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Abstract 

In this paper, we address the tradeoff between exploration and exploitation for agents which 
need to learn more about the structure of their environment in order to perform more effectively. 
For example, a robot may need to learn the most efficient routes between important sites in its 
environment. We compare on-line and off-line exploration for a repeated task, where the agent is 
given some particular task to perform some number of times. Tasks are modeled as navigation on 
a graph embedded in the plane. This paper describes a utility-based on-line exploration algorithm 
for repeated tasks, which takes into account both the costs and potential benefits (over future task 
repetitions) of different exploratory actions. Exploration is performed in a greedy fashion, with the 
locally optimal exploratory action performed on each task repetition. We experimentally evaluated 
our utility-based on-line algorithm against a heuristic search algorithm for off-line exploration as well 
as a randomized on-line exploration algorithm. We found that for a single repeated task, utility-based 
on-line exploration consistently outperforms the alternatives, unless the number of task repetitions 
is very high. In addition, we extended the algorithms for the case of multiple repeated tasks, where 
the agent has a different randomly-chosen task to perform each time. Here too, we found that utility- 
based on-line exploration is often preferred. 0 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Intelligent agents in the real world often have to perform tasks about which they have 
only incomplete knowledge. In particular, an agent may have only partial knowledge of 
the actions it can take and their effects. In such a case, it is important for the agent to learn 

about the structure of its environment, in order to better accomplish its goals. Such learning 
involves exploration, in which actions are chosen for the goal of increasing the agent’s 
knowledge, as opposed to exploitation where actions are chosen which directly lead toward 

accomplishing the agent’s given task. Exploring the world and learning its structure may 
be performed either in a separate exploration phase ofS_line, before performing any tasks, 
or on-E&e, while performing tasks. 

In this paper, we address the tradeoff between exploration and exploitation for agents 
which need to learn more about the structure of their environment in order to perform 
more effectively. The need for such learning is ubiquitous; any agent needing to operate 
in the real world can have only partial knowledge of its environment, and therefore must 

be able to explore and learn. For example, a mobile robot may need to learn a map of its 
environment so that it can navigate effectively from place to place. 

The environment model used in this paper is motivated mainly by the case of a mobile 
robot moving in the plane. We model the agent’s environment as a graph embedded 
in the plane, each of whose nodes (with its position in the plane) represents a distinct 
place, and each of whose arcs represents an action which moves the agent from one 
place to another. Similar graph-based world models have long been used in theoretical 
work on off-line learning, such as [ 12,13,24,26]. These models have also been extended 
to include sensor and effector noise [2,10]. A task situated between off-line and on-line 
exploration is piecemeal exploration [6], in which the robot must return to its ‘home’ every 
so often. 

On-line state-space learning has been addressed by so-called ‘real-time’ search algo- 

rithms [8,17,22]. These algorithms typically achieve a single task (possibly moving) while 
learning the structure of the environment. In the worst case, these algorithms will explore 
the entire state-space, depending on the quality of the heuristic function. Improved effi- 

ciency in real-time search has been obtained by restricting the use of heuristic exploitation 
[ 271 and by not requiring the algorithm to find an optimal policy [ 181. In more specific 
problem settings, more informed heuristics may be applied, for example Cucka et al. [9] 
use information about the geometric direction of the goal to heuristically improve the ex- 
ploration process. 

In this paper, we compare on-line and off-line exploration for a repeated task, where 
the agent is given some particular task(s) to perform some number of times. We assume 
that the agent has the ability to perform the task, even before acquiring specific knowledge 
about its environment; acquiring such knowledge through exploration may then allow the 
agent to perform more effectively. 

With on-line exploration, performance of the task becomes more efficient over time, as 
the agent learns better ways to perform it [7]. As the number of repetitions gets very large, 
it might be preferable to learn the entire structure of the state-space first, so that the agent 
can be sure to use the most efficient plan for its task. In more realistic scenarios, this is not 
the case, since the number of repetitions of a particular task is bounded. In such a case, it 
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may be more effective to learn on-line, and avoid wasting effort in exploring areas of the 
world which do not contribute to task performance. 

We believe that deciding how to explore, like planning in general, should be performed 
in a decision-theoretic manner, accounting for the utility and cost of alternative courses of 
action [ 11,15,16]. We describe in this paper a utility-based on-line exploration algorithm 

for a partially known environment. In our approach, the agent estimates the expected utility 
of possible exploratory actions in order to decide whether and how to explore. This utility 

is evaluated relative to the agent’s future tasks and the cost of exploring, taking into account 
the extra cost of exploring vs. just using the best plan currently known. For example, 
if the agent only has to perform a task once, it may not be worthwhile to explore at 
all, since the cost may be higher than the expected gain for that single task. The utility 
of exploration then increases with the number of future task repetitions. The algorithm 
chooses exploratory actions in a greedy fashion, in order to avoid exponential increase in 
the number of future courses of action that need to be considered (similar to Etzioni’s [ 151 
use of a greedy marginal utility heuristic). 

