
Modeling Human Decision Making in Cliff-Edge environments

Ron Katz and Sarit Kraus
Department of Computer Science and The Gonda Brain Research Center

Bar-Ilan University, Ramat-Gan 52900, Israel, sarit@cs.biu.ac.il

Abstract

In this paper we propose a model for human learning and de-
cision making in environments of repeated Cliff-Edge (CE)
interactions. In CE environments, which include common
daily interactions, such as sealed-bid auctions and the Ul-
timatum Game (UG), the probability of success decreases
monotonically as the expected reward increases. Thus, CE
environments are characterized by an underlying conflict be-
tween the strive to maximize profits and the fear of caus-
ing the entire deal to fall through. We focus on the be-
havior of people who repeatedly compete in one-shot CE
interactions, with a different opponent in each interaction.
Our model, which is based upon theDeviated Virtual Rein-
forcement Learning(DVRL) algorithm, integrates the Learn-
ing Direction Theory with the Reinforcement Learning al-
gorithm. We also examined several other models, using an
innovative methodology in which the decision dynamics of
the models were compared with the empirical decision pat-
terns of individuals during their interactions. An analysis of
human behavior in auctions and in the UG reveals that our
model fits the decision patterns of far more subjects than any
other model.

Introduction
In this work we propose a model for human learning and de-
cision making in environments of repeated Cliff-Edge (CE)
interactions (Katz & Kraus 2006). CE environments, which
include sealed-bid auctions, dynamic pricing and the ultima-
tum game (UG), are characterized by an underlying conflict
for the competitor between the desire to maximize profits
and the fear of causing the entire deal to fall through. Con-
sider, for example, a proposer in the UG who needs to decide
how to divide an amount of money with his opponent (Guth,
Schmittberger, & Schwarz 1982): Decreasing the share of-
fered to the opponent increases the profits accruing to the
proposer, so long as the offer exceeds the acceptance thresh-
old of the opponent. A slightly greedier proposal causes
the proposer to lose the whole deal. Similarly, a bidder in
a sealed-bid first-price auction (e.g. (Ockenfels & Selten
2005)) attempts to bid an amount that is only slightly higher
than those put forward by opponent players. This situation is
somewhat similar to that of a person standing on the edge of
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a cliff, trying to see the panoramic view. The more closely he
approaches the cliff edge, the better the view. However, one
step too many causes the viewer to fall off the cliff. Hence,
interactions and games of this type are referred to as Cliff-
Edge interactions.

Here we focus on one-shot CE interactions which are re-
peatedly competed against different opponents. Such re-
peated interactions occur, for example, in periodical sealed-
bid auctions of the same goods, which are very popular
nowadays, especially via the internet (e.g. (Zhu & Wurman
2002)). Similarly, a sequential version of the UG with dif-
ferent opponents is under thorough investigation in behav-
ioral economics (Roth & Erev 1995; Brenner & Vriend ;
Bourgine & Leloup 2000). Thus, understanding human be-
havior in such environments is important for the everyday
commercial world. In addition, the current work uses con-
cepts from Artificial Intelligence (AI) in order to explain
cognitive phenomena. In so doing, we intensify the rela-
tionship between AI and cognitive science, which is likely
to be of great benefit to both disciplines (Freed 2000).

Several approaches to modeling human behavior in CE
environments have been previously proposed (Selten &
Stoecker 1986; Roth & Erev 1995; Bourgine & Leloup
2000). Those approaches are broadly described below. In
this paper, we propose a new model which is based upon
the Deviated Virtual Reinforcement Learning (DVRL) al-
gorithm (Katz & Kraus 2006), which was originally estab-
lished as a mechanism for developing automated agents to
compete against human opponents. We show that our ap-
proach, which integrates learning direction theory (Selten &
Stoecker 1986) with the Reinforcement Learning (RL) al-
gorithm (Roth & Erev 1995), fits the empirical decisions
pattern of a considerable proportion of subjects who partic-
ipated in UG and auction experiments. By examining dif-
ferent environments, we reduce the probability of domain-
specificity influencing the findings.

