
Diffusion Centrality in Social Networks

Chanhyun Kang∗, Cristian Molinaro†, Sarit Kraus‡, Yuval Shavitt§ and V.S. Subrahmanian∗
∗ Department of Computer Science, University of Maryland, USA

Email: {chanhyun,vs}@cs.umd.edu
† Department of Electronics, Computer and System Sciences, Università della Calabria, Italy

Email: cmolinaro@deis.unical.it
‡ Department of Computer Science, Bar-Ilan University, Israel

Email: sarit@cs.biu.ac.il
§ School of Electrical Engineering, Tel Aviv University, Israel

Email: shavitt@eng.tau.ac.il

Abstract—Though centrality of vertices in social networks has
been extensively studied, all past efforts assume that centrality
of a vertex solely depends on the structural properties of
graphs. However, with the emergence of online “semantic” social
networks where vertices have properties (e.g. gender, age, and
other demographic data) and edges are labeled with relationships
(e.g. friend, follows) and weights (measuring the strength of a
relationship), it is essential that we take semantics into account
when measuring centrality. Moreover, the centrality of a vertex
should be tied to a diffusive property in the network - a Twitter
vertex may have high centrality w.r.t. jazz, but low centrality
w.r.t. Republican politics. In this paper, we propose a new notion
of diffusion centrality (DC) in which semantic aspects of the
graph, as well as a diffusion model of how a diffusive property
p is spreading, are used to characterize the centrality of vertices.
We present a hypergraph based algorithm to compute DC and
report on a prototype implementation and experiments showing
how we can compute DCs (using real YouTube data) on social
networks in a reasonable amount of time. We compare DC with
classical centrality measures like degree, closeness, betweenness,
eigenvector and stress centrality and show that in all cases, DC
produces higher quality results. DC is also often faster to compute
than both betweenness, closeness and stress centrality, but slower
than degree and eigenvector centrality.

I. INTRODUCTION

An increasingly important problem in social networks (SNs)

is that of assigning a “centrality” value to vertices reflecting

their importance within the SN. Well-known measures such

as degree centrality [1], [2], betweenness centrality [3], [4],

stress centrality [5], closeness centrality [6], [7], eigenvector
centrality [8] only take the structure of the network into

account - they do not take properties of the vertices or

properties or weights of edges into account when computing

centrality. As a consequence, any “semantics” embedded in

the network is ignored. This can cause serious problems as

shown in the following toy example.

Example 1 (HIV): Figure 1 shows 4 people a, b, c, d, where

b has HIV. Solid edges denote sexual relationships, while

dashed edges denote friend relationships (Figure 1 shows undi-

rected edges as sexual and friend relationships are symmetric).

Edge weights denote the intensity of these relationships.

The table below shows the centrality of all vertices according

to the most common centrality measures in the literature.

a

c

d

b
1

1

20

15

Fig. 1: A small HIV social network. Shaded vertices denote

people with HIV.

Centrality Measure a b c d

Degree 1 0.33 0.66 0.66

Betweenness 2 0 0 0

Stress 2 0 0 0

Closeness 0.33 0.2 0.25 0.25

Eigenvector 0.375 0.125 0.25 0.25

Intuitively, the “central” person in this network (from the

point of view of minimizing spread of HIV) is b, because

he is the only person with HIV. However, b has the lowest

centrality according to all five centrality measures above.

Another problem with existing centrality measures is that

they ignore how properties (e.g. HIV) diffuse through the
SN, solely focusing on the structure of the network. We

can readily think of networks (e.g. Twitter) where person

A has highest centrality in terms of spread of support for

Republicans, while person B is the central player in terms

of spread of support for conserving gorillas. The network in

both cases is the same (Twitter), but the centrality of vertices

should be measured both by the structural properties of the

graph and by a vertex’s ability to diffuse a given property.

This paper proposes the novel notion of diffusion centrality

that takes an SN, a diffusive property p, and a previously
learned diffusion model D for p, and defines centrality of
vertices based on these inputs. We do not provide algorithms

to automatically learn diffusion models - interested readers

may find one such algorithm in [9]. The contributions of the

paper are as follows: (i) We formally define diffusion centrality
and show how it captures the intuitions of Example 1. (ii)
We propose a “hypergraph fixed point algorithm” and use

it to develop the HyperDC algorithm. (iii) We report on an

2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

978-0-7695-4799-2/12 $26.00 © 2012 IEEE

DOI 10.1109/ASONAM.2012.95

557

2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

978-0-7695-4799-2/12 $26.00 © 2012 IEEE

DOI 10.1109/ASONAM.2012.95

558

experimental evaluation comparing diffusion centrality with

classical centrality measures in terms of both running time and

“quality” of the central vertices determined by the different

centrality measures. Experimental results show that diffusion

centrality determines higher quality central vertices, is often

faster to compute than betweenness, closeness and stress

centrality, but slower than degree and eigenvector centrality.

II. PRELIMINARIES

We formally define social networks (SNs) and a language

to express diffusion models.1 We assume the existence of a

set VP of unary predicate symbols (to capture properties of

vertices in a social network), called vertex predicate symbols
(also referred to as properties), and a set EP of ternary

predicate symbols (intended to capture relationships between

vertices in a social network), called edge predicate symbols.