Methods for solving Markov decision processes (MDPs) also involve an on-line tradeoff 
between exploration and exploitation [2.5]. In these problems, the environment is modeled 
as a probabilistic finite-state machine where the agent receives rewards for being in 

particular states. The transition from one state to another occurs with some probability 
depending on what action the agent takes from the first state. The agent’s task is to 
maximize its total reward, learning something about the reward and transition probability 

distributions in the process (based on known priors over those distributions). Optimal 
solutions are known for this problem [3,5], as well as its simpler variant the k-armed 
bandit problem [4], but these solutions are of exponential complexity [20]. Various faster 
approximate strategies have also been proposed for this problem [19,23,28] and have been 
shown to be useful. These methods assume knowledge of the states and possible transitions 
in the MDP, and so are not directly applicable to our problem in this paper, since we do 
not assume that the agent knows anything at the start about the specific structure of its 

environment. 

Our approach of incremental utility-based exploration may also be compared to the 
anytime algorithm of Dean et al. [ll] for decision-theoretic planning in (completely 
known) stochastic environments. Their method creates an optimal policy for a small part of 
the environment (the envelope), and incrementally extends the envelope in order to increase 
the usefulness of the generated policy. Exploration methods such as that described in this 
paper could extend the usefulness of such planning techniques to incompletely known 
environments. 

We experimentally evaluated utility-based on-line exploration on a variety of randomly 
generated environments, and compared the performance of our greedy utility-based on- 
line algorithm against that of a heuristic search algorithm for off-line exploration. Our 

results show that utility-based on-line exploration is nearly always preferable to off-line 
exploration. Furthermore, we investigated the contribution of the utility-based formulation, 
by comparing it to a randomized approach to on-line exploration (similar to methods 

commonly used in reinforcement learning [21,29]). 
We found that for a single repeated task, utility-based on-line exploration usually 

outperforms the alternatives in our model, unless the number of task repetitions is very 
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high. We also extended the algorithms to explore for multiple repeated tasks, where the 
agent has a different, randomly-chosen (from a known subset of possible tasks), task to 

perform each time. Surprisingly, we found that utility-based on-line exploration may be 
preferred to off-line exploration, even for large numbers of different tasks. 

2. Problem definition 

We model repeated navigational tasks by the following problem of repeated navigation 

in a partially known graph embedded in the plane. An environment consists of a connected 
undirected graph G = ( Vt E) where V is a set of N nodes and E is the set of edges of the 
graph, where each node v is assigned a position in the plane. When the agent is at node v, 
it can sense (with certainty) v’s position as well as the direction of each edge adjoining v 

(each edge is assumed to be a straight line in the plane). The agent does not know the 
length of each edge, however, and so does not know where the edge ends. 

The agent is given the following task. There are two target nodes in V, A and B, 

and the agent needs to go from A to B and back some given number of times, denoted 
by R. The agent starts out knowing only the positions of A and B. Until the agent starts 

moving, it does not know about any nodes other than A and B or about any of the edges 
in the environment. Our goal is for the agent to act so as to minimize the overall cost of 
performing this repeated task, 4 assuming the cost of traversing any edge is 1. Note that 
we talk only about the cost of action; computation cost is not explicitly considered (though 
we rule out impracticably expensive methods). 

3. The exploration algorithms 

In this section we describe our utility-based exploration algorithm, as well as two 
alternative exploration algorithms which we used for comparison purposes. 

3. I. EWP: exploration while performing tusks 

The first algorithm we describe is our utility-based exploration while per$orming (EWP) 
algorithm. The algorithm attempts incrementally to find shorter paths between A and B 

while traveling repeatedly between them. At each stage of the exploration, the agent knows 
the structure of the portion of the environment that it has seen so far. The agent repeatedly 
travels from A to B and back. In addition, during each trip the agent attempts to find a 
previously unknown path between some known pair of nodes VI and ~12. (In the process 

of finding such a path, new nodes may also be discovered.) In order to find a new path 
between ut and ~2, the agent uses a heuristic method for graph search (described below) to 
move through unknown territory from ut towards the position of ~2. Such (deterministic) 
exploration finds a unique dcfuultpath between vt and ~2. When this default path between 

4 In Section 5 we consider the case of multiple repeated goals, where the goal on each repetition is chosen 

randomly from a known set of possihle goals. 
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the pair of nodes (~1, uq) is not yet known by the agent, the pair is a candidate for 
exploration; we term such a pair an exploration edge. On each trip between A and B, 

therefore, the agent explores by following a ‘path’ that contains one or more exploration 
edges. Since the number of such paths is exponential in the number of exploration edges, 
we restrict our attention to paths that contain only one exploration edge, terming such paths 

exploration paths. 

On each trip, the EWP algorithm evaluates the expected utility of each existing 
exploration path for the remaining task repetitions, and traverses the one with the highest 
utility. In our setting, the utility of a path is just the inverse of its cost of traversal.5 
Evaluating the expected utility of an exploration path, therefore, requires evaluating the 
expected cost of traversing an exploration edge 6 (discussed in detail below). We must 

distinguish between the expected cost of traversing an exploration edge the first time, and 
the cost of traversing the default path that was discovered on subsequent task repetitions. 
The first time an exploration edge is traversed, using heuristic search, the agent might 
need to backtrack or might discover cycles, both of which are not included in the default 
path. 

