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Fully-dynamic graph connectivity

� Find an efficient data structure supporting the
following operations in a dynamic graph G:
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Fully-dynamic graph connectivity

� Find an efficient data structure supporting the
following operations in a dynamic graph G:
� insert(u, v): inserts edge (u, v) in G
� delete(u, v): deletes edge (u, v) from G
� connected(u, v): reports whether vertices u and
v are connected in G
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Fully-dynamic graph connectivity

� Find an efficient data structure supporting the
following operations in a dynamic graph G:
� insert(u, v): inserts edge (u, v) in G
� delete(u, v): deletes edge (u, v) from G
� connected(u, v): reports whether vertices u and
v are connected in G

� We refer to insert and delete as update
operations and to connected as a query operation
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Worst-case bounds

� Eppstein, Galil, Italiano, Nissenzweig, 1992: O(
√
n)

update, O(1) query
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Worst-case bounds

� Eppstein, Galil, Italiano, Nissenzweig, 1992: O(
√
n)

update, O(1) query

� Kapron, King, Mountjoy, 2013: O(polylog n) update
and query (Monte Carlo)
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Amortized bounds

� Randomized:
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� Randomized:
� Thorup, 2000: O(log n(log log n)3) update and
O(log n/ log log log n) query
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� Randomized:
� Thorup, 2000: O(log n(log log n)3) update and
O(log n/ log log log n) query

� Deterministic:

Faster Deterministic Fully-Dynamic Graph Connectivity – p.4/23



Amortized bounds

� Randomized:
� Thorup, 2000: O(log n(log log n)3) update and
O(log n/ log log log n) query

� Deterministic:
� Holm, de Lichtenberg, Thorup, 1998: O(log2 n)

update, O(log n/ log log n) query
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Amortized bounds

� Randomized:
� Thorup, 2000: O(log n(log log n)3) update and
O(log n/ log log log n) query

� Deterministic:
� Holm, de Lichtenberg, Thorup, 1998: O(log2 n)

update, O(log n/ log log n) query
� New result: O(log2 n/ log log n) update,
O(log n/ log log n) query
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Model of computation

� We assume a pointer machine with words
(bitmaps) containing at least ⌊log n⌋+ 1 bits
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� We assume a pointer machine with words
(bitmaps) containing at least ⌊log n⌋+ 1 bits

� We allow standard AC0 instructions:
� Addition

Faster Deterministic Fully-Dynamic Graph Connectivity – p.5/23



Model of computation

� We assume a pointer machine with words
(bitmaps) containing at least ⌊log n⌋+ 1 bits

� We allow standard AC0 instructions:
� Addition
� Subtraction

Faster Deterministic Fully-Dynamic Graph Connectivity – p.5/23



Model of computation

� We assume a pointer machine with words
(bitmaps) containing at least ⌊log n⌋+ 1 bits
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Model of computation

� We assume a pointer machine with words
(bitmaps) containing at least ⌊log n⌋+ 1 bits

� We allow standard AC0 instructions:
� Addition
� Subtraction
� Comparison
� Bit shifts
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Model of computation

� We assume a pointer machine with words
(bitmaps) containing at least ⌊log n⌋+ 1 bits

� We allow standard AC0 instructions:
� Addition
� Subtraction
� Comparison
� Bit shifts
� Boolean ’and’, ’or’, and ’xor’
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The traditional approach

� Maintain a spanning forest of G
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The traditional approach

� Maintain a spanning forest of G
� For an update insert(u, v), find trees Tu and Tv

containing u and v, respectively
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The traditional approach

� Maintain a spanning forest of G
� For an update insert(u, v), find trees Tu and Tv

containing u and v, respectively
� If Tu 6= Tv, add (u, v) as a tree edge; otherwise do

nothing
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The traditional approach

� Maintain a spanning forest of G
� For an update insert(u, v), find trees Tu and Tv

containing u and v, respectively
� If Tu 6= Tv, add (u, v) as a tree edge; otherwise do

nothing
� For an update delete(u, v), if (u, v) is a non-tree

edge, do nothing
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The traditional approach

� Maintain a spanning forest of G
� For an update insert(u, v), find trees Tu and Tv

containing u and v, respectively
� If Tu 6= Tv, add (u, v) as a tree edge; otherwise do

nothing
� For an update delete(u, v), if (u, v) is a non-tree

edge, do nothing
� Otherwise, letting T be the tree containing (u, v),

look for an edge (u′, v′) reconnecting T \ {(u, v)}
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The traditional approach

� Maintain a spanning forest of G
� For an update insert(u, v), find trees Tu and Tv

containing u and v, respectively
� If Tu 6= Tv, add (u, v) as a tree edge; otherwise do

nothing
� For an update delete(u, v), if (u, v) is a non-tree

edge, do nothing
� Otherwise, letting T be the tree containing (u, v),

look for an edge (u′, v′) reconnecting T \ {(u, v)}
� If (u′, v′) exists, add it as a tree edge; otherwise do

nothing
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Clusters

� Assign an integer level ℓ(e) to each edge e ∈ G,
0 ≤ ℓ(e) ≤ ℓmax = ⌊log n⌋
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Clusters

