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Abstract. We propose a bidding mechanism for data allocation in envi-
ronments of self-motivated data servers with no common preferences and
no central controller. The model considers situations where each server
is concerned with the data stored locally, but does not have preferences
concerning the exact storage location of data stored in remote servers.
We considered situations of complete, as well as incomplete, information,
and formally proved that our method is stable and yields honest bids. In
the case of complete information, we also proved that the results obtained
by the bidding approach are always better than the results obtained by
the static allocation policy currently used for data allocation for servers
in distributed systems. In the case of incomplete information, we demon-
strated, using simulations, that the quality of the bidding mechanism 1is,
on average, better than that of the static policy.

1 Introduction

In this paper, we consider the problem of determining the location of data
items in a distributed information system, where the information servers are
self-motivated and each one is trying to maximize its own utility.

A specific example of a distributed knowledge system is the Data and Infor-
mation System component of the Earth Observing System (EOSDIS) of NASA
[7]. This distributed system supports archiving and distribution of data at mul-
tiple and independent data centers (called DAACs). The current policy for data
allocation in NASA is static: each DAAC specializes in specific topics. When
new data arrive at a DAAC, the DAAC checks if the data are relevant to one of
its topics, and if so, it uses other criteria, such as storage cost, to decide whether
or not to accept the data and store them in its database. If the data is not
relevant to the DAAC, it may forward it to another DAAC whose topics seem
more relevant.

* This material is based upon work supported in part by NSF under Grant No. IRI-
9423967. Rina Schwartz is supported by the Israeli Ministry of Science.



In this paper, we propose the use of a bidding mechanism as a solution
method for the data allocation problem in environments where the servers are
self-motivated and have no common preferences and no central controller, and
where the clients are autonomous.? In addition, a server is concerned about the
data stored locally, but does not have preferences concerning the exact storage
location of data stored in remote servers. According to our approach, the location
of each data unit will be determined using a bidding mechanism, where the
server bidding the higher price for obtaining the data will actually obtain it.3
This approach yields an efficient and fair solution, its implementation is simple,
and the bidders are motivated to offer efficient prices.

Bidding has been used previously in Distributed Artificial Intelligence (DAT)
in the contract net framework [11]. Agents in the contract net environment de-
compose their tasks to subtasks and subcontract them to other agents, using
bidding. Extensions of the contract net for environments with self-motivated
agents were proposed in [9]. Mullen and Wellman [6] proposed a market price
model for decisions about establishing mirror sites in a network. They suggested
competitive-market pricing of the transportation price (when no mirror site is
established) and the price of establishing mirror sites. However, the competitive
approach is not useful in our environment since it is applicable only in environ-
ments in which it is possible to produce more than one item of each product
type, and in our environment each data item is unique.

A bidding mechanism is suggested by [8] for an automated negotiation envi-
ronment, where phone companies compete to serve as carriers for long distance
phone calls, with dynamic prices. In particular, they propose the use of Vick-
rey’s sealed bidding scheme [12]. In this kind of auction, each bidder submits one
bid, in ignorance of the other bids, and the highest bidder pays the amount of
the second-highest bid and wins. In this paper, we have implemented a sealed
bidding scheme for the data allocation problem in distributed knowledge envi-
ronments. We have specified the rules of the bidding in the case of data allocation
and suggested strategies for the servers.

In the following sections, we will describe the data allocation problem and
suggest a utility function which characterizes the servers’ preferences. Then we
will suggest a bidding protocol for data allocations, which i1s a dominant strategy
mechanism [5]. We will also consider the incomplete information case, where
each server has information only about past usage frequency of local data, and
suggests how it can estimate its utility from other data items (new or remote
ones) in order to bid efficiently for them. We will discuss the servers’ performance
in the complete information case, as well as in the incomplete information case.

% Previous work on file (data) allocation in distributed systems (e.g., [3]) considers
systems where a central decision maker exists, which tries to maximize the perfor-
mance of the overall system. This assumption is not valid today in many cases, when
the objective is to distribute information among self-motivated servers.

® Only one copy of each dataset is allowed, since the datasets considered are extremely
large, and it is not efficient to allow multiple copies of a dataset. However, if the
datasets are small it is possible to extend the model to allow multiple copies of each
dataset.



2 Environment Description

We consider an environment in which there is a set of several (more than two)
information servers, denoted by SERVERS, connected by a communications net-
work. The information stored in each information server is clustered in datasets.?
Each dataset is characterized by a set of keywords and contains a large num-
ber of documents.® The set of datasets in the system in a given time period is

denoted by DS.