We term the utility of an exploration path including the single exploration edge e as 
U(e). We may express the utility U(e) of an exploration path including exploration edge e 
as the sum of two component utilities: 

- UO(UO. e, B), the expected utility of a single trip from the agent’s current node ug to 
the current target B via e, and 

- U, (e, R, A, B), the expected utility of R future traversals between the target nodes A 

and B, given that the exploration edge e was already explored. 
How Uo and U, are computed is described below in Section 3.1.1, where we discuss the 
default traversal method in detail. 

Note that the exploration strategy we have described is greedy, in that only one 

exploration edge is examined on each trip. We improve this greedy method by applying 
it recursively-after the agent traverses exploration edge (~1, ~2) and is at ~2, EWP is 

applied recursively to find the best exploration path between the current node u2 and B. 

The full EWP algorithm is given in Fig. 1. The agent evaluates the utility of all 
outstanding exploration paths (Step 4), and chooses the best path to traverse (Step 6), if 
a good one exists. If the agent thus arrives at its current target (B), it exchanges A for B 

and continues with its remaining R - 1 traversals. Otherwise, it attempts to explore again 
from its current position, until it is no longer useful to do so. In that case, the agent uses 
the best known path to get to its current target (Step 7(a)). 

3.1.1. Discovery and expected cost of defaultpaths 

In order to traverse an exploration edge between two known nodes UI and ~2, we apply a 
depth-first search strategy to find u2 starting from ~1. Following Cucka et al. [9], we use the 

’ The method does not change greatly, however, if other utility factors, e.g.. the possibility of refueling, are 

incorporated. 

‘Note that there may be an ‘exploration edge’ between nodes UI and ~2. even if there is no real edge in 

the environment between them. An exploration edge merely denotes the possibility of exploring the territory 

between the nodes using the default method, and discovering thereby a new path (possibly containing several 

edges) between them. 
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Algorithm 1. EWP(A, B, R) 

(1) 
(2) 

(3) 
(4) 

(5) 
(6) 

(7) 

(8) 
- 

If R = 0, terminate; 

Let uu be the current node of the agent, and &now,, be the utility of completing the 

remaining R tasks using only paths in the known environment; 
Enumerate the set of exploration edges (e’ = (vi, vi)}; 
Evaluate the expected utility U(e) = UO(VO, e, B) + U,(e, R - 1, A, B) of each 
exploration edge e; 

Let e* = (UT, u;) be the exploration edge with highest expected utility; 
If U(e*) > Ubown, then: 
(a) Follow the best known path to get to ~7; 

(b) Move to vi using the default heuristic traversal method; 
(c) If uz = B, then A + B, R t R - 1; 
Else: 
(a) Follow the best known path to get to B; 

(b) A tf B, R t R - 1; 
Goto (1). 

Fig. 1. The EWP on-line exploration algorithm. 

minimal-angle heuristic to inform the search. At each node in the search, the agent moves 
along the incident unexplored edge which most nearly points in the direction of ~2, the 

search goal. If all edges incident on the current node have previously been traversed, the 
agent backtracks to the last node it explored. In the worst case, this strategy will explore 
the entire environment, but in practice this heuristic is often quite efficient [9]. 

Given the minimal-angle heuristic as a default method for traversing an exploration 
edge, we now consider how to evaluate the expected cost of such a traversal. Recall 
that we separately evaluate the cost of the first time the edge is traversed (using heuristic 

search, including the cost of backtracking and cycles) and the cost of subsequent traversals 
(using the default path found). In the absence of other, more specific, information, we 
parameterize the expected cost for exploration between ~1 and v2 by the distance d between 
them and the smallest angle Q between an edge from vl and the straight line from ut to 
~2, as depicted in Fig. 2. (The smaller 8 is, the cheaper the traversal will tend to be.) 
We term the two expected cost functions FirstCost(d, 0) and RestCost(d, 0). In order to 
estimate the repetition utility U,, we assume that no further exploration will take place (in 
order to avoid a combinatorial explosion). Since this leads to an overestimate in expected 
cost, we multiply the raw estimated cost by a heuristic factor y < 1. (This only affects the 
termination condition and not the exploration strategy.) 

The utility functions Un and U,. are thus defined as follows, where PathCost(u, V) 
denotes the cost of the best path known between u and u: 

Un(ur, e = (~1, UZ), ~2) = -[PathCost(ul, ~1) + 

FirstCost(dist(vr , IQ), f3(q, ~2)) + 

PathCost(v2, ZQ)], 
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v2 

Fig. 2. Distance and angle parameters used in computing FirstCost(u1. ~2) and RestCost(ul , 14). 

U,.(e = (ut, UZ), R, A, B) = -yR [PathCost(A, ut) + 

RestCost(dist(vt, 29), Q(ut , ~9)) + 

PathCost( u2, u2)] . 

We approximate the FirstCost and RestCost functions by assuming that the environment 
is drawn randomly from a known target class according to a known distribution. The 
functions are then estimated from simulations performed on an ensemble of environments 

generated randomly from the target class. A set of such environments are generated and 
the heuristic search procedure is executed for traversal between each pair of nodes. The 
average values for FirstCost and RestCost are recorded in a table for each distance and 
minimal starting angle. This table is then used to evaluate the expected values of FirstCost 
and RestCost. Our results, described below, show that small errors in identifying the target 
class do not adversely affect results (see Section 4.4). 

