
New Additive Spanners

Shiri Chechik ∗

Abstract

This paper considers additive and purely additive span-
ners. We present a new purely additive spanner of size
Õ(n7/5) with additive stretch 4. This construction fills
in the gap between the two existing constructions for
purely additive spanners, one for 2-additive spanner of
size O(n3/2) and the other for 6-additive spanner of size
O(n4/3), and thus answers a main open question in this
area. In addition, we present a construction for addi-
tive spanners with Õ(n1+δ) edges and additive stretch
of Õ(n1/2−3δ/2) for any 3/17 6 δ < 1/3, improving the
stretch of the existing constructions from O(n1−3δ) to

Õ(
√
n1−3δ). Finally, we show that our (1, n1/2−3δ/2)-

spanner construction can be tweaked to give a sublin-
ear additive spanner of size Õ(n1+3/17) with additive
stretch O(

√
distance).

1 Introduction

Graph spanners are sparse subgraphs that faithfully pre-
serve the pairwise distances of a given graph. Formally,
an (α, β)-spanner of a graph G = (V,E) is a subgraph
H such that for any pair of nodes s, t, dist(s, t,H) 6
α ·dist(s, t,G)+β, where dist(s, t,H ′) for a subgraph
H ′ is the distance from s to t in H ′. If α = 1 we say
that the spanner is additive and if in addition β = O(1),
we say that the spanner is purely additive. If β = 0 we
say that the spanner is multiplicative, otherwise we say
that the spanner is mixed.

Graph spanners were extensively studied since they
were first introduced in [19, 20] in the late 80’s.
Many distributed applications use spanners as a key
ingredient, e.g., synchronizers [20], compact routing
schemes [21, 9, 26, 10, 25], distance oracles [3, 27],
broadcasting [18], near-shortest path algorithms [12, 13,
16], etc.

Much of the work on spanners considers multiplica-
tive spanners. It is well-known that one can efficiently
construct a (2k−1, 0)-spanner with O(n1+1/k) edges [2].
This size-stretch ratio is conjectured to be tight based
on the girth conjecture of Erdős [17]. The girth conjec-
ture has been proved for the specific cases of k = 1, 2, 3,

∗Microsoft Research Silicon Valley, Mountain View CA, USA.
Email: schechik@microsoft.com.

and 5 [29].
Although many papers considered additive span-

ners or mixed spanners, several key questions in this
area remain open. The girth conjecture applies only
to short distances. In particular, it does not contradict
the existence of (1, 2k−2)-spanners of size O(n1+1/k), or
any (α, β)-spanners of size O(n1+1/k) such that α+β =
2k− 1 with α > 1 and β > 0. The first construction for
purely additive spanners was presented by Aingworth et
al. [1]. They show how to efficiently construct a (1, 2)
spanner, or a 2-additive spanner for short, with O(n3/2)
edges (see [11, 15, 28, 24] for further follow-up). Later,
an efficient construction for 6-additive spanners with
O(n4/3) edges was presented by Baswana et al. [4, 5].
Woodruff [31] later presented a different construction for
6-additive spanners with Õ(n4/3) edges with better con-
struction time. These are the only two purely additive
spanners known so far. A major open problem in this
field concerns the existence of purely additive spanners
with O(n1+δ) edges for any fixed δ > 0. Woodruff [30]
showed a lower bound for additive spanners matching
the girth conjecture bounds but independent of the cor-
rectness of the conjecture. More precisely, he showed
the existence of graphs for which any spanner of size
O(k−1n1+1/k) has an additive stretch of at least 2k− 1.

In the absence of additional purely additive span-
ners or impossibility results, attempts were made to seek
spanners with either non-constant additive stretch or a
mix of both multiplicative and additive stretch (see, e.g.,
[15, 28, 23, 5]).

Bollobás et al. [6] presented efficient constructions
for a spectrum of additive spanners with additive
stretch that depends on n. More precisely, they show
how to efficiently construct a (1, n1−2δ)-spanner with
O(21/δn1+δ) edges for any δ > 0. This additive stretch
was later improved to (1, n1−3δ) by Baswana et al. in
[4, 5] and to (1, n9/16−7δ/8) by Pettie [22, 23] (the lat-
ter is smaller than the former for every δ < 7/34). In
addition, sublinear additive spanners, namely, additive
spanners with stretch that is sublinear in the distances,
were also considered. Thorup and Zwick [28] showed
how to construct a spanner of size O(kn1+1/k) such that
for every pair of nodes s and t, the additive stretch is
O(d1−1/k + 2k), where d = dist(s, t). Pettie [22, 23]
later improved that result presenting an efficient span-

ner construction of size O(kn
1+

(3/4)k−2

7−2(3/4)k−2) with addi-
tive stretch of O(kd1−1/k + kk), where d = dist(s, t).
Specifically, for k = 2, the size of the spanner is O(n6/5)
and the additive stretch is O(

√
d). For further results

on mixed spanners see [14, 15, 4, 28, 22, 23, 5].
This paper considers additive and purely additive

spanners. We make an additional step towards better
undereating the picture of purely additive spanners, by
presenting a new simple algorithm for (1, 4)-additive
spanners with Õ(n7/5) edges. We thus answer one of
the main open questions in this area of purely additive
spanners, by filling in the gap between the two existing
constructions. In addition, we present a construction
for additive spanners with Õ(n1+δ) edges and additive
stretch of Õ(n1/2−3δ/2) for any 3/17 6 δ < 1/3. We
thus decrease the stretch for this range to the root
of the best known additive stretch so far. We note
that it is possible to extend this range a little bit
(to δ values smaller than 3/17) but the construction
and analysis become much more complex. It would
be interesting to see if this range can be extended all
the way, to any 0 6 δ < 1/3. Our construction
for (1, n1/2−3δ/2)-spanners with Õ(n1+δ) edges is quite
involved and requires a number of new ideas. The
construction consists of several procedures, where each
procedure provides certain desired properties and may
be of independent interest. Finally, we show that
our (1, n1/2−3δ/2)-spanner construction can be tweaked
to slightly improve the size of the sublinear additive
spanner of Pettie [22, 23] with additive stretch O(

√
d)

from O(n1+1/5) to Õ(n1+3/17).

2 Õ(n7/5) edge spanners with additive stretch 4

In this section we present a new construction for a
(1, 4)-spanner with O(n7/5 log1/5 n) edges. Here and
throughout, n = |V | and m = |E|. Let us introduce
some preliminaries. Denote the vertex set and edge set
of a subgraph H by V (H) and E(H), respectively. For
nodes x, y ∈ V and subgraph H, dist(x, y,H) is the
distance between x and y in H. For a node x ∈ V , a set
of nodes S ⊆ V and subgraph H, dist(x, S,H) is the
distance between x and the node y ∈ S closest to x inH.
For a node x ∈ V , an integer r, and a subgraph H, let
Γ(x, r,H) be the set of nodes at distance at most r from
x in H, namely, Γ(x, r,H) = {v ∈ V | dist(x, v,H) 6
r}, and let Γ∗(v, r,H) = {x ∈ V | dist(v, x,H) = r}.
Similarly, for a path P , an integer r and a subgraph H,
denote the set of neighbors of P by Γ(P, r,H) = {v ∈
V | dist(v, V (P), H) 6 r}. To simplify notation, when
H = G and/or when r = 1 we omit them. Let |P |
denote the number of edges in P .

Let deg(v) for a node v be its degree. We say

that a node is heavy if its degree is at least µ =
⌈n2/5 log1/5 n⌉, and light otherwise. For every pair of
nodes s and t, select a shortest path P (s, t) from s
to t in G and let P = {P (s, t) | s, t ∈ V }. Let
P(V1, V2) = {P (s, t) | s ∈ V1, t ∈ V2} for subsets of
nodes V1 and V2. The heavy distance between s and t,
denoted heavy dist(s, t, G), is defined to be the number
of heavy nodes on the path P (s, t). Similarly, for a path
P , denote by heavy dist(P,G) the number of heavy
nodes on the path P .

We now turn to describe our (1, 4)-spanner con-
struction. Initially set H to be (V,∅). The construction
consists of three stages. In the first stage, add to H all
edges incident to light nodes. In the second stage, ran-
domly select a set of nodes S1 of expected size 9µ, by
choosing every node from V independently at random
with probability 9µ/n. For every node x ∈ S1, con-
struct a BFS tree T (x) rooted at x spanning all vertices
V , and add the edges of T (x) to H.

In the third and final stage, choose a set S2 of n/µ
nodes in expectation, called hereafter center clusters.
This can be done by choosing each node independently
at random with probability 1/µ. Next, for each heavy
node x such that none of the nodes in {x} ∪ Γ(x) were
chosen to S2, add all incident edges of x to H. For each
node x ∈ S2, create a cluster C(x), initially set to {x}.
For every heavy node v such that v /∈ S2 and Γ(v)∩S2 ̸=
∅, arbitrarily choose one node x in Γ(v) ∩ S2, add v to
x’s cluster C(x) and add the edge (v, x) to H. Finally,
for each pair of nodes x1 and x2 in S2 do the following.
Consider all shortest paths P (y1, y2) in P(C(x1), C(x2))
such that heavy dist(y1, y2, G) 6 µ3/n, namely, all
shortest paths P (y1, y2) ∈ P such that y1 ∈ C(x1),
y2 ∈ C(x2) and heavy dist(y1, y2, G) 6 µ3/n. Choose
the path P (ŷ1, ŷ2) with minimal length |P (ŷ1, ŷ2)|, and
add it to H.

This completes the description of our spanner con-
struction. See Procedure 4-Additive-Sanner for the
formal code.

We now bound the number of edges in the resulting
spanner H.