The methodology by which we examine the fitness of
the different models to the empirical data considers in-
dividual patterns of decision making, rather than merely
the average pattern for all the subjects, as has been done
elsewhere (Roth & Erev 1995; Bourgine & Leloup 2000;
Brenner & Vriend )1. Moreover, it considers each sub-

1We also examined our model against the average decisions pat-
terns of UG players from four countries, as was done by (Roth &



ject’s decisions pattern during all his interactions, rather
than merely the relationship between two subsequent inter-
actions, as has been done by others (Selten & Stoecker 1986;
Ockenfels & Selten 2005; Grosskopf 2003; Mitzkewitz &
Nagel 1993). In contrast to all previous works, we assume
that different people may have different attitudes. There-
fore, we categorize subjects according to the model which
best explains their decision patterns.

In the next section, we formally describe the CE environ-
ments. Then we survey previous models and the behavior
patterns that they predict. In the subsequent section we de-
tail our DVRL-based model, and afterwards we present the
empirical experiment and its results. In the last section we
conclude and outline directions for future work.

The CE environments’ description
The general pattern of one-shot CE interactions considers
a competitor required to choose an offeri, being an inte-
ger0 ≤ i ≤ N , whereN is the maximum optional choice.
Then a positive reward,r, corresponding to the offer,i, is
determined, depending on whether the offer passed a certain
threshold,τ , set by the opponent. Specifically, in the sealed-
bid first-price auction, an amount,N, is auctioned.2 The bid-
der is required to place a bidi, being an integer0 ≤ i ≤ N ,
which will gain the bidder a reward,r, if it exceeds the high-
est bid,τ , made by all other bidders in the current auction.
If τ ≤ i, r = N− i (the amount gained less the bid amount),
otherwise r=0. The bidder is never informed as to the size
of the bid offered by an opponent. In the UG, a proposer
needs to divide an amount (N) with an opponent by offering
the latter an integer amount,i, 0 ≤ i ≤ N . The reward to
the proposer,r, is determined according to the opponent’s
acceptance threshold,τ . If τ ≤ i, r = N − i, otherwiser=0.

To demonstrate the challenge facing a competitor in CE
environments, letR(i) be the reward corresponding to a suc-
cessful offeri and let P(i) be the probability of the offer, i,
succeeding (i.e. the probability that the offer will be higher
than the other bids, in the case of an auction, or will be ac-
cepted by the responder, in the case of the UG).

Obviously, there is a trade-off betweenR andP: choos-
ing an offeri which increases the expected reward,R(i), de-
creases the probability of success,P(i), and vice versa.

Related work
This section surveys previously suggested ways of modeling
human behavior during repeated interactions with different
human opponents in CE environments. For each model, we
describe the expected pattern of decision making through
the game.Table 1presents a representative decision pattern
for each model. These patterns authentically describe the
behavior of subjects who interacted repeatedly as proposers
in the UG, as detailed in the Experimental Design section.
Each table entry includes the offer given by a subject, and

Erev 1995). We found the behavior of our model to accurately
reflect human behavior, and in several cases our model was even
more predictive than that of Roth and Erev.

2 In order to evade considerations of value estimations (Ocken-
fels & Selten 2005) the item auctioned is an amount of money.