3.2. EBP: exploration before per$orming tasks 

As we mentioned above, our main goal is to compare between exploration while 
performing tasks and exploration before performing tasks. We compared our EWP 
algorithm with an exploration beforepelforming (EBP) algorithm, where the agent studies 
all the edges in the environment using a heuristic backtracking traversal of the graph, and 
only then moves so as to carry out its tasks. We implemented the algorithm using the 
minimal-angle search heuristic described above. The agent first explores any unknown 
edges incident on its current location (in heuristic order for reaching a target node), and 
backtracks when no such unexplored edges exist. We did not use a more efficient search 
strategy such as Real-Time A* [22], since such strategies require that the agent be able in 
one step to know all the children of its current node, which our model disallows. 

In early experiments, we found that if EBP is allowed to explore until the entire 
environment is known, EWP is always considerably more efficient. We therefore introduce 
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a parameter, (II, such that the agent stops exploring the environment when the shortest 
known path between A and B is no longer than a. Once such a path is found, the agent 

proceeds with its remaining task repetitions using that path. This avoids the problem of 
diminishing returns of further exploration. Note that although the algorithm’s purpose is 
mainly to explore the environment before performing any tasks, any (incidental) visits to 

A and B during exploration count as task accomplishments. 

3.3. REWP: randomized exploration while peq6orming 

We also compared our original algorithm with a simpler algorithm that explores 

randomly while performing its tasks. This randomized exploration while petiorming 

(REWP) algorithm is loosely modeled on probabilistic exploration methods used in 
reinforcement learning (see, e.g., [29]). The algorithm generally follows the shortest known 
path towards its current goal (or uses default search if no path is known), but if the current 
node has any unknown neighboring edges, with exploration probability pe REWP attempts 
to traverse one of those unknown edges (chosen randomly). In our experiments below, 
pe was set to 0.3, which overall gave the best results. Also, in order that the algorithm 
not waste too much time exploring fruitlessly, we also introduced here a parameter a, 
such that REWP stops exploring when the best known path between A and B is shorter 
than a. 

4. Experiments 

4.1. The simulation 

In order to compare the above exploration algorithms we performed simulations on 
randomly generated navigation tasks. The basic parameters for the simulations were the 
number of nodes n in the environments to be considered, the probability p of an edge 
existing between two nodes, the number of task repetitions R, the heuristic cost multiplier 
y (for EWP), and the stopping criterion a! (for EBP and REWP). The agent knows R, but 
does not know n or p. The results reported here are for y = 0.4 for random environments 

and y = 0.9 for triangle environments, and u = 4, since those values gave the best results 
overall for the exploration algorithms. Also, EWP assumed that p = 0.1 (in order to 
construct the FirstCost and RestCost tables); results did not seem to be sensitive to the exact 
value of p. For each experimental trial, we report the average results over an ensemble 

of 100 randomly generated environments. All of the algorithms were tested on the same 
ensemble of environments for each trial. 

We considered two classes of environments; in both the positions of the nodes were 
generated uniformly in the unit square. The first type we call random environments, where 
edges are generated between pairs of nodes according to the probability p. Such environ- 
ments model, for example, tasks in communication networks. Random environments are 
typically very nonplanar, and a small amount of exploration can help a lot, if a good short- 
cut is found. The other type of environment we considered are triangle environments, in 

which edges are randomly generated based on the Delaunay triangulation [ 11 of the nodes’ 
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positions. These environments model, for example, real-world robot navigation tasks. In 
triangle environments the potential benefit of exploration may be somewhat less than in 
random environments, since the likelihood of finding a good shortcut is lower. 

4.2. Random environment results 

In these experiments, we compared the algorithms’ performance on random environ- 
ments which were generated as follows, given environment size (number of nodes) n and 
edge probability p: 

(1) 

(2) 

(3) 
(4) 

(5) 

(6) 

(7) 

Begin with the complete graph (V, E) on n nodes, assigning a random weight to 
each edge. 
Find a minimal spanning tree T = (V, ET) for this weighted graph (to ensure the 

environment is connected). 
Let E’ = ET. 

Assign each node in V a position chosen uniformly in the unit square. 
For each ut, 212 E V such that (~1,212) $ ET, add (~1, ~2) to E’ with probability 
q = p(n - 1)/n. 
Choose, with probability l/n and l/(n - 1) respectively, two nodes in the graph as 
goals, A and B. 

Output the graph G = (V, E’) with target nodes A and B. 

In Tables 1 and 2, we compare the overall efficiency of EWP for repeated tasks versus 
using the default traversal method. We see that except with very few repeats, efficiency is 
always improved by using on-line exploration. Furthermore, we note that as the number 

of task repetitions increases, the usefulness of exploration increases. This is because the 
cost of an exploratory action can be amortized over a larger number of future tasks. 
The effectiveness of exploration is highest in environments of intermediate ‘edge density’ 
(p = 0.05), because while (i) a dense environment contains more shortcuts for exploration 
to find than a sparse one, (ii) the direct (default) path in a dense environment is more likely 
to be short than in a sparse environment. These two influences are balanced in environments 
of intermediate density. 

