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ABSTRACT
Boolean games are a natural, compact, and expressive class of logic-
based games, in which each player exercises unique control over
some set of Boolean variables, and has some logical goal formula
that it desires to be achieved. A player’s strategy set is the set of all
possible valuations that may be made to its variables. A player’s
goal formula may contain variables controlled by other agents, and
in this case, it must reason strategically about how best to assign
values to its variables. In the present paper, we consider the pos-
sibility of overlaying Boolean games with taxation schemes. A
taxation scheme imposes a cost on every possible assignment an
agent can make. By designing a taxation scheme appropriately, it
is possible to perturb the preferences of the agents within a society,
so that agents are rationally incentivised to choose some socially
desirable equilibrium that would not otherwise be chosen, or in-
centivised to rule out some socially undesirable equilibria. After
formally presenting the model, we explore some issues surround-
ing it (e.g., the complexity of finding a taxation scheme that imple-
ments some socially desirable outcome), and then discuss possible
desirable properties of taxation schemes.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
I.2.4 [Knowledge representation formalisms and methods]
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Theory

Keywords
boolean games, incentives, taxation

1. INTRODUCTION
The computational aspects of game-theoretic mechanism design
have received a great deal of attention over the past decade [11].
Particular attention has been paid to the Vickrey-Clarke-Groves
(VCG) mechanism, which can be used to incentivise rational agents
to truthfully report their private preferences in settings such as com-
binatorial auctions [5, 10]. The key point of interest of the VCG
mechanism is that, because it incentivises agents to report their
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preferences truthfully, it allows us to compute outcomes that max-
imise social welfare, which would not in general be possible if
agents could benefit from misrepresenting their preferences.

Ultimately, the VCG mechanism is a taxation scheme. Taxation
schemes are used in human societies for several purposes. First,
they are used to incentivise certain socially desirable behaviours,
in much the same way that the VCG mechanism is used – for ex-
ample, a government may tax car driving to encourage the use of
environmentally friendly public transport. Second, they are used to
raise revenue, typically with the intention that this revenue is then
used to fund socially desirable projects (education, healthcare, etc).
And finally, of course, they may be used for a combination of these
purposes. Our aim in the present paper is to study the design of tax-
ation schemes for incentivising behaviours in multi-agent systems.
It is important to note that our focus in the present paper is not on
the design of incentive compatible (truth-telling) mechanisms, and
in this key respect, our work differs from the large body of work
on computational and algorithmic mechanism design [11, 5, 10].
Of course, this is not to say that incentive compatibility is not im-
portant, or in any way to diminish the significance and value of the
VCG mechanism; we are simply focussing on scenarios in which
the preferences and actions of agents are known.

The setting for our study is the domain of Boolean games [6, 2,
4]. Boolean games are a natural, expressive, and compact class of
games, based on propositional logic. Boolean games were intro-
duced in [6], and their computational and logical properties have
subsequently been studied by several researchers [2, 4]. In such
a game, each agent i is assumed to have a goal, represented as a
propositional formula γi over some set of variables Φ. In addition,
each agent i is allocated some subset Φi of the variables Φ, with
the idea being that the variables Φi are under the unique control of
agent i. The choices, or strategies, available to i correspond to all
the possible allocations of truth or falsity to the variables Φi. An
agent will try to choose an allocation so as to satisfy its goal γi.
Strategic concerns arise because whether i’s goal is in fact satisfied
will depend on the choices made by others.

In the present paper, we introduce the idea of imposing taxa-
tion schemes on Boolean games, so that various possible choices
are taxed in different ways. Taxation schemes are designed by an
agent external to the system known as the principal. The ability to
impose taxation schemes enables the principal to perturb the pref-
erences of the players in certain ways: all other things being equal,
an agent will prefer to make a choice that minimises taxes. As dis-
cussed above, the principal is assumed to be introducing a taxation
scheme so as to incentivise agents to achieve a certain socially de-
sirable outcome; or to incentivise agents to rule out certain socially
undesirable outcomes. We represent the outcome that the principal
desires to achieve via a propositional formula Υ: thus, the idea is



that the principal will impose a taxation scheme so that agents are
rationally incentivised to make individual choices so as to collec-
tively satisfy Υ. However, a fundamentally important assumption
in what follows is that taxes do not give us absolute control over
an agent’s preferences. To assume that we were able to completely
control an agent’s preferences by imposing taxes would be unreal-
istic: to pick a perhaps rather morbid and slightly tongue in cheek
example, no matter how much you propose to tax me, I would still
choose to achieve my goal of being alive rather than otherwise. If
we did have complete control over agents’ preferences through tax-
ation, then the problems we consider in this paper would indeed be
rather trivial. In our setting specifically, it is assumed that no matter
what the level of taxes, an agent would still prefer to have its goal
achieved than not. This imposes a fundamental limit on the extent
to which an agent’s preferences can be perturbed by taxation.

We begin in the following section by introducing the model of
Boolean games that we use throughout the remainder of the pa-
per. We then introduce taxation schemes, and the incentive design
problem. After investigating some properties of the incentive de-
sign problem, we go on to consider socially equitable properties of
taxation schemes (such as minimising the total tax burden, etc). We
conclude with a discussion and future work.

2. BOOLEAN GAMES
In this section, we introduce the model of Boolean games that we
work with throughout the remainder of this paper. This model
slightly generalises previous models of Boolean games [6, 2, 4],
in that it explicitly represents the costs of each action. In what fol-
lows, we let R≥ denote the set of real numbers greater than or equal
to 0.

Propositional Logic: Throughout the paper, we make use of clas-
sical propositional logic, and for completeness, we thus begin by
recalling the technical framework of this logic. Let B = {>,⊥}
be the set of Boolean truth values, with “>” being truth and “⊥”
being falsity. We will abuse notation a little by using > and ⊥ to
denote both the syntactic constants for truth and falsity respectively,
as well as their semantic counterparts (i.e., the respective truth val-
ues). Let Φ = {p, q, . . .} be a (finite, fixed, non-empty) vocabulary
of Boolean variables, and let L denote the set of (well-formed) for-
mulae of propositional logic over Φ, constructed using the conven-
tional Boolean operators (“∧”, “∨”, “→”, “↔”, and “¬”), as well
as the truth constants “>” and “⊥”. We assume a conventional
semantic consequence relation “|=” for propositional logic. A val-
uation is a total function v : Φ → B, assigning truth or falsity to
every Boolean variable. We write v |= ϕ to mean that ϕ is true un-
der, or satisfied by, valuation v, where the satisfaction relation “|=”
is defined in the standard way. Let V denote the set of all valuations
over Φ.