LDT RL DVRL Constant Constant+DVRL

5 U 46 S 50 S 50 S 10 U
15 U 45 S 45 S 50 S 10 U
25 U 45 S 35 U 50 S 10 U
50 S 46 S 35 S 50 S 10 U
45 S 46 S 30 U 50 S 10 U
30 S 42 S 30 S 50 S 10 U
26 S 45 S 20 S 50 S 10 U
8 U 40 S 10 S 50 S 10 S

15 U 49 S 10 U 50 S 10 U
32 S 46 S 10 U 50 S 10 U
29 S 46 S 10 U 50 S 10 U
26 S 46 S 20 S 50 S 10 U
19 U 40 S 20 S 50 S 10 U
24 U 45 S 20 U 50 S 10 U
31 S 46 S 20 U 50 S 15 U
29 S 32 S 20 S 50 S 15 U
28 S 28 S 20 S 50 S 15 U
27 S 46 S 20 U 50 S 20 U
26 S 54 S 20 U 50 S 20 U
25 S 46 S 20 S 50 S 20 S
24 S 46 S 2 U 50 S 20 U
20 S 40 S 20 S 50 S 40 S
16 U 15 U 20 U 50 S 40 S
19 U 46 S 20 U 50 S 40 S
22 S 43 S 30 S 50 S 40 S
20 U 50 S 30 U 50 S 40 S
22 U 42 S 30 S 50 S 40 S
25 U 40 S 30 U 50 S 40 S
29 S 46 S 30 S 50 S 40 S
28 U 49 S 30 S 50 S 40 S
29 U 46 U 20 U 50 S 40 U
35 U 45 S 30 U 50 S 40 S

Table 1: Representative decision patterns found for each model
studied. These patterns describe the empirically observed behavior
of proposers in the UG during our experiments. Proposers were
given 100 NIS and could choose to offer their opponent some por-
tion of that amount, being any integer between 0 and 100. For
space considerations, we present here only the first 32 interactions.

the results of that offer (S - for successful move, i.e. an ac-
ceptance of the offer by the current responder, and U - for
unsuccessful move, i.e. a rejection. Similarly, in auctions
we regard a winning bid as successful, and a losing bid as
unsuccessful). The interaction with the first opponent is pre-
sented in the first row, with subsequent interactions follow-
ing sequentially in each successive row.

It is noteworthy that all the models considered in this pa-
per describe the dynamics of themedium run(see (Gale,
Binmore, & Samuelson 1995)), when subjects begin to learn
and adapt their behavior to their opponents’ feedback. The
models do not predict a subject’s decision during the first in-
teraction. We assume that this decision is made according
to individual norms that are triggered by the framing of the
specific environment.

Learning Direction theory (LDT)
LDT (Selten & Stoecker 1986) is a qualitative theory about
learning in repetitive decision tasks. The theory is quite sim-
ple and can best be introduced with the help of an example.
Consider an archer who tries to hit a target. If the arrow
misses the target on the left side, then the archer will tend
to aim more to the right, and in the case of a miss to the
right, the aim will be more to the left. The way in which
the decision is based on experience may be described as ex-
post rationality. One looks at what might have been a better
choice to have made last time and adjusts the decision in
this direction. Thus, in the UG, if an offer,i, is rejected at



interactiont, then, at interactiont+1 the proposer will of-
fer the opponent a higher offer, while if offeri is accepted
at interactiont, then at interactiont+1 the offer will be de-
creased. This pattern of decision making, which can be seen
in the first column ofTable 1, was claimed to be used by
many subjects in CE environments such as in the Iterated
Prisoner’s Dilemma game (Selten & Stoecker 1986), at a
first-price auction (Ockenfels & Selten 2005) and in the UG
(Mitzkewitz & Nagel 1993).

