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In this paper, we propose the use of a bidding mechanism as a solutionmethod for the data allocation problem in environments where the servers areself-motivated and have no common preferences and no central controller, andwhere the clients are autonomous.2 In addition, a server is concerned about thedata stored locally, but does not have preferences concerning the exact storagelocation of data stored in remote servers. According to our approach, the locationof each data unit will be determined using a bidding mechanism, where theserver bidding the higher price for obtaining the data will actually obtain it.3This approach yields an e�cient and fair solution, its implementation is simple,and the bidders are motivated to o�er e�cient prices.Bidding has been used previously in Distributed Arti�cial Intelligence (DAI)in the contract net framework [11]. Agents in the contract net environment de-compose their tasks to subtasks and subcontract them to other agents, usingbidding. Extensions of the contract net for environments with self-motivatedagents were proposed in [9]. Mullen and Wellman [6] proposed a market pricemodel for decisions about establishing mirror sites in a network. They suggestedcompetitive-market pricing of the transportation price (when no mirror site isestablished) and the price of establishing mirror sites. However, the competitiveapproach is not useful in our environment since it is applicable only in environ-ments in which it is possible to produce more than one item of each producttype, and in our environment each data item is unique.A bidding mechanism is suggested by [8] for an automated negotiation envi-ronment, where phone companies compete to serve as carriers for long distancephone calls, with dynamic prices. In particular, they propose the use of Vick-rey's sealed bidding scheme [12]. In this kind of auction, each bidder submits onebid, in ignorance of the other bids, and the highest bidder pays the amount ofthe second-highest bid and wins. In this paper, we have implemented a sealedbidding scheme for the data allocation problem in distributed knowledge envi-ronments. We have speci�ed the rules of the bidding in the case of data allocationand suggested strategies for the servers.In the following sections, we will describe the data allocation problem andsuggest a utility function which characterizes the servers' preferences. Then wewill suggest a bidding protocol for data allocations, which is a dominant strategymechanism [5]. We will also consider the incomplete information case, whereeach server has information only about past usage frequency of local data, andsuggests how it can estimate its utility from other data items (new or remoteones) in order to bid e�ciently for them.We will discuss the servers' performancein the complete information case, as well as in the incomplete information case.2 Previous work on �le (data) allocation in distributed systems (e.g., [3]) considerssystems where a central decision maker exists, which tries to maximize the perfor-mance of the overall system. This assumption is not valid today in many cases, whenthe objective is to distribute information among self-motivated servers.3 Only one copy of each dataset is allowed, since the datasets considered are extremelylarge, and it is not e�cient to allow multiple copies of a dataset. However, if thedatasets are small it is possible to extend the model to allow multiple copies of eachdataset. 2



2 Environment DescriptionWe consider an environment in which there is a set of several (more than two)information servers, denoted by SERVERS, connected by a communications net-work. The information stored in each information server is clustered in datasets.4Each dataset is characterized by a set of keywords and contains a large num-ber of documents.5 The set of datasets in the system in a given time period isdenoted by DS.In this paper, we consider an information system where each client mayretrieve information directly from the server in which it is stored, and s/he paysthis server for the retrieved information. Therefore, in our environment, a serveris concerned only with the datasets stored in its local databases, and is indi�erentto the exact location of datasets not stored locally. The environment we considerchanges dynamically. New datasets arrive frequently, and usage frequency of olddatasets changes over time. The servers must determine the location in whicheach new dataset will be stored and they are also able to change the locationof old datasets. Since the datasets considered are very large, each dataset canbe stored only in one server, and it is forbidden for a server to store a datasetunless it has become its legal \owner." Con
