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With the advance of automation and infotainment sys-
tems in vehicles, driving can be perceived as a com-
prehensive interactive activity occurring among

human drivers and their vehicles. Classically, these users were
considered the supervisors of the automated systems running in
the cars. In the last decade, we have seen progress toward more
autonomous driving automation, including features such as
automatic lane centering, lane keeping, cruise control, and
adaptive cruise control.

In this article, we concentrate on the adaptive cruise control
function and look into the future by attempting to learn auto-
matically how such a system can adapt its settings to its user
and context. Cruise control is a known technology that aids
drivers by reducing the burden of longitudinal control of the car
manually. This technology controls the vehicle speed once the
user sets a desired speed. Cruise control is not only convenient,
but it has the potential to improve the flow of traffic (van Arem,
van Driel, and Visser 2006) and can be effective in reducing driv-
er fatigue and fuel consumption (Bishop 2000). In this article,
we focus on a second generation of cruise controls — adaptive
cruise control (ACC) as it was used in the Automotive Collision
Avoidance System Field Operational Test (ACAS FOT) (Ervin et
al. 2005). ACC is designed as a comfort-enhancing system,
which is an extension of conventional cruise control (CCC).
The ACC system relieves the driver from some of the longitudi-
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n Traditionally, vehicles have been considered
as machines that are controlled by humans for
the purpose of transportation. A more modern
view is to envision drivers and passengers as
actively interacting with a complex automated
system. Such interactive activity leads us to con-
sider intelligent and advanced ways of interac-
tion leading to cars that can adapt to their driv-
ers. 

In this article, we focus on the adaptive
cruise control (ACC) technology that allows a
vehicle to automatically adjust its speed to
maintain a preset distance from the vehicle in
front of it based on the driver’s preferences.
Although individual drivers have different driv-
ing styles and preferences, current systems do
not distinguish among users. We introduce a
method to combine machine-learning algo-
rithms with demographic information and
expert advice into existing automated assistive
systems. This method can reduce the interac-
tions between drivers and automated systems
by adjusting parameters relevant to the opera-
tion of these systems based on their specific
drivers and context of drive. We also learn when
users tend to engage and disengage the auto-
mated system. This method sheds light on the
kinds of dynamics that users develop while
interacting with automation and can teach us
how to improve these systems for the benefit of
their users. While generic packages such as
Weka were successful in learning drivers’
behavior, we found that improved learning
models could be developed by adding informa-
tion on drivers’ demographics and a previously
developed model about different driver types.
We present the general methodology of our
learning procedure and suggest applications of
our approach to other domains as well.
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nal-control tasks by actually controlling speed and
headway keeping, but the driver can choose to
engage or disengage the ACC at any time. The
major difference between ACC and CCC is the use
of radar technology to maintain a preset distance
between the vehicle with the ACC and other vehi-
cles on the road. This distance is controlled by a
“gap” parameter, which sets the minimum gap
(headway distance) to the vehicle in front of it. Fig-
ure 1 shows a picture of a steering wheel with the
ACC technology. Note the existence of a “gap”
switch on the left side of the figure.

Currently, commercial ACC systems preset the
gap value to a default value, which can be adjust-
ed by the driver manually based on his or her driv-
ing preferences. We envision that as the number of
automated features grows, and as the number of
user-preferred settings consequently grows, there

will be an unavoidable need to add intelligence to
set the default setting selection through context-
dependent adaptation and user modeling to
improve the driving experience.

In this article, we primarily focus on a method
that learns how to quickly and accurately adjust
the gap value based on the specific driver and con-
text of a drive. To accomplish this task, we created
general driver profiles based on an extensive data-
base of driving information that had been collect-
ed from 96 drivers (Ervin et al. 2005). We used
postprocessing of data from that study. Our gener-
al methodology is that once a new driver is identi-
fied we classify this driver as being similar to pre-
viously known drivers and set the initial gap value
accordingly. In the next section we further detail
the general methodology used within this work,
including how this methodology was applied here.