We write |= ϕ to mean that ϕ is a tautology, i.e., is satisfied
by every valuation. We denote the fact that formulae ϕ,ψ ∈ L are
logically equivalent by ϕ⇔ ψ; thus ϕ⇔ ψ means that |= ϕ↔ ψ.
Note that “⇔” is a meta-language relation symbol, which should
not be confused with the object-language bi-conditional operator
“↔”.

Agents, Goals, and Controlled Variables: The games we con-
sider are populated by a set Ag = {1, . . . , n} of agents – the players
of the game. Each agent is assumed to have a goal, characterised by
an L-formula: we write γi to denote the goal of agent i ∈ Ag. Each
agent i ∈ Ag controls a (possibly empty) subset Φi of the overall
set of Boolean variables (cf. [14]). By “control”, we mean that i
has the unique ability within the game to set the value (either > or
⊥) of each variable p ∈ Φi. We will require that Φ1, . . . ,Φn forms

a partition of Φ, i.e., every variable is controlled by some agent and
no variable is controlled by more than one agent (Φi ∩ Φj = ∅ for
i 6= j). Where i ∈ Ag, a choice for agent i is defined by a function
vi : Φi → B, i.e., an allocation of truth or falsity to all the variables
under i’s control. Let Vi denote the set of choices for agent i. The
intuitive interpretation we give to Vi is that it defines the actions or
strategies available to agent i; the choices available to the agent.

An outcome, (v1, . . . , vn) ∈ V1 × · · · × Vn, is a collection of
choices, one for each agent. Clearly, every outcome uniquely de-
fines a valuation, and we will often think of outcomes as valuations,
for example writing (v1, . . . , vn) |= ϕ to mean that the valuation
defined by the outcome (v1, . . . , vn) satisfies formula ϕ ∈ L. Let
ϕ(v1,...,vn) denote the formula that uniquely characterises the out-
come (v1, . . . , vn):

ϕ(v1,...,vn) =

 ∧
p∈Φ

(v1,...,vn)|=p

p

 ∧
 ∧

q∈Φ
(v1,...,vn)6|=q

¬q


Let succ(v1, . . . , vn) denote the set of agents who have their goal

achieved by outcome (v1, . . . , vn), i.e.,:

succ(v1, . . . , vn) = {i ∈ Ag | (v1, . . . , vn) |= γi}.

Costs: Intuitively, the actions available to agents correspond to set-
ting variables true or false. We assume that these actions have costs,
defined by a cost function c : Φ × B → R≥, so that c(p, b) is the
marginal cost of assigning variable p ∈ Φ the value b ∈ B. We let
c0 denote the cost function that assigns zero cost to all assignments.

This notion of a cost function represents an obvious generalisa-
tion of previous presentations of Boolean games: costs were not
considered in the original presentation of Boolean games [6, 2],
and while costs were introduced in [4], it was assumed that only
the action of setting a variable to > would incur a cost. (In fact, as
we shall see later, costs are, in a technical sense, not required in our
framework; we can capture the key strategic issues at stake without
them. However, it is natural from the point of view of modelling
to have costs for actions, and to think about costs as being imposed
from within the game, and taxes, (defined below), as being imposed
from without.)

Boolean Games: Collecting these components together, a Boolean
game, G, is a (2n + 3)-tuple:

G = 〈Ag,Φ, c, γ1, . . . , γn,Φ1, . . . ,Φn〉,

where Ag = {1, . . . , n} is a set of agents, Φ = {p, q, . . .} is a
finite set of Boolean variables, c : Φ× B→ R≥ is a cost function,
γi ∈ L is the goal of agent i ∈ Ag, and Φ1, . . . ,Φn is a partition
of Φ over Ag, with the intended interpretation that Φi is the set of
Boolean variables under the unique control of i ∈ Ag. We will say
a game is cost free if it has cost function c0.

When playing a Boolean game, the primary aim of an agent i will
be to choose an assignment of values for the variables Φi under its
control so as to satisfy its goal γi. The difficulty is that γi may
contain variables controlled by other agents j 6= i, who will also be
trying to choose values for their variables Φj so as to get their goals
satisfied; and their goals in turn may be dependent on the variables
Φi. Note that if an agent has multiple ways of gettings its goal
achieved, then it will prefer to choose one that minimises costs; and
if an agent cannot get its goal achieved, then it simply chooses to
minimise costs. These considerations are what give Boolean games
their strategic character. For the moment, we will postpone the
formal definition of the utility functions and preferences associated
with our games.



3. DESIGNING INCENTIVES
We can now describe in more detail the overall problem that we
consider in the remainder of the paper. Imagine a society populated
by agents Ag, with each agent i ∈ Ag having a goal γi ∈ L and
actions corresponding to valuations to Φi. We assume an external
principal has some goal Υ ∈ L that it wants the society to achieve,
and to this end, wants to incentivise the agents Ag to act collectively
so as to bring about Υ. Incentives in our model are provided by
taxation schemes.

Taxation Schemes: A taxation scheme defines additional (imposed)
costs on actions, over and above those given by the marginal cost
function c. While the cost function c is fixed and immutable for
any given Boolean game, the principal is assumed to be at liberty
to define a taxation scheme as they see fit. Agents will seek to min-
imise their overall costs, and so by assigning different levels of tax-
ation to different actions, the principal can incentivise agents away
from performing some actions and towards performing others; if
the principal designs the taxation scheme correctly, then agents are
incentivised to choose valuations (v1, . . . , vn) so as to satisfy Υ
(i.e., so that (v1, . . . , vn) |= Υ).