Definition 1 (Social Network): A social network (SN) is a

4-tuple S = (V,E,VL, ω) where:

1) V is a finite set whose elements are called vertices;

2) E ⊆ V × V × EP is a finite set of (labeled) edges;

3) VL : V → 2VP assigns a set of properties to each

vertex;

4) ω : E → R assigns a weight to each edge.

Example 2: Consider the SN of Example 1. Here, VP =
{hiv} and EP = {sp, fr}, where sp and fr stand for sexual

and friend relationships, respectively. The SN is defined as:

• V = {a, b, c, d}.
• E = {〈a, b, sp〉, 〈b, a, sp〉, 〈a, c, sp〉, 〈c, a, sp〉, 〈a, d, fr〉,
〈d, a, fr〉, 〈c, d, fr〉, 〈d, c, fr〉}.

• VL(b) = {hiv}; VL(a) = VL(c) = VL(d) = ∅.
• ω(〈a, b, sp〉) = ω(〈b, a, sp〉) = ω(〈a, c, sp〉) =

ω(〈c, a, sp〉) = 1; ω(〈a, d, fr〉) = ω(〈d, a, fr〉) = 20;

ω(〈c, d, fr〉) = ω(〈d, c, fr〉) = 15.

Diffusion models specify how vertex properties “propa-

gate”. Diffusion models fall into three categories: tipping
models in which a vertex adopts a behavior when a sufficiently

large percentage of its neighbors adopt the behavior [10],

[11], cascading models in which diffusions cascade across

the network (cascade models have been developed for product

adoptions [12], the SIR model of disease spread [13], marking

photos as favorites in Flickr [14]), and homophilic models in

which vertices adopt behaviors on the basis of their intrinsic

properties but not on the basis of network structure [15].

Consider an SN S = (V,E,VL, ω). We assume the ex-

istence of a set V of variables ranging over vertices and a

set W of variables ranging over real numbers. If p ∈ VP
and X ∈ V ∪ V , then p(X) is a vertex atom. If e ∈ EP,

X1, X2 ∈ V ∪ V , and W ∈ W ∪R, then e(X1, X2,W) is an

edge atom. If W1,W2 ∈ W∪R and op ∈ {=, 	=,≤, <,≥, >},
then W1 op W2 is a comparison atom. An atom is ground iff

no variable appears in it.

A diffusion rule r for a property p ∈ VL is an expression:

P(p(X) |A1 ∧ · · · ∧An) = c

1Other syntaxes can also be used to express diffusion models. The syntax
is not claimed as a major contribution of this paper.

where p(X) is a vertex atom, A1, . . . , An are (vertex or edge

or comparison) atoms, and c ∈ [0, 1] is a real number. body(r)
denotes the set {A1, · · · , An}. Intuitively, this diffusion rule

states that the confidence of X having property p, given that

A1∧ . . .∧An holds is c. r is ground iff there are no variables

occurring in it. grd(r) denotes the set of ground instances
of diffusion rule r, i.e., the set of all ground rules obtained

from r by replacing every occurrence of a variable in V with

a vertex and every occurrence of a variable in W with a real

number, with multiple occurrences of the same variable being

replaced in the same way.

A diffusion model D w.r.t. property p is a finite set of

diffusion rules for p. grd(D) denotes the set of all ground

instances of diffusion rules in D, i.e. grd(D) = ⋃
r∈D grd(r).

Example 3: A simple diffusion model Dhiv for hiv may

contain the following rules:

P(hiv(X) | sp(X,Y,W) ∧ W > 0 ∧ hiv(Y)) = 0.9.
P(hiv(X) | fr(X,Y,W) ∧ sp(Y, Z,W ′)∧

W > 10 ∧ W ′ > 0 ∧ X �= Z ∧ hiv(Z)) = 0.4.
P(hiv(X) | sp(X,Y,W) ∧ sp(Y, Z,W ′)∧

W > 0 ∧ W ′ > 0 ∧ X �= Z ∧ hiv(Z)) = 0.6.

The first rule says that the confidence of a vertex having HIV

is 90% if one of its sexual partners has HIV. The second rule

says that the confidence of a vertex having HIV, given that

it has a good friend (with weight over 10) who is a sexual

partner of a vertex with HIV is 40%. The last rule can be

similarly read.

Example 4: Suppose the SN in Figure 1 represents Cell
phone users and vertices have properties like male, female,

young, old, and adopter telling us if the user adopted a cell

phone plan. The phone company wants to identify important

users. Suppose d is male and everyone else is female; initially

nobody is an adopter. A cell phone provider may have a

diffusion rule learned from past promotions:

P(adopter(Y) | adopter(X) ∧male(X)∧
fr(X,Y,W) ∧ W > 0) = 0.6

The vertex who has the greatest influence, if given a free

mobile phone plan and if the above diffusion model is used, is

clearly d (because this is the only vertex that can “influence”

others to adopt the plan). However, we see from the table in

Example 1 that d is not the most relevant vertex. It is also

interesting to note that c and d have the same centrality w.r.t.

all standard centrality measures (because their properties and

the diffusion model are ignored).