Lemma 2.1. The expected number of edges in H is
O(nµ) = Õ(n7/5).

Proof: Let us bound the number of edges added to H
in the three different stages. In the first stage, only
edges adjacent to light nodes were added. Each such
light node contributes at most µ edges, so at most nµ
edges were added to H in this stage.

In the second stage, each node is added to S1 with
probability 9µ/n. Therefore, the expected number of
nodes in S1 is 9µ. For each node in S1, a BFS tree of
n− 1 edges is added to H. Hence the expected number

Procedure 4-Additive-Sanner(G)

E′ ← ∅.
Add to E′ all edges incident to light nodes.
Select a set of nodes S1 by independently sampling at random every node with probability 9µ/n.
For every node x ∈ S1 do:

Construct a BFS tree T (x) rooted at x spanning all vertices V .
E′ ← E′ ∪ E(T (x)).

Select a set of nodes S2 by independently sampling at random every node with probability 1/µ.
For each heavy node x such that ({x} ∪ Γ(x)) ∩ S2 = ∅ do:

Add all incident edges of x to H.
For each node x ∈ S2 do:

C(x)← {x}.
For every heavy node v such that v /∈ S2 and Γ(v) ∩ S2 ̸= ∅ do:

Arbitrarily choose one node x in Γ(v) ∩ S2.
C(x)← C(x) ∪ {v}.
E′ ← E′ ∪ {(v, x)}.

For each pair of nodes x1 and x2 in S2 do:
Let P̂ ← {P ∈ P(C(x1), C(x2)) | heavy dist(P,G) 6 µ3/n}
Let P (ŷ1, ŷ2) be the path in P̂ with minimal |P (ŷ1, ŷ2)|.
E′ ← E′ ∪ E(P (ŷ1, ŷ2)).

H ← (V,E′)
Return H

of edges added in the second stage is O(nµ).
We now turn to analyze the expected number of

edges added in the third stage. In the first part of the
third stage, for every heavy node v /∈ S2 we either add
v to one of the clusters C(x) and then add the edge
(v, x) to H, or (in case v remains unclustered, as ({v}∪
Γ(v)) ∩ S2 = ∅) we add to H all deg(v) edges adjacent
to v. The probability that a node v will be unclustered,
and thus all of its edges will be added, is (1−1/µ)deg(v).
We get that the expected number of edges added for a
node v is at most 1+deg(v)(1−1/µ)deg(v) < µ. Finally,
the expected number of clusters is n/µ, therefore the
number of cluster pairs is n2/µ2. For each such pair,
we add a path P = P (y1, y2) ∈ P of heavy distance
heavy dist(y1, y2, G) 6 µ3/n. Note that all edges of
the path that are adjacent to light nodes were already
added to H on the first stage, and as there are at
most µ3/n heavy nodes on P , at most µ3/n edges are
added for the path P on the third stage. We conclude
that the number of edges added for all cluster pairs is
O((n2/µ2) · (µ3/n)) = O(nµ) = Õ(n7/5).

Next, we show that the additive stretch of the
resulting spanner is indeed at most 4.

Lemma 2.2. For every two nodes s and t,
dist(s, t,H) 6 dist(s, t, G) + 4 with probability

at least 1− 1/n3.

Proof: Consider two nodes s and t. A node is said to
be covered by the spanner H if all its adjacent edges
are in H. Notice that it is enough to prove the lemma
for pairs of nodes s and t that are both uncovered. To
see this, let s′ be the first uncovered node on the path
P (s, t) and let t′ be the last such node. Note that all
edges from s to s′ on the path P (s, t) and all edges from
t′ to t on P (s, t) are in H. Therefore, if the lemma holds
for s′ and t′, namely, with probability at least 1− 1/n3,
dist(s, t,H) 6 dist(s, t,G) + 4, then it holds for s, t
with probability at least 1− 1/n3.

So we assume now that s and t are uncovered.
We consider two cases and prove the claim sep-

arately for each case. The first case is when
heavy dist(s, t,G) > µ3/n. Note that since P (s, t) is
a shortest path in G, necessarily every node v ∈ V can
have at most three neighbors in P (s, t). Combining this
with the fact that the number of heavy nodes in P (s, t)
is more than µ3/n, and hence the sum of their degrees
is more than µ4/n, we get that |Γ(P (s, t))| > µ4/(3n).
We claim that the probability that Γ(P (s, t)) ∩ S1 ̸= ∅

is at least 1− 1/n3, as

P(Γ(P (s, t)) ∩ S1

= ∅) 6 (1− 9µ/n)µ
4/(3n)

6 (1− 9 log1/5 n/n3/5)(n
3/5/(9 log1/5 n))·3 log n

≈ 1/n3.

We now claim that if Γ(P (s, t)) ∩ S1 ̸= ∅ then
dist(s, t,H) 6 dist(s, t, G) + 2. To see this, let
x ∈ Γ(P (s, t))∩S1 and let z be x’s neighbor in P (s, t) (or
x itself in case x is on P (s, t)). Recall that a BFS tree
rooted at x is added to H in the second stage. There-
fore, dist(x, y,H) = dist(x, y,G) for every y ∈ V . We
get that

dist(s, t,H) 6 dist(s, x,H) + dist(x, t,H)

= dist(s, x,G) + dist(x, t,G)

6 dist(s, z,G) + 1 + dist(z, t, G) + 1

= dist(s, t,G) + 2.

We are left with the second case, where
heavy dist(s, t, G) 6 µ3/n. In this case, the claim
holds deterministically. Notice that there exists center
clusters x1, x2 ∈ S2 such that s ∈ C(x1) and t ∈ C(x2),
as otherwise we would have added all their adjacent
edges to H, making them covered. Let C1 = C(x1)
and C2 = C(x2). In the third stage of the algo-
rithm, the shortest path P = P (ŷ1, ŷ2), among all
paths P (y1, y2) such that y1 ∈ C1 and y2 ∈ C2 and
heavy dist(y1, y2, G) 6 µ3/n, is added toH. Note that
|P | 6 |P (s, t)|. Note also that as ŷ1 ∈ C1 and ŷ2 ∈ C2,
we have that dist(s, ŷ1,H) 6 2 and dist(ŷ2, t,H) 6 2.
We get that

dist(s, t,H)

6 dist(s, ŷ1,H) + dist(ŷ1, ŷ2,H)

+ dist(ŷ2, t,H)

6 2 + |P |+ 2 6 4 + |P (s, t)|
= dist(s, t, G) + 4.

The lemma follows.

We note that the technique for handling pairs of
nodes s and t such that |Γ(P (s, t))| > µ4/(3n) (by
selecting independently at random a set of nodes that
with high probability contains a node in Γ(P (s, t))) is
already used by Woodruff in [31].

By applying the union bound on all pairs of nodes,
we get the following corollary.

Corollary 2.1. With probability at least 1− 1/n, the
constructed subgraph H is a 4-additive spanner for G.

3 Õ(n1+δ) edge spanners with additive stretch
Õ(n1/2−3δ/2)

In this section we present a construction for a
(1, Õ(n1/2−3δ/2))-spanner with Õ(n1+δ) edges for any
3/17 6 δ 6 1/3.

Throughout, let B̃(v) = Γ(v, µ) and µ = n1/2−3δ/2.
Let us partition the nodes into three sets. The set S1

contains all nodes v such that |B̃(v)| 6 µnδ. The set
S2 contains all nodes v such that µnδ < |B̃(v)| 6 n3δ

(note that in the relevant range of 3/17 6 δ 6 1/3,
µnδ < n3δ), and S3 contains all nodes v such that
|B̃(v)| > n3δ.

The algorithm consists of two main procedures,
Short-distances and Long-distances. As their
names imply, these procedures handle node pairs of
short and long distances respectively, where we say that
the path from s and t is short, or that s and t are close,
if |Γ(P (s, t), n1/2−3/2δ)| 6 n1−2δ, and long otherwise.
Procedure Short-distances consists of three sub pro-
cedures: Very-sparse, Sparse and Dense.

Procedure Short-distances adds a set of edges
Eshort to the constructed spanner H such that the
distance for every two close nodes in H is within
O(µ logn) additive stretch from their distance in G. As
mentioned above, Procedure Short-distances consists
of three sub procedures: Very-sparse, Sparse and
Dense. Procedure Very-sparse handles very sparse
areas, namely, nodes v ∈ S1. The high level idea is that
in very sparse areas, the algorithm adds a small set of
edges Evs such that for every node v in S1, prefixes to
all its shortest paths are contained in Evs. Therefore, in
some sense (and as will become clearer later on) these
nodes are already “taken care of”. Procedure Sparse
handles sparse areas, namely, nodes v ∈ S2. In this case
by adding a set of edges Esparse the algorithm ensures
an additive stretch of at most 3 log n for node pairs in
sparse areas at distance up to µ.

Loosely speaking, Procedure Sparse partitions all
nodes of degree nδ or higher into disjoint clusters. Each
such cluster C is centered at some node v, and all nodes
that belong to the cluster C are at distance 1 from v.
For every cluster, the procedure adds edges between
the center cluster to the other nodes in that cluster.
The procedure then looks on balls B̃(v) for every such
center cluster v, and by a sophisticated BFS algorithm
it ensures an additive stretch of at most 3 logn between
v and every node in B̃(v) (the main difference between
the outcome of this algorithm and the standard BFS
algorithm is that this algorithm adds a smaller number
of edges at the price of approximated distances that
are within O(log n) additive stretch from the exact
distances, by exploiting the fact that the algorithm
already added some edges inside the clusters).