icts among the servers may arisewhen two or more servers would like to store the same dataset locally.In a centralized system, a solution for such a problem is simple: the locationof each dataset will be determined so as to maximize the pro�ts of the entiresystem. But a dataset allocation which is bene�cial for the entire system may benon-bene�cial for some of the servers. In our case, where each server has its owninterests, the servers will follow the centralized solution only if it is bene�cial tothem. Thus, any proposed protocol must be fair and consider the preferences ofall the servers in order to be accepted by the designers of the servers. Moreover, ifthere is incomplete information about the usage of datasets, then the centralizedsolution is not applicable, since nobody has enough information in order tocompute this solution.In all the situations which we considered, the servers are uncertain about thefuture usage of the datasets. First, we have considered a symmetric environmentwith complete information, where all the servers have the same knowledge aboutthe past, and they have the same expectations about the future usage of eachdataset by clients located in each area, but they do not know the actual futureusage. Then, we have considered an asymmetric environment with incompleteinformation, where each server knows the past usage only of the datasets storedlocally, but can only partially estimate the past usage of datasets stored by otherservers.4 A dataset corresponds to a cluster in information retrieval, and to a �le in the �leallocation problem.5 A document corresponds to a `granule' in EOSDIS.3



3 Utility FunctionsIn this section, we will describe the components of the utility derived by a serverfrom storing a dataset. Recall that each server receives queries from clients andanswers them by sending back documents which belong to the datasets locatedin its databases. The clients pay the server a query price per document that isretrieved as an answer to a query. We assume that there is a monetary systemin the environment which is used for this payment, as well as for other paymentsdescribed below.The cost of sending a document to a client depends on the virtual distancebetween the client and the server. It is measured in terms of delivery time,which plays an important role in loaded systems in which the documents arevery large (e.g., images). For simplicity, we assume that each client is located ina geographical area of one of the servers, and in order to compute the distancebetween server i and a client which is located in the geographical area of serverj, we use the distance between servers i and j. The function distance speci�esthe virtual distance between any two servers. The term answer cost speci�esthe cost for a server providing a client from another area with one documentover one unit of distance.An important factor that plays a role in the utility function of a server froma speci�c dataset located in its database is the expected usage of this datasetby clients. Usage : SERV ERS �DS 7! R+ is a function which associates witheach server and a dataset the number of documents belonging to this datasetwhich will be requested by clients located in the geographical area of that server,during one time period (e.g., one week, one month, etc.). In addition, considerthe storage cost. We denote by storage cost the cost of storing one data unit ofa dataset in a server for one time period,6 and the function dataset size speci�esthe size of each dataset in data units. Each server calculates the utility it obtainsfrom a dataset location, given its estimation of the expected query 
ows relatedto this dataset. Note that storage cost and answer cost are common to all theservers. The following attribute de�nes the utility (or loss) for a server in onetime period from one dataset stored in it, when its usage is known.Attribute 3.1 The pro�ts which server s expects to obtain from storing datasetds locally for one time period are as follows:Vs(ds) = �storage cost � dataset size(ds)+Ps02SERV ERS(usage(s0; ds) � (answer price� distance(s; s0) � answer cost)):Vs considers the costs and bene�ts due to queries which are obtained at onetime period, and also the storage cost which is expected to be paid at each timeperiod (e.g., using the disk space).The following attribute de�nes the pro�ts Ps which server s expects to obtainfrom storing one dataset over time.We assume that there is a monetary system inwhich each server is able to borrow any required amount of money at the current6 For simplicity, we assume that storage space is not restricted.4



interest rate r. Using this interest rate, Ps is evaluated as the net present value(NPV) of future income from queries related to the dataset, computed w.r.t.the interest rate r. The NPV is used in �nancing systems in order to �nd thevalue of an investment. It is computed by discounting the cash 
ows at the �rm's\opportunity cost" of capital [2]. We will use the same term for �nding the valueof a dataset storage, considering the dataset as a possible investment.The function below speci�es the net present value of the pro�ts 
ow acceptedby server s related to dataset ds, assuming that ds will be stored in loc inde�-nitely. In subsection 5.5 we will discuss the expected pro�ts for situations whereold datasets can be reallocated.Attribute 3.2 The pro�ts which server s expects to obtain from a dataset dslocated in loc from time 0 until time N, given Vs, is as follows:Ps(ds; loc) = (PNt=0 Vs(ds)(1+r)t loc = s0 otherwisewhere r is the interest rate, and N is the number of periods during which theenvironment exists. If the environment is considered to exist forever, then N =1. In this case, Ps(ds; loc) = Vs(ds) � (1 + r)r :We denote by Us(ds; loc) the utility which a sever s obtains from a dataset dswhich is stored in location loc. In order to evaluate Us, the server will considerthe expected pro�ts as well as the risk involved in obtaining these pro�ts. Sucha risk is involved in both the complete and the incomplete environments whichwe consider in this paper, since in both cases, usage is only estimated, and theserver is not sure about the value of a dataset, since the queries 