How exactly should we model taxation schemes? One very gen-
eral approach would be to levy taxes on the basis of outcomes. We
could model such taxes by a function τ : Ag×V1×· · ·×Vn → R≥,
with the intended interpretation that τ(i, v1, . . . , vn) is the amount
of tax that would be imposed on agent i if the outcome (v1, . . . , vn)
was selected. However, for the purposes of the present paper, we
choose a simpler, additive model of taxes, the idea being that taxes
are levied on individual actions, and the total tax imposed on an
agent i is the sum of the taxes on individual choices (assignments
of truth or falsity to a variable) made in the outcome vi chosen by i.

Formally, we therefore model a taxation scheme as a function
τ : Φ×B→ R≥, where the intended interpretation is that τ(p, b) is
the tax that would be imposed on the agent controlling p if the value
b was assigned to the Boolean variable p. The total tax paid by an
agent i in choosing a valuation vi ∈ Vi will be

∑
p∈Φi

τ(p, vi(p)).
We let τ0 denote the taxation scheme that applies no taxes to

any choice, i.e., ∀x ∈ Φ and b ∈ B, τ0(x, b) = 0. Let T (G) de-
note the set of taxation schemes over G. We make one technical
assumption in what follows, relating to the space requirements for
taxation schemes in T (G). Unless otherwise stated explicitly, we
will assume that we are restricting our attention to taxation schemes
whose values can be represented with a space requirement that is
bounded by a polynomial in the size of the game. This seems a
reasonable requirement: realistically, taxation schemes requiring
space exponential in the size of the game at hand could not be ma-
nipulated. It is important to note that this requirement relates to
the space requirements for taxes, and not to the size of taxes them-
selves: for a polynomial function f : N→ N, the value 2f (n) can be
represented using only a polynomial number of bits (i.e., f (n) bits).

Utilities and Preferences: One important assumption we make
is that while taxation schemes can influence the decision making
of rational agents, they cannot, ultimately, change the goals of an
agent. That is, if an agent has a chance to achieve its goal, it will
take it, no matter what the taxation incentives are to do otherwise.
To understand this point, and to see formally how incentives work,
we need to formally define the utility functions for agents, and
for this we require some further auxiliary definitions. First, with
a slight abuse of notation, we extend cost and taxation functions to
partial valuations as follows:

ci(vi) =
∑
p∈Φi

c(p, vi(p))

τi(vi) =
∑
p∈Φi

τ(p, vi(p))

Next, let ve
i denote the most expensive possible course of action for

agent i:

ve
i ∈ arg max

vi∈Vi
(ci(vi) + τi(vi)).

Let µi denote the cost to i of its most expensive course of action:

µi = ci(ve
i ) + τi(ve

i ).

Given these definitions, we define the utility to agent i of an out-
come (v1, . . . , vn), as follows:

ui(v1, . . . , vn) =

{
1 + µi − (ci(vi) + τi(vi)) if (v1, . . . , vn) |= γi

−(ci(vi) + τi(vi)) otherwise.

Thus utility for agent i will range from 1+µi (the best outcome for
i, where it gets its goal achieved by performing actions that have
no tax or other cost) down to −µi (where i does not get its goal
achieved but makes its most expensive choice). This definition has
the following properties:

• an agent prefers all outcomes that satisfy its goal over all
those that do not satisfy it;

• between two outcomes that satisfy its goal, an agent prefers
the one that minimises total expense (= marginal costs +
taxes); and

• between two valuations that do not satisfy its goal, an agent
prefers to minimise total expense.

It is important to note that while utility functions provide a conve-
nient numeric representation of preference relations, utility is not
transferable in our settings.

Solution Concepts: Given this formal definition of utility, we can
define solution concepts in the standard game-theoretic way [12].
In this paper, we focus on (pure) Nash equilibrium. (Of course,
other solution concepts, such as dominant strategy equilibria, might
also be considered, but for simplicity, in this paper we focus on
Nash equilibria.) We say an outcome (v1, . . . , vi, . . . , vn) is a Nash
equilibrium if for all agents i ∈ Ag, there is no v′i ∈ Vi such
that ui(v1, . . . , v′i , . . . , vn) > ui(v1, . . . , vi, . . . , vn). Let NE(G, τ)
denote the set of all Nash equilibria of the game G with taxation
scheme τ .

Before proceeding, let us consider some properties of Nash equi-
librium outcomes. First, observe that an unsuccessful agent will
choose a least cost course of action in any Nash equilibrium.

PROPOSITION 1. Suppose (v∗1, . . . , v
∗
i , . . . , v

∗
n ) ∈ NE(G, τ) is

such that i 6∈ succ(v∗1, . . . , v
∗
i , . . . , v

∗
n ). Then

v∗i ∈ arg min
vi∈Vi

ci(vi) + τi(vi)

PROOF. Agent i cannot make a choice v′i that (v∗1, . . . , v
′
i , . . . , v

∗
n ) |=

γi, otherwise ui(v∗1, . . . , v
′
i , . . . , v

∗
n ) > ui(v∗1, . . . , v

∗
i , . . . , v

∗
n ), in

which case (v∗1, . . . , v
∗
i , . . . , v

∗
n ) 6∈ NE(G, τ). So, the only way i

could profitably deviate would be by making an alternative choice
v′i that reduced costs compared to v∗i . But by definition, v∗i min-
imises i’s costs.



The following is an obvious decision problem:

NASH OUTCOME VERIFICATION:
Instance: Boolean game G, taxation scheme τ , and
outcome (v1, . . . , vn).
Question: Is (v1, . . . , vn) ∈ NE(G, τ)?

PROPOSITION 2. NASH OUTCOME VERIFICATION is co-NP-
complete, even for two player games with τ = τ0 and where c
assigns no costs.