Steering Wheel Controls

Figure 1. A Steering Wheel Fitted with ACC Technology. 



General Methodology 
and Related Work

The main challenge of this study was to process
real-world data so as to obtain the most accurate
and practical rules from the learning algorithms.
The concept of using a group of characteristics to
learn people’s behavior has long been accepted by
the user modeling community. Many recom-
mender systems have been built on the premise
that a group of similar characteristics, or a stereo-
type, exists about a certain set of users (Rich 1979).
Even more similar to our work, Paliouras et. al
(1999) suggested creating questionnaires, distrib-
uting them, and then creating decision trees to
automatically define different groups of users. Sim-
ilarly, our application assumes that some connec-
tion exists between users, which can be learned
using machine-learning techniques. We propose
that this approach be applied to customize settings
within an application, here ACC, and not within
recommender systems.

Previous works within the last decade did study
how to assist drivers in the task of longitudinal
control (Naranjo et al. 2003, 2006). Within these
approaches, rules were learned manually after
interviews with human drivers. Based on these
rules the gap value was adjusted automatically to

the conditions of the drive without considering
the particular driver in the vehicle. However, we
found that individual drivers differ in their driving
styles and preferences. Therefore, the goal of this
project was to attempt to create an intelligent ACC
agent that could potentially set this longitudinal
value autonomously through adjusting its gap val-
ue per each driver.

To accomplish this goal, we present a methodol-
ogy in figure 2. We have previously explored an
approach where machine learning is used in con-
junction with generalized cognitive and behavior-
ial models from other disciplines, including exper-
imental economics and psychology. In general, we
previously found that merging this synthesis yields
one of two general results. In some cases, there is
ample data about people’s interaction within the
system allowing us to form an accurate model of
people’s behavior using machine learning alone.
While in these types of cases machine learning
does not provide a more accurate model than the
best psychological model, machine learning can be
used to confirm the effectiveness of a given model
in predicting people’s behavior. This can be partic-
ularly useful if multiple cognitive models were pos-
sible, allowing us to judge which model is best
without human bias. Additionally, knowing which
cognitive model is applicable to a given problem
allows us to quickly form an accurate model of
people’s behavior, even with limited or noisy data
(Rosenfeld and Kraus 2009, Rosenfeld and Kraus
2012). In contrast, in more complex environments
a lack of data makes it unfeasible to elicit an accu-
rate model with machine learning alone. In these
types of problems we found that using attributes
from cognitive models allowed for significantly
more accurate models than models created from
machine learning or the cognitive models alone
(Rosenfeld and Kraus 2009; Rosenfeld and Kraus
2012; Zuckerman, Kraus, and Rosenschein 2011).

In this work, we considered how machine learn-
ing could be used in conjunction with a behavior
driving model previously developed by Fancher
and Bareket (1996). Their work analyzed a group of
36 drivers and their acceptance of adaptive cruise
control. They found that while all drivers enjoyed
and accepted ACC, their behavior could be divid-
ed into three types. Each group demonstrated spe-
cific driving tendencies that affected their headway
and closing speeds relative to vehicles ahead dur-
ing manual driving (that is, without cruise control
engaged). In very general terms, these groups were
assumed to be one that is most aggressive, another
that is least aggressive, and a third that is in
between. Although it is clear that more detailed
grouping may exist, and that a different profiling
of the drivers’ population can be made, for the pur-
pose of this study the characterization analysis was
aimed at identifying the above three grouping
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Figure 2. A High-Level Overview of the Methodology of 
Combining Cognitive Models with Machine Learning.
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types. The three driving styles are (1) hunters
(aggressive drivers who drive faster than most oth-
er traffic and use short headways); (2) gliders (the
least aggressive drivers who drive slower than most
traffic or commonly have long headways); and (3)
followers (whose headways are near the median
headway and usually match the speed of sur-
rounding traffic).