ow is notcertain and thus the payments due to queries are not certain. If s is risk neutral,i.e., its utility is determined only regarding its expected pro�ts [4], then itsutility function is the same as its expected pro�ts, and Us(ds; loc) = Ps(ds; loc).Otherwise, if s is risk averse, then the uncertainty involved in future queries
ows will in
uence the utility it derives from storing the dataset, so Us willbe risk adjusted in order to consider the element of uncertainty involved in itsexpected pro�ts [2], i.e., Us(ds; loc) < Ps(ds; loc). Similarly, if s is risk prone,then Us(ds; loc) > Ps(ds; loc). In the following sections, unless explicitly written,we assume risk neutral servers.4 The Trading MechanismBidding sessions are carried on during prede�ned time periods. When new datasetsarrive, they are stored in a temporary bu�er until the next bidding session, whentheir location will be decided upon. Each server is represented by an automatedagent, which participates in the bidding session. In the rest of the paper we willuse a server and its agent interchangeably.5



Each server is responsible for the datasets it stores, and the initial responsi-bility for each new dataset is determined according to a static policy: the serverwith the areas of interest closest to a new dataset will be responsible for it.7 Atthe beginning of a bidding session, each agent broadcasts an announcement foreach new dataset it is responsible for, and also for some of its old local datasets.An announcement of the availability of a dataset by agent s 2 SERVERS, de-noted as the contractor, indicates that agent s would like to sell this dataset.In the next step of the bidding session, for each announcement and for eachagent s0 2 SERVERS, such that s0 is not the contractor which has made theannouncement, s0 sends a sealed bid to the contractor. A bid contains the price,in standard currency, which s0 is willing to pay the contractor in order to storethe dataset made available in the announcement in s0 (i.e., to buy the dataset.) Ifit does not want to buy this dataset, it will bid a negative price, which indicateshow much it would like the contractor to pay it, in order for it to agree to storethis dataset locally. All the bids must be sent up until a prede�ned deadline.The contractor of each dataset collects all the bids related to this dataset up tothe deadline.In the third step of the bidding session, which is called the awarding step,the winner of each announcement is determined by its contractor. For each an-nouncement, the winning agent will be the agent with the highest bid, but theprice it pays will be determined according to the second highest bid. The pricepaid is based on Vickrey's sealed bidding, and the bidding of true values is adominant strategy in this protocol. That is, for each dataset, the best biddingstrategy for each agent is to bid a price which is equal to its utility from storingthis dataset, and this is independent of the other bids [12].In the awarding step, each agent will broadcast an award message for allannouncements it made in the �rst step. In this message, it will include the\winner" of the dataset, which is the highest bidder, the price it has to pay, aswell as the agent that sent the second-highest bid. If the second bid is less thanthe utility the contractor derives from storing the dataset of the announcementby itself, or if there is only one bidder (which is a rare event, since all serversare supposed to send a bid for each dataset), then the contractor will continueto store the dataset locally (or obtain it, if the dataset is new).The agents are assumed to be self-interested, and each one tries to maximizeits own utility. In order to do so, it is able to borrow money at the current in-terest rate r. Thus, the agents do not need any initial budget. In our protocol,there is no need to synchronize the announcements and awarding messages ofdi�erent datasets. Simultaneous announcement of awards is not necessary, sincewe assume that the utility from one dataset location is independent of the loca-tion of other datasets. The simultaneous bidding is also unnecessary, since as wewill show below, the dominant strategy for each bidder is to bid its true value,and this holds also if it has information regarding the other bids.7 The initial owner can also be determined by the source of the information, whichwill direct the dataset to the server with the nearest topics6