PROOF. Membership is immediate. For hardness, we reduce
SAT to the complement problem. Given an instance ϕ of SAT over
variables x1, . . . , xk, define a game G with Ag = {1, 2}, Φ =
{x1, . . . , xk, z}, (where z does not occur in ϕ), Φ1 = {x1, . . . , xk},
Φ2 = {z}, γ1 = ϕ, γ2 = z, let v1(y) = ⊥ for all y ∈ Φ1, and
let v2(z) = >. We claim (v1, v2) 6∈ NE(G, τ0) iff ϕ is satisfiable.
(→) Suppose (v1, v2) 6∈ NE(G, τ0). Then either agent 1 or agent
2 can benefit by deviating. Clearly agent 2 cannot benefit, since it
gets its goal achieved through v2 at no cost, which is optimal for 2.
So 1 must be able to benefit by deviating. Since it incurs no cost
through v1, the only way agent 1 could benefit would be by achiev-
ing its goal, which would imply ϕ was satisfiable. (←) Suppose ϕ
is satisfiable. Then player 1 could benefit by choosing a valuation
v′1 6= v1 satisfying ϕ. Hence (v1, v2) 6∈ NE(G, τ0).

Next, note that while being able to model costs in games explicitly
is attractive from a modelling perspective, it is, in a sense, unnec-
essary from a purely technical point of view: we can always design
a taxation scheme that simulates the costs and thus gives rise to the
same set of Nash equilibria.

PROPOSITION 3. Let G be a game with cost function c and let
τ be a taxation scheme for G. Then there exists a taxation scheme
τ ′ such that NE(G, τ) = NE(G′, τ ′) for the game G′ we obtain by
replacing c with c0 in G.

PROOF. Let τ ′(p, b) = τ(p, b) + c(p, b) for all p ∈ Φ and all
b ∈ B. Then the utility functions for (G′, τ ′) are identical to those
for (G, τ), and thus the Nash equilibria must coincide as well.

Moreover, we can show that, for the analysis of Nash equilibria,
it suffices to consider taxation schemes that only impose taxes on
making a variable true (rather than false). Call a taxation scheme τ
positive if τ(p,⊥) = 0 for all p ∈ Φ. Now consider two zero cost
games G and G′1. We call G′ a variant of G if G′ is the same as G,
except that for some p ∈ Φ all occurrences of p in the agents’ goals
γi have been replaced by ¬p (but Υ has not been changed).

PROPOSITION 4. Let G be a zero cost game and let τ be a tax-
ation scheme for that game. Then there exists a variant G′ of G and
a positive taxation scheme τ ′ such that NE(G, τ) = NE(G′, τ ′).

PROOF. We have to define G′ and τ ′ with respect to each p ∈ Φ.
For all variables p we will have τ ′(p,⊥) = 0 (as τ ′ should be
positive). So we have to define the values τ ′(p,>) and we have to
specify whether p should occur in the goal formulas in G′ as in G,
or whether p should get flipped (i.e., whether it should get rewritten
as ¬p).

1. If τ(p,>) = τ(p,⊥), then we set τ ′(p,>) = 0 and we leave
p untouched in the game.

1This restriction to games with zero cost is not required, but it does
simplify exposition; and we have just seen that for the analysis of
Nash equilibria it suffices to consider zero cost games.

2. If τ(p,>) > τ(p,⊥), then we set τ ′(p,>) = τ(p,>) −
τ(p,⊥) and we again leave p untouched in the game.

3. If τ(p,>) < τ(p,⊥), then we set τ ′(p,>) = τ(p,⊥) −
τ(p,>) and we flip p in the game.

The crucial feature of this construction is that the difference in tax
between making p true or false remains |τ(p,>)− τ(p,⊥)| in the
new game, and the new taxation scheme still “pushes in the same
direction” as before. Therefore, the utility functions for (G′, τ ′)
are identical to those for (G, τ), and thus the Nash equilibria must
coincide as well.

Incentive Design: We now come to the main problems that we
consider in the remainder of the paper. Suppose we have an agent,
which we will call the principal, who is external to a game G. The
principal is at liberty to impose taxation schemes on the game G. It
will not do this for no reason, however: it does it because it wants
to provide incentives for the agents in G to choose certain collective
outcomes. Specifically, the principal wants to incentivise the play-
ers in G to choose rationally a collective outcome that satisfies an
objective, which is represented as a propositional formula Υ over
the variables Φ of G. We refer to this general problem – trying to
find a taxation scheme that will incentivise players to choose ratio-
nally a collective outcome that satisfies a propositional formula Υ –
as the implementation problem. It inherits concepts from the theory
of Nash implementation in mechanism design [7], although our use
of Boolean games, taxation schemes, and propositional formulae to
represent objectives is quite different.

3.1 Weak Implementation
LetWI(G,Υ) denote the set of taxation schemes over G that sat-
isfy a propositional objective Υ in at least one Nash equilibrium
outcome:

WI(G,Υ) =
{τ ∈ T (G) | ∃(v1, . . . , vn) ∈ NE(G, τ) s.t. (v1, . . . , vn) |= Υ}. .

Given this definition, we can state the first basic decision prob-
lem that we consider in the remainder of the paper:

WEAK IMPLEMENTATION:
Instance: Boolean game G and objective Υ ∈ L.
Question: Is it the case thatWI(G,Υ) 6= ∅?

If the answer to the WEAK IMPLEMENTATION problem (G,Υ) is
“yes”, then we say that Υ can be weakly implemented in Nash equi-
librium (or simply: Υ can be weakly implemented in G). Let us see
an example.

EXAMPLE 1. Define a game G as follows: Ag = {1, 2}, Φ =
{p1, p2}, Φi = {pi}, γ1 = p1, γ2 = ¬p1 ∧ ¬p2, c(p1, b) = 0
for all b ∈ B, while c(p2,>) = 1 and c(p2,⊥) = 0. Define an
objective Υ = p1 ∧ p2. Now, without any taxes (i.e., with taxation
scheme τ0), there is a single Nash equilibrium, (v∗1, v

∗
2), which sat-

isfies p1 ∧ ¬p2. Agent 1 gets its goal achieved, while agent 2 does
not; and moreover (v∗1, v

∗
2) 6|= Υ. However, if we adjust τ so that

τ(p2,⊥) = 10, then we find a Nash equilibrium outcome (v′1, v
′
2)

such that (v′1, v
′
2) |= p1 ∧ p2, i.e., (v′1, v

′
2) |= Υ. Here, agent 2 is

not able to get its goal achieved, but it can, nevertheless, be incen-
tivised by taxation to make a choice that ensures the achievement
of the objective Υ.