Figure 3 depicts the averages  Rdot and ThetaDot
of all the drivers on a scatter plot. Rdot is a meas-
ure of change within the range rate (the mathe-
matical derivative), such that if a driver tends to
travel faster than the neighboring and preceding
vehicles then Rdot will be less than 0, and con-
versely if that driver drivers slower than the neigh-
boring vehicles then Rdot will be greater than 0.
ThetaDot is the change (derivative) of the gap
divided by speed and provides a measure of gap in
units of time.

The dotted and solid lines in figure 3 are the
boundary lines that divide the ACAS drivers into
three classes: (1) To the left of the black line are the
hunters, depicted by circles; (2) to the right and top
of the red line are the gliders, depicted by dots; and
(3) those within the rectangle bounded by the red
and black lines are the followers, depicted by ‘x.’

In numerical terms, hunters have headway
times less than about 1.2 seconds and they tend to

travel by at least 1 mph faster than neighboring
vehicles in the traffic stream. Gliders have head-
way times greater than 2.2 seconds and they tend
to travel by at least 1 mph slower than neighboring
vehicles in the traffic stream. The followers lie
within these bounds between hunters and gliders.

In this article, we use these driver classes as
attribute types (hunter, glider, or follower), and
they were used in addition to other demographic
information to attempt to build an application
that predicts how the ACC should set its gap given
this information and road situation. As we now
detail, we found that Fancher and Bareket’s behav-
ior model was crucial for accurately predicting a
driver’s ACC preferences. However, in many cases
sufficient data existed from a driver’s demographic
background to predict his or her driving type. This
can be significant as the above calculations
required to find a driver’s type require an extensive
learning period.

Learning Method
Current ACC systems allow the user to set the gap
value between a finite number of possible values (1
to 6 in our case). These values control the gap the
ACC autonomously maintains from the vehicle in
front of it. Currently, one value is set as the default
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Figure 3. Classification of Drivers Based on Their Average Headway Times Versus Their Average Speeds.



(in our case this value was 6) and the user may
change it during driving as he or she wishes.

In order to study the problem of predicting what
gap value a person would select, we constructed
two different types of models. The first type of
model was a regression model. Regression models
operate by statistically predicting the value of a
continuous dependant variable from a number of
independent variables. In this problem, the goal
was to predict the gap value a given driver would
select based on the independent variables of the
current driving conditions. The second type of
model was a decision tree model (C4.5). Decision
trees predict the value of a discrete dependant vari-
able from a number of independent variables.
Specifically, here we learn which of the discrete gap
values a driver will likely choose given all possible
values given current driving conditions. Note that
while discrete regression functions and continuous
decision algorithms also exist, we focused on these
two types of models to differentiate between these
categories of models.

Our goal was to use the output of either model
to automatically set the gap value. Toward this
goal, the second model is seemingly the better
choice as its output directly correlates to a value
within the system. In contrast, the regression mod-
el outputs a decimal value (for example, 3.5) that
must be first rounded to the closest value within
the system to be used. However, the advantage of
this model is that a mistake between two close val-
ues (for example, 3.5 being close to 3 and 4) is not
as mathematically significant as mistakes between
two extreme values (for example, between 2 to 6).
In contrast, the discrete decision tree model weighs
all types of errors equally. In practice, the regres-
sion model will likely be more useful if the user is
willing to accept errors between two similar values.

Additionally, we focus on two secondary goals,
namely, learning (1) when the ACC is first engaged
and (2) when the ACC is disengaged. Here, the goal
was not to create an agent to autonomously
engage or disengage the ACC. However, by analyz-
ing when people are most comfortable with the
ACC, we hope to understand the user acceptance
of such systems.