Despite the elegance and simplicity of the LDT model,
it suffers from two problems. First, it cannot explain the
very common occurrence of no change in the amount of-
fered, after both a successful and an unsuccessful interac-
tion. (Ockenfels & Selten 2005) report that 35.5% of bids
remain unchanged after a successful auction and 30.4% re-
main unchanged after a loss. A similar pattern was found
in the current research. In the auction, 49.81% of the bids
were not changed after a successful auction, the figure be-
ing 27.97% after a loss. In the UG, 43.41% of offers were
not changed after an accepted offer, and 18.33% after a re-
jection. These findings are difficult to explain by the LDT
model, nor can that model predictwhenthe offers will stay
unchanged. Thus, in this paper we consider as LDT-based
negotiators only subjects who (almost) alwayspositively
obey to the LDT rules, as shown in the LDT column ofTa-
ble 1. The second problem is that the LDT process ignores
all the data experienced before the previous interaction. In
contrast to the archer’s case, where the target stays steady
during all the trials, in our environments there is a differ-
ent opponent with a different bid or acceptance threshold in
each interaction. Thus, a reasonable negotiator should take
into account all the experience gained from previous inter-
actions, rather than focusing only on the result of the last in-
teraction. Even if we assume that a typical negotiator cannot
remember all previous interactions, he certainly remembers
more than merely one interaction. Hence, it is difficult to
accept the argument that most people obey the LDT.

Reinforcement-Learning based models
Another approach suggests that the Reinforcement-Learning
(RL) method (Sutton & Barto 1998) describes the mecha-
nism underlying human behavior when a person interacts
with different opponents in CE environments such as the
UG (Roth & Erev 1995; Gale, Binmore, & Samuelson 1995;
Bourgine & Leloup 2000).3 According to the RL method,
the negotiator determines what offer to make from amongst
all potential offers, according to her evaluation of the ex-
pected utility (EU) that each offer would yield if chosen.
Expected utilities are evaluated on the basis of the results of
previous interactions, and are stored in a database, termed
hereafter the Q-vector. The Q-vector is updated after each

3Unlike Roth and Erev, (Gale, Binmore, & Samuelson 1995)
proposed an evolutionary model based on replicator dynamics, and
(Bourgine & Leloup 2000) proposed Gittins’ index strategy in or-
der to model the behavior of UG players. However, both of these
models share the same pattern of behavior as RL, since they are
based on the same ideas of learning by reinforcing profitable op-
tions, suppressing offers with lower expected payoff and selection
according to their relative profitability.

interaction, according to the results of that interaction. The
EU of the chosen offer is reinforced after a successful in-
teraction, while, after an unsuccessful interaction, the EU
of the chosen offer is decreased or at least remains steady
(Roth & Erev 1995). The basic RL method, however, does
not seem to be an appropriate human learning model for CE
environments, since it does not take into consideration the
inter-correlations between offers, i.e. the fact that adjacent
offers have proximate successful probabilities. Moreover,
once the basic RL algorithm finds a relatively rewarding of-
fer, it hardly explores any other options.

In 1995, Roth and Erev showed that a slightly modified
RL algorithm, can successfully model human players’ be-
havior in several games, including the UG. This achieve-
ment was quite impressive, considering the fact that the UG
is characterized by the existence of a significant gap between
empirical human behavior and subgame perfect equilibrium
predictions. The basic idea of the behavior of the proposer
in their model is adaptation to the responders’ acceptance
thresholds. This property makes RL a possible approach for
all CE environments, in which the negotiator is required to
make decisions according to the opponents’ actions. Roth
and Erev’s main modification to the basic RL algorithm was
the introduction of a ”generalization” parameterε which pre-
vents the probability of choosing an offer from going to zero
if it is adjacent to a successful offer, as can be seen inAlgo-
rithm 1 . Their assumption, which has general validity in CE
environments, was that adjacent offers have proximate suc-
cessful probabilities. In the original algorithm, where N=10,
they considered as adjacent offers only the offers which are
1 above and 1 below a successful offer. Thus, if an offer of 4
is accepted by the opponent, the proposer slightly reinforces
the Q-values of offers 3 and 5, as well. Here we present a
generic format, which extends the range of the adjacent of-
fers by using theγ parameter. This extension is important
for environments withN larger than 10.4

Algorithm 1 ROTH & EREV’ S MODEL

Notation: ε denotes the generalization parameter.γ is the
generalization scope parameter.