So, what objectives Υ can be weakly implemented? At first sight, it
might appear that the satisfiability of Υ is a sufficient condition for



implementability. Consider the following naive approach for con-
structing taxation schemes with the aim of implementing satisfiable
objectives Υ:

(*) Find a valuation v such that v |= Υ (such a valu-
ation will exist since Υ is satisfiable). Then define a
taxation scheme τ such that τ(p, b) = 0 if b = v(p)
and τ(p, b) = k otherwise, where k is a suitably large
number.

Thus, the idea is simply to make all choices other than selecting an
outcome that satisfies Υ too expensive to be rational. In fact, this
approach does not work, because of an important subtlety of the
definition of utility. In designing a taxation scheme, the principal
can perturb an agent’s choices between different valuations, but it
cannot perturb them in such a way that an agent would prefer an
outcome that does not satisfy it’s goal over an outcome that does.
We have:

PROPOSITION 5. There exist instances of the WEAK IMPLE-
MENTATION problem with satisfiable objectives Υ that cannot be
weakly implemented.

PROOF. Consider the following example. Define a game G as
follows: Ag = {1}, Φ = Φ1 = {p}, γ1 = p, c(p, b) = 0 for all
b ∈ B. Let Υ = ¬p. Suppose there is a taxation scheme τ such that
∃v1 ∈ NE(G, τ) and v1 |= Υ. Clearly, v1(p) = ⊥, so v1 6|= γ1 and
thus u1(v) = −(c1(v1) + τ(v1)) = 0. But consider the valuation
v′1(p) = >, which since v′1 |= γ1 would yield u1(v′1) = 1 + µ1 −
(c1(v′1) + τ1(v′1)) = 1. Thus u1(v′1) > u1(v1); contradiction.

What about tautologous objectives, i.e., objectives Υ such that Υ⇔
>? Again, we might be tempted to assume that tautologies are triv-
ially implementable. This is not in fact the case, however, as it may
be that NE(G, τ) = ∅ for all taxation schemes τ :

PROPOSITION 6. There exist instances of the WEAK IMPLE-
MENTATION problem with tautologous objectives Υ that cannot be
implemented.

PROOF. Define a game G with Ag = {1, 2}, Φ = {p, q}, Φ1 =
{p}, Φ2 = {q}, γ1 = (p ↔ q), γ2 = ¬(p ↔ q), and c assigns
zero cost to all actions. Clearly NE(G, τ) = ∅. For example, in
the outcome (v1, v2) in which v1(p) = > and v2(q) = >, agent
1 would prefer to change its valuation to v′2(q) = >. There is, in
fact, no taxation scheme τ such that NE(G, τ) 6= ∅.

Tautologous objectives might appear to be of little interest, but we
argue that this is not the case. Suppose we have a game G such
that NE(G, τ0) = ∅. Then, in its unmodified condition, this game
is unstable: it has no equilibria. Thus, we will refer to the prob-
lem of implementing > (= checking for the existence of a taxation
scheme that would ensure at least one Nash equilibrium outcome),
as the STABILISATION problem. The following example illustrates
STABILISATION.

EXAMPLE 2. Let Ag = {1, 2, 3}, with ϕ = {p, q, r}, Φ1 =
{p}, Φ2 = {q}, Φ3 = {r}, γ1 = >, γ2 = (q ∧ ¬p) ∨ (q ↔ r),
γ3 = (r ∧ ¬p) ∨ ¬(q ↔ r), c(p,>) = 0, c(p,⊥) = 1, and all
other costs are 0. For any outcome in which p = ⊥, agent 1 would
prefer to set p = >, so no such outcome can be stable. So, consider
outcomes (v1, v2, v3) in which p = >. Here if (v1, v2, v3) |= q↔ r
then agent 3 would prefer to deviate, while if (v1, v2, v3) 6|= q↔ r
then agent 2 would prefer to deviate. Now, consider a taxation
scheme with τ(p,>) = 10 and τ(p,⊥) = 0 and all other taxes
are 0. With this scheme, the outcome in which all variables are set
to ⊥ is a Nash equilibrium. Hence this taxation scheme stabilises
the system.

Returning to the weak implementation problem, we can derive a
sufficient condition for weak implementation, as follows.

PROPOSITION 7. For all games G and objectives Υ, if the for-
mula Υ′ is satisfiable:

Υ′ = Υ ∧
∧

i∈Ag

γi

thenWI(G,Υ) 6= ∅.
PROOF. Assume Υ′ = Υ ∧

∧
i∈Ag γi is satisfiable. Let v be a

valuation such that v |= Υ′. The basic idea is to use the approach
(*), described above, to build a taxation scheme ensuring that the
valuation v is a rational choice. For all i ∈ Ag, x ∈ Φi and b ∈ B,
define:

τ(x, b) =

{
0 if b = v(x)
1 + ci(ve

i ) otherwise.

(Recall that ve
i is the choice for i that has the highest marginal cost.)

Let (v∗1, . . . , v
∗
n ) be the outcome corresponding to the valuation

v. Obviously, (v∗1, . . . , v
∗
n ) |= Υ. We claim that (v∗1, . . . , v

∗
n ) ∈

NE(G, τ). For suppose that (v∗1, . . . , v
∗
n ) is not a Nash equilibrium.

Then some agent i can benefit by deviating. Since by construction
(v∗1, . . . , v

∗
n ) |= γi, then i can only benefit from a choice that would

decrease its overall costs. But the construction of τ ensures that
any other choice would increase taxes more than any benefit gained
by decreasing marginal costs. So, i cannot benefit by changing its
choice, and so (v∗1, . . . , v

∗
n ) is a Nash equilibrium.

We know from [2] that the problem of checking for the existence
of pure strategy Nash equilibria in cost-free Boolean games is Σp

2-
complete. It turns out that the IMPLEMENTATION problem is no
harder:

PROPOSITION 8. The STABILISATION problem is Σp
2-complete,

even if taxes are 0-bounded. As a consequence, the WEAK IMPLE-
MENTATION problem is also Σp

2-complete.
PROOF. Membership requires evaluating the following condi-

tion:
∃τ ∈ T (G),∃(v1, . . . , vn) ∈ V1 × · · · × Vn,

(v1, . . . , vn) ∈ NE(G, τ)︸ ︷︷ ︸
(∗∗)

.