In both of these learning tasks, we are confront-
ed by the known data-set imbalance problem
(Chawla et al. 2002). In many real-world problems,
as is the case here, each class is not equally repre-
sented. In fact, in the specific case of the ACC
engagement task, more than 90 percent of manual
driving cases continue their manual driving, and
in only a small percentage of cases do people
engage the ACC. From a statistical perspective, a
classifier could then naively classify all cases as
being in the majority case and still have extremely
high accuracy. However, because only the “minor-
ity” cases are relevant, novel methods are needed

to find them. While several algorithms exist, we
specifically focused on the MetaCost algorithm.
MetaCost is a general algorithm for making any
type of classification learning algorithm cost sensi-
tive, allowing us to stress certain categories more
than others. MetaCost has the advantage of work-
ing well with any classification algorithm, as it
operates by wrapping a cost-minimization proce-
dure around any classifier (Domingos 1999). We
opted to use this algorithm because of its flexibili-
ty and the ease within this algorithm of control-
ling the bias size given to the minority case. Empir-
ical results for learning the gap value and
classifying engagement and disengagements of
and from the ACC are explained in the next sec-
tion.

Experimental Setup
Data for our analysis were taken from the automo-
tive collision avoidance system field operational
test (ACAS FOT) (Ervin et al. 2005) (see figure 4). In
that study, to understand how different drivers use
an ACC, each of 96 drivers was presented with an
ACC-fitted vehicle. which they used for a period of
4 weeks. For the first week, the ACC system was
not available, allowing drivers to acclimate to their
vehicles. If the driver engaged the cruise control
during this period, it simply maintained speed just
like the conventional system (CCC). For the next
three weeks, if the driver chose to engage the cruise
control, it functioned as ACC. In general, three dif-
ferent data sets were considered. The first, and
most basic, data set consisted of objective charac-
teristics that can be studied based on the location
of the vehicle itself, for example, gap to the lead
vehicle, vehicle speed, longitudinal acceleration,
road type (country, city, or highway), weather (if it
was raining and if it was dark outside) and road
density (is there traffic). A second data set added
driver characteristics. These properties focus on
driver demographics such as age, sex, income lev-
el (high, medium, low), and education level (high
school, undergraduate, and graduate ). The ACAS
FOT consists of a good mixture of these demo-
graphics with a 51 percent male to 49 percent
female split, 31 percent young (aged 20–30), 31
percent middle aged (aged 40–50), and 38 percent
older drivers (aged 60–70), and people from a vari-
ety of education and socioeconomic levels. The last
data set also used the drivers’ observed behavior
from the first week to label drivers as hunters, glid-
ers, or followers as per Fancher and Bareket’s pre-
vious work (1996).

The experimental design of the ACAS FOT was a
mixed-factors design in which the between-sub-
jects variables were driver age and gender, and the
within-subject variable was the experimental treat-
ment (that is, ACAS-disabled and ACAS-enabled).
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The drivers operated the vehicles in an unsuper-
vised manner, simply pursuing their normal trip-
taking behavior using the ACAS test vehicle as a
substitute for their personal vehicle. Use of the test
vehicles by anyone other than the selected indi-
viduals was prohibited. The primary emphasis on
user selection for the field operation test was to
roughly mirror the population of registered driv-
ers, with simple stratification for age and gender.
No attempt was made to control for vehicle own-
ership or household income levels. Thus, although
the ACAS FOT participants may not be fully repre-
sentative of drivers who might purchase such a sys-
tem, they were selected randomly and represent a
wide range of demographic factors.

Results
In this section we present results for the three pre-
viously defined problems: predicting a driver’s gap
value within the ACC using both discrete and

regression models, predicting when a driver will
engage the ACC, and predicting when a driver will
disengage the ACC. In all three problems we pres-
ent how the driver type and other demographic
information helped improve the model’s accuracy.
Additionally, we analyze which attributes were
most prominent in this application, how we avoid-
ed overfitting, and how we addressed the data-set
imbalance problem within this application.