In this paper, we consider an information system where each client may
retrieve information directly from the server in which it is stored, and s/he pays
this server for the retrieved information. Therefore, in our environment, a server
is concerned only with the datasets stored in its local databases, and is indifferent
to the exact location of datasets not stored locally. The environment we consider
changes dynamically. New datasets arrive frequently, and usage frequency of old
datasets changes over time. The servers must determine the location in which
each new dataset will be stored and they are also able to change the location
of old datasets. Since the datasets considered are very large, each dataset can
be stored only in one server, and it is forbidden for a server to store a dataset
unless it has become its legal “owner.” Conflicts among the servers may arise
when two or more servers would like to store the same dataset locally.

In a centralized system, a solution for such a problem is simple: the location
of each dataset will be determined so as to maximize the profits of the entire
system. But a dataset allocation which is beneficial for the entire system may be
non-beneficial for some of the servers. In our case, where each server has its own
interests, the servers will follow the centralized solution only if it is beneficial to
them. Thus, any proposed protocol must be fair and consider the preferences of
all the servers in order to be accepted by the designers of the servers. Moreover, if
there is incomplete information about the usage of datasets, then the centralized
solution is not applicable, since nobody has enough information in order to
compute this solution.

In all the situations which we considered, the servers are uncertain about the
future usage of the datasets. First, we have considered a symmetric environment
with complete information, where all the servers have the same knowledge about
the past, and they have the same expectations about the future usage of each
dataset by clients located in each area, but they do not know the actual future
usage. Then, we have considered an asymmetric environment with incomplete
wnformation, where each server knows the past usage only of the datasets stored
locally, but can only partially estimate the past usage of datasets stored by other
servers.

* A dataset corresponds to a cluster in information retrieval, and to a file in the file
allocation problem.
> A document corresponds to a ‘granule’ in EOSDIS.



3 Utility Functions

In this section, we will describe the components of the utility derived by a server
from storing a dataset. Recall that each server receives queries from clients and
answers them by sending back documents which belong to the datasets located
in its databases. The clients pay the server a query_price per document that is
retrieved as an answer to a query. We assume that there is a monetary system
in the environment which is used for this payment, as well as for other payments
described below.

The cost of sending a document to a client depends on the virtual distance
between the client and the server. It is measured in terms of delivery time,
which plays an important role in loaded systems in which the documents are
very large (e.g., images). For simplicity, we assume that each client is located in
a geographical area of one of the servers, and in order to compute the distance
between server ¢ and a client which is located in the geographical area of server
j, we use the distance between servers ¢ and j. The function distance specifies
the virtual distance between any two servers. The term answer_cost specifies
the cost for a server providing a client from another area with one document
over one unit of distance.

An important factor that plays a role in the utility function of a server from
a specific dataset located in its database is the expected usage of this dataset
by clients. Usage : SERV ERS x DS +— RT is a function which associates with
each server and a dataset the number of documents belonging to this dataset
which will be requested by clients located in the geographical area of that server,
during one time period (e.g., one week, one month, etc.). In addition, consider
the storage cost. We denote by storage_cost the cost of storing one data unit of
a dataset in a server for one time period,® and the function dataset_size specifies
the size of each dataset in data units. Each server calculates the utility it obtains
from a dataset location, given its estimation of the expected query flows related
to this dataset. Note that storage_cost and answer_cost are common to all the
servers. The following attribute defines the utility (or loss) for a server in one
time period from one dataset stored in it, when its usage is known.

Attribute 3.1 The profils which servers expects to obtain from storing dataset
ds locally for one time period are as follows:

Vi(ds) = —storage_cost * dataset _size(ds)
+ 2 veserv Ers(usage(s’, ds) x (answer_price — distance(s, s') ¥ answer_cost)).

Vs considers the costs and benefits due to queries which are obtained at one
time period, and also the storage cost which is expected to be paid at each time
period (e.g., using the disk space).

The following attribute defines the profits P which server s expects to obtain
from storing one dataset over time. We assume that there is a monetary system in
which each server is able to borrow any required amount of money at the current

5 For simplicity, we assume that storage space is not restricted.



interest rate r. Using this interest rate, Ps is evaluated as the net present value
(NPV) of future income from queries related to the dataset, computed w.r.t.
the interest rate r. The NPV is used in financing systems in order to find the
value of an investment. It is computed by discounting the cash flows at the firm’s
“opportunity cost” of capital [2]. We will use the same term for finding the value
of a dataset storage, considering the dataset as a possible investment.