5 Attributes of the Bidding ProtocolIn this section we will describe some of the attributes of the bidding protocol.We will prove that it is a dominant strategy mechanism, and we will presenta strategy that enables an agent to choose datasets to announce when the an-nouncement process is costly.5.1 Details of the ProtocolIn the following, we present the costs and concepts related to the bidding process.The function contractor speci�es for each dataset its current \owner," which willbe its contractor during the bidding session. For an old dataset, this is the agentwhere it is currently stored, and for a new dataset, this is the agent which isresponsible for this dataset (as explained in section 4). The function move costassociates with a dataset, ds, and a server the cost for the server contractor(ds)to move the dataset from it to the speci�ed server. If the dataset is new, thenit is stored in the temporary bu�er, and contractor(ds) has no costs involved inmoving it, so move cost is 0. The function obtain cost associates with a datasetand a server, the cost for the server to move a dataset to its location from theserver contractor(dataset), if it is an old dataset, or from the temporary bu�erotherwise. Relocating datasets is costly both to the sender and the receiver,since we take into consideration the communication time required on both sidesin order to reallocate a dataset. But, allocating a dataset in its initial locationcauses costs only to the buyer, since it receives the dataset from the temporarybu�er, but doesn't use the contractor's resources, since it is not the sender in thatcase. Finally, we denote by price suggested(b,ds) the price suggested by bidder bfor dataset ds.After a contractor announces a dataset, each server sends a bid concerningthis dataset. Sending a bid is free (all the costs related to the process of biddingfor a dataset are covered by its contractor). Thus, in general, each agent willsend a bid for any dataset in the system. The contractor for each dataset collectsall the bids related to this dataset until a prede�ned deadline occurs. Then ithas to decide whether to move the dataset, and if so, where to move it to.The function move(ds) will associate \true" with a dataset ds, if the agentcontractor(ds) can bene�cially move the dataset to another server, given a setof bids, and \false," otherwise. Further discussion on move(ds) appears below.If the contractor decides to move the dataset, it must abide by the followingregulations of our bidding protocol. Deviation from this protocol is revealedimmediately and yields a penalty. The following attribute de�nes the winner ofa dataset, as determined by the protocol proposed here.Attribute 5.1winner(ds) =8>>>><>>>>:argmaxbidder2SERV ERS move(ds)= trueprice suggested(bidder; ds)�move cost(ds; bidder)gnone otherwise7



If there is more than one bidder with the same maximal value ofprice suggested(bidder; ds)�move cost(ds; bidder), then the contractor will se-lect one of them (arbitrarily) to be the winner, and the other will be consideredto be the bidder with the second highest price.The price paid by the winning agent (if it exists) is the second best bid, w.r.t.the net suggested price. That is, if the dataset is new, then the �nal price willbe precisely the amount of the second best bid, and if the dataset is old andalready stored by the contractor, then the �nal price will be the second bestprice, deducting the costs of moving the dataset to the bidder of the second bestprice, but including the costs of moving the dataset to the winner. Our protocolis di�erent from the basic bidding protocol [12], since we include the paymentsof the relocation costs in the protocol, and thus the desired properties of thebidding mechanism should be proved for this modi�ed protocol.Attribute 5.2 The price which will be paid by the winning agent, if such awinner exists, is:price(ds)=second maxbidder 6=contractor(ds)fprice suggested(bidder; ds)�move cost(ds; bidder) j bidder 2 SERV ERSg +move cost(ds; winner)As mentioned above, the contractor must specify the winner, the second priceand the agents which o�ered the second price in its awarding message, and thereis a high penalty for revealed lies. It is easy to show that if there is a penalty forrevealed lies, then the contractor would follow the regulation above. It will not bemotivated to specify a price higher than the second price in its awarding message,since such a lie can be revealed immediately by the agent that is speci�ed by thecontractor as the sender of the second price. It would also not be motivated tospecify a lower price, since this would never be bene�cial for it.5.2 Bidding StrategiesGiven the above regulations in the bidding protocol, and given a set of bids,the contractor will decide whether or not to move an old dataset, i.e., whethermove(ds) is true or false. We suggest that the contractor move a dataset ifthe utility it is able to derive from selling it is more than the utility it canderive from continuing to store the dataset, (if there is only one bidder, then thedataset will not be moved). Note that this is not part of the regulations, but isthe best strategy for a self-motivated contractor if it must choose the price andthe winner, as described above.Attribute 5.3 Situations in which it is bene�cial for the contractor to move adataset, ds, are:move(ds)=true ifjbiddersj > 1 and second maxfprice suggested(bidder; ds)�move cost(ds; bidder) j bidder 2 SERV ERSg �Ucontractor(ds)(ds; contractor(ds)):8