Finally, Procedure Dense handles dense areas,
namely, nodes v ∈ S3. More precisely, it picks a set
Crep and adds a set of edges Edense to H with the
following properties. Every pair of nodes in Crep has
“small” additive stretch, in addition, all nodes in S3

have a node in Crep close to them.
The rough idea of the analysis of Procedure

Short-distances is as follows. To handle close pair of
nodes s and t, the general idea is as follows. We show
that Evs∪Esparse contains a path P1 between s and some
node c1 ∈ Crep with the following properties. First, c1
is “close” to some node on the path P (s, t). Second,
the path P1 is within O(µ log n) additive stretch from
the distance between s and c1 in G. Similarly, we show
that Evs∪Esparse contains a path P3 between some node
c2 ∈ Crep and t with the following properties. First, c3
is “close” to some node on the path P (s, t). Second, the
path P3 is within O(µ log n) additive stretch from the
distance between c2 and t in G. In addition, we show
that the set of edges Edense contains a path P2 between
c1 and c2 with a small additive stretch. Concatenating
these three paths together, we get a path from s to t
with a small additive stretch. This handles close pair of
nodes.

To handle long pair of nodes Procedure
Long-distances uses a similar technique. The
procedure picks a set Rlong and a set of edges Elong

with the following properties. First, every pair of nodes
in Rlong is within additive stretch 2 from the distance
in G. Second, for every pair of nodes s, t that is far
away (i.e. not close), we show that there exist nodes
r1, r2 ∈ Rlong such that r1 and r2 are “close” to some
nodes on the path P (s, t) and in addition r1 is closed
to s and r2 is closed to t. As s and r1 are closed, as
explained above, procedure Short-distances guaran-
tees that the constructed spanner H contains a path
between s and r1 within additive stretch O(µ logn)
from their distance in G. Similarly H contains a path
from r2 to t within additive stretch O(µ log n) from
their distance in G. Since r1 and r2 belong to Rlong,
as mentioned above Elong (and thus the constructed
spanner H) contains a path between r1 and r2 that
is within additive stretch 2 from their distance in G.
Concatenating all these paths together we get a path
from s to t that is within additive stretch O(µ logn)
from their distance in G.

Let us introduce some definitions. For a node v, the
sparse threshold of v, denoted by st(v), is the smallest
integer r such that |Γ(v, r,G)| 6 r · nδ. For a subgraph
P and set of edges E′, let cost(P,E′) = |E(P) \ E′|.

For simplicity of presentation, assume the shortest
path between any two nodes is unique and every sub-
path of a shortest path ia also a shortest path. (This is

without loss of generality since one can enforce it by a
perturbation of the edge weights.)

Very sparse areas. Procedure Very-sparse han-
dles very sparse areas (i.e., nodes v ∈ S1), by construct-
ing an edge subset Evs for these areas and adding it to
the constructed spanner H. In this case the algorithm
tries to add prefixes of exact shortest paths for node
pairs of distance 2µ or higher. More precisely, the algo-
rithm adds a set of edges Evs to the constructed spanner
H such that for every node v ∈ S1 and for every node z
such that dist(v, z,G) > 2µ, a nonempty prefix of the
path P (v, z) is contained in Evs.

Roughly speaking, if a node v satisfies |B̃(v)| =
|Γ(v, µ)| 6 µ · nδ, then there must be a radius r 6 µ
such that |Γ∗(v, r)| 6 nδ. We add a BFS tree from every
node in Γ∗(v, r) spanning the nodes in B̃(v), and since
Γ∗(v, r) contains a “small” number of nodes this process
requires adding a “small” number of edges. Moreover,
for every node z ∈ B̃(v) and for every node y at distance
greater than 2µ from it, the path P (z, y) must intersect
with Γ∗(v, r). We thus can show that a prefix of this
path is added to the constructed spanner. In other
words, for every node in a very sparse area, we add
prefixes to all its shortest paths (that are of length
greater than 2µ).

Formally, Procedure Very-sparse operates as fol-
lows. Initially all nodes are unmarked. While there is
an unmarked node v with 1 < st(v) 6 µ, choose v to be
the unmarked node with maximal st(v). For every node
x in Γ∗(v, st(v)) construct a BFS tree T (x) rooted at x
in the induced graph Γ(v, st(v)−1)∪{x}, add the edges
of T (x) to Evs and mark all nodes in Γ(v, st(v)− 1, G).
See Procedure Very-sparse for pseudocode.

Lemma 3.1. Procedure Very-sparse satisfies the fol-
lowing two properties.
(a) for every node z1 such that |Γ(z1, µ)| 6 µ · nδ, and
for every node z2 such that dist(z1, z2) > 2µ, there ex-
ists a node x ̸= z1 on P (z1, z2) such that Evs contains
the path P (z1, x).
(b) |Evs| = O(n1+δ).

Proof: Let Svs be the set of nodes v that were chosen
in the while loop of Procedure Very-sparse and for
each v ∈ Svs let i(v) be the iteration of Procedure
Very-sparse in which v was chosen. To prove (a),
consider two nodes z1 and z2 as in the lemma. Since
|Γ(z1, µ)| 6 µ · nδ, z1 must be marked at the end of
Procedure Very-sparse. Let v ∈ Svs be the node such
that z1 ∈ Γ(v, st(v)−1, G) and z1 is marked in iteration
i(v). Note that z2 /∈ Γ(v, st(v)−1, G) as dist(z1, z2) >
2µ. Clearly, Γ∗(v, st(v)) ∩ P (z1, z2) ̸= ∅. Let z be
the first node of Γ∗(v, st(v)) on the path P (z1, z2).
Note that P (z1, z) is contained in the induced graph

Procedure Very-sparse(G(V,E))

Evs ← ∅
Unmark all nodes v ∈ V
While there is an unmarked node v with 1 < st(v) 6 µ do:

Choose v to be the unmarked node with maximal st(v)
For every node x in Γ∗(v, st(v)) do:

Construct a BFS tree T (x) rooted at x in the induced graph
Γ(v, st(v)− 1) ∪ {x}

Evs ← Evs ∪ E(T (x))
Mark all nodes of T (x), i.e., Γ(v, st(v)− 1, G)

Return Evs

of (Γ(v, st(v)− 1, G) ∪ {z}) and since a BFS tree T (z)
rooted at z in the induced graph Γ(v, st(v)−1, G)∪{z}
is added to Evs, we get that P (z1, z) ⊆ Evs, as required.

To prove (b), we consider two types of nodes, the
first type is nodes v such that st(v) 6 2, and the second
type is nodes v such that st(v) > 2. We show that the
number of edges added to Evs for each type separately
is O(n1+δ).

Consider the first type and let v ∈ Svs such that
st(v) 6 2. Note that in this case O(nδ) edges are
added to Evs for T (v). Hence, for all nodes v′ such
that st(v′) 6 2, O(n1+δ) are added to Evs.

Consider now the second type and let v ∈ Svs such
that st(v) > 2. Let Ev

vs be the set of edges added to Evs

in iteration i(v) of Procedure Very-sparse. We claim
that |Γ∗(v, st(v))| 6 nδ. To see this, note that by the
definition of st(v), |Γ(v, st(v)− 1, G)| > (st(v)− 1)nδ

and that |Γ(v, st(v), G)| 6 st(v) · nδ. It follows that
|Ev

vs| 6 nδ ·|Γ(v, st(v)−1, G)|. By definition of st(v) we
also have |Γ(v, ⌊(st(v)−1)/2⌋, G)| > ⌊(st(v)−1)/2⌋·nδ.
It is not hard to verify that for every st(v) > 2,
|Γ(v, ⌊(st(v)− 1)/2⌋, G)| = Θ(|Γ(v, st(v)− 1, G)|), and
hence

|Evs| 6
∑
v∈Svs

|Ev
vs| 6 nδ

∑
v∈Svs

|Γ(v, st(v)− 1, G)|

6 nδ
∑
v∈Svs

O(|Γ(v, ⌊(st(v)− 1)/2⌋, G)|).

Next, we show that the sets Γ(v, ⌊(st(v) − 1)/2⌋, G)
are disjoint for v ∈ Svs. Assume towards contra-
diction that z ∈ Γ(v1, ⌊(st(v1) − 1)/2⌋, G) and z ∈
Γ(v2, ⌊(st(v2) − 1)/2⌋, G) for some v1, v2 ∈ Svs. As-
sume w.l.o.g. that v1 is chosen first in Procedure
Very-sparse. Then dist(z, v1) 6 ⌊(st(v1) − 1)/2⌋
and dist(z, v2) 6 ⌊(st(v2) − 1)/2⌋, so dist(v1, v2) 6
⌊(st(v1) − 1)/2⌋ + ⌊(st(v2) − 1)/2⌋ 6 st(v1) − 1. It
follows that v2 was marked at the end of iteration
i(v1) of Procedure Very-sparse, contradiction. It fol-

lows that
∑

v∈Svs

|Γ(v, ⌊(st(v)− 1)/2⌋, G)| 6 n, hence

|Evs| = O(n1+δ).

Sparse areas. We now turn to describing Proce-
dure Sparse, for handling sparse areas, namely, nodes
v such that µ · nδ 6 |B̃(v)| 6 n3δ.

In this case the algorithm attempts to ensure an
additive stretch of 3 log n for node pairs at distance up
to µ. Specifically, the algorithm adds a set of edges
Esparse such that for every node v ∈ S2, the distance

from v to all nodes in B̃(v) is within additive stretch
3 log n from the distance in G.

Procedure Sparse starts with sampling a set of
center nodes Csparse of expected size n1−δ, by selecting
every node at random with probability 1/nδ. For every
node v none of whose neighbors was chosen to Csparse,
add all its incident edges to E0

sparse (initially set to be
empty). Otherwise, pick a neighbor center(v, Csparse) ∈
Csparse of v and add the edge (v, center(v, Csparse)) to
the constructed spanner. This essentially attempts to
partition all nodes of degree nδ or higher into disjoint
clusters.