The function below specifies the net present value of the profits flow accepted
by server s related to dataset ds, assuming that ds will be stored in loc indefi-
nitely. In subsection 5.5 we will discuss the expected profits for situations where
old datasets can be reallocated.

Attribute 3.2 The profits which server s expects to oblain from a dataset ds
located in loc from teme 0 until time N, given Vs, is as follows:

N V.(ds) .
Ps(ds,loc) = {Zt RGEEST: loc = s

otherwise

where r 1s the interest rate, and N s the number of periods during which the
environment exists. If the environment is considered to exist forever, then N =
0. In this case,

Vi(ds) = (1+7)

r

Ps(ds,loc) =

We denote by Us(ds, loc) the utility which a sever s obtains from a dataset ds
which is stored in location loc. In order to evaluate Uy, the server will consider
the expected profits as well as the risk involved in obtaining these profits. Such
a risk is involved in both the complete and the incomplete environments which
we consider in this paper, since in both cases, usage is only estimated, and the
server is not sure about the value of a dataset, since the queries flow is not
certain and thus the payments due to queries are not certain. If s is risk neutral,
i.e., its utility is determined only regarding its expected profits [4], then its
utility function is the same as its expected profits, and Us(ds, loc) = Ps(ds, loc).
Otherwise, if s is risk averse, then the uncertainty involved in future queries
flows will influence the utility it derives from storing the dataset, so Us will
be risk adjusted in order to consider the element of uncertainty involved in 1its
expected profits [2], i.e., Us(ds,loc) < Ps(ds,loc). Similarly, if s is risk prone,
then U (ds, loc) > Ps(ds, loc). In the following sections, unless explicitly written,
we assume risk neutral servers.

4 The Trading Mechanism

Bidding sessions are carried on during predefined time periods. When new datasets
arrive, they are stored in a temporary buffer until the next bidding session, when
their location will be decided upon. Each server is represented by an automated
agent, which participates in the bidding session. In the rest of the paper we will
use a server and its agent interchangeably.



Each server is responsible for the datasets it stores, and the initial responsi-
bility for each new dataset is determined according to a static policy: the server
with the areas of interest closest to a new dataset will be responsible for it.” At
the beginning of a bidding session, each agent broadcasts an announcement for
each new dataset 1t is responsible for, and also for some of its old local datasets.
An announcement of the availability of a dataset by agent s € SERVERS, de-
noted as the contractor, indicates that agent s would like to sell this dataset.

In the next step of the bidding session, for each announcement and for each
agent ' € SERVERS, such that s’ is not the contractor which has made the
announcement, s’ sends a sealed bid to the contractor. A bid contains the price,
in standard currency, which s’ is willing to pay the contractor in order to store
the dataset made available in the announcement in s’ (i.e., to buy the dataset.) If
it does not want to buy this dataset, it will bid a negative price, which indicates
how much it would like the contractor to pay it, in order for it to agree to store
this dataset locally. All the bids must be sent up until a predefined deadline.
The contractor of each dataset collects all the bids related to this dataset up to
the deadline.

In the third step of the bidding session, which is called the awarding step,
the winner of each announcement is determined by its contractor. For each an-
nouncement, the winning agent will be the agent with the highest bid, but the
price it pays will be determined according to the second highest bid. The price
paid is based on Vickrey’s sealed bidding, and the bidding of true values 1s a
dominant strategy in this protocol. That 1s, for each dataset, the best bidding
strategy for each agent is to bid a price which is equal to its utility from storing
this dataset, and this is independent of the other bids [12].

In the awarding step, each agent will broadcast an award message for all
announcements it made in the first step. In this message, it will include the
“winner” of the dataset, which is the highest bidder, the price it has to pay, as
well as the agent that sent the second-highest bid. If the second bid is less than
the utility the contractor derives from storing the dataset of the announcement
by itself, or if there is only one bidder (which is a rare event, since all servers
are supposed to send a bid for each dataset), then the contractor will continue
to store the dataset locally (or obtain it, if the dataset is new).

The agents are assumed to be self-interested, and each one tries to maximize
its own utility. In order to do so, it 1s able to borrow money at the current in-
terest rate r. Thus, the agents do not need any initial budget. In our protocol,
there is no need to synchronize the announcements and awarding messages of
different datasets. Simultaneous announcement of awards is not necessary, since
we assume that the utility from one dataset location i1s independent of the loca-
tion of other datasets. The simultaneous bidding is also unnecessary, since as we
will show below, the dominant strategy for each bidder is to bid its true value,
and this holds also if 1t has information regarding the other bids.