In the following lemma we state that the winning agent will derive a nonneg-ative utility from obtaining the dataset.Lemma1. If there is a winner of an announcement, and if it is chosen asspeci�ed in attribute 5.1 and is paid price(ds) as speci�ed in attribute 5.2, thenif the winner's bid was exactly equal to its utility from obtaining the dataset, itwill have a nonnegative utility from \buying" the dataset, deducting the price itshould pay.Proof. Denote by winner the winning agent, by second the agent with the secondo�er, and by ds the dataset being considered. Suppose the winner o�ered exactlythe utility it will derive from obtaining the dataset. Then, the utility which thewinner will derive obtaining dataset is exactly price suggested(winner; ds). Theprice it will have to pay isprice suggested(second; ds) �move cost(ds; second) +move cost(ds; winner).By de�nition,price suggested(second; ds) �move cost(ds; second))is lower or equal than the chosenprice suggested(winner; ds) �move cost(ds; winner)).Thus, price suggested(second; ds) �move cost(ds; second) +move cost(ds; winner) � price suggested(winner; ds). utNow we will state that each agent's bid will be equal to its utility fromobtaining the dataset, for each dataset.Lemma2. In a protocol where the best bidder wins and pays the second priceas speci�ed in attributes 5.1 and 5.2, each bidder will bid according to its utilityfrom storing this dataset, deducting the cost of obtaining it. I.e.,price suggested(bidder; ds) = Ubidder(ds; bidder)� obtain cost(ds; bidder):Bidding the real utility is the dominant strategy, and the proof is similar tothat of the Vickrey auction [12]. However, in our case, the winner incurs expensesrelated to obtaining the dataset, and the contractor incurs expenses related tomoving the datasets to the winner (costs of resources needed for the move). Thus,the price paid by the winner is di�erent than the second price, as described inattribute 5.2. Another di�erence is that, in our case, the contractor itself has itsown interests and preferences and has the ability not to move a dataset if theo�ers it receives are too low, as described in attribute 5.3. These changes causethe proof to be slightly di�erent from the original. Using the above lemmas wehave proved the following theorem.Theorem3. If bidding is free, then the allocation reached by the bidding protocolalways yields better or equal utility for each server than does using the staticpolicy. The utility function of each server is evaluated according to its expectedpro�ts from the allocation. 9



In summary, the protocol which we suggest can be implemented in a dis-tributed system in which no central controller exists: its implementation is sta-ble and will ensure satisfactory results. However, even though bidding the trueutility of obtaining the dataset is a dominant strategy, it may be bene�cial forthe �rst and second bidders to cooperate based on an agreement negotiatedbetween them prior to the bidding, so that the second bidder will bid a lowerprice, and the �rst bidder - the winner - will pay a reduced amount. That is,bidding the true utility is not in a strong Nash equilibrium [1], since there maybe a subgroup of agents which can gain when they deviate together from thesuggested strategies. If communication during the bidding process is forbidden,then the servers will not be able to cooperate. In situations where cooperationmay occur, if there is complete information, then should the agents cooperate,the same winner will be chosen per dataset (as in the case of honest reports), sothat the bidding process will result in the same allocation, but the gains will bedistributed di�erently among the agents.8 In situations of incomplete informa-tion, the \winner" is not known before the bidding begins, and in order to lowerprices cooperation among bidders is not stable, since an agent may agree to bida low price and then bid a higher one in order to obtain the dataset for itself.5.3 Estimating UsageIn real-world situations, the agents may have incomplete information about theworld. Thus, evaluating their expected pro�ts is problematic. In our environ-ment, we assume that all agents have common knowledge about storage costand answer cost, but may have asymmetric information about the usage ofold datasets and usage of keywords in the past queries, and thus the agentswill have an asymmetric and uncertain information about the future usage ofdatasets. Each agent knows only the past usage of its local datasets, so it willestimate the future usage of these datasets for each geographical area, usingits knowledge of the past usage. Estimating the future usage of new datasetsand datasets located in remote servers is more di�cult, since the agent has noknowledge regarding their past usage. In order to accomplish this, the agent willuse information about the datasets' contents. Each dataset is characterized byseveral keywords, and each query consists of keywords. When a query is handled,the server saves the information about the query, including the keywords whichthe query contains, i.e., the agent saves the past usage of each area for eachkeyword and each local dataset.When an estimation about a new or remote dataset is required, the agentuses the information it has about the keywords' past usage and computes theexpected usage of the dataset according to the keywords it is familiar with. Thefuture usage of a new dataset by each geographical area can also be estimatedaccording to the past usage of similar datasets, when their similarity is measuredaccording to the keyword contents.8 Note, however, that if there is complete information, a simple protocol which enforcesbidding the expected utility can be used.10