Let us introduce some notation. For a path P ,
let centers(P,Csparse) = {c ∈ Csparse | ∃z ∈ P, c =
center(z, Csparse)}. Consider a path P , a node v ∈ V ,
and a subgraph H. Let BFS-Val(P, v, Csparse,H) be the
number of center nodes c ∈ centers(P,Csparse) such
that adding P to H will improve their distance to v,
namely, such that dist(c, v,H ∪ P) < dist(c, v,H).

For a subgraphH, a node v, a center node c ∈ Csparse

and a path P = P (c, z) from c to some node z in P (c, v),
let First-not-Help(P, v, c, Csparse,H) be the node v′ on
P closest to c such that adding P to H does not help
the center c′ of v′ (in terms of its distance from v), or
formally, such that dist(c′, v,H ∪ P) = dist(c′, v,H)
where c′ = center(v′, Csparse).

Procedure Sparse employs a procedure
Approximate-BFS that given a node v where

|B̃(v)| 6 n3δ, returns a set of edges EBFS of size Õ(n2δ)
such that the distance from v to all nodes in B̃(v) in
EBFS ∪ E0

sparse is within additive stretch 3 logn from
the distance in G.

Procedure Approximate-BFS is invoked on ev-
ery center v ∈ Csparse and we show that by adding
O(n2δ log n) additional edges, the distance between v
and every node in B̃(v) is within O(log n) additive
stretch from the distance in G. In particular, the pro-
cedure examines every other center c ∈ Csparse and adds
some prefix of the path P (c, v). It first tries to add the
entire path P (c, v), but would take the entire path only
if sufficient many other centers benefit from it. Other-
wise, the procedure will try to add a subpath of P (c, v)
of at most half it’s length, again, only provided there
are many centers who may benefit. This testing pro-
cess continues until the procedure finds a prefix whose
“benefit” is sufficiently large with respect to its length.

Formally, Procedure Approximate-BFS op-
erates as follows. Let (v, C̃(v), E0

sparse, G) be its

input, where v ∈ Csparse and C̃(v) = B̃(v) ∩ Csparse.
Initially, set EBFS = ∅. For every node c ∈ C̃(v),
v′ is set to be v and the path P (c, v′) is examined
and we add this path to the constructed spanner
if 6 · BFS-Val(P (c, v′), v, C̃(v), E0

sparse ∪ EBFS) >
cost(P (c, v′), E0

sparse ∪ EBFS). If not, we set

v′ = First-not-Help(P (c, v′), v, c, C̃(v), E0
sparse ∪

EBFS). This process continues until 6 ·
BFS-Val(P (c, v′), v, C̃(v), E0

sparse ∪ EBFS) >
cost(P (c, v′), E0

sparse ∪ EBFS). Notice that the
process ends as the inequality holds for v′ = c.

Lemma 3.2. For every node v ∈ Csparse, the set EBFS re-
turned by Procedure Approximate-BFS satisfies that
dist(c, v, E0

sparse ∪ EBFS) 6 dist(c, v,G) + 2 log n for

every node c ∈ Csparse ∩ B̃(v).

Proof. Consider a node c ∈ C̃(v). Let j be the
number of iterations in the while loop of Procedure
Approximate-BFS for the node c ∈ C̃(v). Let v′(i)
be the node v′ in the end of iteration i for i < j
and let c′(i) = center(v′(i), Csparse). See Figure 1 for
illustration.

We claim that dist(v′(i), v, E0
sparse ∪ EBFS) 6

dist(v′(i), v,G) + 2i. The proof of this claim is by
induction on i. For i = 0, namely v′ = v, the claim
is trivial. Assume correctness for i < k and consider
i = k. Recall that the node v′(k) is a node on the path
P = P (c, v′(k − 1)) such that dist(c′(k), v, E0

sparse ∪

EBFS ∪P) = dist(c′(k), v, E0
sparse ∪EBFS). We get that

dist(v′(k), v, E0
sparse ∪ EBFS)

6 1 + dist(c′(k), v, E0
sparse ∪ EBFS)

= 1 + dist(c′(k), v, E0
sparse ∪ EBFS ∪ P)

6 2 + dist(v′(k), v, E0
sparse ∪ EBFS ∪ P)

6 2

+ dist(v′(k), v′(k − 1), E0
sparse ∪ EBFS ∪ P)

+ dist(v′(k − 1), v, E0
sparse ∪ EBFS ∪ P)

6 2 + dist(v′(k), v′(k − 1), G)

+ dist(v′(k − 1), v, E0
sparse ∪ EBFS)

6 2 + dist(v′(k), v′(k − 1), G)

+ dist(v′(k − 1), v,G) + 2(k − 1)

= 2k + dist(v′(k), v,G),

where the last inequality follows from the induc-
tive hypothesis. We next show that the number of cen-
ters adjacent to the considered path is at least halved
in each iteration of the procedure, and hence j 6
log n, which yields the lemma. Formally, we show that
|centers(P (c, v′(i)), Csparse)| 6 |centers(P (c, v′(i −
1)), Csparse)|/2. By definition of v′(i), for every node
x ∈ centers(P (c, v′(i)), Csparse), dist(x, v, E0

sparse ∪
EBFS) > dist(x, v, E0

sparse ∪ EBFS ∪ P (c, v′(i − 1))).

We get that, BFS-Val(P (c, v′(i − 1)), v, C̃(v), E0
sparse ∪

EBFS) > |centers(P (c, v′(i)), Csparse)|. Recall that if
the path was not chosen, then by the condition in the
procedure, 6 · BFS-Val(P (c, v′(i− 1)), v, C̃(v), E0

sparse ∪
EBFS) < cost(P (c, v′(i − 1)), E0

sparse ∪ EBFS) 6
3|centers(P (c, v′(i − 1)), Csparse)|, where the last in-
equality follows from the fact that every c ∈
centers(P (c, v′(i − 1)), Csparse) can have at most three
neighbors in P (c, v′(i−1)) since P (c, v′(i−1)) is a short-
est path. We get that |centers(P (c, v′(i)), Csparse)| 6
|centers(P (c, v′(i− 1)), Csparse)|/2, as required.

Lemma 3.3. For every v ∈ Csparse, the set EBFS returned
by Procedure Approximate-BFS satisfies |EBFS| =
O(|C̃(v)| logn) = O(n2δ log n).

Proof: Let Ec
BFS be the set EBFS at the beginning of

c’s iteration of Procedure Approximate-BFS. Let
P (c) = P (c, v′) be the path that was added to EBFS in
c’s iteration of Procedure Approximate-BFS, where
P (c, v′) can also be empty if v′ = c. We argue that the
cost of adding P (c) is roughly proportional to its benefit.
Consider the set X(c) = {y ∈ centers(P (c), Csparse) |
dist(y, v, E0

sparse ∪ Ec
BFS ∪ P (c)) < dist(y, v, E0

sparse ∪
Ec

BFS)}. Note that BFS-Val(P (c), v, C̃(v), E0
sparse ∪

Ec
BFS) = |X(c)|. We claim that each node z ∈ C̃(v)

Procedure Approximate-BFS(v, C̃(v), E0
sparse, G)

EBFS ← ∅
For every node c ∈ C̃(v) do:

Set v′ ← v and ind = false.
While (ind = false) do:

If 6 · BFS-Val(P (c, v′), v, C̃(v), E0
sparse ∪ EBFS) > cost(P (c, v′), E0

sparse ∪ EBFS) then:
Set EBFS ← EBFS ∪ P (c, v′)
Set ind = true

Else set v′ ← First-not-Help(P (c, v′), v, c, C̃(v), E0
sparse ∪ EBFS)

Return EBFS

c’(2)

c v

v’(1)

c’(1)

v’(2)

Figure 1: Illustration for Lemma 3.2.

may belong to at most O(log n) sets X(c). To see this
let c ∈ C̃(v) be the first node that was considered in
Procedure Approximate-BFS and that z ∈ X(c). By
the analysis of Lemma 3.2, after adding the path P (c)
to EBFS, dist(c, v, E0

sparse ∪ EBFS) 6 dist(c, v,G) +
2 log n. Thus the distance between c and v can im-
prove at most 2 log n times. Since |B̃(v)| 6 n3δ, and
Csparse contains each node with probability 1/nδ, we get
that in expectation |C̃(v)| 6 n2δ. Hence, |EBFS| 6∑
c∈C̃(v)

cost(P (c), E0
sparse ∪ Ec

BFS) 6
∑

c∈C̃(v)

O(|X(c)|) =

O(n2δ log n).

By Lemma 3.2 we have the following.

Corollary 3.1. Let H ′ be a log n/3-multiplicative
spanner. The set Esparse returned by Procedure Sparse
satisfies the following. For every v ∈ V such that
|B̃(v)| 6 n3δ and every x ∈ B̃(v), dist(v, x,Esparse ∪
H ′) 6 dist(v, x,G) + 3 log n.