" The initial owner can also be determined by the source of the information, which
will direct the dataset to the server with the nearest topics



5 Attributes of the Bidding Protocol

In this section we will describe some of the attributes of the bidding protocol.
We will prove that it is a dominant strategy mechanism, and we will present
a strategy that enables an agent to choose datasets to announce when the an-
nouncement process is costly.

5.1 Details of the Protocol

In the following, we present the costs and concepts related to the bidding process.
The function contractorspecifies for each dataset its current “owner,” which will
be its contractor during the bidding session. For an old dataset, this is the agent
where it is currently stored, and for a new dataset, this i1s the agent which is
responsible for this dataset (as explained in section 4). The function move_cost
associates with a dataset, ds, and a server the cost for the server contractor(ds)
to move the dataset from 1t to the specified server. If the dataset is new, then
it is stored in the temporary buffer, and contractor(ds) has no costs involved in
moving it, so move_cost is 0. The function obtain_cost associates with a dataset
and a server, the cost for the server to move a dataset to its location from the
server contractor(dataset), if it is an old dataset, or from the temporary buffer
otherwise. Relocating datasets is costly both to the sender and the receiver,
since we take into consideration the communication time required on both sides
in order to reallocate a dataset. But, allocating a dataset in its initial location
causes costs only to the buyer, since it receives the dataset from the temporary
buffer, but doesn’t use the contractor’s resources, since it is not the sender in that
case. Finally, we denote by price_suggested(b,ds) the price suggested by bidder b
for dataset ds.

After a contractor announces a dataset, each server sends a bid concerning
this dataset. Sending a bid is free (all the costs related to the process of bidding
for a dataset are covered by its contractor). Thus, in general, each agent will
send a bid for any dataset in the system. The contractor for each dataset collects
all the bids related to this dataset until a predefined deadline occurs. Then it
has to decide whether to move the dataset, and if so, where to move it to.
The function move(ds) will associate “true” with a dataset ds, if the agent
contractor(ds) can beneficially move the dataset to another server, given a set
of bids, and “false,” otherwise. Further discussion on move(ds) appears below.
If the contractor decides to move the dataset, it must abide by the following
regulations of our bidding protocol. Deviation from this protocol is revealed
immediately and yields a penalty. The following attribute defines the winner of
a dataset, as determined by the protocol proposed here.

Attribute 5.1

argmaTeidderc SERV ERS move(ds)= true
price_suggested(bidder, ds)—

winner(ds) = < move_cost(ds, bidder)}
none otherwise



If there 1s more than one bidder with the same maximal value of
price_suggested(bidder, ds) — move_cost(ds, bidder), then the contractor will se-
lect one of them (arbitrarily) to be the winner, and the other will be considered
to be the bidder with the second highest price.

The price paid by the winning agent (if it exists) is the second best bid, w.r.t.
the net suggested price. That is, if the dataset is new, then the final price will
be precisely the amount of the second best bid, and if the dataset is old and
already stored by the contractor, then the final price will be the second best
price, deducting the costs of moving the dataset to the bidder of the second best
price, but including the costs of moving the dataset to the winner. Our protocol
is different from the basic bidding protocol [12], since we include the payments
of the relocation costs in the protocol, and thus the desired properties of the
bidding mechanism should be proved for this modified protocol.

Attribute 5.2 The price which will be paid by the winning agent, if such a
winner erists, is:

price(ds)=
second_Maxy;qger£contractor(ds)iprice _suggested(bidder, ds)—
move_cost(ds, bidder) | bidder € SERV ERS} + move_cost(ds, winner)

As mentioned above, the contractor must specify the winner, the second price
and the agents which offered the second price in its awarding message, and there
is a high penalty for revealed lies. It is easy to show that if there is a penalty for
revealed lies, then the contractor would follow the regulation above. It will not be
motivated to specify a price higher than the second price in its awarding message,
since such a lie can be revealed immediately by the agent that is specified by the
contractor as the sender of the second price. It would also not be motivated to
specify a lower price, since this would never be beneficial for it.

5.2 Bidding Strategies

Given the above regulations in the bidding protocol, and given a set of bids,
the contractor will decide whether or not to move an old dataset, i.e., whether
move(ds) is true or false. We suggest that the contractor move a dataset if
the utility it is able to derive from selling it is more than the utility 1t can
derive from continuing to store the dataset, (if there is only one bidder, then the
dataset will not be moved). Note that this is not part of the regulations, but is
the best strategy for a self-motivated contractor if it must choose the price and
the winner, as described above.