Setting the ACC’s Gap Value
Figure 5 presents the accuracy of the decision tree
model to learn a driver’s preferred gap value in the
discrete model. Clearly, adding the demographic
data here is crucial, as the model’s accuracy drops
from over 66 percent accuracy with this data to less
than 37 percent accuracy without this. As a base-
line, we also include the naive classifier, which is
based on the most common gap value — here the
value of 6, which is also the system’s default. Note
that the naive model had an accuracy of nearly 27
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Figure 4. An Overview of the Data Collection Process Within ACAS FOT Study.



percent, far less than other models. The user’s type
did improve accuracy, as adding this information
to the type increased accuracy to near 70 percent.
In line with our previous work (Rosenfeld and
Kraus 2009), we hypothesized that adding this
behavior model yields smaller increases if it can be
learned from other attributes within the data.
Here, we believed that adding information about
drivers’ type is less important, as their type was
already evident from information such as the dri-
ver’s demographics.

Value Within the ACC for a Discrete
Decision Tree Model.
To support this hypothesis, we constructed a deci-
sion tree (again C4.5) to learn the driver’s type. We
found that this value could be learned with over
95 percent accuracy (95.22 percent) when learned
with the full Reptree (Tmax) — which strongly sup-
ports our hypothesis. We present a pruned version
of this tree (TDepth = 4) within figure 6. From an
application perspective, we were not surprised to
find that a driver’s age factored heavy in his or her
driving behavior. This characteristic is factored in
actuarial insurance tables, and is a known factor in
car insurance premiums (Chiappori and Salanie
2000). Note that this characteristic was the first lev-
el below the root of the tree, demonstrating this
quality. However, possibly equally interesting is
that we found education, not gender, to be the
next most important factor, as it formed the sec-
ond level within the decision tree. This factor is
often not considered by insurance companies

(Chiappori and Salanie 2000) due to several con-
cerns, including privacy concerns; however, this
issue may be worth revisiting. Only in the third
level did we find the popular characteristic of gen-
der to factor in, but income also weighed in as an
equally important factor. Overall, we found that
young men or women with only a high school
degree tended to be hunters, or those with
extremely aggressive driving habits; college-edu-
cated women and people with higher degrees but
lower-paying jobs tended to be the less aggressive
gliders. Middle-aged men with high school
degrees, all middle-aged people with college
degrees, and people with higher degrees but lower
paying jobs also typically belonged to the middle
gliders category. But older women with college
degrees, people with low or medium paying jobs
with only high school degrees, and all older people
with higher degrees tend to be of the least aggres-
sive follower type. Naturally, exceptions existed,
and this simplified tree is only approximately 75
percent accurate. Nonetheless a general direction
is evident from this tree, and was one that the con-
tent experts felt was not overfitted.

Similarly, it was important to find a decision tree
that models drivers’ gap value that is not overfit-
ted. Note from table 1 that the model accuracy giv-
en all data is nearly 70 percent. However, while
this value is based on the mathematically sound
C4.5 algorithm (Quinlan 1993), the content
experts again felt this decision model was overfit-
ted. We then proceeded to reduce the size of the
tree to generalize the model, thus preventing this
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phenomenon. However, as table 1 demonstrates,
reducing the tree size does not improve the mod-
el’s accuracy, as previous theoretical works suggest
(Esposito, Malerba, and Semeraro 1997) but did
produce trees that were acceptable to the content
experts. Note from table 1 that raising TDepth yields
only marginal increases in the model’s accuracy
after TDepth = 4. In general, we found that the
experts were happy with much smaller trees, but
those with similar accuracy. For this problem, we
display in figure 7 the resultant tree of TDepth = 4,
which is only 6 percent less accurate than the full
tree in table 1. However, for comparison, the full
tree produced with the unpruned C4.5 algorithm
has a total size of 1313 leaves and branches, while
the pruned tree has a total size of only 50 leaves
and branches. Thus, from an application perspec-
tive, this tree was strongly favored by the experts,
even at the expense of a slightly less accurate mod-
el. Note that the rules themselves are still heavily
influenced by the driver type and demographic

information, with driver type being the first level
of the tree and the second and third levels of the
tree again being primarily based on demographics
such as age, gender, education, and income level.