In addition to cascade models shown in the HIV example,

our syntax can express homophilic models and tipping models.

The following two rules express homophilic diffusion:

P(adopter(X) |male(X) ∧ young(X)) = 0.7.
P(adopter(X) | female(X) ∧ old(X)) = 0.3.

The following is a tipping model saying that if two or more

adopters have instant messaging with X , then X is an adopter
with confidence 0.7.

P(adopter(X) | IM(X,Y,W) ∧ W > 0∧
IM(X,Y ′,W ′) ∧ W ′ > 0∧
adopter(Y) ∧ adopter(Y ′) ∧ Y �= Y ′) = 0.7.

558559

III. DIFFUSION CENTRALITY

Diffusion centrality tries to measure how well a vertex v
can diffuse a property p (e.g. the hiv property), given the

semantics and structure of an SN S and a diffusion model

D for property p. In order to define this formally, we need a

number of intermediate definitions.

Definition 2 (Labeling): Suppose S = (V,E,VL, ω) is an

SN and p is a vertex predicate. A p-labeling of S is a mapping

� : V → [0, 1]. � is compatible with S iff for each v ∈ V such

that p ∈ VL(v), it is the case that �(v) = 1.

A p-labeling � states the confidence that a given vertex has

property p. We define an ordering on p-labelings as: �1 �2
iff for each vertex v ∈ V , �1(v) ≤ �2(v). �⊥ denotes

the p-labeling defined as follows: for each vertex v ∈ V ,

if p ∈ VL(v), then �⊥(v) = 1, otherwise �⊥(v) = 0.

Clearly, �⊥ is compatible with S and intuitively captures the

initial distribution of property p in S – no diffusion model is

considered by �⊥. To capture the effect of a diffusion model,

we need to find a labeling that is compatible with both the SN

and the diffusion model. To do this, we show how a diffusion

model and a network “propagate” a property from one vertex

to another using a mapping that transforms labelings. We start

by defining enabled rules.

Definition 3 (Enabled Rule): Let S = (V,E,VL, ω) be an

SN and D a diffusion model for a property p. Let r ∈ grd(D)
be the ground diffusion rule:

P(p(v) |A1 ∧ · · · ∧An) = c

where v is a vertex and each Ai is a ground atom. r is enabled
(w.r.t. S) iff:

• for each vertex atom q(v′) ∈ body(r) such that q 	= p, it

is the case that q ∈ VL(v′);
• for each edge atom e(v1, v2, w) ∈ body(r), it is the case

that 〈v1, v2, e〉 ∈ E and ω(〈v1, v2, e〉) = w; and

• each comparison atom in body(r) is true (over the reals).

Example 5: Consider the diffusion model of Example 3.

P(hiv(d) | fr(d, a, 20) ∧ sp(a, c, 1)∧
20 > 10 ∧ 1 > 0 ∧ d �= c ∧ hiv(c)) = 0.4.

is a ground instance of the second diffusion rule of Dhiv. This

rule is enabled w.r.t. the SN of Figure 1.2

Definition 4 (Labeling Transformation): Let S =
(V,E,VL, ω) be an SN and D a diffusion model for a

property p. We associate with S and D, a mapping TS,D that

maps p-labelings to p-labelings.

TS,D(�)(v) =

max
(
{�(v)} ∪
{c×∏

p(v′)∈body(r) �(v
′) | ∃r ∈ grd(D) s.t.

r is enabled and of the form

P(p(v) |A1 ∧ · · · ∧An) = c}
)

2Notice that the atom hiv(c) does not play any role in determining whether
the rule is enabled or not.

We define the iterations of the TS,D operator as follows:

TS,D ↑ 0 = �⊥; TS,D ↑ (k + 1) = TS,D(TS,D ↑ k).
Proposition 1: The operator TS,D is monotonic (w.r.t.)

and has a least fixed point, denoted lfp(TS,D).
Example 6: The least fixed point of the HIV diffusion

model assigns 0.9 to hiv(a), 1 to hiv(b), 0.81 to hiv(c) and

0.4 to hiv(d). We will show how to compute it later.

Given an SN S = (V,E,VL, ω), a vertex predicate symbol

p, and a vertex v ∈ V , the insertion of p(v) into S , denoted

S ⊕ p(v), is the SN (V,E,VL′, ω) where VL′ is exactly like

VL except that VL′(v) = VL(v) ∪ {p}. In other words,

inserting p(v) into a social network merely says that vertex

v has property p and that everything else about the network

stays the same. Likewise, the removal of p(v) from S , denoted

S � p(v), is the social network (V,E,VL′′, ω) which is just

like S except that VL′′(v) = VL(v) − {p}. We now define

diffusion centrality.

Definition 5 (Diffusion Centrality): Let S = (V,E,VL, ω)
be an SN and D a diffusion model for a property p. The

diffusion centrality of a vertex v ∈ V w.r.t. D is defined as

follows:

dc(v) = Σv′∈V−{v}lfp(TS⊕p(v),D)(v′) −
Σv′′∈V−{v}lfp(TS�p(v),D)(v′′)

Intuitively, this definition says that to compute the diffusion

centrality of vertex v, we follow two steps:

1) We find the least fixed point of the diffusion model

and the SN S ⊕ p(v), i.e. we assume that vertex v has

property p and see how much diffusion occurs.