In Tables 3 and 4 we compare the performance of the three exploration algorithms 
(EWP, EBP, and REWP) against each other for random environments. We tested our results 

Table I 
Ratio of task performance time of exploration while perform- 

ing (EWP) over the default path cost, in random environ- 

ments. We compare performance for different edge probabili- 

ties p and different numbers of task repetition R. 

100 Nodes 200 Nodes 

R p = 0.01 0.05 0.1 0.01 0.05 0.1 

10 1.08 0.76 0.88 1.28 0.93 0.93 

50 0.61 0.44 0.51 0.59 0.47 0.52 

100 0.52 0.38 0.45 0.48 0.37 0.42 

200 0.48 0.34 0.41 0.41 0.32 0.36 
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Table 2 

Ratio of task performance time of exploration while perform 

ing (EWP) over the default path cost, in random environments. 

We compare performance for different edge probabilities p 

and different environment sizes n for R = 100 task reoetitions. 

n p = 0.01 0.05 0.1 

10 0.90 0.91 0.84 

20 0.89 0.72 0.69 

30 0.79 0.59 0.61 

40 0.68 0.52 0.52 

50 0.60 0.45 0.5 1 

60 0.65 0.51 0.51 

70 0.58 0.45 0.54 

80 0.57 0.47 0.53 

90 0.55 0.46 0.46 

100 0.52 0.38 0.45 

200 0.48 0.37 0.42 

Table 3 

Task efficiency ratios between exploration algorithms for random environments of 

different sizes (n), for R = 100 task re1 Ietitions. 

EWPfREWP 

0.01 0.05 0.10 

0.97 0.97 0.94 

1 .Ol 0.94 0.89 

1.04 0.9 1 0.84 

0.96 0.90 0.80 

0.94 0.88 0.84 

1.00 0.86 0.81 

0.99 0.85 0.85 

0.99 0.88 0.85 

0.97 0.90 0.76 

0.88 0.80 0.68 

0.91 0.65 0.63 

n 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

200 

EWPLEBP 

p = 0.01 0.05 0.10 

0.96 0.95 0.94 

1.00 0.92 0.85 

1.01 0.88 0.79 

0.94 0.85 0.77 

0.95 0.82 0.84 

0.93 0.83 0.83 

0.92 0.8 1 0.82 

0.89 0.82 0.80 

0.87 0.77 0.76 

0.82 0.70 0.65 

0.67 0.64 0.66 

REWPIEBP 

0.01 0.05 0.10 

0.99 0.98 1.00 

0.99 0.98 0.96 

0.97 0.97 0.94 

0.98 0.94 0.96 

1.01 0.93 1.00 

0.94 0.96 I .02 

0.93 0.94 0.96 

0.90 0.93 0.94 

0.89 0.86 1.00 

0.93 0.88 0.96 

0.73 1 .oo 1.05 

statistically using analysis of paired data [ 14, Section 9.31 to compare the algorithms’ mean 

efficiencies. To a 0.05 confidence level, EWP is more efficient than EBP and REWP, while 
REWP is more efficient than EBP. 
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Table 4 

Efficiency ratios comparing EWP, EBP, and REWP for varying numbers of task repetitions R and 

edge probabilities p, in random environments 

R 

100 Nodes 10 

50 

100 

200 

200 Nodes 10 

50 

100 

200 

EWPLEBP EWPIREWP 

p = 0.01 0.05 0.10 0.01 0.05 0.10 

0.41 0.42 0.47 0.75 0.53 0.59 

0.71 0.65 0.62 0.86 0.75 0.66 

0.82 0.70 0.65 0.88 0.80 0.68 

0.90 0.7 1 0.66 0.97 0.76 0.71 

0.30 0.37 0.40 0.57 0.34 0.37 

0.53 0.60 0.62 0.84 0.61 0.58 

0.67 0.64 0.66 0.91 0.65 0.63 

0.78 0.69 0.67 0.94 0.64 0.62 

REWPIBBP 

0.01 0.05 0.10 

0.55 0.78 0.79 

0.82 0.86 0.94 

0.93 0.88 0.96 

0.92 0.94 0.94 

0.53 1.09 1.07 

0.63 0.99 1.07 

0.73 I .oo 1.05 

0.84 1.07 1.09 

277 

More specifically, for the cases considered, on-line exploration (EWP and REWP) often 

performs much better than off-line exploration (EBP), and is never noticeably worse. In 
addition, the utility-based focus of EWP is of great advantage, as EWP achieves up to a 
38% efficiency advantage over REWI? The additional focusing of exploration provided 
by the utility-based formulation is also seen in that the advantage of EWP over the other 
algorithms increases with the density of the environment, since EWP is not distracted by 
additional irrelevant edges. The usefulness of on-line exploration increases with increasing 
size of the environment for the same reason. As expected, the usefulness of on-line versus 
off-line exploration decreases with an increasing number of task repetitions, since the cost 
of exploration can be amortized over more repetitions of the task. 