Similarly, we were able to create an accurate
regression model, the results of which are found in
figure 8. Within these models, correlation values
can range from 1.0 (fully positive correlated) to –
1.0 (fully negatively correlated), with 0 meaning
no correlation. We found a model with both demo-
graphic and type data yielded a correlation of 0.78,
while without this information the accuracy
dropped to 0.75. Using only vehicle-specific data
yielded a model of only 0.4, and the naive model
(here using the average gap value of about 3.5)
yielded a value of nearly 0. Again, we found that
the type only slightly improved the model’s accu-
racy, as much of this information was already sub-
sumed within the drivers’ demographics. The
experts again opted for a reduced model, despite
the sacrifice of slightly less accuracy.
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Predicting When the Driver Will 
Engage and Disengage the ACC
While the focus of our work was on the gap value
that differentiates the adaptive cruise control from
the “standard” cruise control, we also considered
two additional problems: when people activate the
ACC and when they deactivate it. The goal behind
the gap value task was to allow an autonomous
agent to set, at least initially, this value within the
ACC. However, by understanding when people are
more likely to use this product we hope we can
increase its acceptability and use. Similarly, by
understanding when people disengage the ACC we
hope to create new generations of this technology
where people will use it longer and not feel com-
pelled to disengage it. In both of these learning
tasks, we are confronted by the known data-set
imbalance problem (Chawla et al. 2002). In this
article, we constructed two models for these two
problems based on the same three types of data
sets. The first model is a basic C4.5 without any
modification. As was the case in the task of setting

the gap value, we considered attributes based on
the behavior type model, driver demographics (for
example, sex, age, and income level), and the vehi-
cle’s characteristics (for example, gap to the lead
vehicle, vehicle speed, and road type). In the sec-
ond model, we again used the same three data sets,
but created a learning bias to find the important
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TDepth Accuracy [%] 

2 47.55% 

3 56.41% 

4 62.43% 

5 65.46% 

6 67.51% 

7 68.50% 

Table 1. Analyzing the Trade-off Between the Model’s
Accuracy and the Height of the Tree TDepth.
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minority cases. We specifically focused on the
MetaCost algorithm (Domingos 1999).

Table 2 displays the complete results demon-
strating the trade-off between a model’s accuracy
and the success in finding the minority cases in the
task of predicting when a driver engages or disen-
gages the ACC. The first four rows represent differ-
ent models created to predict when a person would
activate the ACC. The first model is the standard
decision tree algorithm C4.5. In addition, we con-
sidered three weight biases within the MetaCost
algorithm: 0.5, 0.7, and 0.9. Note that raising these
weights allows us to give greater weight to the
minority case, thus increasing the recall of cases
found, but at a cost to the overall accuracy of the
model. For each of these models we trained four
different models: one created with all information,
one without the type information but with the
demographic information, one without the type
and without the demographic information, and a
naive model that assumes the majority case — that
a person continues driving in manual mode. The
accuracy of each of these models is found in the
first four columns in table 2, and the correspon-
ding recall levels for these models are found in the
last four columns of the table. Similarly, we also
considered the task of predicting when a person
turns off the ACC, and trained models based on
the same four algorithms with the same four data
sets. The results for the accuracy and the recall of
these models are found in the last four rows of
table 2.

Ideally, one would wish for a perfect model: for
example, one with 100 percent accuracy and recall
of all cases. Unfortunately, this is unrealistic, espe-
cially in tasks that are prone to variations due to

noise. In this domain, the noise comes from two
factors: Noise from people’s lack of consistency,
and noise from unmeasured factors from within
the environment. For example, this study did not
consider traffic density in lanes to the right or left
of the driver — something that clearly may affect
a driver’s decision. Nonetheless, the overall con-
clusion is that by adding more information, and
specifically about a person’s demographics, we
were able to achieve higher overall accuracies with
better recall.