1: For j=0 to N, initialize Q(j) arbitrarily
2: For each interaction,Do
3: Select offer i with a probability of Q(i)∑N

j=0
Q(j)

4: Observing opponent’s move, calculate reward r
5: If offer i has succeededThen Q(i) =Q(i) + r-ε
6: For j=(i-γ) to (i+γ), if j 6=i Q(j) =Q(j) + ε

2γ

A negotiator who follows the RL method, as suggested by
Roth and Erev, should act according to the following pattern:

1. No consistent obligation to LDT. As can be seen in
the RL column inTable 1, an offer may be increased after a
successful interaction (e.g. rows 8-9), and may be decreased

4In their paper, Roth and Erev suggested an additional two mod-
ifications: the ”cutoff parameter” and ”gradual forgetting”. How-
ever, these modifications start to have an effect only after many
interactions, beyond the number of interactions considered here.



after an unsuccessful interaction (e.g. rows 31-32).
2. Certain offers will be chosen repeatedly throughout the

whole game. Once an amount is successfully offered, the
probability that this amount will be chosen again is signif-
icantly increased. As the game proceeds, it is even more
difficult for other offers to be selected, since the denomi-
nator in line 3 ofAlgorithm 1 increases. In addition, the
small reinforcement of adjacent amounts constructs a nar-
row dominant range of offers which reinforce each other. In
the sample fromTable 1, it can be noticed that the amounts
of 46 and 45 are regularly offered.

The DVRL-based model
The Deviated Virtual RL algorithm, as mentioned above,
was originally proposed as a mechanism for computerized
agents to automatically interact with people in CE environ-
ments (Katz & Kraus 2006). The algorithm, which was
shown to perform impressively in empirical experiments, is
briefly described here. DVRL is based upon the basic prin-
ciple of RL, according to which an action is selected on the
basis of its EU, which is evaluated in accordance with the
results of previous interactions. One problem, however, in
applying basic RL to CE environments is the disregarding
of the fact that in CE the probability of an offer is gradu-
ally influenced by the size of the offer. Thus, a reasonable
approach for the Q-vector update procedure in CE environ-
ments isVirtual Learning (VL) (Vreind 1997). According
to the VL principle, the proposer in the UG, for example,
treats all offers higher than an accepted offer as successful
(virtual) offers, not withstanding that they were not actu-
ally proposed. Similarly, it considers all offers lower than a
rejected offer as having been (virtually) unsuccessfully pro-
posed. The rationale behind this principle is that the higher
the amount proposed to the opponent, the higher the proba-
bility of the proposal being accepted. However, despite the
reasonability of VL, it does not seem to be an appropriate
model. The reason for this is that, while VL proceeds to-
wards less risky offers after unsuccessful interactions, it per-
forms no exploration of offers which are greedier than the
current optimal offer, which is a deficiency it shares in com-
mon with the basic RL.

In contrast, DVRL deviates from the strict rationale un-
derlying the VL principle, and extends the range of offers
updated after each interaction. Thus, after a successful in-
teraction, the Q-values of all the offers higher than the ac-
tual offer, as well as a few offersbelow the actual offer are
increased, as described in line 8 ofAlgorithm 2 . Similarly,
after an offer has failed, the Q-values of all the offers lower
than the actual offer, as well as a few offersabove the ac-
tual offer are reduced, as described in line 6. Generally, this
principle can be implemented in various basic algorithms be-
sides RL (Katz & Kraus 2006). However, in this paper we
will present only the extension of RL, i.e. DVRL, since the
RL principle is quite intuitive, and therefore could be a suit-
able candidate for modeling human decision making, as in
(Roth & Erev 1995). It is worth noting that the Deviated
VL extension of other basic reinforcement algorithms, such
as Gittins’ indices strategy (see (Katz & Kraus 2006)) pro-
duces the same behavior pattern as produced by DVRL. In

the DVRL version used by (Katz & Kraus 2006), the Q-
values were updated by dividing the accumulated reward
of each offer by the number of previous interactions where
offer i was actually or virtually (according to the Deviated
VL principle) proposed (lines 6 and 8). This was found to
be more efficient than Roth and Erev’s update procedure,
which actually ignores unsuccessful interactions. In addi-
tion, at each interaction, the offer with the current maximum
Q-value is selected (line 3).