Attribute 5.3 Situations in which it is beneficial for the contractor to move a
dataset, ds, are:

move(ds)=true if
|bidders| > 1 and second_max{price_suggested(bidder, ds)—
move_cost(ds, bidder) | bidder € SERV ERS} >
Ucontractor(ds)(ds, contractor(ds)).



In the following lemma we state that the winning agent will derive a nonneg-
ative utility from obtaining the dataset.

Lemmal. [If there is a winner of an announcement, and if it is chosen as
specified in attribute 5.1 and is paid price(ds) as specified in attribute 5.2, then
of the winner’s bid was exactly equal to its utility from obtaining the dataset, it
will have a nonnegative utility from “buying” the dataset, deducting the price it
should pay.

Proof. Denote by winnerthe winning agent, by second the agent with the second

offer, and by ds the dataset being considered. Suppose the winner offered exactly

the utility it will derive from obtaining the dataset. Then, the utility which the

winner will derive obtaining dataset is exactly price_suggested(winner,ds). The

price it will have to pay is

price_suggested(second, ds) — move_cost(ds, second) + move_cost(ds, winner).

By definition,

price_suggested(second, ds) — move_cost(ds, second))

is lower or equal than the chosen

price_suggested(winner, ds) — move_cost(ds, winner)).

Thus, price_suggested(second, ds) — move_cost(ds, second) +

move_cost(ds, winner) < price_suggested(winner, ds). a
Now we will state that each agent’s bid will be equal to its utility from

obtaining the dataset, for each dataset.

Lemma2. In a protocol where the best bidder wins and pays the second price
as specified in attributes 5.1 and 5.2, each bidder will bid according to its utility
from storing this dataset, deducting the cost of obtaining it. Le.,

price_suggested(bidder, ds) = Upiqger(ds, bidder) — obtain_cost(ds, bidder).

Bidding the real utility is the dominant strategy, and the proof is similar to
that of the Vickrey auction [12]. However, in our case, the winner incurs expenses
related to obtaining the dataset, and the contractor incurs expenses related to
moving the datasets to the winner (costs of resources needed for the move). Thus,
the price paid by the winner is different than the second price, as described in
attribute 5.2. Another difference is that, in our case, the contractor itself has its
own interests and preferences and has the ability not to move a dataset if the
offers it receives are too low, as described in attribute 5.3. These changes cause
the proof to be slightly different from the original. Using the above lemmas we
have proved the following theorem.

Theorem 3. If bidding ts free, then the allocation reached by the bidding protocol
always yields better or equal utility for each server than does using the static
policy. The utility function of each server is evaluated according to its expected
profits from the allocation.



In summary, the protocol which we suggest can be implemented in a dis-
tributed system in which no central controller exists: its implementation is sta-
ble and will ensure satisfactory results. However, even though bidding the true
utility of obtaining the dataset is a dominant strategy, it may be beneficial for
the first and second bidders to cooperate based on an agreement negotiated
between them prior to the bidding, so that the second bidder will bid a lower
price, and the first bidder - the winner - will pay a reduced amount. That is,
bidding the true utility is not in a strong Nash equilibrium [1], since there may
be a subgroup of agents which can gain when they deviate together from the
suggested strategies. If communication during the bidding process is forbidden,
then the servers will not be able to cooperate. In situations where cooperation
may occur, 1f there is complete information, then should the agents cooperate,
the same winner will be chosen per dataset (as in the case of honest reports), so
that the bidding process will result in the same allocation, but the gains will be
distributed differently among the agents.® In situations of incomplete informa-
tion, the “winner” is not known before the bidding begins, and in order to lower
prices cooperation among bidders is not stable, since an agent may agree to bid
a low price and then bid a higher one in order to obtain the dataset for itself.

5.3 Estimating Usage

In real-world situations, the agents may have incomplete information about the
world. Thus, evaluating their expected profits is problematic. In our environ-
ment, we assume that all agents have common knowledge about storage cost
and answer cost, but may have asymmetric information about the usage of
old datasets and usage of keywords in the past queries, and thus the agents
will have an asymmetric and uncertain information about the future usage of
datasets. Each agent knows only the past usage of its local datasets, so it will
estimate the future usage of these datasets for each geographical area, using
its knowledge of the past usage. Estimating the future usage of new datasets
and datasets located in remote servers is more difficult, since the agent has no
knowledge regarding their past usage. In order to accomplish this, the agent will
use information about the datasets’ contents. Each dataset is characterized by
several keywords, and each query consists of keywords. When a query 1s handled,
the server saves the information about the query, including the keywords which
the query contains, i.e., the agent saves the past usage of each area for each
keyword and each local dataset.