Notice that the condition (∗∗) is a co-NP predicate, and that the
existential quantifiers can be computed in NP (recall that we as-
sume taxation schemes in T (G) require space at most polynomial
in the size of G, and hence guessed in non-deterministic polynomial
time). Thus the problem is in Σp

2. For hardness, we can trivially
reduce the problem of checking for the existence of pure strategy
Nash equilibria in cost-free Boolean games, which was proved Σp

2-
complete in [2, Proposition 5]. Given a cost free game as in [2], we
construct an instance of one of our games directly, setting all costs
to 0; we then ask whether the system can be stabilised with a tax
bound of 0. Clearly, the answer is “yes” iff the given Boolean game
instance has a pure strategy Nash equilibrium.

3.2 (Strong) Implementation
The fact that WI(G,Υ) 6= ∅ is good news of a kind – it tells us
that we can impose a taxation scheme such that at least one rational
(NE) outcome of the game satisfies Υ. However, it could be that
there are many taxation schemes, and only one of them satisfies Υ.
This motivates us to consider the strong implementation (or sim-
ply implementation) problem. Strong implementation corresponds
closely to the notion of Nash implementation in the mechanism de-
sign literature [7]. Let SI(G,Υ) denote the set of taxation schemes
τ over G such that:



1. G, τ has at least one Nash equilibrium outcome;

2. all Nash equilibrium outcomes of G, τ satisfy Υ.

Formally:

SI(G,Υ) =
{τ ∈ T (G) |

NE(G, τ) 6= ∅ &
∀(v1, . . . , vn) ∈ NE(G, τ) : (v1, . . . , vn) |= Υ}.

.

This gives us the following decision problem:

IMPLEMENTATION:
Instance: Boolean game G and objective Υ ∈ L.
Question: Is it the case that SI(G,Υ) 6= ∅?

It turns out that strong implementation is no harder than weak im-
plementation:

PROPOSITION 9. IMPLEMENTATION is Σp
2-complete.

PROOF. Observe that the problem involves evaluating the fol-
lowing condition: is it the case that ∃τ ∈ T (G) : NE(G, τ) 6= ∅
and ∀(v1, . . . , vn) ∈ NE(G, τ) we have (v1, . . . , vn) |= Υ? Ex-
panding out and re-arranging, it can be seen that this is equiva-
lent to asking whether ∃τ ∈ T (G),∃(v1, . . . , vn) ∈ V1 × · · · ×
Vn, ∀(v′1, . . . , v

′
n) ∈ V1×· · ·×Vn, we have (v1, . . . , vn) ∈ NE(G, τ)

and if (v′1, . . . , v
′
n) ∈ NE(G, τ) we have (v′1, . . . , v

′
n) |= Υ. Clearly

this is a Σp
2 predicate. For hardness, we can reduce the STABILI-

SATION problem as in Proposition 8.

How areWI(G,Υ) and SI(G,Υ) related? It turns out that weak
and strong implementation are indeed different:

PROPOSITION 10.

1. For all games G and objectives Υ we have:

SI(G,Υ) ⊆ WI(G,Υ).

2. There exist games G and objectives Υ s.t.:

WI(G,Υ) 6⊆ SI(G,Υ).

PROOF. Item (1) is immediate: if a taxation scheme strongly
implements Υ in G then it weakly implements it. For item (2), we
give an example of an game and objective such that the objective
can be weakly, but not strongly implemented. Let Ag = {1, 2},
with Φ = {p, q}, Φ1 = {p},Φ2 = {q}, γ1 = γ2 = (p ↔ q),
with cost function c0. Finally, let Υ = p ∧ q. Now, the taxation
function τ0 with zero taxes will weakly implement Υ: there will be
two Nash equilibria, one satisfying p ∧ q and the other satisfying
¬(p ∨ q). However, Υ = p ∧ q cannot be strongly implemented,
because the outcome satisfying ¬(p∨q) will be a Nash equilibrium
for all taxation schemes τ . To see this, observe that for it not to be
a Nash equilibrium, one agent would benefit by deviating; but by
definition of the utility functions, such a deviation would involve
an agent moving from positive to negative utility.

Thus, to show that an objective Υ cannot be strongly implemented,
it suffices to show that it cannot be weakly implemented.

One interesting question relates to the size of taxes required to
for implementation. In some cases, it turns out that we only require
very small amounts of tax:

PROPOSITION 11. Let ε << 1 be any arbitrarily small posi-
tive number. If G is cost-free (i.e., with cost function c0) then Υ is
implementable (respectively, weakly implementable) in G iff Υ is
implementable by a taxation scheme bounded by ε.

PROOF. We first claim that for any arbitrarily small ε and any
cost-free Boolean game G there is a cost-free Boolean game such
that the taxation scheme is bounded by ε and the sets of Nash equi-
libria of the two games coincide. The idea is to define a new tax-
ation scheme τ ′ by using ε to systematically scale down taxation
values from τ . The transformation from (G, τ) to (G, τ ′) preserves
the relative order on utilities, that is, uG,τ

i (vi) ≥ uG,τ
i (v′i ) if and

only if uG,τ ′

i (vi) ≥ uG,τ ′

i (v′i ). Therefore, v = (v1, . . . , vn) is a
Nash equilibrium of (G, τ) if and only if it is a Nash equilibrium
of (G, τ ′). As a consequence, Υ is implementable (respectively,
weakly implementable) in G by taxation scheme τ if and only if it
is implementable (resp. weakly implementable) in G by τ ′.

4. TAXATION AND SOCIAL WELFARE
In attempting to design a taxation scheme τ for a Boolean game G,
the primary aim of a principal is to design the scheme so that agents
are rationally motivated to choose an outcome satisfying the objec-
tive Υ. However, if it is possible to incentivise agents to satisfy Υ,
then there will, in general, be multiple possible taxation schemes
that incentivise the agents in this way, and not all of these taxation
schemes will be equally desirable from the point of view of soci-
ety. In this section, therefore, we consider different societal criteria
that might be considered by a principal when choosing a taxation
scheme; our discussion here is inspired by the literature on axioms
for cooperative decision-making [9].