Algorithm 2 THE DVRL A LGORITHM

Notation: α, β are two integers 0≤ α, β ¿ N, (where N is the
upper bound of possible offers), which denote the deviation rate.
The valuesα andβ can be gradually decreased during the learning
process. The term n(j) denotes the number of previous interactions
where offer j was actually or virtually proposed and r(j) is the
corresponding reward for a successful offer j.

1: t=0 For j=0 to N,Do Q(j)=1, n(j)=0
2: For each interaction t,Do
3: offer i=arg maxj Q(j)
4: Observing opponent’s move, calculate reward
5: If offer i has failedThen
6: For j=0 to (i +α), Do n(j)=n(j)+1, Q(j) = Q(j)(n(j)−1)

n(j)

7: Else
8: For j=(i-β) to N,Do n(j)=n(j)+1,Q(j) = Q(j)(n(j)−1)+r(j)

n(j)

9: t = t+1

There are two reasons for assuming that the deviation
principle underlying the DVRL approach appears also in the
human decision making process. Firstly, it is not necessarily
a mistake to consider an offer which is slightly lower than
a successful offer as successful as well. Using UG termi-
nology, it is quite reasonable to assume that if proposali
had been accepted (rejected) by an opponent, that opponent
would also have accepted (rejected) a slightly lower (higher)
proposal. The chance that the proposal would exactly hit the
acceptance threshold of the opponent is not high, especially
for a large set of options. Secondly, and even more impor-
tantly, the deviation principle actually outlines a direction
for optimal solution exploration, as in LDT, rather than the
random trial-and-error approach that underlies other meth-
ods, such as RL. A DVRL-based proposer who successfully
offered, for example, 50% of the cake (N) to a UG opponent
in the first interaction, would offer 40% (if the configura-
tion of β is 10) in the next interaction. The proposer would
continue to decrease the offer until it is rejected. However,
in contrast to the LDT, which ignores all the data experi-
enced before the previous interaction, a DVRL-based nego-
tiator takes into account previous interactions as well, and
tries to model the distribution of the opponents’ behavior,
during the learning process. Thus, the DVRL algorithm pro-
vides a model which combines LDT and RL in a manner that
avoids the problems of both approaches. This approach can
quantitatively complete the direction marked by (Grosskopf
2003) in the conclusion of her paper on reinforcement and
directional learning (LDT) in the UG:

”Therefore, a combination of the 2 approaches (reinforce-
ment and directional learning) seems potentially worth-
while. This paper does not attempt to propose a quantitative



solution... Extending the pure reinforcement model through
directional reasoning might allow for a better modeling of
bounded rational but intelligent agents in different classes of
similar games and serve as a crucial step towards a deeper
understanding of cognition driven human behavior.”

In addition to the reasonability of the DVRL as a model of
human behavior, we will show here that the behavior pattern
of a noticeable number of human subjects is consistent with
a DVRL behavior pattern. As can be seen in the third column
in Table 1, negotiations performed according to DVRL are
characterized by the following two phases:

1. Dynamic onset - the decisions in the first interactions
are made according to LDT. Since the Q-vector includes
no previous information, the deviated updating of Q-values
grants the maximal Q-value to an offer which is slightly
lower than the last offer after a successful interaction, and
to an offer which is slightly higher than the last offer after
an unsuccessful interaction, as explained above.