When an estimation about a new or remote dataset is required, the agent
uses the information it has about the keywords’ past usage and computes the
expected usage of the dataset according to the keywords it is familiar with. The
future usage of a new dataset by each geographical area can also be estimated
according to the past usage of similar datasets, when their similarity is measured
according to the keyword contents.

& Note, however, that if there is complete information, a simple protocol which enforces
bidding the expected utility can be used.

10



For simplicity, we assume that the clients form their queries according to
keywords and that each query 1s sent to all the datasets containing that keyword.
Under these assumptions, an agent can determine the usage frequency of a new
or remote dataset ds for a given area to be the sum of the usage frequency of all
the keywords contained in ds. If it does not have data about a keyword which is
associated with ds, i.e., no local dataset contains this keyword, then it can use
the average usage frequency of all the keywords for the unknown value.

Formally, suppose that there where 7" time periods before the current bidding
session, key_usage(area, key) indicates the volume of usage of key in different
queries of clients located in the area of server in the previous time periods,
dataset_usage(area, ds) indicates the volume of usage of ds by area in the pre-
vious time periods, and exp_usage, (area, ds) indicates the expectations of agent
s about the usage of ds by area; then

dataset_usage(area,ds)/T contractor(ds)=s
exp_usages(area,ds) = and is_old(ds)
Zkeyeds key_usage(area, key)/T otherwise.

A more complex learning schema may be considered in order to estimate the
future usage of datasets for situations where queries are formed differently, when
keywords are related, etc., but we leave this for future work. After estimating
the future usage of a dataset, the agent can compute its expected utility from
obtaining the dataset, according to the utility function we presented above and
w.r.t. the risk involved, as described in Section 3.

5.4 Choosing Datasets

Another issue related to the bidding protocol is how an agent should choose a
beneficial set of datasets to announce for bidding. If there is no cost associated
with dataset announcement and bidding, then each agent will announce all its
datasets, including all its old datasets. However, the announcements can be
expensive, due to costs of time and communication. Alternatively, the bidding
protocol can limit the number of datasets which an agent can announce, for
environments with a large number of datasets. In such cases, each agent will
have to select carefully which datasets to announce.

In order to estimate exp_announcement_profit, which denotes the profits
the agent expects to obtain from an announcement, the agent has to estimate
which prices 1t will receive as bids. According to lemma 1, the price which each
agent will offer is equal to its utility from storing the dataset, deducting the cost
for obtaining the dataset. Thus, in order to decide which dataset to announce,
an agent has to estimate the expected utility of the other agents and to compute
the expected price it will obtain. The next attribute defines the profit which the
agent expects to derive from an announcement. If the profit from moving the
dataset is negative, then the contractor will continue to store the dataset, and,
in this case, the profit of the announcement is zero. In particular, the expected
profit includes the payments which are expected to be obtained for this action

11



(expected_price(ds)), deducting the utility from continuing to store the dataset
and the cost of moving the dataset to the new location.

Attribute 5.4 The expected profit from announcing a dataset ds:

exp_announcement_profit (ds)=
max{0, expected price(ds) — move_cost(ds, expected_winner(ds))—
Ucontractor(ds)(dataset, contractor(ds))}.

If the contractor is risk-neutral, it will announce only those datasets with an
expected profit which exceeds the cost of announcing the dataset. If there is a
limit on the number of the announcements, it will announce the datasets with
the highest expected profits. If the contractor is risk-averse, then it will consider
in its evaluation the risk involved in the expected price and the risk involved in
its expected profits from retaining the dataset.

As described above, in order to determine expected_price(ds) and to be able
to compute exp_announcement_profit(ds), the agent, s, needs to compute the
prices which would be offered by the bidders for ds. The price offered by a bidder
§ depends on its utility function (Us), which consists of the expected usage of §
for ds. Thus, in order to evaluate the expected profit of announcing a dataset,
the potential contractor needs to estimate the value of expected_usage;. If the
agent does not have information about §’s estimation, we propose that it should
use its own estimation of the expected usage, which is computed as specified in
Section 5.3, as the estimation of s, i.e., we will assume that expected_usage; =
expected_usage,. If the agent knows which keywords appear in s’s datasets, 1t
can estimate expected_usage; by using only the keywords that appear both in
its own datasets and in §’s datasets. This may lead to a better estimation of the
other agent’s beliefs.