For simplicity, we assume that the clients form their queries according tokeywords and that each query is sent to all the datasets containing that keyword.Under these assumptions, an agent can determine the usage frequency of a newor remote dataset ds for a given area to be the sum of the usage frequency of allthe keywords contained in ds. If it does not have data about a keyword which isassociated with ds, i.e., no local dataset contains this keyword, then it can usethe average usage frequency of all the keywords for the unknown value.Formally, suppose that there where T time periods before the current biddingsession, key usage(area; key) indicates the volume of usage of key in di�erentqueries of clients located in the area of server in the previous time periods,dataset usage(area; ds) indicates the volume of usage of ds by area in the pre-vious time periods, and exp usages(area; ds) indicates the expectations of agents about the usage of ds by area; thenexp usages(area; ds) = 8<:dataset usage(area; ds)=T contractor(ds)=sand is old(ds)Pkey2ds key usage(area; key)=T otherwise:A more complex learning schema may be considered in order to estimate thefuture usage of datasets for situations where queries are formed di�erently, whenkeywords are related, etc., but we leave this for future work. After estimatingthe future usage of a dataset, the agent can compute its expected utility fromobtaining the dataset, according to the utility function we presented above andw.r.t. the risk involved, as described in Section 3.5.4 Choosing DatasetsAnother issue related to the bidding protocol is how an agent should choose abene�cial set of datasets to announce for bidding. If there is no cost associatedwith dataset announcement and bidding, then each agent will announce all itsdatasets, including all its old datasets. However, the announcements can beexpensive, due to costs of time and communication. Alternatively, the biddingprotocol can limit the number of datasets which an agent can announce, forenvironments with a large number of datasets. In such cases, each agent willhave to select carefully which datasets to announce.In order to estimate exp announcement profit, which denotes the pro�tsthe agent expects to obtain from an announcement, the agent has to estimatewhich prices it will receive as bids. According to lemma 1, the price which eachagent will o�er is equal to its utility from storing the dataset, deducting the costfor obtaining the dataset. Thus, in order to decide which dataset to announce,an agent has to estimate the expected utility of the other agents and to computethe expected price it will obtain. The next attribute de�nes the pro�t which theagent expects to derive from an announcement. If the pro�t from moving thedataset is negative, then the contractor will continue to store the dataset, and,in this case, the pro�t of the announcement is zero. In particular, the expectedpro�t includes the payments which are expected to be obtained for this action11



(expected price(ds)), deducting the utility from continuing to store the datasetand the cost of moving the dataset to the new location.Attribute 5.4 The expected pro�t from announcing a dataset ds:exp announcement pro�t (ds)=maxf0; expected price(ds) �move cost(ds; expected winner(ds))�Ucontractor(ds)(dataset; contractor(ds))g:If the contractor is risk-neutral, it will announce only those datasets with anexpected pro�t which exceeds the cost of announcing the dataset. If there is alimit on the number of the announcements, it will announce the datasets withthe highest expected pro�ts. If the contractor is risk-averse, then it will considerin its evaluation the risk involved in the expected price and the risk involved inits expected pro�ts from retaining the dataset.As described above, in order to determine expected price(ds) and to be ableto compute exp announcement profit(ds), the agent, s, needs to compute theprices which would be o�ered by the bidders for ds. The price o�ered by a bidderŝ depends on its utility function (Uŝ), which consists of the expected usage of ŝfor ds. Thus, in order to evaluate the expected pro�t of announcing a dataset,the potential contractor needs to estimate the value of expected usageŝ. If theagent does not have information about ŝ's estimation, we propose that it shoulduse its own estimation of the expected usage, which is computed as speci�ed inSection 5.3, as the estimation of ŝ, i.e., we will assume that expected usageŝ =expected usages. If the agent knows which keywords appear in ŝ's datasets, itcan estimate expected usageŝ by using only the keywords that appear both inits own datasets and in ŝ's datasets. This may lead to a better estimation of theother