2. Stabilization - as the game progresses, the offers be-
come more stable and persistent. A decrease (increase) in
the amount of the offer will occur only after a few success-
ful (unsuccessful) interactions. As the negotiator gains ex-
perience, and the Q-values become higher, the system is less
sensitive to the results of a single interaction, and the offer
with the maximal Q-value retains its status for longer du-
rations. This pattern is consistent with the general ”Power
Law of Practice”, according to which learning curves be-
come flatter over time (Blackburn 1936).5

The original DVRL method was developed for automated
agents which have no memory restrictions. However, in or-
der to adopt this method as a human model, we must take
into account the constraints of human memory. In order to
examine the influence of memory restriction on the behav-
ior of the DVRL model, we inserted a ”gradual forgetting”
parameter, which gradually reduces the information retained
from previous interactions, similarly to (Roth & Erev 1995).
Computerized simulations revealed that increasing the for-
getting parameter increases the duration of the dynamic on-
set, and relieves the conditions for changing offers in later
interactions. However, except for extremely high forgetting
parameter values, where the behavior pattern becomes iden-
tical to LDT , the general behavior pattern described above
is relevant also for memory restricted negotiators.

Experimental design
In this section we empirically examine the existence of the
three different patterns of behavior described above: LDT,
RL-based model of Roth and Erev and DVRL-based model.
For this purpose we asked people to compete iteratively
against series of human opponents, in two domains: 1. In the
UG, where the players had to divide 100 new Israeli Shekels

5The original DVRL method, as described in (Katz & Kraus
2006), includes a gradual decrease in the values of the deviation
parametersα and β during the learning process. Such a policy
yields the same decision pattern described here, with a faster con-
vergence to the stable phase. However, in this paper we want to
emphasize the fact that the pure DVRL method induces a double-
phase decision pattern even without the manipulation of decreasing
the deviation parameters.

(NIS, where 1 U.S. $≈ 4.5 NIS), i.e. N=100. 2. In a first-
price sealed-bid 2-bidders auction for 100 NIS. By examin-
ing different environments, we wanted to find out whether
the environment influences the pattern of learning and deci-
sion making. We gave the subjects a large set of 101 optional
decisions, unlike previous studies that have allowed only 10
options. This enabled their behavior to be examined with
greater accuracy. However, as can be seen inTable 1, some
subjects focused on lower resolutions of the options set (usu-
ally multiplications of 10). In our analysis, we treated those
subjects according to their resolution levels, and decreased
the relevant parameters in the models (such as N,α,β andγ)
in order to fit their decision patterns.

The experiment included 48 participants (24 males and
24 females). All the participants were students at Bar Ilan
University, aged 20-28, and were not experts in negotiation
strategies nor in economic theories directly relevant to the
experiment (e.g. game theory). Each of the participants was
seated in an isolated room at a computer work-station.

In order to construct a series of opponents for use in our
experiments, we first surveyed the behavior of 20 of the 48
subjects, as follows: In the auction environment, we col-
lected the bid amounts of those subjects playing one game
against an anonymous opponent via a computer. The bid
could be any integer from 0 to 100 NIS, and the winner
gained a virtual 100 NIS. In the UG environment, we ex-
tracted the minimal acceptance amounts of the 20 subjects
when playing as responders, iteratively, against anonymous
proposers. This method of examining responders’ behaviors
is widely accepted in the UG literature (e.g. (Bourgine &
Leloup 2000)). The proposals were actually artificial though
the participants were told that the proposals were provided
by other people. We included each participant’s response in
the relevant series twice, in order to enlarge the size of both
response series from 20 to 40. In addition, we constructed
an artificial series of 40 auction bids which were randomly
generated according to a normal distribution of N(71,10).
In this manner, we wanted to examine the behavior of the
participants against an ”ideal” population which distributes
normally, though there is no explicit evidence of such a dis-
tribution in any CE environment.