2) We then find the least fixed point of the diffusion model

and the SN S � p(v), i.e. we assume that vertex v does

not have property p and see how much diffusion occurs.

The difference of these two numbers captures the “impact”

that would occur in terms of diffusion of property p if vertex

v had property p.3 We illustrate via the HIV example.

Example 7: The only vertex in our HIV example with

property hiv is b. Therefore it is easy to compute the values

of the negative summand of Definition 5 from the values in

Example 6. They turn out to be 2.21 for a, 2.3 for c, and 2.71

for d. As b is the only vertex with HIV, the negative summand

for b is 0 because if we assume b does not have HIV, then

nobody in the network has it and no one gets infected.

As far as the positive summand is concerned, consider b.
Assuming b has HIV makes no difference because b already

has HIV according to S , i.e. S = S ⊕ hiv(b). Hence, we can

use the values in Example 6 to compute the positive summand

of dc(b), viz. 2.11.

3Considering just the first summation of Definition 5 is wrong - here’s why.
Suppose we have an SN and a vertex v s.t. the first summation of dc(v) is
high number N (i.e. the expected number of vertices that would have property
p assuming that v has property p is N). Suppose that when we assume that
v does not have property p, the same value N is determined (i.e. this is the
value of the second summation). Then, intuitively, v should not have a high
diffusion centrality since the expected number of vertices with property p is
the same regardless of whether v has property p or not (hence v does not
seem to play a central role in the diffusion of p).

559560

Suppose we now assume a has HIV. b has HIV with

confidence 1 because S says so; c has HIV with 0.9 confidence

via the first diffusion rule; d has HIV with 0.4 confidence

because the second rule applies. Thus, the value of the first

summand for a is 2.3. The following table summarizes the

values we obtain for the positive and negative summands

of Definition 5 when we compute diffusion centrality of all

vertices.
a b c d

Positive Summand 2.3 2.11 2.3 2.71
Negative Summand 2.21 0 2.3 2.71
Diffusion Centrality 0.09 2.11 0 0

b has the highest centrality w.r.t.hiv – note that classical

centrality measures (see Introduction) do not capture this

because b is not a “central” vertex from a purely topological

perspective. 4

Example 8: If we return to the cell phone case (Example 4),

we see that the DC of d is 1.2, while all other vertices have

0 as their DC. Thus, d has the highest diffusion centrality.

Furthermore, as opposed to classical centrality metrics, c and

d do not have the same centrality, because their properties and

the diffusion of interest make them differently important.

Definition 6 (Diffusion Centrality Problem): Let

S = (V,E,VL, ω) be an SN and D a diffusion model for a

property p. Given V ′ ⊆ V and a threshold τ ∈ [0, |V | − 1],
find all pairs 〈v, dc(v)〉 s.t. v ∈ V ′ and dc(v) ≥ τ .

Note that if V ′ = V and τ = 0, then we are asking for the

diffusion centrality of every vertex.

IV. ALGORITHMS

In this section, we develop the HyperDC algorithm to

solve the diffusion centrality problem. The algorithm uses

an efficient hypergraph-based algorithm (HyperLFP) as an

essential part to compute the least fixed point, we therefore

first present HyperLFP.

A. The HyperLFP Algorithm

As HyperLFP uses hypergraphs, we first define hypergraphs.

Definition 7: A weighted directed hypergraph is a triple

〈V,H,W 〉 where: (i) V is a finite set of vertices. (ii) H is a

finite set of (directed) hyperedges. A hyperedge is a pair 〈S, t〉
where S is a (possibly empty) subset of V , called source set,
and t is a vertex in V , called target vertex. Given a hyperedge

h ∈ H we use S(h) to denote its source set and t(h) to denote

its target vertex. (iii) W : H → [0, 1] is a function assigning a

weight to each hyperedge.

We now define a diffusion hypergraph that captures how

property p diffuses through SN S according to diffusion model

D. The hypergraph does not depend on the particular initial p-

labeling of S , but depends only on D and the structure of S in

terms of edges and vertex properties other than p. Therefore,
the diffusion hypergraph has to be computed only once and

4Note that if we add another person to the SN, say b1, that is identical to
b, i.e., has one sexual partner a and has HIV, then the diffusion centrality of
b will become 0. Moreover, if b does not have HIV according to the original
network, i.e., no one in the network has HIV, then a will have the highest
diffusion centrality and b and c will have the same diffusion centrality.

can be used with different p-labelings of S . 5 In addition, the

hypergraph allows us to eliminate (ground) diffusion rules that

are not enabled.