Utilitarian Social Welfare: The first idea we consider is the very
well-known concept of maximising utilitarian social welfare. For-
mally, the social welfare of an outcome (v1, . . . , vn) is denoted
sw(v1, . . . , vn):

usw(v1, . . . , vn) =
∑
i∈Ag

ui(v1, . . . , vn).

An outcome (vusw
1 , . . . , vusw

n ) that maximises utilitarian social wel-
fare is thus one satisfying:

(vusw
1 , . . . , vusw

n ) ∈ arg max
(v1,...,vn)

usw(v1, . . . , vn).

Of course, simply finding an outcome that maximises social wel-
fare in itself is not much use if agents are rationally motivated to
choose another outcome, which does not maximise social welfare.
We therefore say a taxation scheme τ weakly implements utilitarian
social welfare maximisation in a game G if

∃(v′1, . . . , v
′
n) ∈ NE(G, τ) s.t.

(v′1, . . . , v
′
n) ∈ arg max(v1,...,vn) usw(v1, . . . , vn).

We can define strong implementation in the expected way. With a
slight abuse of notation, letWI(G, usw) denote the set of taxation
schemes that weakly implement utilitarian social welfare maximi-
sation, and let SI(G, usw) denote the set of taxation schemes that
strongly implement utilitarian social welfare maximisation. Can
we always implement utilitarian social welfare maximisation? No:

PROPOSITION 12. There are games G in which utilitarian so-
cial welfare maximisation cannot be weakly implemented (and hence
cannot be strongly implemented).

PROOF. Define a game G with Ag = {1, 2, 3}, Φ = {p1, p2, p3},
Φi = {pi}, and γ1 = p1 ∨ (p2 ∧ p3), γ2 = ¬p2, γ3 = ¬p3,
c(p1,>) = 20, c(p1,⊥) = 1, c(p2,>) = 2, c(p2,⊥) = 1,
c(p3,>) = 2, c(p3,⊥) = 1. Now, with taxation scheme τ0,
there is a unique Nash equilibrium (v∗1, v

∗
2, v
∗
3) in which agent 1

sets p1 = >, agent 2 sets p2 = ⊥, agent 3 sets p3 = ⊥. We have
u1(v∗1, v

∗
2, v
∗
3) = 1 + 20−20 = 1, u2(v∗1, v

∗
2, v
∗
3) = 1 + 2−1 = 2,



and u3(v∗1, v
∗
2, v
∗
3) = 1 + 2 − 1 = 2, and so usw(v∗1, v

∗
2, v
∗
3) =

1 + 2 + 2 = 5. Now consider the outcome (v1, v2, v3) that sat-
isfies (¬p1) ∧ p2 ∧ p3. Observe that (v1, v2, v3) |= γ1, while
(v1, v2, v3) 6|= (γ2∨γ3) We have u1(v) = 1+20−1 = 20, u2(v) =
−2, and u3(v) = −2. Thus usw(v1, v2, v3) = 20+(−2)+(−2) =
16. Clearly, outcome (v1, v2, v3) maximises social welfare, but no
taxation scheme can weakly implement this outcome: agents 2 and
3 will always prefer to get their goal achieved.

This example also illustrates that maximising utilitarian social wel-
fare is not the same as maximising the number of agents that get
their goal achieved.

Notice that because we represent objectives Υ as logical formula,
and these logical formula can completely characterise outcomes,
we can directly model the problem of implementing utilitarian so-
cial welfare maximisation as a WEAK IMPLEMENTATION problem.
The following is immediate:

PROPOSITION 13. It is possible to weakly (respectively, strongly)
implement utilitarian social welfare maximisation in game G iff
WI(G,Υusw) 6= ∅ (respectively, SI(G,Υusw) 6= ∅), where:

Υusw =
∨

(v∗1 ,...,v
∗
n )∈arg max(v1,...,vn)∈V1×···×Vn usw(v1,...,vn)

ϕ(v∗1 ,...,v
∗
n ).

From the point of view of a principal, of course, the main con-
cern is to implement an objective Υ; maximising utilitarian social
welfare is a secondary concern. A very natural aim of the principal
will therefore be to design a taxation scheme that implements an
objective while at the same time maximises the worst case utilitar-
ian social welfare of all possible Nash equilibrium outcomes. This
yields the following decision problem,

USW IMPLEMENTATION:
Instance: Boolean game G, objective Υ, social welfare
measure w ∈ R.
Question: Does there exist a taxation scheme τ ∈
SI(G,Υ) such that min{usw(v, . . . , vn) | (v1, . . . , vn) ∈
NE(G, τ)} ≥ w?

PROPOSITION 14. The USW IMPLEMENTATION problem is Σp
2-

complete.

PROOF. We reduce WEAK IMPLEMENTATION. Where G,Υ be
an instance of WEAK IMPLEMENTATION, we create an instance
G,Υ,w of USW IMPLEMENTATION with a value for w that is guar-
anteed to be below the worst case utilitarian social welfare of any
outcome.

The corresponding function problem is to compute a taxation scheme
maximising the worst case utilitarian social welfare of a Nash equi-
librium outcome satisfying Υ. We will denote such a taxation
scheme by τusw(G,Υ):

τusw(G,Υ) ∈
arg maxτ∈SI(G,Υ)

min{usw(v, . . . , vn) | (v1, . . . , vn) ∈ NE(G, τ)}.
Notice that in the case Υ ≡ >, finding τusw(G,Υ) reduces to

simply implementing utilitarian social welfare maximisation.

Egalitarian Social Welfare: A standard criticism of utilitarian so-
cial welfare is that it does not consider how utility is distributed
amongst members of a society; it may allocate all utility to one
agent, leaving all others with no utility. Egalitarian social welfare
provides an alternative metric: it looks at how well off the least

well off member of society is. The function esw(· · · ) gives the
egalitarian social welfare of an outcome:

esw(v1, . . . , vn) = min{ui(v1, . . . , vn) | i ∈ Ag}.