4.3. Triangle environment results 

We also compared the algorithms’ performance on triangle environments. As noted 
above, we examined performance on triangle environments as well as random environ- 
ments, since triangle environments more closely approximate the situation for robotic nav- 

igation problems. Furthermore, we expect exploration in general to be less effective for 
triangle environments, due to the lack of shortcuts; therefore we tested if our positive re- 
sults for exploration while performing hold for the triangle case as well. Triangle environ- 

ments were generated as follows, given environment size (number of nodes) n and edge 
probability p. 

Triangle environments with an overall edge probability of p were generated as subsets 
of Delaunay triangulations via the following procedure: 

(1) 
(2) 

(3) 
(4) 
(5) 

Generate n-points randomly in a unit square (with a uniform distribution). 
Compute the Delaunay triangulation G = (V, E) of the points (using the qhull 

software package [ 11). 
Assign each edge a random weight. 
Find a minimal spanning tree T = (V, ET) for this weighted graph. 
Let E’=ET. 
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(6) For each edge e E E - ET, add e to E’ with probability 

n(n - 2) 

4’P2(IEl-n+1)’ 

where p is the input edge probability, IZ is the number of nodes in the graph and 1 E 1 

is the number of edges in the triangulation graph. 
(7) Choose, with probability l/n and l/(n - 1) respectively, two nodes in the graph as 

targets, A and B. 
(8) Output the environment G = (V, E’), and goals A and B. 

The probability q for adding an edge in the Delaunay triangulation to G is computed so 
that the expected fraction of all possible edges that are edges in G is p. In graphs of 100 
nodes or more, the Delaunay triangulation had fewer than O.Oln(n - 1) edges, so there are 
no graphs with p = 0.10 and n > 100. 

Tables 5 and 6 give the results of comparing the various algorithms for triangle 

environments. We first see that EWP is still significantly preferred to the default path, 
although its benefit is decreased compared to random environments. This is due to 

the lower incidence of shortcuts in the planar triangle environments. As in random 
environments, the usefulness of exploration increases with the size of the environment 
and the number of task repetitions. On-line exploration (EWP) also gave efficiency 
improvements over off-line exploration (EBP) similar to those in the random environment 
case, showing that the focus on task-related exploration is still significant. However, 
the utility-based focus of EWP was less important in triangle environments, as seen 
in the efficiency ratio of EWP over REWP. For over 100 task repetitions (and all 
environment sizes), the two algorithms perform virtually identically, showing that with 
sufficient amortization of exploration cost, randomized on-line exploration is as good as 

Table 5 

Comparison of efficiency ratios of algorithms EWP, EBP, REWP, and the default method for triangle 

environments of w-vine size m,. for R = 100 task reoetitions 

n 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

200 

,- ,, I 

EWP/Def. EWPIEBP 

p = 0.01 0.05 0.10 0.01 0.05 0.10 

0.97 0.98 0.96 1.03 1.03 0.98 

0.99 0.86 0.83 1.05 1.04 0.99 

0.95 0.77 0.85 1.06 1.02 0.98 

0.88 0.77 0.88 1.04 0.94 0.92 

0.79 0.76 0.88 I .02 0.88 0.88 

0.78 0.83 0.85 0.98 0.89 0.86 

0.7 1 0.85 0.88 0.92 0.79 0.79 

0.72 0.77 0.77 0.9 1 0.75 0.75 

0.72 0.81 0.81 0.88 0.71 0.70 

0.75 0.85 N/A 0.89 0.67 N/A 

0.65 0.76 N/A 0.64 0.52 N/A 

EWPIREWP REWPIEBP 

0.01 0.05 0.10 0.01 0.05 0.10 

1.03 1.05 0.99 1.00 0.98 0.99 

1.07 1.03 1.01 0.98 1.01 0.98 

I .07 1.04 1.00 0.99 0.98 0.97 

1.07 0.99 0.99 0.98 0.95 0.92 

I .04 0.97 0.96 0.99 0.91 0.92 

1.00 0.99 0.97 0.98 0.90 0.88 

0.93 0.96 0.96 0.99 0.83 0.82 

0.95 0.93 0.93 0.96 0.81 0.81 

0.96 0.92 0.92 0.9 1 0.76 0.76 

1.00 0.92 N/A 0.89 0.73 N/A 

0.95 0.92 N/A 0.67 0.57 N/A 
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Comparison of efficiency ratios of algorithms EWP, EBP, REWP, and the default method for triangle 

environments of varying size (n), for a varying number of task repetitions. 

EWPlDef. EWPIEBP 

R p = 0.01 0.05 0.01 0.05 

100 Nodes IO 1.05 I .07 0.36 0.18 

50 0.79 0.89 0.73 0.49 

100 0.75 0.85 0.89 0.67 

200 0.74 0.83 1.01 0.83 

200 Nodes I 0 0.97 1.15 0.17 0.12 

50 0.70 0.85 0.46 0.36 

100 0.65 0.76 0.64 0.52 

200 0.63 0.71 0.82 0.70 

EWPIREWP 

0.01 0.05 

0.73 0.42 

0.95 0.80 

1 .oo 0.92 

I .03 I .oo 

0.55 0.43 

0.87 0.82 

0.95 0.92 

1 .OO 0.99 1 

REWPIEBP 

0.01 0.05 

0.49 0.4 I 

0.77 0.62 

0.89 0.73 

0.99 0.84 

0.31 0.28 

0.52 0.44 

0.67 0.57 

0.81 0.7 I 

utility-based exploration. This is because random exploration in a triangle environment 

is unlikely to move the agent far from the currently known best path to the target, 

so that the agent tends to explore those portions of the environment more likely to 
be relevant to the task. In random environments, on the other hand, a random step 

in the graph may move the agent far from the portion of the environment between 
the targets, and so the agent wastes more time exploring irrelevant portions of the 
environment. 