agent's beliefs.5.5 Utility Function -elocation CaseIn Section 3 we de�ned the pro�ts which a server expects to obtain from storinga dataset inde�nitely. However, there is a possibility that at some future time,the dataset will be moved to another server. This could happen if its ownerannounces it, and is o�ered compensation which is at least equivalent to theexpected pro�t obtained while continuing to store the dataset. In such cases,when evaluating the expected pro�ts of the server for storing a dataset, wehave to take into consideration both the costs and bene�ts associated with thisdataset, and the price it expects to receive for this dataset in the future, if it issold. Formally, the pro�ts that server s expects to derive from obtaining datasetds, at time t, are as follows:Ps(ds; s; t) = Vs +maxfPs(ds; s; t+ 1);expected pricet+1 �move cost(ds; expected winner(ds))+Ps(ds; remote 6= s; t+ 1)g=(1 + r)where r is the interest rate, expected pricet+1 denotes the payments expected tobe obtained from selling the dataset at time t+1;move cost(ds; expected winner(ds))12



denotes the cost of moving the dataset from the winner at time t to expected winner(ds);and, Ps(ds; remote 6= s; t + 1) speci�es the pro�ts the server expects to obtainfrom not storing the dataset at time t+ 1.The pro�ts that a server expects to obtain from not storing the dataset attime t are composed of a pro�t of 0 at the current time period, but it has totake into consideration the possibility of obtaining this dataset in the future.Formally, we state thatPs(ds; remote 6= s; t) =maxfPs(ds; s; t+ 1)� expected pricet+1 � obtain cost(ds; s);Ps(ds; remote 6= s; t+ 1)g=(1 + r)However, in general there is only a low probability that the dataset will be soldin the future, and that it will be bene�cial for agent s to buy it. Thus, it isreasonable to assume, for simplicity, that the utility for s is 0 from storing adataset on a remote server.If the agents believe at time t that in time t + 1 their expectations of theusage at time t+1 will be the same as their current expectations of the usage attime t+ 1, they also believe that no reallocation will be done at time t+ 1, i.e.,Us(ds; s; t + 1) > expected pricet+1 � move cost(ds; expected winner(ds)) +Us(ds; remote 6= s; t+1) and then we get Us(ds; s; t) = Vs+Us(ds; s; t+1)=(1+r).Expanding this formula, we get the Us(ds; s; t) = Vs+ Vs1+r + Vs(1+r)2 + :::+ Vs(1+r)N ,which is the utility function de�ned in Section 3. We leave for future researchthe formulation of the explicit formulas of the general case, where an agent attime t may believe that some of the agents will have a di�erent expectation attime t+1.6 Experimental EvaluationIn order to test the bidding techniques and compare them with other approaches,we designed and implemented a simulation of our servers' environment. In com-paring the performance of the approaches, we used a measurement which ex-cluded the payments of users for their queries and the storage costs, since thetotal values of these costs do not depend on a speci�c allocation. So their in
u-ence on the sum of the servers' utilities does not depend on a speci�c allocation.In particular, we denote by vcosts(alloc) the variable costs of an allocation whichconsists of the transportation costs due to the 
ow of queries. Formally, givenan allocation, its variable cost is de�ned as follows:vcosts(alloc) =Pds2DSPs2SERVERS usage(s; ds) � distance(s; alloc(ds)) � answer costThe actual measurement we use is denoted by vcost ratio { the ratio of thevariable cost of the bidding mechanism (or another mechanism, as speci�edbelow) and the variable cost of the static allocation. The e�ciency of the biddingtechnique increases as the cost ratio decreases.13



vcost ratio CU CIstatic * 0.22266 *bidding 0.7375 0.22255 1.0683optimal 0.6798 0.45966 43.289Table 1. Bidding in Complete Information SituationsFirst we tested the bidding mechanism where the agents have complete in-formation about each other and about the environment. In particular, all theagents have the same estimation of future usage of datasets, but are still un-certain about the actual future usage. In such cases, a �rst bid protocol can beused too, since no server can lie. However, we check the results of the second bidprotocol, in order to evaluate the loss of using a second bid protocol w.r.t. usingthe �rst bid protocol. We compared three di�erent methods: static allocation,an optimal allocation using a central algorithm which maximizes the sum of allthe servers' utilities, and our bidding mechanism.In Table 1 we present the results of 50 runs of randomly generated envi-ronments, with 200 old datasets and 20 new ones, in environments where therelocation of old datasets is seldom bene�cial since the size of the datasets isvery large. The second column (vcost ratio) in Table 1 speci�es the average ofvcost ratio of the new datasets and the datasets which were reallocated. Thismeasurement excludes the costs of old datasets not moved in that environment.The third column (CU) indicates the average of the relative dispersion of theutility due to the new datasets and the ones that were moved among the agents(std util/mean util). The last column (CI) speci�es the average of the