5.5 Utility Function -elocation Case

In Section 3 we defined the profits which a server expects to obtain from storing
a dataset indefinitely. However, there 1s a possibility that at some future time,
the dataset will be moved to another server. This could happen if its owner
announces 1t, and 1s offered compensation which is at least equivalent to the
expected profit obtained while continuing to store the dataset. In such cases,
when evaluating the expected profits of the server for storing a dataset, we
have to take into consideration both the costs and benefits associated with this
dataset, and the price 1t expects to receive for this dataset in the future, if 1t 1s
sold. Formally, the profits that server s expects to derive from obtaining dataset
ds, at time t, are as follows:

Pi(ds,s,t) = Vi + max{Ps(ds,s,t + 1),
expected_price; 11 — move_cost(ds, expected_winner(ds))+

Py(ds,remote £ s,t+ 1)}/ (1 +7)

where 7 is the interest rate, expected_price;y1 denotes the payments expected to
be obtained from selling the dataset at time t+1; move_cost(ds, expected_winner(ds))
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denotes the cost of moving the dataset from the winner at time ¢ to exzpected_winner(ds);
and, Ps(ds,remote # s,t+ 1) specifies the profits the server expects to obtain
from not storing the dataset at time ¢ + 1.

The profits that a server expects to obtain from not storing the dataset at
time ¢ are composed of a profit of 0 at the current time period, but it has to
take into consideration the possibility of obtaining this dataset in the future.
Formally, we state that

P(ds,remote # s,t) =
max{Ps(ds,s,t + 1) — expected_price; 41 — obtain_cost(ds, s),
P(ds,remote £ s,t+ 1)} /(1 +r)

However, in general there i1s only a low probability that the dataset will be sold
in the future, and that it will be beneficial for agent s to buy it. Thus, it is
reasonable to assume, for simplicity, that the utility for s is 0 from storing a
dataset on a remote server.

If the agents believe at time ¢ that in time ¢ 4+ 1 their expectations of the
usage at time ¢ + 1 will be the same as their current expectations of the usage at
time ¢t + 1, they also believe that no reallocation will be done at time t + 1, i.e.,
Us(ds,s,t + 1) > expected_price;11 — move_cost(ds, expected_winner(ds)) +
Us(ds, remote # s,t+1) and then we get Us(ds, s,t) = Vi+Us(ds, s, t+1)/(1+7).
Expanding this formula, we get the Us(ds, s,t) = Vi + S/ﬁ + (H‘Z;)Q 4.t (14‘-/;)N ,
which 1s the utility function defined in Section 3. We leave for future research
the formulation of the explicit formulas of the general case, where an agent at
time t may believe that some of the agents will have a different expectation at
time t+1.

6 Experimental Evaluation

In order to test the bidding techniques and compare them with other approaches,
we designed and implemented a simulation of our servers’ environment. In com-
paring the performance of the approaches, we used a measurement which ex-
cluded the payments of users for their queries and the storage costs, since the
total values of these costs do not depend on a specific allocation. So their influ-
ence on the sum of the servers’ utilities does not depend on a specific allocation.
In particular, we denote by veosts(alloc) the variable costs of an allocation which
consists of the transportation costs due to the flow of queries. Formally, given
an allocation, its variable cost 1s defined as follows:

veosts(alloc) =
Y dseDS 2oseSERVERS Usage(s, ds) x distance(s, alloc(ds)) * answer_cost

The actual measurement we use is denoted by wcost_ratio — the ratio of the
variable cost of the bidding mechanism (or another mechanism, as specified
below) and the variable cost of the static allocation. The efficiency of the bidding
technique increases as the cost_ratio decreases.

13



| |Vcost rati0|CU |CI |

static  |* 0.22266|*
bidding |0.7375 0.22255|1.0683
optimal|0.6798 0.45966|43.289

Table 1. Bidding in Complete Information Situations

First we tested the bidding mechanism where the agents have complete in-
formation about each other and about the environment. In particular, all the
agents have the same estimation of future usage of datasets, but are still un-
certain about the actual future usage. In such cases, a first bid protocol can be
used too, since no server can lie. However, we check the results of the second bid
protocol, in order to evaluate the loss of using a second bid protocol w.r.t. using
the first bid protocol. We compared three different methods: static allocation,
an optimal allocation using a central algorithm which maximizes the sum of all
the servers’ utilities, and our bidding mechanism.