Definition 8 (Diffusion Hypergraph): Let S =
(V,E,VL, ω) be an SN and D a diffusion model for a

property p. The hyperedge associated with a ground rule

r ∈ grd(D) of the form P(p(v)|A1∧· · ·∧An) = c is defined as

〈{p(v′) | p(v′) ∈ body(r)}, p(v)〉 and is denoted by hedge(r).
The diffusion hypergraph for S and D is a weighted directed

hypergraph H(S,D) = 〈N,H,W 〉 where: (i) N = V , (ii)
H = {hedge(r) | r ∈ grd(D) and r is enabled}, and (iii) for

each h ∈ H

W (h) = max{c | P(p(v) |A1 ∧ · · · ∧An) = c is an

enabled ground diffusion rule of D
and its associated hyperededge is h}

The basic idea of the HyperLFP algorithm is that hyper-

edges that propagate a value greater than zero are kept in

a data structure Heap, where each hyperedge is associated

with the value it propagates to its target vertex; hyperedges

in Heap with higher values are visited first; when a value is

propagated by a hyperedge to its target vertex, say v, only the

hyperedges that can be possibly affected by this are inspected

and possibly added to Heap – these are the hyperedges having

v in the source set. HyperLFP ensures that when value w is

assigned to a vertex v, then w is the final value for v in the

least fixed point; hence the hyperedge that propagated w as

well as any other hyperedge having v as target vertex do not

need to be considered anymore to see if a new higher value

can be assigned to v.

Algorithm 1 HyperLFP

Input: A social network S = (V,E,VL, ω)
A diffusion model D for a property p
The diffusion hypergraph H(S,D) = 〈N,H,W 〉

Output: lfp(TS,D)
1: p[1..|V |], u[1..|V |], c[1..|V |]
2: p[v] = 1 for all v ∈ V s.t. p ∈ VL(v)
3: p[v] = 0 for all v ∈ V s.t. p 	∈ VL(v)
4: u[v] = {h | h ∈ H ∧ v ∈ S(h)} for all v ∈ V
5: c[v] = 0 for all v ∈ V
6: Heap = ∅
7: for each h ∈ H do
8: if

∧
v∈S(h) p[v] == 1 ∧W (h) > c[t(h)] then

9: c[t(h)] = W (h)
10: Add 〈h,W (h)〉 to Heap
11: while Heap 	= ∅ do
12: 〈〈S, t〉, w〉 = deleteMax(Heap)
13: if p[t] == 0 then
14: p[t] = w
15: for each h ∈ u[t] do
16: w′ = W (h)×∏

v∈S(h) p[v]

17: if p[t(h)] == 0 ∧ w′ > c[t(h)] then
18: c[t(h)] = w′

19: Add 〈h,w′〉 to Heap
20: return p

The current p-labeling is stored in array p, initially set to

�⊥ (lines 2–3). For each vertex v ∈ V , u[v] keeps track of the

hyperedges having v in their source set, whereas c[v] keeps

track of the highest value a hyperedge already added to Heap

5This allows us to save time in computing diffusion centrality which
requires computing the least fixed point for different initial p-labelings.

560561

propagates to v. The for each loop on lines 7–10 adds a

hyperedge h together with its weight W (h) to Heap if every

vertex v in the source set has p[v] == 1 (i.e., h propagates

a value greater than 0 to its target vertex) and there is no

hyperedge already in Heap that propagates a greater value to

t(h). At each iteration of the while loop on lines 11–19, a

pair 〈〈S, t〉, w〉 with maximum w is retrieved from Heap. If

p[t] has not been set to a value greater than 0, then it is set

to w, otherwise another hyperedge is retrieved from Heap.

Indeed, when the algorithm assigns a value to p[t], then this

is the value of t in the least fixed point (another property of

the algorithm is that higher values are are assigned first). If

w is assigned to p[t], then hyperedges that can be affected by

this are inspected (for each loop on lines 15–19). Specifically,

only the hyperedges having t in the source set are inspected.

For each of them, if the current labeling assigns 0 to the target

vertex, the hyperedge propagates a value greater than 0, and

there has not been any hyperedge added to Heap propagating

a higher value, then the hyperedge is added to Heap along

with the value it propagates.

Theorem 1: HyperLFP correctly computes lfp(TS,D).
Proposition 2: The worst-case time complexity of Algo-

rithm HyperLFP is O(|N | + |H| · (log|H| + umax · Smax)),
where umax = maxv∈V {|{h | h ∈ H ∧ v ∈ S(h)}|} and

Smax = maxh∈H{|S(h)|}.
B. The HyperDC Algorithm

When computing the diffusion centrality of a vertex v,

we note that S , S ⊕ p(v), and S � p(v) differ only on

whether vertex v has property p or not. The following simple

proposition says how this can be leveraged.

Proposition 3: Consider an SN S = (V,E,VL, ω), a dif-

fusion model D for a property p, and a vertex v ∈ V . Let

F = lfp(TS,D). (i) If p ∈ VL(v), then

dc(v) = Σv′∈V−{v}F (v′)− Σv′′∈V−{v}lfp(TS�p(v),D)(v′′)
(ii) If p /∈ VL(v), then

dc(v) = Σv′∈V−{v}lfp(TS⊕p(v),D)(v′)− Σv′′∈V−{v}F (v′′)
When computing dc(v), the definition requires us to com-

pute the difference of two summations. The above result says

that if F has been computed once (in advance), then we only

need to compute one summation, thus reducing the expected

running time significantly because each summation requires

a least fixed point computation. The first (resp. second) case

says that if vertex v originally already had (resp. did not have)

the diffusive property, then the first (resp. second) summation

is already captured in F , and so we only need to compute the

second (resp. first) one.

