negotiated formations.
In Int. Conf. on Intelligent Autonomous Systems, 181–190.
Sander, P. V.; Peleshchuk, D.; and Grosz, B. J. 2002. A scal-
able, distributed algorithm for efficient task allocation. InAA-
MAS, 1191–1198.
Sandholm, T., and Lesser, V. 1997. Coalitions among computa-
tionally bounded agents.Artif. Intell. 94(1):99–137.
Sandholm, T. 2002. Algorithm for optimal winner determination
in combinatorial auctions.Artif. Intell. 135(1-2):1–54.
Sevcik, K. C. 1989. Characterizations of parallelism in appli-
cations and their use in scheduling. InProc. of ACM Conf. on
Measurement and Modeling of Comp. Sys., 171–180.
Shehory, O., and Kraus, S. 1998. Methods for task allocation via
agent coalition formation.Artif. Intell. 101(1-2):165–200.
Suzuki, I., and Yamashita, M. 1999. Distributed anonymous mo-
bile robots: Formation of geometric patterns.SIAM J. Comput.
28(4):1347–1363.
Tosic, P., and Agha, G. 2004. Maximal clique based distributed
group formation for autonomous agent coalitions. InCoalitions
and Teams Workshop, AAMAS.