We would like to present the driver a recom-
mendation as to when to engage the ACC. Toward
this goal, we wished to set the desired confidence
level of the model, as found based on the recall of
the minority class, before presenting a recommen-
dation to the user. Figure 9 displays the interplay
between the overall model’s accuracy and the
recall within the minority cases in the task of pre-
dicting when a driver engages the ACC. Again, the
most desirable result is one in the upper right cor-
ner — high accuracy and recall. However, as one
would expect, and as evident from table 2, the
naive case of continuing without engaging the
ACC constitutes over 91 percent of the cases, but
this model will have recall of 0 for the minority
case. By modifying the weights within the Meta-
Cost algorithm we are able to get progressively
higher recall rates over the basic decision tree algo-
rithm. Also note that the model trained with all
information achieves better results than one with-
out the type and demographic information.

Similarly, figure 10 displays the same interplay
between the overall model’s accuracy and the suc-
cess in finding the minority cases in the task of pre-
dicting when a driver disengages the ACC. In this
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Figure 8. The Importance of Driver Type and Demographics in Predicting the Gap Value Within the ACC for a Regression Model.



task, the naive case assumes that the driver will
continue with the ACC constitutes over 86 percent
of the cases, but this model will have recall of 0 for
the minority case (see the left side of figure 10).
Note that we were again able to raise the recall
within the minority case by creating weight biases
of 0.5, 0.7, and 0.9, but again at the expense of a
lower overall accuracy. However, as opposed to the
engage ACC task, we noticed that the gain from
the demographic and type information was not
large. In fact, upon inspection of the output trees,
we noticed to our surprise that people’s decision to
disengage the ACC was more dependent on how
quickly the ACC slowed the vehicle down and not
on the overall behavior of the driver. Thus, it
should be noticed that simply adding attributes is
not a panacea for higher accuracy — it only
improves accuracy when relevant to the learning
task at hand.

Overall, these results suggest that finding attrib-
utes beyond the observed data can be critical for
accurately modeling a person’s behavior. Similar to
previous studies that found that other behaviorial
theories can better predict people’s actions (Rosen-
feld and Kraus 2012; Zuckerman, Kraus, and Rosen-
schein 2011), this work found that a driver’s pre-
ferred gap value could be better predicted by using
a model of driving behavior (Fancher and Bareket
1996). Even if this measure was not readily avail-
able, an accurate estimate of this value could be
learned based on a driver’s demographic data.

Practically, we are studying how either or both
of these attributes can be used. The advantage to

using the demographic data alone is that ostensi-
bly it can be provided before the driver begins
using the car (for example, in the showroom) and
thus can be used to accurately model the driver
from the onset. However, people may be reluctant
to provide this information due to privacy con-
cerns. Using driver profiling information is rela-
tively difficult to calculate and is based on
observed behavior over a period of time (Fancher
and Bareket 1996). Thus, this value cannot be used
to initially set values within the ACC. However,
this data can be collected without privacy concerns
and can be used to further improve the system’s
accuracy over time.

Conclusions
Adapting automated processes to better serve
humans is a challenging task because it is difficult
to predict setting values. Humans are characterized
by inconsistent behaviors (or at least seemingly
inconsistent), may have difficulties in defining
their own preferences, are affected by their emo-
tions, and are affected by the complexity of the
problems they face together with the context of
these problems. In particular, human drivers also
need to react fast enough to road conditions and
changes in traffic. This task was particularly chal-
lenging as incomplete information was not only
inherent about drivers’ preferences, but also from
the domain itself. For example, this study did not
have complete knowledge about traffic in the area
of the driver, and even issues such as traffic pat-
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ACC On All 
Info 