Step 1 of Algorithm 2 leverages Proposition 3, computing

lfp(TS,D) just once and reusing it intelligently so that only

one fixed point computation needs to be done for each dc(v′)
computation. Step 1 also leverages the HyperLFP algorithm’s

efficiency. HyperDC also prunes intelligently: when computing

DC for a vertex v′, every time a new value is assigned to

a vertex during the least fixed point computation, we check

if the DC of v′ is going to be below the threshold for sure

(lines 22 and 25); if so, the DC computation for v′ is aborted.

Algorithm 2 HyperDC

Input: A social network S = (V,E,VL, ω)
A diffusion model D for a property p
The diffusion hypergraph H(S,D) = 〈N,H,W 〉
V ′ ⊆ V and a threshold τ ∈ [0, |V | − 1]

Output: {〈v′, dc(v′)〉 | v′ ∈ V ′ ∧ dc(v′) ≥ τ}
1: pS = HyperLFP(S,D,H(S,D))
2: dS =

∑
v∈V pS [v]

3: Result = ∅
4: for each v′ ∈ V ′ do
5: p[1..|V |], u[1..|V |], c[1..|V |]
6: p[v] = 1 for all v ∈ V s.t. p ∈ VL(v)
7: p[v] = 0 for all v ∈ V s.t. p 	∈ VL(v)
8: if p ∈ VL(v′) then p[v′] = 0
9: else p[v′] = 1

10: u[v] = {h | h ∈ H ∧ v ∈ S(h)} for all v ∈ V
11: c[v] = 0 for all v ∈ V
12: P =

∑
v∈V p[v]; N = |{v | v ∈ V ∧ p ∈ VL(v)}|; Heap = ∅

13: for each h ∈ H do
14: if

∧
v∈S(h) p[v] == 1 ∧W (h) > c[t(h)] then

15: c[t(h)] = W (h)
16: Add 〈h,W (h)〉 to Heap
17: while Heap 	= ∅ do
18: 〈〈S, t〉, w〉 = deleteMax(Heap)
19: if p[t] == 0 then
20: p[t] = w; P = P + w; N = N + 1
21: if p ∈ VL(v′) then
22: if (dS − pS [v′])− (P − 1) < τ then
23: go to line 4
24: else
25: if (P − 1 + (|V | −N)× w)− (dS − pS [v′]) < τ then
26: go to line 4
27: for each h ∈ u[t] do
28: w′ = W (h)×∏

v∈S(h) p[v]

29: if p[t(h)] == 0 ∧ w′ > c[t(h)] then
30: c[t(h)] = w′

31: Add 〈h,w′〉 to Heap
32: if p ∈ VL(v′) then dc(v′) = (dS − pS [v′])− (P − p[v′])
33: else dc(v′) = (P − p[v′])− (dS − pS [v′])
34: if dc(v′) ≥ τ then Add 〈v′, dc(v′)〉 to Result
35: return Result

To achieve this, we maintain a variable P , which keeps the

sum of the p[v]’s, and N , which is the number of vertices

v s.t. p[v] > 0. In the while loop on lines 17–31, if a new

value is assigned to p[t] (line 20), then the pruning condition

is checked (lines 21–26):

Case 1: If p ∈ VL(v′), then we check if (dS −pS [v′])− (P −
1) < τ . In this case, the positive summand of the definition of

DC has already been computed and what is being computed

is the negative summand. The positive summand is equal to

dS − pS [v′], so this quantity is fixed, whereas the negative

summand is at least P − 1 and can only grow. Hence, if

the condition above is true, we can stop the computation of

diffusion centrality for v′ because we already know that it is

not going to be greater than or equal to τ .

Case 2: If p 	∈ VL(v′), then we check if (P −1+(|V |−N)×
w)− (dS −pS [v′]) < τ . In this case the negative summand of

the definition of diffusion centrality has already been computed

and what is being computed is the positive summand. The

negative summand is equal to dS − pS [v′], so this quantity is

fixed. We compute an upper bound for the positive summand

as (P − 1+ (|V | −N)×w). Specifically, P − 1 accounts for

the vertices for which a value w.r.t. the least fixed point has

been determined (1 is deducted to ignore the value of v′ itself)

– notice that this is correct because if a value is assigned to a

vertex, then the value is the final one in the least fixed point.

561562

(|V |−N)×w gives an upper bound for the value the remaining

vertices can cumulatively have in the least fixed point: |V |−N
is the number of vertices with a value still equal to 0 according

to the current labeling, and w is the maximum value that can

be assigned to them — this follows from the fact that values

are assigned in a non-increasing order.

Theorem 2: HyperDC correctly solves the DC problem.

Proposition 4: The worst-case time complexity of Algo-

rithm HyperDC is O(|V |·(|N |+|H|·(log|H|+umax ·Smax))),
where umax = maxv∈V {|{h | h ∈ H ∧ v ∈ S(h)}|} and

Smax = maxh∈H{|S(h)|}.
V. EXPERIMENTAL RESULTS

We compared diffusion centrality with classical centrality

measures in terms of running time and overall spread induced

by the most central vertices.