In Table 1 we present the results of 50 runs of randomly generated envi-
ronments, with 200 old datasets and 20 new ones, in environments where the
relocation of old datasets is seldom beneficial since the size of the datasets is
very large. The second column (vcost ratio) in Table 1 specifies the average of
veost_ratio of the new datasets and the datasets which were reallocated. This
measurement excludes the costs of old datasets not moved in that environment.
The third column (CU) indicates the average of the relative dispersion of the
utility due to the new datasets and the ones that were moved among the agents
(std util/mean util). The last column (CI) specifies the average of the relative
dispersion of the added benefit of the new datasets and the old ones that were
moved. The variable costs obtained via the bidding mechanism were better than
the static policy results, but were not as good as the results obtained by the
central optimization algorithm.

We observed that the only case in which the bidding mechanism and the
central optimization algorithm located datasets differently were for datasets in
which their contractor’s utility of storing them locally was higher than its utility
of selling them according to the second price, but lower than its utility of selling
them according to the first price, causing the contractor to prefer not to sell
them. This effect is caused by the use of the second-price bidding. However, the
bidding mechanism has an advantage since, in any situation, it guarantees each
server a utility which 1s at least the utility it could obtain via the static policy. We
notice that the bidding mechanism yields a lower dispersion of the utility among
the agents, w.r.t. the central algorithm. That is, maximizing the sum of utilities
by the central algorithm yields a higher dispersion, with some agents unsatisfied
with the results. This was prevented, however, by the monetary system of the
bidding mechanism, which causes the dispersion of the utilities while using the
bidding mechanism to be lower and similar to that of the static allocation.

In the second set of experiments we introduced incomplete information con-
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vcost ratio|CU |CI |

static * 0.218161(*
bidding 0.791596 (0.217939|1.56416
centralized |[0.68908 0.441369(41.1896
optimal |0.685007 0.45565 [42.3611

Table 2. Bidding in Incomplete Information Situation

cerning the future usage of the datasets, (i.e., the agents didn’t know the mean
usage by clients in each area of each dataset) and asymmetric information about
past usage. To simulate such situations, we implemented a system in which
queries are sent according to keyword frequency to the servers. First, the mean
usage of each keyword by each geographical area is randomly generated. Then
the queries generator sends queries, such that the number of queries concerning a
given keyword sent from a specified geographical area is generated using Poisson
distribution, with the specified mean usage. Fach server receives queries related
to its own datasets and maintains the statistical information for estimating the
future use. However, it has no knowledge about the queries which were sent to
the other servers.

Before the bidding process starts, each agent estimates the usage frequency
of the old and the new datasets, as described in section 5.3. In particular, each
agent knows the keywords of the datasets located in the other servers. Based
on the queries sent to it w.r.t. these keywords, the agent estimates the usage of
the other agents. Thus, as the number of keywords in the system increases while
the number of datasets is kept fixed, each server has less information about the
usage frequency of datasets (since there are keywords that the agent does not
have in its datasets) and incomplete information in the system increases.

In Table 2 we present the results obtained from a simulation of 50 randomly
created environments where there was some incomplete information in the sys-
tem (the mean error of the expectations was 13% ). We compared the results
obtained by the static allocation, the bidding allocation, the centralized alloca-
tion which is obtained when maximizing the sum of servers’ utilities using all
the information stored by all the servers, and the optimal allocation found by a
centralized algorithm which also maximizes the sum of servers utilities but has
the real usage frequency. We see that the bidding allocation succeeds in reduc-
ing the average variable costs of a server, although there is a gap between its
performance and the performance of the centralized allocations. This gap was
caused since each server had only partial information about the future usage
of datasets. However, the bidding mechanism obtained a much lower standard
deviation than the centralized alternatives. We also carried out a set of simula-
tions to test the effect of the amount of incomplete information in the system
on the bidding performance, by varying the number of keywords while keeping
the number of datasets fixed. As would be expected, we found that vcost_ratio
decreases (i.e., the level of improvement w.r.t. the static allocation increases) as
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there 1s more information.

7 Conclusion

This paper presents a bidding protocol for the data allocation problem in multi-
agent environments. For complete information, we have formally proved that
bidding yields efficient and fair results. For situations in which the agents have
incomplete information, we ran simulations, and the results of the bidding ap-
proach were, on the average, better than those of the static policy.

In environments in which each server cares about the exact location of each
dataset, even when such a location is remote, a bidding protocol is not beneficial,
since the server’s agent cannot influence the location of such a dataset. For such
environments, we suggest elsewhere [10] using the strategic model of alternating
offers as a solution method, enabling each agent to influence the decision of
the exact location of each dataset, even without storing it locally. We showed,
however, that bidding is better than strategic negotiations in the environments
considered in this paper.
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