Proof: Consider a node v ∈ V such that |B̃(v)| 6 n3δ

and a node x ∈ B̃(v). Let cv = center(v, Csparse) and
cx = center(x,Csparse) (as explained above it is enough
to consider the case where both v and x are uncovered
and thus cv and cx are well defined). If dist(v, x) 6
µ − 2 then it is not hard to verify that cx ∈ B̃(cv).
We thus have by Lemma 3.2 that dist(cv, cx, E

0
sparse ∪

EBFS) 6 dist(cv, cx, Esparse) 6 dist(cv, cx, G)+2 log n.
Hence, dist(x, v, Esparse) 6 dist(x, cx, Esparse) +
dist(cx, cv, Esparse) + dist(cv, v, Esparse) 6 2 +
dist(cx, cv, G) + 2 log n 6 4 + dist(x, v,G) + 2 log n 6
dist(x, v,G) + 3 log n. Let us consider now the end
case where dist(v, x) > µ − 1. In this case it might

be that cx /∈ B̃(cv). Let x′ be the node on the
path P (x, v) at distance 2 from x. It is not hard to
verify that center(x′, Csparse) ∈ B̃(cv) and thus, us-
ing similar analysis as above, dist(x′, v, Esparse) 6
dist(x′, v,G) + 2 log n + 4. Since H ′ contains log n/3-
multiplicative spanner, we get dist(x, v, Esparse∪H ′) 6
dist(x, x′,H ′) + dist(x′, v, Esparse) 6 2 log n/3 +
dist(x′, v,G)+2 log n+4 6 dist(x, v,G)+3 log n.

Lemma 3.4. The expected number of edges in Esparse

is O(n1+δ log n).

Proof: Consider a node c ∈ Csparse∩ (S1∪S2), i.e., such
that |B̃(c)| 6 n3δ. By Lemma 3.3, the number of edges
added to Esparse in Procedure Sparse in c’s iteration is
O(n2δ logn). The expected number of nodes in Csparse

is O(n1−δ). Thus the expected number of edges added
to Esparse is O(n1+δ log n).

Dense areas. An r-separated r-dominating set (or
an r−SD for short) for a set of nodes C ′ is a subset C ′′

of C ′ such that all nodes in C ′′ are at distance at least
r from one another and every node in C ′ has a node at
distance at most r from it in C ′′. Note that such a set
always exists and can be constructed greedily, as one
can simply consider the nodes in C ′ one by one and add
each node c to the set C ′′ if none of the nodes already
in C ′′ is at distance r from c. It is not hard to verify
that C ′′ is an r − SD set.

Procedure Dense handles dense areas. Procedure
Dense picks a set of edges Edense such that the set of
edges E′ = Evs∪Esparse∪Edense satisfies that for every
two close nodes x1 and x2, their distance in E′ is within
additive stretch O(log n · µ) from the distance in G.

Procedure Sparse(G)

Esparse, E
0
sparse ← ∅

Choose a set of nodes Csparse by independently sampling at random every node with
probability 1/nδ

For every node v:
If Γ(v) ∩ Csparse = ∅ add all incident edges of v to E0

sparse

Else do:
Select center(v, Csparse) to be some neighbor of v in Csparse

Add the edge (v, center(v, Csparse)) to E0
sparse

For every node v ∈ Csparse such that |B̃(v)| 6 n3δ do:
EBFS ← Approximate-BFS(v, B̃(v) ∩ Csparse, E

0
sparse, G)

Esparse = Esparse ∪ EBFS

Return Esparse ∪ E0
sparse

More precisely, it picks a maximal (3µ) − SD set
Crep for S3 and a set of edges Edense with the following
properties. Every pair of nodes in Crep has “small”
additive stretch, in addition, all nodes in S3 have a node
in Crep close to them.

For a center c ∈ Crep, let Cluster(c) be the set of
all nodes v ∈ V such that dist(c, v) 6 3µ and c is
closer to v than all nodes in Crep (recall that we assume
uniqueness of the shortest path). Note that all nodes
x on the shortest path from v ∈ Cluster(c) to c satisfy
x ∈ Cluster(c). Note that every node x ∈ S3 satisfies
x ∈ Cluster(c) for some c ∈ Crep.

For a path P , let Eimportant(P) be the set of edges of
P at distance at most 2µ from some node v ∈ V (P)∩S3.

For a path P , let CP = {c ∈ Crep | ∃v ∈ V (P), v ∈
Cluster(c)}.

Formally, Procedure Dense operates as follows.
First pick a maximal (3µ) − SD set Crep for S3. For
every node c ∈ Crep construct a BFS tree on Cluster(c)
and add the edges of the tree to the constructed spanner.

Next, the procedure goes over pairs of centers
(c1, c2) ∈ Crep, and considers adding their path P =
P (c1, c2) to the spanner. Adding this path will benefit
certain sufficiently close pairs of centers from CP , by
reducing their distance. The procedure will refrain
from adding the path P (c1, c2) to the output spanner
if there exists a center c ∈ CP such that both (c1, c)
and (c, c2) have already benefitted from paths that were
added to the spanner earlier on. Formally, unmark
all pairs (c1, c2) such that c1, c2 ∈ Crep. For every
two centers c1, c2 ∈ Crep do the following. If there
there is no node c ∈ CP such that both (c1, c) and
(c, c2) are marked, then add Eimportant(P (c1, c2)) to
the constructed spanner, and mark all pairs (c1, c) and
(c, c2) such that c ∈ CP .

Consider two nodes c1, c2 ∈ Crep. We say that the

path P (c1, c2) is purchased by the algorithm if the set of
edges Eimportant(P (c1, c2)) were added to the spanner.

Lemma 3.5. |Edense| 6 O(n1+δ) for every 3/17 6 δ.

Proof: The sets Cluster(c) for c ∈ Crep are disjoint.
Moreover, since the nodes in Crep are at distance at least

3µ from one another, we get that B̃(c) ⊆ Cluster(c)
for every c ∈ Crep. Recall that |B̃(c)| > n3δ for
every c ∈ Crep. We thus get that |Crep| 6 n1−3δ.
Therefore, there are at most n2−6δ pairs of nodes in
Crep. Consider a path P = P (c1, c2) that was purchased
by Procedure Dense. Consider a center c ∈ CP , let
v1 be the first node (closest to c1) in P such that
v1 ∈ Cluster(c)∩S3 and let v2 be the last node (closest
to c2) in P such that v2 ∈ Cluster(c)∩S3. We claim that
|P (v1, v2)| 6 6µ. To see this, note that dist(v1, c) 6 3µ
and dist(v2, c) 6 3µ. Therefore, the number of edges in
P that are added to Eimportant(P (c1, c2)) for all nodes
v ∈ S3 ∩ Cluster(c) is O(µ) (the edges that are at
distance 2µ from v1 or v2 plus the path P (v1, v2)). We
get that the number of edges in Eimportant(P) is at most
O(µ|CP |). Notice that the number of pairs in Crep that
are marked in Procedure Dense after purchasing the
path P is at least |CP | and that every pair is marked
once. Let Pdense be the set of paths that were purchased
by Procedure Dense. We have

|Edense| 6
∑

P∈Pdense

|Eimportant(P)|

6
∑

P∈Pdense

O(µ|CP |) 6 O(µn2−6δ)

6 O(n1+δ),

where the last inequality holds for every 3/17 6 δ.
In addition, a BFS tree on Cluster(c) is constructed

and added to Edense for every c ∈ Crep. Note that each

Procedure Dense(G)

Edense ← ∅
Let S3 be the set of dense nodes, namely, v ∈ V such that |B̃(v)| > n3δ

Let Crep be a maximal (3µ)− SD set for S3

For every node v, let ctr(v) be the center c ∈ Crep closest to v
For every c ∈ Crep, let Cluster(c)← {v | ctr(v) = c}
For every node c ∈ Crep construct a BFS tree on Cluster(c) and add the edges of the tree
to Edense

Unmark all pairs (c1, c2) such that c1, c2 ∈ Crep

For every two centers c1, c2 ∈ Crep do:
Let CP = {c ∈ Crep | ∃v ∈ P (c1, c2), v ∈ Cluster(c)}
If ̸ ∃ a center c ∈ CP such that both (c1, c) and (c, c2) are marked then:

Eimportant(P (c1, c2))← {e ∈ P (c1, c2) | dist(e, S3 ∩ P (c1, c2)) 6 2µ}
Edense ← Edense ∪ Eimportant(P (c1, c2))
Mark all pairs (c1, c) and (c, c2) such that c ∈ CP

Return Edense

node belongs to only one cluster and thus at most O(n)
edges are added by this step. We thus conclude that the
number of edges in Edense is O(n1+δ).

Short Distances. Procedure Short-distances
handles short distances, namely, pair of nodes s
and t such that |Γ(P (s, t), µ)| 6 n1−2δ. Procedure
Short-distances starts by constructing a (log n/3)-
multiplicative spanner and adding its edges to the
constructed spanner. It then invokes Procedures
Very-sparse(G), Sparse(G) and Dense(G) and adds
the set of edges returned by these procedures to the con-
structed spanner. We show that the set of edges Eshort

returned by Procedure Short-distances satisfies that
the distance for every two close nodes is within additive
stretch O(µ log n) from the distance in G.

We say that a path P is S3-tolerant if the edges
of P that are incident to nodes in S3 belong to Eshort.
Towards proving the desired additive stretch on short
distances, we first prove the following auxiliary lemma.
The lemma bounds the additive stretch incurred by
certain pairs of nodes x, y in Eshort by the term

∆(x, y) = ⌈|Γ(P (x, y), µ)|/(µ · nδ)⌉ · 7 log n+ µ · log n.

Lemma 3.6. For every two close nodes x1 and x2 such
that P (x1, x2) is S3-tolerant,

dist(x1, x2, Eshort) 6 dist(x1, x2, G) + ∆(x1, x2).

Proof: The proof is by induction on dist(x1, x2, G). If
dist(x1, x2, G) < 3µ then the lemma follows by the fact
that Eshort contains a (log n/3)-multiplicative spanner.

Assume the lemma holds for every two nodes x′
1

and x′
2 such that dist(x′

1, x
′
2, G) < d and consider two

nodes x1 and x2 such that dist(x1, x2, G) = d.

We consider two cases, the first case is where x1 ∈
S1 ∪ S3 and the second case is where x1 ∈ S2.