We implemented the HyperLFP and HyperDC algorithms

in around 5000 lines of Java code. All algorithms were run on

an Intel Xeon @ 2.40 GHz, 24 GB RAM.

We considered YouTube data by randomly choosing con-

nected subgraphs of 20K to 100K vertices in steps of 20K. The

data consisted of user-ids and friend relations between people

(edges). The diffusive property was membership in specific

YouTube groups. We used the diffusion models of [14] to

describe “favoriting” of Flickr photos for our experiments with

different values of their probability of transmission parameter.

Intuitively, the diffusion model says that “If X is a member

of group g and X is a friend of Y and X has a property q ,

then Y is a member of g with confidence ρ1.”

A. Running time.

The following table reports the average time (in millisec-

onds) to compute centrality for one single vertex according to

different centrality measures as the size of the SN increases.
Number of vertices in the SN

20K 40K 60K 80K 100K
Degree 0.03 0.07 0.11 0.14 0.31

Eigenvector 0.42 0.43 0.60 0.68 0.91

Diffusion 8.71 17.77 29.36 44.20 53.08

Betweenness 88.80 231.57 424.52 581.56 781.60

Closeness 1,652.35 6,436.18 17,275.48 – –

Stress 1,684.43 6,512.61 – – –

For DC, we considered three runs where different randomly

chosen vertices were given property q – in every run, q was

given to 2.5% of the vertices (in the following we also show

running times with higher percentages). For each run we

computed the average time to compute DC for one vertex and

then computed the average of this time over the three runs.

For every centrality measure, the running time increases as

the size of SN grows. Computing DC is slower than computing

degree and eigenvector centrality, but faster than computing

betweenness, closeness and stress centrality. This is not sur-

prising as degree centrality is trivial to compute - and it is also

well known that eigenvector centrality (used in PageRank) is

also very fast. More precisely, the worst case time complexity

to compute betweenness (resp. closeness, degree, eigenvector)

centrality is O(mn) (resp. O(mn + n2log n), O(m), O(n)),
where n is the number of vertices and m is the number of

edges of the SN. Running times to compute closeness (resp.

 -

 0.05

 0.10

 0.15

 0.20

 0.25

 0.30

20K 40K 60K 80K 100K

Ru
nn

in
g

Ti
m

e
(s

ec
)

vertices in the SN

2.5%
5.0%
10.0%
15.0%
20.0%

Fig. 2: Avg. time to compute DC for one vertex.

stress) centrality for SNs with 80K and 100K (resp. 60K, 80K

and 100K) vertices are not reported: in those cases computing

centrality for all vertices of the SN took more than 12 days.

Figure 2 shows the average time to compute DC for one

vertex as the size of the SN is varied from 20K to 100K

vertices and the percentage of vertices in the SN with property

q varies from 2.5% to 20% – each running time is the

average of 5 runs with different random choices of g, ρ1,

and the distribution of q across the vertices.6 We note that

as the percentage of vertices in the graph with property q
increases, HyperDC takes longer. The reason for this is that

when this percentage is small, it restricts the number of ground

diffusion rules that are enabled, thus reducing the time for least

fixed point computation. It is worth noting that, even when

20% of the vertices in the original SN have property q, the

running time for DC is still lower than the time to compute

betweenness, closeness and stress centrality.

B. Quality

In order to assess the “quality” of the centrality measures we

found the 10, 20, 30, 40, 50 most central vertices according to

each centrality measure (we also considered randomly chosen

vertices), assigned the diffusive property to them (recall that

the diffusive property is membership in groups), and computed

the overall spread of the diffusive property.

Figure 3a (resp. 3b, 3c, 3d, 3e) shows the overall spread

as the number of most central vertices having the diffusive

property varies from 10 to 50 – the SN has 20K (resp. 40K,

60K, 80K, 100K) vertices and 2.5% of the vertices were given

property q. The values reported on the X-axis are the overall

spread obtained by assigning the diffusive property to the most

central vertices divided by the spread in the original social

network (each value is the average over three different runs).

Obviously, for any centrality measure and SN size, the

spread increases as the number of vertices having the diffusive

property increases. Diffusion centrality always gives a much

higher spread than any other centrality measure. Figure 3a

shows that, in the SN with 20K vertices, betweenness and

degree centrality yield pretty much the same spread, eigenvec-

tor centrality gives a similar spread except when the top 10

and 50 vertices have the diffusive property, stress centrality

6Varying the percentage of vertices having q does not affect the runtime of
the other centrality measures as they ignore semantics aspects of the SN.