In triangle environments, the usefulness of exploration decreases with increasing density, 
since the shortest path will tend to be more direct, the more edges there are. The usefulness 
of on-line exploration versus off-line exploration increases, however, with increasing 
density, since the off-line algorithm will waste more time exploring irrelevant portions 

of the environment. 

4.4. Sensitivity of EWP 

We evaluated the sensitivity of EWP to its heuristic (the tables of FirstCost and RestCost) 

in two ways. First, as noted above, in all of our experiments we used tables of FirstCost 
and RestCost based on p = 0.1 and IZ = 100. We found EWP to be significantly useful in 

all classes of environments, and hence detailed tuning of these parameters does not appear 
to be crucial. 

Second, we evaluated the need for a detailed evaluation of expected utility by comparing 
the EWP algorithm using the FirstCost and RestCost tables against a version of the 
same algorithm which used constant values for the FirstCost and RestCost functions. 
We evaluated three variations, one using the lowest value in the table (Low), one using 
the highest (High), and one using the average of all the values (Avg). The results are 
summarized in Tables 7 and 8. These results show that using the tables of values gives 
significant efficiency improvement over using a fixed value, indicating the usefulness 

of utility evaluation in exploration. We also see that the best of the constant-value 
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Table I 

Comparison of the EWP algorithms with the Low, Avg, and High variants for random 

environments (see text for full explanation). 

EWPlLow EWPlAvg EWPMigh 

n R p = 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 

100 50 0.70 0.72 0.64 0.60 0.58 0.54 0.88 0.98 0.94 

100 100 0.63 0.64 0.58 0.54 0.51 0.49 0.82 0.92 0.89 

200 50 0.68 0.75 0.77 0.62 0.61 0.57 0.87 0.97 1.04 

200 100 0.60 0.61 0.64 0.54 0.59 0.47 0.81 0.87 0.91 

Table 8 

Comparison of the EWP algorithms with the Low, Avg, and High variants 

for triangle environments (see text for full explanation). 

EWPiL.ow EWPlAvg EWPiHigh 

n R p = 0.01 0.05 0.01 0.05 0.01 0.05 

100 50 0.76 0.88 0.76 0.88 0.82 0.92 

100 100 0.74 0.85 0.74 0.85 0.80 0.91 

200 50 0.68 0.89 0.68 0.83 0.82 0.99 

200 100 0.64 0.80 0.64 0.75 0.78 0.93 

algorithms is High, reflecting the earlier termination effected by overestimating (rather 
than underestimating) the expected path cost. 

5. Multiple repeated tasks 

In the previous sections, we have described and evaluated algorithms for combining 
exploration and task achievement in a partially-unknown environment, where the agent 
is to perform a single task repeatedly. In this section, we report on some results for the 
more common case where the agent may have to perform a number of different tasks in 
sequence. We model this case by assigning each node a probability of being chosen as a 
navigational target on each repetition. Thus, the agent must travel to R target nodes, where 
the identity of the target node for task number i is chosen randomly after the agent reaches 
target i - 1. We assume that the task probability distribution is static and is known by the 
agent, though the agent does not know what its specific future goals will be. In this work, 

we assume a uniform probability distribution over a subset S c V of possible target nodes. 
The agent starts out only knowing the set of nodes S (with their positions). 

We generalized the exploration algorithms described above to the case of multiple goals 
in a straightforward manner. For the exploration before performing (EBP) and randomized 
exploration while performing (BEWP) algorithms, the only change necessary is in the 
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Efficiency ratios of exploration algorithms for multiple targets in random environments of size n = 100. with 

varied R and p. 