After extracting the series of opponents’ responses for
each environment, the other 28 participants were asked to
interact iteratively with those series, in one-shot interactions
with each opponent, functioning as proposers in the UG and
as bidders in the auction (the order of the games was ran-
domly determined for each subject). In addition, 15 of the
first 20 participants competed in the auction against the arti-
ficial normally distributed population, without knowing that
their ”opponents” were artificial. On the whole, then, the ex-
periment examined the decision patterns of 43 subjects who
repeatedly interacted with changing opponents. After each
decision, the participants were informed of the success of
their offer by the ”current” opponent. However, they were
not informed of the bid or the acceptance threshold of the
opponent. All subjects competed against the same series of
opponents. At the end of the experiment, each participant
was paid between 15 to 30 NIS, in proportion to her earn-
ings in the interactions in which she participated.



Environment LDT RL DVRL Const Const Unexplained
(# of subjects) +DVRL

UG (28) 3.6 17.9 46.4 14.3 14.3 3.6
Auction (28) 14.3 17.9 46.4 3.6 10.7 7.1

Normally
distributed
Auction (15) 13.3 13.3 53.3 0.0 13.3 6.7

Average 9.9 16.9 47.9 7.0 12.7 5.6

Table 2: For each model, the percentage of model-typical obser-
vations found in each environment.

Results

Table 2summarizes the percentage of subjects who behaved
in accordance with each of the models tested, in each envi-
ronment. As can be seen, about 48% of the observations can
be explained by the DVRL-based model, which is consider-
ably more than the other models.

In 7% of the observations, the participants did not change
their decision throughout the game, as can be seen in the
”const” column. A sample of their decision pattern is pre-
sented in the ”Constant” column inTable 1. Another 12.7%
showed an interesting pattern of decision making, which
matches the DVRL-based model, except for the lack of a
dynamic onset. The behavior of one such subject is pre-
sented in the ”Constant+DVRL” column ofTable 1. Sub-
jects following this pattern maintained a persistent offer that
rarely changed from the very beginning of the game. Never-
theless, changes that occurred were consistent with an LDT
direction, exactly as in the later stages of the DVRL pattern.
5.6% of the observations cannot be explained by any of the
models surveyed here.

As can be seen, the results from the normally distributed
auction, in which players unknowingly played against artifi-
cial opponents, and from the auction environment in which
the opponents were human, are quite similar, as expected.
Since the former environment was the first environment the
participants faced, while the latter environment was many
times preceded by UG play, it can be concluded that the ex-
perience of subjects had no significant influence.

In general, the decision patterns in all the environments
were very similar except for two differences between the
UG and the auctions: 1. In the UG 4 players (14.3%) had
a ”constant” decision pattern (always offered 50%), in con-
trast to only 1 player out of 43 (2.3%) in the auctions. This
difference may be attributable to the fact that, in the UG, the
two players could perceive themselves as partners, while in
the auction, they were clearly competitors. Thus, in the UG,
these 4 players may have thought they should behave fairly,
and always offer 50% to the other player. Alternatively, the
players in the UG may have been deeply convinced that al-
most no responder would accept less than half of the cake,
and thus they were not trying to explore other alternatives.
2. In both auction environments about 14% played accord-
ing to LDT, in contrast to a figure of only 3.6% in the UG. It
is possible that, in the UG, due to the possible sense of part-
nership between the players, subjects felt it would be too
greedy to change their offer after every interaction.

Conclusion and future work
In this paper we have used an innovative methodology for
modeling human iterative decision making, by examining
actual decision patterns. It was shown that, in repeated CE
interactions, a model based on the DVRL algorithm faith-
fully describes 48% of subjects’ decision patterns, much
more than any other model does. Interestingly, this algo-
rithm has also been found to be the most efficient and prof-
itable method in such environments (Katz & Kraus 2006).

In future work, we intend to examine human behavior in
other CE environments, such as dynamic pricing and all-pay
auctions. In addition, we intend to consider repeated CE en-
vironments, where the interaction with each opponent lasts
for a number of rounds. When playing repeatedly against
the same opponent, we expect players to learn the individual
behavior of the specific current opponent, in addition to uti-
lizing their own generic model of the opponent population.
Moreover, in contrast to the one-shot games, each decision
influences the future behavior of the current opponent, a fact
that a human model must take into account.
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