562563

0

1

2

3

4

5

6

7

10 20 30 40 50

Sp
re

ad

of most central vertices with diffusive property

Betweenness
Closeness
Degree
Eigenvector
Diffusion
Random
Stress

(a) SN with 20K vertices

0

5

10

15

20

25

30

10 20 30 40 50

Sp
re

ad

of most central vertices with diffusive property

Betweenness
Closeness
Degree
Eigenvector
Diffusion
Random
Stress

(b) SN with 40K vertices

0

100

200

300

400

500

600

10 20 30 40 50

Sp
re

ad

of most central vertices with diffusive property

Betweenness
Closeness
Degree
Eigenvector
Diffusion
Random

(c) SN with 60K vertices

0

100

200

300

400

500

600

10 20 30 40 50

Sp
re

ad

of most central vertices with diffusive property

Betweenness
Degree
Eigenvector
Diffusion
Random

(d) SN with 80K vertices

0
5

10
15
20
25
30
35
40
45

10 20 30 40 50

Sp
re

ad

of most central vertices with diffusive property

Betweenness
Degree
Eigenvector
Diffusion
Random

(e) SN with 100K vertices

Fig. 3: Diffusive property spread induced by the most central vertices.

yields a lower spread, and the lowest spread is given by

closeness centrality and randomly chosen vertices. Diffusion

centrality has the highest spread. With SNs having 40K and

80K vertices diffusion centrality yields again the highest

spread (this is notable with 80K vertices), the spread of the

other centrality measures are close each other (see Figures 3b

and 3d). Figure 3c shows that diffusion centrality is again

better than any other centrality measure. A lower spread is

given by degree and eigenvector centrality, then an even lower

spread is given by betweenness centrality; randomly chosen

vertices and vertices with highest closeness centrality yield

the lowest spread. Figure 3e shows that diffusion centrality

is once again better than other centrality measures, a lower

spread is given by betweenness centrality, the lowest spread

is given by the remaining centrality measures.7

VI. CONCLUSION

Though many different vertex centrality measures have been

proposed, they consider only the topology of the network for

the purpose of determining vertex centralities. In this paper, we

have proposed the novel notion of diffusion centrality. Diffu-

sion centrality takes into account the fact that social networks

today have both structural and semantical aspects. Moreover,

we propose, for the first time, a framework where centrality

of a vertex depends on a property of interest and the vertex’s

ability to diffuse that property. We presented the HyperDC

algorithm to compute diffusion centrality and experimentally

assessed it using real-world data from YouTube showing that

HyperDC works well in practice. In addition, we compared

diffusion centrality with classical centrality measures like de-

gree, closeness, betweenness, stress, and eigenvector centrality

and shown that diffusion centrality produces higher quality

7Stress (resp. closeness) centrality is not reported for SNs with 60K-100K
(resp. 80K-100K) vertices because their running times were very high.

results. Diffusion centrality is also often faster to compute

than betweenness, closeness and stress centrality, but slower

than degree and eigenvector centrality.
Acknowledgements. Some of the authors of this paper

were funded in part by ARO grants W911NF0910206 and

4021UMUSA0525 ONR grant N000140910685.

REFERENCES

[1] L. C. Freeman, “Centrality in social networks conceptual clarification,”
Social Networks, vol. 1, no. 3, p. 215239, 1979.

[2] J. Nieminen, “On the centrality in a graph,” Scandinavian Journal of
Psychology, vol. 15, no. 1, p. 332336, 1974.

[3] U. Brandes, “A graph-theoretic perspective on centrality,” Social Net-
works, vol. 30, no. 2, pp. 136–145, 2008.

[4] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, vol. 40, no. 1, pp. 35–41, 1977.

[5] A. Shimbel, “Structural parameters of communication networks,” Bul-
letin of Mathematical Biology, vol. 15, pp. 501–507, 1953.

[6] G. Sabidussi, “The centrality index of a graph,” Psychometrika, vol. 31,
pp. 581–603, 1966.

[7] M. A. Beauchamp, “An improved index of centrality,” Behavioral
Science, vol. 10, no. 2, pp. 161–163, 1965.

[8] P. Bonacich, “Factoring and weighting approaches to status scores and
clique identification,” Journal of Mathematical Sociology, vol. 2, no. 1,
pp. 113–120, 1972.

[9] M. Broecheler, P. Shakarian, and V. S. Subrahmanian, “A scalable
framework for modeling competitive diffusion in social networks,” in
SocialCom/PASSAT, 2010.

[10] T. Schelling, Micromotives and macrobehavior, T. Schelling, Ed. W.W.
Norton and Co., 1978.

[11] M. Granovetter, “Threshold models of collective behavior,” American
Journal of Sociology, vol. 83, no. 6, pp. 1420–1443, 1978.

[12] M. Jackson and L. Yariv, “Diffusion on social networks,” in Economie
Publique, vol. 16, no. 1, 2005, pp. 69–82.

[13] R. M. Anderson and R. M. May, “Population biology of infectious
diseases: Part I,” Nature, vol. 280, no. 5721, p. 361, 1979.

[14] M. Cha, A. Mislove, and P. K. Gummadi, “A measurement-driven
analysis of information propagation in the flickr social network,” in
WWW, 2009, pp. 721–730.

[15] S. Aral, L. Muchnik, and A. Sundararajan, “Distinguishing influence-
based contagion from homophily-driven diffusion in dynamic networks,”
Proceedings of the National Academy of Sciences, vol. 106, no. 51, pp.
21 544–21 549, 2009.

563564