ISI 

p=O.Ol 2 

5 

IO 

20 

30 

p =0.05 2 

5 

10 

20 

30 

p=O.lO 2 

5 

10 

20 

30 

EWP/Def. EWPIEBP EWPIREWP 

R=lOO 500 1000 2000 100 500 1000 2000 100 500 1000 2000 

0.51 0.44 0.44 0.43 0.87 0.98 1.00 1.01 0.98 0.98 0.98 1.00 

0.77 0.68 0.66 0.66 0.85 0.95 0.96 0.97 0.96 0.98 0.98 0.98 

0.93 0.85 0.84 0.83 0.91 0.97 0.98 0.98 1.01 1.00 0.99 0.99 

0.95 0.94 0.93 0.93 0.96 0.98 0.99 0.99 1.01 1 .oo 0.99 0.99 

0.94 0.94 0.95 0.95 0.98 0.99 0.99 0.99 1.03 1.00 1.00 1.00 

0.46 0.42 0.42 0.42 0.83 0.92 0.93 0.94 0.83 0.89 0.90 0.90 

0.47 0.50 0.48 0.48 0.68 0.78 0.79 0.80 0.80 0.80 0.79 0.82 

0.79 0.66 0.64 0.62 0.67 0.82 0.85 0.86 0.87 0.85 0.85 0.85 

0.90 0.80 0.77 0.75 0.68 0.85 0.88 0.90 0.91 0.93 0.93 0.91 

0.91 0.84 0.82 0.80 0.67 0.87 0.91 0.93 0.92 0.96 0.96 0.94 

0.5 1 0.49 0.49 0.49 0.89 0.94 0.95 0.95 0.81 0.91 0.90 0.93 

0.52 0.45 0.44 0.44 0.58 0.74 0.78 0.79 0.71 0.76 0.75 0.75 

0.69 0.56 0.36 0.54 0.53 0.78 0.57 0.89 0.77 0.84 0.56 0.84 

0.82 0.71 0.69 0.67 0.56 0.84 0.91 0.96 0.81 0.92 0.94 0.94 

0.88 0.79 0.76 0.74 0.53 0.84 0.93 0.99 0.82 0.96 0.98 0.98 

termination criterion, where exploration is terminated if (i) all target nodes have been 

visited and (ii) the average shortest path length between pairs of possible goals is less 

than the threshold cz. The utility-based exploration while performing (EWP) algorithm is 

adjusted by computing the expectation of future utility of possibly discovering a new edge 

over all possible sequences of goals. This is done by computing the average improvement 
in shortest expected path length for each exploration path, over all pairs of possible 

goals. 
In general, we expect the efficiency of on-line exploration versus off-line exploration to 

decrease as the number of different goals increases, since the focus that on-line exploration 

provides will be more diffuse. Our results are presented in Tables 9 and 10. 
Surprisingly, we find that EWP often performs much better than EBP, even for large 

numbers of goals. In random environments (Table 9), the advantage of EWP over EBP is 

noticeable even for large numbers of targets and many task repetitions, particularly in dense 

environments. This result shows that in dense random environments, there is significant 

overlap between the good paths for different goals, and so the task-based focus of on-line 

exploration can still be used to some advantage. In addition, in random environments the 
utility-based focus of EWP gives it an advantage over REWP, just as in the two-target case. 

As in that case, the advantage of EWP increases for fewer task repetitions. 
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Efficiency ratios of exploration algorithms for multiple targets in triangle environments of size n = 100. with 

varied R and p. 

ISI 

p=O.Ol 2 

5 

10 

20 

30 

p=o.o5 2 

5 

10 

20 

30 

EWPlDef. EWPiEBP EWPIREWP 

R=lOO 500 1000 2000 100 500 1000 2000 100 500 1000 2000 

0.71 0.62 0.62 0.61 0.92 0.99 1.00 1 .oo 1.03 0.99 0.98 0.98 

0.79 0.69 0.67 0.67 0.92 0.99 1.00 1.00 1.02 0.99 0.99 0.98 

0.89 0.82 0.81 0.80 0.96 0.99 1.00 1 .oo 1.03 1.00 1.00 1.00 

0.92 0.91 0.91 0.91 0.98 0.99 1.00 1 .oo 1.02 1.00 1.00 I.00 

0.92 0.94 0.94 0.95 1.03 1.01 1.00 1.00 1.02 1.00 1.00 i -00 

0.96 0.75 0.72 0.71 0.82 0.94 0.97 0.99 1.07 1.01 1.00 1.01 

0.88 0.61 0.57 0.55 0.75 0.90 0.93 0.95 1.06 1.00 0.98 0.98 

0.93 0.65 0.61 0.59 0.75 0.91 0.95 0.97 1.03 1.01 1.00 1.00 

0.97 0.76 0.72 0.70 0.76 0.91 0.95 0.97 1.02 1.01 1.00 1.00 

0.99 0.82 0.80 0.78 0.77 0.92 0.95 0.97 1.04 1.01 1.01 1.00 

In triangle environments (Table lo), on-line exploration is preferred, even for large 
numbers of targets, in cases with relatively low numbers of repetitions. EWP and REWP 
perform nearly identically, however, so, as in the two-target case, for more than 100 task 
repetitions explicit evaluation of utility is not indicated for triangle environments. 

Finally, we note that in all cases, EWP performs better than the default path, even with 

many goals (although the advantage decreases with the number of goals). As expected, the 
improvement increases with the number of repetitions, as more of the environment can be 

learned. 

6. Discussion 

The EWP algorithm presented above uses a greedy estimate of exploration utility in 
order to explore a partially-known environment on-line during performance of repeated 
tasks. Our results for a number of different types of graphs show on-line exploration to be 
generally superior to a good off-line exploration algorithm (EBP). We further have shown 

that EWP usually gives better performance than a randomized on-line exploration algo- 
rithm (REWP), demonstrating the importance of explicitly considering the expected utility 

of exploration. Utility-based on-line exploration only explores parts of the environment 
that are expected to help the agent with its given tasks, avoiding exploring portions of the 
environment that are irrelevant to the agent. One surprising result is that EWP also gives 
significant efficiency improvements in some cases with more than two repeated goals, be- 
cause even in such cases most of the environment need not be explored in order to perform 

the required tasks efficiently. We conclude that in some cases a utility-based on-line explo- 
ration strategy can achieve a significant improvement in agent performance. 
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