First note that every node x ∈ P (x1, x2)∩ (S1∪S3)
such that dist(x, x2) > 2µ satisfies the following. There
exists a node y ∈ P (x, x2) such that y ̸= x and
P (x, y) ⊆ Eshort. In case x ∈ S1, the claim follows
by Lemma 3.1. In case x ∈ S3, the claim follows by the
fact that P (x1, x2) is S3-tolerant.

In Particular, the above observation holds for
x = x1, so let y1 be the node satisfying y1 ∈ P (x1, x2)
and P (x1, y1) ⊆ Eshort. Hence dist(x1, y1, Eshort) =
dist(x1, y1, G). By the induction hypothesis we have,
dist(y1, x2, Eshort) 6 dist(y1, x2, G) + ∆(y1, x2).
We thus get that, dist(x1, x2, Eshort) 6
dist(x1, y1, Eshort) + dist(y1, x2, Eshort) 6
dist(x1, y1, G) + dist(y1, x2, G) + ∆(y1, x2) 6
dist(x1, x2, G) + ∆(x1, x2).

We are left with the case where x1 ∈ S2. Let z1 be
the node at distance µ from x1 on P (x1, x2). Again, we
handle separately the cases z1 ∈ S1 ∪ S3 and z1 ∈ S2.
If z1 ∈ S2 then let z2 be the node at distance µ + 1
from z1 on P (z1, x2). Note that the additive distortion
from x1 to z2 is at most 7 log n. To see this, let y be the
node at distance µ from z1 on P (z1, x2). Note that y
and z2 are neighbors. Since x1, z1 ∈ S2, by Lemma
3.1 we have dist(x1, z1, Eshort) 6 dist(x1, z1, G) +
3 log n and dist(z1, y, Eshort) 6 dist(z1, y,G)+3 log n.
In addition, since Eshort contains a (log n/3) multi-
plicative spanner and since dist(y, z2, G) = 1, we
have dist(y, z2, Eshort) 6 logn/3. We thus conclude
dist(x1, z2, Eshort) < dist(x1, z2, G) + 7 log n.

Otherwise, if z1 ∈ (S1 ∪ S3) then note that the
adjacent edge to z1 in P (z1, x2) belongs to Eshort.

Procedure Short-distances(G)

E0 ← (log n/3)-multiplicative spanner
E1 ← Very-sparse(G)
E2 ← Sparse(G)
E3 ← Dense(G)
Eshort ← E0 ∪ E1 ∪ E2 ∪ E3

Return Eshort

Let y be the first node on P (z1, x2) such that the
adjacent edge to y in P (y, x2) is not in Eshort and that
dist(z1, y) 6 µ.

If no such node exists then set z2 to be the
node at distance µ + 1 from z1 on P (z1, x2).
Note that in this case P (z1, z2) ⊆ Eshort. We
thus get dist(x1, z2, Eshort) 6 dist(x1, z1, Eshort) +
dist(z1, z2, Eshort) 6 dist(x1, z1, G) + 3 log n +
dist(z1, z2, G) 6 dist(x1, z2, G) + 3 log n. Otherwise,
if there exists such node y, set z2 to be the node at dis-
tance µ from y on P (y, x2). Note that y ∈ S2. We get
that

dist(x1, z2, Eshort)

6 dist(x1, z1, Eshort)

+ dist(z1, y, Eshort) + dist(y, z2, Eshort)

6 dist(x1, z1, G) + 3 log n

+ dist(z1, y,G) + dist(y, z2, G) + 3 log n

= dist(x1, z2, G) + 6 · log n.

Moreover, note that in all cases dist(x1, z2, G) >
2µ + 1. Using shortest path properties, it is not
hard to verify that Γ(x1, µ,G) ∩ Γ(P (z2, x2), µ) = ∅.
Recalling that x1 ∈ S2, we thus have |Γ(P (z2, x2), µ)| 6
|Γ(P (x1, x2), µ)| − |Γ(x1, µ,G)| 6 |Γ(P (x1, x2), µ)| − µ ·
nδ. Hence by the induction hypothesis,

dist(x1, x2, Eshort) 6 dist(x1, z2, Eshort) +
dist(z2, x2, Eshort) 6 dist(x1, z2, G) + 7 logn +
dist(z2, x2, G) + ∆(z2, x2) 6 dist(x1, x2, G) +
⌈(|Γ(P (x1, x2), µ)| − µ · nδ)/(µ · nδ)⌉ · 7 log n+ 7 log n+
µ · log n = dist(x1, x2, G) + ∆(x1, x2).

Consider two close nodes x1 and x2 on some path
P (c1, c2) that was purchased by Procedure Dense. It is
not hard to verify that since P (c1, c2) was purchased by
Procedure Dense then the path P (c1, c2) is S3-tolerant.
In addition, every subpath of an S3-tolerant path is also
S3-tolerant. Hence P (x1, x2) is S3-tolerant and we have
the following corollaries.

Corollary 3.2. For every two close nodes x1 and x2

on some path P (c1, c2) that was purchased by Procedure

Dense,

dist(x1, x2, Eshort) 6 dist(x1, x2, G) + ∆(x1, x2).

Corollary 3.3. For every two close centers c1, c2 ∈
Crep, if P (c1, c2) was purchased by the algorithm, then
dist(c1, c2, Eshort) 6 dist(c1, c2, G) + 8µ · log n.

Lemma 3.7. For every two close nodes x1, x2 such that
x1, x2 ∈ S3, dist(x1, x2, Eshort) 6 dist(x1, x2, G) +
17µ log n.

Proof: Consider two close nodes x1, x2 ∈ S3 and let c1
and c2 be the centers in Crep such that x1 ∈ Cluster(c1)
and x2 ∈ Cluster(c2). Let d = dist(x1, x2, G). We
consider two cases, the first case is when the pair (c1, c2)
is marked by Procedure Dense and the second case is
when it is not marked.

Consider the first case where the pair (c1, c2)
is marked. The pair (c1, c2) is marked since there
was some path P (c3, c4) (could be that P (c3, c4) =
P (c1, c2)) such that P (c3, c4) was purchased by the al-
gorithm and there are two nodes y1 and y2 on P (c3, c4)
such that y1 ∈ Cluster(c1) and y2 ∈ Cluster(c2).

By Corollary 3.2, dist(y1, y2, Eshort) 6
dist(y1, y2, Eshort)+8µ · log n. Since the distance from
a node to its cluster center is at most 3µ, we get that

dist(x1, x2, Eshort)

6 dist(x1, y1, Eshort) + dist(y1, y2, Eshort)

+ dist(y2, x2, Eshort)

6 6µ+ dist(y1, y2, G) + 8µ · log n+ 6µ

6 6µ+ d+ 6µ+ 8µ · log n
= d+ 12µ+ 8µ · log n 6 d+ 9µ · logn,

where the last inequality holds for every log n > 12.
Consider the second case where the pair (c1, c2) is not
marked. The path P (c1, c2) was not purchased by the
algorithm since there are a node z on P (c1, c2) such
that z ∈ Cluster(c3) and (c1, c3) is marked and (c2, c3)
is marked.

Using the same analysis as before, we get that
dist(x1, z, Eshort) 6 dist(x1, z,G)+12µ+8µ·log n and

dist(z, x2, Eshort) 6 dist(z, x2, G) + 12µ + 8µ · log n.
Thus,

dist(x1, x2, Eshort)

6 dist(x1, z, Eshort) + dist(z, x2, Eshort)

6 dist(x1, z, G) + 12µ+ 8µ · logn
+ dist(z, x2, G) + 12µ+ 8µ · log n

6 dist(x1, x2, G) + 17µ · log n,
where the last inequality holds for every log n > 24.

Lemma 3.8. For every two close nodes x1, x2,
dist(x1, x2, Eshort) 6 dist(x1, x2, G) + 33µ logn.

Proof: By Lemma 3.6, we have that every shortest path
P (y1, y2) between two close nodes y1 and y2 such that
all nodes on P (y1, y2) \ {y2} are not in S3, satisfies
dist(y1, y2, Eshort) 6 dist(y1, y2, G) + ∆(y1, y2) 6
dist(y1, y2, G) + 8µ · log n.

If P (x1, x2) \ {x2} ∩ S3 = ∅, we get
dist(x1, x2, Eshort) 6 dist(x1, x2, G) + ∆(x1, x2) 6
dist(x1, x2, G) + 8µ log n. Otherwise, let z1 (respec-
tively, z2) be the first (respectively, last) node of S3 on
the path P (x1, x2, G) (it could be that z1 = z2).

By Lemma 3.7, dist(z1, z2, Eshort) 6
dist(z1, z2, G) + 17µ logn.

We thus have, dist(x1, x2, Eshort) 6
dist(x1, z1, Eshort) + dist(z1, z2, Eshort) +
dist(z2, x2, Eshort) 6 dist(x1, z1, G) + 8µ logn +
dist(z1, z2, G)+17µ log n+dist(z2, x2, G)+8µ log n =
dist(x1, x2, G) + 33µ log n.

Long Distances. Procedure Long-distances
handles long distances. More specifically, we show
the following. Consider a randomly selected set of
vertices Rlong obtained by taking each node with
probability 9 log n/n1−2δ. Procedure Long-distances
finds a set of edges Elong with the following prop-
erties. First, the number of edges in Elong is

Õ(n1+δ). Second, for every pair of nodes u, v ∈ Rlong,
dist(u, v, Elong) 6 dist(u, v,G) + 2.