Without 
Type 

Without 
Demo 

Naive All 
Info 

Without 
Type 

Without 
Demo 

Naive 

C4.5 92.67 92.32 91.22 91.27 0.35 0.32 0.07 0 

MetaCost 
0.5 

92.42 91.97 90.97 91.27 0.40 0.36 0.13 0 

MetaCost 
0.7 

91.93 91.38 90.37 91.27 0.45 0.42 0.18 0 

MetaCost 
0.9 

87.99 86.60 77.12 91.27 0.63 0.61 0.51 0 

ACC Off All 
Info 

Without 
Type 

Without 
Demo 

Naive All 
Info 

Without 
Type 

Without 
Demo 

Naive 

C4.5 88.71 88.64 88.42 86.37 0.37 0.37 0.35 0 

MetaCost 
0.5 

88.59 88.55 88.14 86.37 0.43 0.42 0.41 0 

MetaCost 
0.7 

87.68 87.49 87.31 86.37 0.49 0.49 0.49 0 

MetaCost 
0.9 

82.03 82.23 81.15 86.37 0.66 0.67 0.66 0 

Table 2. Analyzing the Trade-off Between Overall Model Accuracy (Left) and Recall of the 
Minority Cases (Right) in Both the Task of When People Turn the ACC on (Top) and Off (Bottom).
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Figure 9. Comparing the Overall Model Accuracy 
and Recall for Cases for Engaging the ACC.

Figure 10. Comparing the Overall Model Accuracy 
and Recall for Cases for Disengaging the ACC.

terns or weaving behavior from surrounding driv-
ers were not explicitly measured. Nonetheless, we
report on the success of how we quickly and accu-
rately learned the ACC gap value given historical
data of the many drivers from the ACAS field test
data (Ervin et al. 2005). Successful learning of the
gap value in this task should serve as a necessary
but not sufficient step toward prediction of settings
in driving assistance systems and in other systems
and situations. As with other user adaptation sys-
tems, the trade-off between the added value and
potential inaccuracy of the prediction system will
determine its usefulness and acceptance.

We empirically studied two learning approaches:
regression and decision trees. By combining the
driver type with other data, we achieved a predic-
tion accuracy of nearly 70 percent within the deci-
sion tree model (figure 5) and a correlation of 0.78
within the regression model (figure 8). However,
when we used only the driver type information
and removed the demographic information these
models dropped to an accuracy of 46 percent and
0.55 respectively. These experiments emphasize
the need to construct models that not only con-
sider driving data such as the car’s speed, road con-
dition, and weather, but also include driver demo-
graphic information and a behavior model about
the driver’s type (Fancher and Bareket 1996). These
results stress the fact that drivers may be very dif-
ferent from each other and previous approaches
that set the gap value similarly for all drivers
(Naranjo et al. 2003, 2006) are less effective. There-
fore, driver characterization is essential for adapt-
ing automated systems in the vehicle. These dif-
ferences among humans are made more salient
when trying to learn when users engage or disen-
gage from an automated system such as ACC. Reac-
tions could be very different, teaching us also
about the tendencies of users toward automation.

We present solutions for two practical chal-
lenges in applying learning algorithms to this chal-
lenging domain: preventing overfitted models, and
creating effective models in cases where a strong
majority category existed but the important events
were in the minority category. We address the
overfitting issue by creating simplified decision
trees, and we use the MetaCost algorithm (Domin-
gos 1999) to learn from unbalanced data sets. We
present extensive results details of this application
and how these algorithms were used within this
challenging transportation domain.

One way of building machines that could inter-
act successfully with humans is by adapting their
automated processes to their users. In order to do
so, these machines need to consider characteristics
of human behaviors, including, for example:
inconsistent behaviors, having difficulties in defin-
ing the user’s own preferences, emotional influ-
ences, and problem complexity and context

effects. Therefore, adapting automated processes is
a challenging task. By understanding the current
state of acceptance of automated systems and
learning about differences among human users, we
can improve the next generations of adaptive auto-
mated systems adjusted to their particular human
users.

One of the larger goals of this article is to
encourage people who build applications to con-
sider incorporating data from external measures,
such as psychological or behaviorial models. As
was true in other domains we studied (Rosenfeld
and Kraus 2012; Zuckerman, Kraus, and Rosen-



schein 2011), modeling user behavior based on
cognitive models alone, such as the driver type
possible in this domain (Fancher and Bareket
1996), is not sufficient. Instead, we advocate for
synthesizing data gleaned from behaviorial mod-
els in conjunction with observed domain data,
something that we believe can be effective in many
other domains as well.
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