The taxation scheme implementing Υ while maximising egalitar-
ian social welfare in G is denoted τesw(G,Υ):

τesw(G,Υ) ∈
arg maxτ∈SI(G,Υ)

min{esw(v, . . . , vn) | (v1, . . . , vn) ∈ NE(G, τ)}.
Minimising the Total Tax Burden: An alternative to measuring
social welfare is to consider developing a taxation scheme that im-
plements objective Υ while imposing the lowest possible tax bur-
den on society. Broadly, we can think of this approach as min-
imising the degree of intervention of the principal in the operation
of society. The function tb(· · · ) gives the total tax burden of an
outcome:

tb(v1, . . . , vn) =
∑
i∈Ag

τ(vi).

We define τtb in the obvious way:

τtb ∈
arg minτ∈SI(G,Υ) max{tb(v1, . . . , vn) | (v1, . . . , vn) ∈ NE(G, τ)}

It is easy to construct examples showing that minimising the total
tax burden may result in socially undesirable outcomes (but never-
theless, it seems such “least intervention” approaches are relatively
popular in human societies).

5. TAXATION AND EQUITY
It is, of course, well-known that an outcome which maximises (for
example) utilitarian social welfare may in fact be extremely unde-
sirable from the point of view of the majority of agents in a system.
For example, the social welfare maximising outcome might allo-
cate all the utility in the system to one agent, leaving all others with
none. This motivates us to consider a range of possible other no-
tions of equity with respect to taxation schemes, inspired to some
extent by the economics literature on taxation [3].

Minimising the Difference in Taxes: One very obvious (although
arguably naive) notion of taxation equity is to simply try to ensure
that agents are taxed at broadly the same level, i.e., to minimise
the maximum difference in taxes levied on different agents. Let
md(v1, . . . , vn) give the maximum difference in taxes between any
two agents in outcome (v1, . . . , vn):

md(v1, . . . , vn) =
max{abs(τi(vi)− τj(vj)) | {i, j} ⊆ Ag}

where abs(x) denotes the absolute value of x. Let τmd denote a
taxation scheme that minimises this value over all possible Nash
equilibria of taxation schemes that implement Υ in G:

τmd ∈
arg minτ∈SI(G,Υ) max{md(v1, . . . , vn) | (v1, . . . , vn) ∈ NE(G, τ)}

Horizontal Equity: Simply aiming to apply the same level of taxes
across an entire society may appear to be equitable, but on closer
examination, it has some definite drawbacks. In particular, it does
not distinguish between agents that have their goals achieved and
those that do not. In the literature on taxation, the term horizontal
equity is used to describe the idea that those in the same circum-
stances should be taxed at the same level [3]. One could formalise
this notion in several different ways for our model, but we will fo-



cus on the following idea: in any outcome, we have two “classes”
of agents: those that get their goal achieved and those that do not.
Thus, when looking at the differences in taxes paid, we only com-
pare the taxes of agents that get their goal achieved against other
agents that get their goal achieved, and we compare only compare
agents that do not get their goal achieved against agents that do not
get their goal achieved. The function he(· · · ) denote the maximum
difference in tax paid between agents in the same equivalence class:

he(v1, . . . , vn) =
max({abs(τi(vi)− τj(vj)) | {i, j} ⊆ Ag & (v1, . . . , vn) |= γi ∧ γj} ∪
{abs(τi(vi)− τj(vj)) | {i, j} ⊆ Ag & (v1, . . . , vn) |= ¬(γi ∨ γj)})

Then τhe will denote an outcome that maximises horizontal equity
(i.e., minimises the difference in taxes paid by agents in the same
circumstances).

τmd ∈
arg minτ∈SI(G,Υ) max{he(v1, . . . , vn) | (v1, . . . , vn) ∈ NE(G, τ)}

6. CONCLUSIONS & FUTURE WORK
Taxation schemes, in the form of the VCG mechanism and varia-
tions thereof, have received an enormous amount of attention in the
computer science literature over the past two decades [11]. Much
of the current interest stems from the possibility, provided by VCG,
of having inventive compatible mechanisms, i.e., mechanisms that
incentivise agents to truthfully report their preferences, thereby al-
lowing the computation of outcomes that maximise social welfare.
There are, however, fundamental limits to what can be achieved
with incentive compatible mechanisms, and it therefore seems worth
considering the design of taxation schemes to incentivise behaviours
in non incentive compatible settings. After all, taxation schemes
in the real world are rarely incentive compatible. In the present
paper, we have studied the use of taxation schemes to incentivise
behaviours in Boolean games: a natural, expressive, and compact
class of logic-based games. We showed how a principal could per-
turb the preferences of agents in a Boolean game by imposing a
taxation scheme, and in so doing, how it could, in certain circum-
stances, incentivise agents to choose outcomes to satisfy some so-
cial objective Υ, represented as a Boolean formula. However, we
saw that while an agent’s preferences can be perturbed, they are
not completely malleable: no matter what the taxation scheme, an
agent would always prefer to get its goal achieved than otherwise.
This means there are limits on the extent to which preferences can
be perturbed by taxation, and hence limits on what objectives Υ
can be achieved. We studied a number of questions around the
question of implementing objectives Υ via taxation schemes, and
also discussed some issues surrounding equitable taxation.

Our work relates to a number of other topics in the multi-agent
systems community and beyond. Some consideration has been
given to how a principal can change the equilibrium strategies of
specific games by introducing penalties (a form of taxation) on
some actions of the players. Interesting applications include in-
formation security [13] and analyzing the TCP protocol. In the
multi-agent systems community, Monderer and Tennenholtz pro-
posed the notion of k implementation [8], whereby a principal can
make payments to players (negative taxes) to incentivise players
to choose certain outcomes. The setting for k-implementation is
one of payments, in contrast to the present paper, and our use of
Boolean games and logical objectives Υ is rather different. A re-
lated idea is discussed in [1], which considers how much compen-
sation would have to be paid to players in a cooperative game in
order for certain outcomes to become core stable.

We believe the results of the present paper strongly indicate that
there are important and interesting theoretical and practical ques-
tions relating to non-incentive compatible taxation schemes. Fu-
ture work might consider, for example: a complete characterisation
of the conditions under which an objective Υ can be implemented
in a game G; consideration of the computation of taxation schemes
τ for objectives Υ; and the use of taxation schemes to incentivise
behaviour in other settings, beyond the Boolean games considered
in the present paper.
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