Let cater(P,R) for a path P and a set of nodes R
be the caterpillar that is obtained by taking the path P
and connecting all nodes in Γ(P)∩R \P to the path P
by a single edge. Let Gain(P,R,E′) denote the set of
pairs {r1, r2} such that r1, r2 ∈ Γ(P)∩R and adding the
caterpillar cater(P,R) to E′ improves their distance, i.e.
dist(r1, r2, E

′∪ cater(P,R)) < dist(r1, r2, E
′), and let

value(P,R,E′) = |Gain(P,R,E′)|.
Formally, Procedure Long-distances operates as

follows. For every node v with degree at most
nδ, i.e., |Γ(v)| 6 nδ, add to Elong all edges inci-
dent to v. Next, choose a set Rlong by indepen-
dently sampling at random every node with proba-
bility 9 log n/n1−2δ. For every pair of nodes {r1, r2}

such that r1, r2 ∈ Rlong do the following. Add
cater(P,Rlong) to Elong if 4 · value(P,Rlong, Elong) ·
n1−3δ > cost(cater(P,Rlong), Elong), where P =
P (r1, r2).

Procedure Main(G)

H ← Short-distances(G)
∪ Long-distances(G)

Return H

Here, we say that a node v is heavy if its degree
is at least nδ, namely, Γ(v) > nδ and light otherwise.
Let heavy dist(P) be the number of nodes in P with
degree at least nδ.

Denote by Ei
long the subgraph under construction

after the i’th iteration of Procedure Long-distances,
namely, the subgraph Elong after considering the first
i paths P (r1, r2). Note that E0

long contains all incident
edges to light nodes. Let Pi be the path considered
during the i’th iteration.

Denote by I ′ the set of iterations in which Proce-
dure Long-distances added the caterpillars considered
to the constructed spanner Elong and by P ′ the set of
paths that their caterpillars were added to Elong using
this process.

Lemma 3.9. The expected number of edges added by
Procedure Long-distances is Õ(n1+δ).

Proof: In the first step of Procedure Long-distances
all edges incident to light nodes are added to Elong. It
is not hard to verify that O(n1+δ) edges are added for
this step.

Note that each pair of nodes u and v can belong to
some set Gain(Pi, Rlong, Elong) that is added to Elong

in at most 5 iterations. To see this, let P̂ be the first
path added to Elong such that the pair {u, v} belongs

to Gain(P̂ , Rlong, Elong). Assume u and v are not in P̂ ,

and let u′ and v′ be the nodes in P̂ connected to u and
v respectively. Let the distance between u and v be d
and the distance between u′ and v′ be d′. Note that
d′ 6 d + 2 and d 6 d′ + 2, we get that the distance
between u and v in cater(P̂ , Rlong) is at most d+4. We
get that the distance between u and v can be improved
at most 5 times. If both u and v are in P then the
shortest path between u and v in cater(P̂ , Rlong) is also
the shortest path between them in G, hence the distance
between u and v can not improve anymore and the pair
{u, v} belongs only to Gain(P̂ , Rlong, Elong). We are
left with the case where exactly one of u and v is in
P̂ . In this case, d′ 6 d + 1 and d 6 d′ + 1, we get
that the distance between u and v in cater(P̂ , Rlong)

Procedure Long-distances(G)

Elong ← ∅
For every node v such that |Γ(v)| 6 nδ, add to Elong all edges incident to v.
Choose a set Rlong by independently sampling at random every node with probability
9 log n/n1−2δ

For every pair of nodes r1, r2 ∈ Rlong do:
Let P = P (r1, r2)
Add cater(P,Rlong) to Elong if (4 · value(P,Rlong, Elong) · n1−3δ) >

cost(cater(P,Rlong), Elong)
Return Elong

is at most d + 2, therefore the distance between u and
v can improve at most 3 times. This implies that the
sum of values in P ′ is Õ(n4δ) as the expected number of
nodes in Rlong is Õ(n2δ). By the rule used by Procedure
Long-distances to add cater(Pi, Rlong) to Elong, we
thus have,

∑
i∈I′ cost(cater(Pi, Rlong), E

i−1
long) 6 4 ·

n1−3δ ·
∑

i∈I′ value(Pi, Rlong, E
i−1
long) = Õ(n1+δ). The

lemma follows.

For a path P , let RP = Rlong ∩ Γ(P).
Towards proving that every pair of nodes in Rlong

is within additive stretch 2 from the distance in G, we
first prove the following auxiliary lemmas.

Lemma 3.10. With high probability, Γ(P (u, v)) ∩
Rlong ̸= ∅ for every two nodes u and v such that
|Γ(P (u, v))| > n1−2δ/3.

Proof: Consider two nodes u and v such that
|Γ(P (u, v))| > n1−2δ/3. The probability that none of
the nodes in Γ(P (u, v)) were chosen to Rlong is

(1− 1

3 · n2δ
)9n

2δ logn ≈ (1/e)3 logn =
1

n3
.

By the union bound we get that the probability that
there is a pair of nodes u, v such that |Γ(P (u, v))| >
n1−2δ/3 and Γ(P (u, v)) ∩ Rlong = ∅ is at most 1/n.

Lemma 3.11. Assume that Γ(P (u, v)) ∩ Rlong ̸= ∅
for every two nodes u and v such that |Γ(P (u, v))| >
n1−2δ/3. Then for every pair of nodes x and y,
cost(cater(P (x, y), Rlong), E

0
long) 6 |RP (x,y)| · (n1−3δ +

3) + n1−3δ.

Proof: First note that
cost(cater(P (x, y), Rlong), E

0
long) 6

heavy dist(x, y) + |RP (x,y)|. To see this, recall
that E0

long contains all incident edges to light nodes.

We thus need to show that heavy dist(x, y) 6
|RP (x,y)| · (n1−3δ + 2) + n1−3δ. We prove by induction
on the heavy distance heavy dist(x′, y′) that for every
pair of nodes x′ and y′, heavy dist(x′, y′) 6 |RP (x′,y′)|·
(n1−3δ + 2) + n1−3δ.

If heavy dist(x′, y′) 6 n1−3δ, the claim holds
trivially.

Assume the claim holds for every pair of nodes
{x′′, y′′} such that heavy dist(x′′, y′′) < d and consider
pair of nodes {x′, y′} such that heavy dist(x′, y′) =
d for some d > n1−3δ. Let x1 be the node in
P (x′, y′) such that heavy dist(x′, x1) = n1−3δ. Note
that |Γ(P (x′, x1))| > n1−2δ/3 and thus Γ(P (x′, x1)) ∩
Rlong ̸= ∅. Let x2 be the node at distance 2 from x1

on P (x1, y
′). By shortest path properties we get that

RP (x′,x1)∩Γ(P (x2, y
′)) = ∅. By the induction hypothe-

sis, we have heavy dist(x2, y) 6 |RP (x2,y′)|(n1−3δ+2)+

n1−3δ. We thus have, heavy dist(x′, y′) 6 n1−3δ + 2+
|RP (x2,y′)|·(n1−3δ+2)+n1−3δ 6 n1−3δ+2+(|RP (x′,y′)|−
|RP (x′,x1)|) · (n1−3δ + 2) + n1−3δ 6 |RP (x′,y′)| · (n1−3δ +

2) + n1−3δ.

Corollary 3.4. With high probability, for every pair
of nodes x and y, cost(cater(P,Rlong), E

0
long) 6

|RP (x,y)| · (n1−3δ + 3) + n1−3δ.

Lemma 3.12. With high probability, for every pair of
nodes u, v ∈ Rlong, dist(u, v, Elong) 6 dist(u, v,G) +
2.

Proof: To show the lemma, we need to consider a pair
of nodes u and v in Rlong such that dist(u, v, Elong) >
dist(u, v,G), namely, that the shortest path Pi =
P (u, v) was not added to Elong. The path Pi

was not added to Elong as 4 · value(Pi, E
i−1
long) ·

n1−3δ < cost(cater(Pi, Rlong), E
i−1
long). By Corollary

3.4, cost(cater(Pi, Rlong), E
0
long) 6 |RPi | · (n1−3δ+3)+

n1−3δ 6 2|RPi | ·n1−3δ, where the last inequality follows

from the fact that |RPi | > 1 (as u, v ∈ RPi) and straight-
forward calculations. We thus get value(Pi) < |RPi |/2.
Consider all pairs: A = {{s, t} | s ∈ {u, v}, t ∈
RPi and dist(s, t, Pi) < dist(s, t, Ei−1

long)}. By defini-
tion |A| 6 value(Pi), thus |A| < value(Pi) < |RPi

|/2.
This implies that there is a node w ∈ RPi such
that dist(u,w,Ei−1

long) 6 dist(u,w, cater(Pi, Rlong))

and dist(w, v,Ei−1
long) 6 dist(w, v, cater(Pi, Rlong)).

Let w′ be the node on the path Pi that has
an edge to w in cater(Pi, Rlong). Note that
dist(u, v,G) = dist(u,w′, G)+dist(w′, v,G) and that
dist(u,w, cater(Pi, Rlong)) = dist(u,w′, G) + 1 and
dist(w, v, cater(Pi, Rlong)) = dist(w′, v,G) + 1, there-
fore dist(u, v, Ei−1

long) 6 dist(u,w, cater(Pi, Rlong)) +
dist(w, v, cater(Pi, Rlong)) 6 dist(u,w′, G) + 1 +
dist(w′, v,G) + 1 = dist(u, v,G) + 2.

Putting it all together. Finally, we prove the
bound on the additive stretch of the spanner in the
following lemma.

Lemma 3.13. The stretch of the spanner is O(µ log n).