relativedispersion of the added bene�t of the new datasets and the old ones that weremoved. The variable costs obtained via the bidding mechanism were better thanthe static policy results, but were not as good as the results obtained by thecentral optimization algorithm.We observed that the only case in which the bidding mechanism and thecentral optimization algorithm located datasets di�erently were for datasets inwhich their contractor's utility of storing them locally was higher than its utilityof selling them according to the second price, but lower than its utility of sellingthem according to the �rst price, causing the contractor to prefer not to sellthem. This e�ect is caused by the use of the second-price bidding. However, thebidding mechanism has an advantage since, in any situation, it guarantees eachserver a utility which is at least the utility it could obtain via the static policy. Wenotice that the bidding mechanism yields a lower dispersion of the utility amongthe agents, w.r.t. the central algorithm. That is, maximizing the sum of utilitiesby the central algorithm yields a higher dispersion, with some agents unsatis�edwith the results. This was prevented, however, by the monetary system of thebidding mechanism, which causes the dispersion of the utilities while using thebidding mechanism to be lower and similar to that of the static allocation.In the second set of experiments we introduced incomplete information con-14



vcost ratio CU CIstatic * 0.218161 *bidding 0.791596 0.217939 1.56416centralized 0.68908 0.441369 41.1896optimal 0.685007 0.45565 42.3611Table 2. Bidding in Incomplete Information Situationcerning the future usage of the datasets, (i.e., the agents didn't know the meanusage by clients in each area of each dataset) and asymmetric information aboutpast usage. To simulate such situations, we implemented a system in whichqueries are sent according to keyword frequency to the servers. First, the meanusage of each keyword by each geographical area is randomly generated. Thenthe queries generator sends queries, such that the number of queries concerning agiven keyword sent from a speci�ed geographical area is generated using Poissondistribution, with the speci�ed mean usage. Each server receives queries relatedto its own datasets and maintains the statistical information for estimating thefuture use. However, it has no knowledge about the queries which were sent tothe other servers.Before the bidding process starts, each agent estimates the usage frequencyof the old and the new datasets, as described in section 5.3. In particular, eachagent knows the keywords of the datasets located in the other servers. Basedon the queries sent to it w.r.t. these keywords, the agent estimates the usage ofthe other agents. Thus, as the number of keywords in the system increases whilethe number of datasets is kept �xed, each server has less information about theusage frequency of datasets (since there are keywords that the agent does nothave in its datasets) and incomplete information in the system increases.In Table 2 we present the results obtained from a simulation of 50 randomlycreated environments where there was some incomplete information in the sys-tem (the mean error of the expectations was 13% ). We compared the resultsobtained by the static allocation, the bidding allocation, the centralized alloca-tion which is obtained when maximizing the sum of servers' utilities using allthe information stored by all the servers, and the optimal allocation found by acentralized algorithm which also maximizes the sum of servers utilities but hasthe real usage frequency. We see that the bidding allocation succeeds in reduc-ing the average variable costs of a server, although there is a gap between itsperformance and the performance of the centralized allocations. This gap wascaused since each server had only partial information about the future usageof datasets. However, the bidding mechanism obtained a much lower standarddeviation than the centralized alternatives. We also carried out a set of simula-tions to test the e�ect of the amount of incomplete information in the systemon the bidding performance, by varying the number of keywords while keepingthe number of datasets �xed. As would be expected, we found that vcost ratiodecreases (i.e., the level of improvement w.r.t. the static allocation increases) as15



there is more information.7 ConclusionThis paper presents a bidding protocol for the data allocation problem in multi-agent environments. For complete information, we have formally proved thatbidding yields e�cient and fair results. For situations in which the agents haveincomplete information, we ran simulations, and the results of the bidding ap-proach were, on the average, better than those of the static policy.In environments in which each server cares about the exact location of eachdataset, even when such a location is remote, a bidding protocol is not bene�cial,since the server's agent cannot in
uence the location of such a dataset. For suchenvironments, we suggest elsewhere [10] using the strategic model of alternatingo�ers as a solution method, enabling each agent to in
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