Proof: Consider two nodes s and t that are not
close, namely, |Γ(P (s, t), µ)| > n1−2δ. Consider the
first (respectively, last) node y1 (respectively, y2) on
P (s, t) such that |Γ(P (s, y1), µ)| > n1−2δ (respectively,
|Γ(P (y2, t), µ)| > n1−2δ). By Lemma 3.10 we have,
Γ(P (s, y1), µ) ∩Rlong ̸= ∅ and Γ(P (y2, t), µ) ∩Rlong ̸=
∅. Let z1 ba a node on the path P (s, y1) such that
there exists a node r1 ∈ Rlong and dist(z1, r1, G) 6 µ
and let z2 be the last node on the path P (y2, t) such that
there exists a node r2 ∈ Rlong and dist(z2, r2, G) 6 µ.
Let z′1 be the neighbor of z1 on P (s, z1) and let z′2
be the neighbor of z2 on P (z2, t). We claim that
|Γ(P (s, z′1), µ)| 6 n1−2δ and |Γ(P (z′2, t), µ)| 6 n1−2δ.
To see this, note that by definition of y1, every node x
in P (s, y1) \ {y1} satisfies |Γ(P (s, x), µ)| < n1−2δ. Since
z′1 ∈ P (s, y1) \ {y1} it follows that |Γ(P (s, z′1), µ)| 6
n1−2δ. Similarly, we can show that |Γ(P (z′2, t), µ)| 6
n1−2δ.

By Lemma 3.8, dist(s, z′1,H) 6 dist(s, z′1, G) +
33µ logn, dist(z′2, t,H) 6 dist(z′2, t, G) + 33µ log n.
By Lemma 3.12, dist(r1, r2, H) 6 dist(r1, r2, G) +
2. Note also that dist(r1, r2, G) 6 dist(r1, z1, G) +
dist(z1, z2, G)+ dist(z2, r2, G) 6 2µ+ dist(z1, z2, G).
We thus have dist(r1, r2,H) 6 dist(z1, z2, G) +
2µ + 2. In addition, since H contains a log n/3
multiplicative spanner, we get dist(z′1, r1,H) 6
log n/3dist(z′1, r1, G) 6 log n/3(dist(z′1, z1, G) +
dist(z1, r1, G)) 6 log n(1 + µ)/3. Similarly,
dist(z′2, r2,H) 6 log n(1+µ)/3. Hence dist(s, t,H) 6
dist(s, z′1,H) + dist(z′1, r1,H) + dist(r1, r2,H) +
dist(r2, z

′
2,H) + dist(z′2, t,H) 6 dist(s, t,G) +

O(µ logn).

3.1 New sublinear distance stretch spanners
We note that it possible to tweak our construction from
Section 3 to give a sublinear distance stretch spanner.
More precisely, we have the following.

Lemma 3.14. One can efficiently construct a span-
ner Ĥ with Õ(n1+3/17) edges such that for every
pair of nodes s, t, dist(s, t, Ĥ) 6 dist(s, t,G) +
Õ(

√
dist(s, t, G)).

We now sketch the construction (we omit the
complete details from this version). The construc-
tion involves log n iterations, where each iteration i
handles distances between 2i−1 to 2i, (we stop once
2i−1 = n1−9/17). In Each iteration i invoke Procedure

Short-distances from Section 3, but use
√
2i−1 instead

of µ (in every place that uses µ). Let Hi be the con-
structed spanner for iteration i. Add the edges of Hi to
the constructed spanner Ĥ. To handle distances greater
than n1−9/17, we simply add the spanner H from Sec-
tion 3 to the constructed spanner Ĥ.

Following the analysis of Section 3, one can show
that for every pair of nodes s, t such that dist(s, t,G) =
O(2i), the additive stretch for the pair s, t inHi is within

additive stretch O(
√
2i). This handles pairs of nodes of

distance at most n1−9/17. It is not hard to see that
pairs of nodes s, t of distance greater than n1−9/17 are
satisfied by the spanner H from Section 3.

4 Conclusions

In this paper we make an additional step towards better
understanding the picture of purely additive spanners.
We present a new simple algorithm for (1, 4)-additive
spanner with Õ(n7/5) edges. In addition, we present a
construction for additive spanners with Õ(n1+δ) edges
and additive stretch of Õ(n1/2−3δ/2) for any 3/17 6 δ <
1/3. It would be interesting to extend this result to any
0 < δ < 1/3. Our result for spanners of size o(n4/3)
gives the best additive stretch known so far (for the
mentioned range). However, it is unclear that indeed
a polynomial stretch is needed. Specifically, a major
open problem in this area is the existence of a spanner
of size O(n4/3−ε) for some fixed ε with constant or even
polylog additive stretch.

Acknowledgement I am very grateful to my ad-
visor, David Peleg, for many helpful discussions and for
reviewing this paper.

References

[1] D. Aingworth, C. Chekuri, P. Indyk, and R. Mot-
wani. Fast estimation of diameter and shortest paths
(without matrix multiplication). SIAM J. Comput.,
28(4):1167–1181, 1999.

[2] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J.
Soares. On sparse spanners of weighted graphs. Dis-
crete & Computational Geometry, 9:81–100, 1993.

[3] S. Baswana and T. Kavitha. Faster algorithms for ap-
proximate distance oracles and all-pairs small stretch
paths. In Proc. IEEE Symp. on Foundations of Com-
puter Science (FOCS), 591–602, 2006.

[4] S. Baswana, T. Kavitha, , K. Mehlhorn, and S. Pettie.
New constructions of (α, β)-spanners and purely addi-
tive spanners. In Proc. 16th SODA, 672-681, 2005.

[5] S. Baswana, T. Kavitha, , K. Mehlhorn, and S. Pettie.
Additive spanners and (α, β)-spanners. ACM Trans.
Algo. 7, A.5, 2010.

[6] B. Bollobás, D. Coppersmith, and M. Elkin. Sparse
distance preservers and additive spanners. In
Proc. 14th ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 414–423, 2003.

[7] E. Cohen. Fast algorithms for constructing t-spanners
and paths with stretch t. SIAM J. Comput., 28:210-
236, 1998.

[8] E. Cohen. Polylog-time and near-linear work approxi-
mation scheme for undirected shortest-paths. J.ACM,
47:132-166, 2000.

[9] L. J. Cowen. Compact routing with minimum stretch.
J. Algor., 28, 170-183, 2001.

[10] L. J. Cowen and C. G. Wagner. Compact roundtrip
routing in directed networks. J. Algor. 50, 1, 79-95,
2004.

[11] D. Dor, S. Halperin, and U. Zwick. All-pairs almost
shortest paths. SIAM J. Comput., 29(5):1740–1759,
2000.

[12] M. Elkin. Computing almost shortest paths. ACM
Trans. Algorithms, 1(2):283–323, 2005.

[13] M. Elkin. A near-optimal distributed fully dynamic al-
gorithm for maintaining sparse spanners. In Proc. 26th
ACM Symp. on Principles of Distributed Computing
(PODC), pages 185–194, 2007.

[14] M. Elkin and D. Peleg. (1+ϵ, β)-spanner constructions
for general graphs. InProc. 33rd ACM Symp. on
Theory of Computing (STOC), 173-182, 2001.

[15] M. Elkin and D. Peleg. (1+ϵ, β)-spanner constructions
for general graphs. SIAM J. Comput., 33(3):608-631,
2004.

[16] M. Elkin and J. Zhang. Efficient algorithms for
constructing (1 + ϵ, β)-spanners in the distributed and
streaming models. In Proc. 23rd ACM Symp. on
Principles of Distributed Computing (PODC), pages
160–168, 2004.

[17] P. Erdős. Extremal problems in graph theory. In
Theory of graphs and its applications, pages 29-36,
1964.

[18] A. M. Farley, A. Proskurowski, D. Zappala, and
K. Windisch. Spanners and message distribution in
networks. Discrete Applied Mathematics, 137(2):159–

171, 2004.
[19] D. Peleg and A.A. Schäffer. Graph spanners. J. Graph

Theory 13, 99–116, 1989.
[20] D. Peleg and J. D. Ullman. An optimal synchronizer

for the hypercube. SIAM J. Comput., 18(4):740–747,
1989.

[21] D. Peleg and E. Upfal. A trade-off between space and
efficiency for routing tables. J. ACM, 36(3):510—530,
1989.

[22] Seth Pettie. Low distortion spanners. In 34th Interna-
tional Colloquium on Automata, Languages and Pro-
gramming (ICALP), 78–89, 2007.

[23] S. Pettie. Low distortion spanners. ACM Trans. on
Algorithms 6(1), 2009.

[24] L. Roditty, M. Thorup, and U. Zwick. Determinis-
tic constructions of approximate distance oracles and
spanners. In Proc. 32nd Int. Colloq. on Automata,
Languages & Prog., 261–272, 2005.

[25] L. Roditty, M. Thorup, and U. Zwick. Roundtrip
spanners and roundtrip routing in directed graphs.
ACM Trans. Algorithms, 3(4):Article 29, 2008.

[26] M. Thorup and U. Zwick. Compact routing schemes.
In Proc. 13th ACM Symp. on Parallel Algorithms and
Architectures (SPAA), 1–10, 2001.

[27] M. Thorup and U. Zwick. Approximate distance
oracles. J. ACM, 52(1):1–24, 2005.

[28] M. Thorup and U. Zwick. Spanners and emulators with
sublinear distance errors. In 17th Symp. on Discrete
Algorithms (SODA), 802–809. ACM-SIAM, 2006.

[29] R. Wenger. Extremal graphs with no C4s, C6s, or
C10s. J. Combin. Theory Ser. B, 52(1):113-116, 1991.

[30] D. P. Woodruff. Lower bounds for additive spanners,
emulators, and more. In Proc. 47th IEEE Symp. on
Foundations of Computer Science (FOCS), pages 389–
398, 2006.

[31] D. P. Woodruff. Additive Spanners in Nearly
Quadratic Time. In 37th International Colloquium
on Automata, Languages and Programming (ICALP),
463–474, 2010.