� Assign an integer level ℓ(e) to each edge e ∈ G,
0 ≤ ℓ(e) ≤ ℓmax = ⌊log n⌋

� For 0 ≤ i ≤ ℓmax, let Gi denote the subgraph of G
induced by edges e with ℓ(e) ≥ i
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Clusters

� Assign an integer level ℓ(e) to each edge e ∈ G,
0 ≤ ℓ(e) ≤ ℓmax = ⌊log n⌋

� For 0 ≤ i ≤ ℓmax, let Gi denote the subgraph of G
induced by edges e with ℓ(e) ≥ i

� We have G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gℓmax

� The connected components of Gi are called level
i-clusters or just clusters

� Invariant: any level i-cluster spans at most ⌊n/2i⌋
vertices
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Clusters

� Assign an integer level ℓ(e) to each edge e ∈ G,
0 ≤ ℓ(e) ≤ ℓmax = ⌊log n⌋

� For 0 ≤ i ≤ ℓmax, let Gi denote the subgraph of G
induced by edges e with ℓ(e) ≥ i

� We have G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gℓmax

� The connected components of Gi are called level
i-clusters or just clusters

� Invariant: any level i-cluster spans at most ⌊n/2i⌋
vertices

� Level 0-clusters are the connected components of
G and level ℓmax-clusters are vertices of G
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Clusters
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Cluster forest

� The cluster forest of G is a forest C of rooted trees
where each node u corresponds to a cluster C(u)
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Cluster forest

� The cluster forest of G is a forest C of rooted trees
where each node u corresponds to a cluster C(u)

� A node u at level i < ℓmax has as children the level
(i+ 1)-nodes v such that C(v) ⊆ C(u)
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Cluster forest

� The cluster forest of G is a forest C of rooted trees
where each node u corresponds to a cluster C(u)

� A node u at level i < ℓmax has as children the level
(i+ 1)-nodes v such that C(v) ⊆ C(u)

� Roots of C correspond to connected components of
G and leaves of C correspond to vertices of G
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Cluster forest

� The cluster forest of G is a forest C of rooted trees
where each node u corresponds to a cluster C(u)

� A node u at level i < ℓmax has as children the level
(i+ 1)-nodes v such that C(v) ⊆ C(u)

� Roots of C correspond to connected components of
G and leaves of C correspond to vertices of G

� Given C, we can determine whether two vertices u
and v are connected in G in O(log n) time
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Cluster forest
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Handling an update insert(u, v)

� Initialize ℓ(u, v)← 0

Faster Deterministic Fully-Dynamic Graph Connectivity – p.11/23



Handling an update insert(u, v)

� Initialize ℓ(u, v)← 0

� Let ru resp. rv be the root of the tree of C containing
u resp. v
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Handling an update insert(u, v)

� Initialize ℓ(u, v)← 0

� Let ru resp. rv be the root of the tree of C containing
u resp. v

� If ru = rv, C need not be updated
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Handling an update insert(u, v)

� Initialize ℓ(u, v)← 0

� Let ru resp. rv be the root of the tree of C containing
u resp. v

� If ru = rv, C need not be updated
� Otherwise, ru and rv are merged into ru
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Handling an update insert(u, v)

� Initialize ℓ(u, v)← 0

� Let ru resp. rv be the root of the tree of C containing
u resp. v

� If ru = rv, C need not be updated
� Otherwise, ru and rv are merged into ru

� This corresponds to merging C(ru) and C(rv)
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Handling an update insert(u, v)
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Handling an update insert(u, v)
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Handling an update insert(u, v)
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Handling an update insert(u, v)
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Handling an update delete(u, v)

� Let i = ℓ(u, v) and let Cu 6= Cv be the level
(i+ 1)-clusters containing u and v
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Handling an update delete(u, v)

� Let i = ℓ(u, v) and let Cu 6= Cv be the level
(i+ 1)-clusters containing u and v

� Let Mi be the multigraph with level (i+ 1)-clusters
as vertices and level i-edges of G as edges
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Handling an update delete(u, v)

� Let i = ℓ(u, v) and let Cu 6= Cv be the level
(i+ 1)-clusters containing u and v

� Let Mi be the multigraph with level (i+ 1)-clusters
as vertices and level i-edges of G as edges

� In Mi, execute two standard search procedures in
parallel, one starting in Cu, the other starting in Cv

Faster Deterministic Fully-Dynamic Graph Connectivity – p.13/23



Handling an update delete(u, v)

� Let i = ℓ(u, v) and let Cu 6= Cv be the level
(i+ 1)-clusters containing u and v

� Let Mi be the multigraph with level (i+ 1)-clusters
as vertices and level i-edges of G as edges

� In Mi, execute two standard search procedures in
parallel, one starting in Cu, the other starting in Cv

� Terminate both procedures when in one of the
following two cases:
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Handling an update delete(u, v)

� Let i = ℓ(u, v) and let Cu 6= Cv be the level
(i+ 1)-clusters containing u and v

� Let Mi be the multigraph with level (i+ 1)-clusters
as vertices and level i-edges of G as edges

� In Mi, execute two standard search procedures in
parallel, one starting in Cu, the other starting in Cv

� Terminate both procedures when in one of the
following two cases:
� a vertex of Mi is explored by both search

procedures
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Handling an update delete(u, v)

� Let i = ℓ(u, v) and let Cu 6= Cv be the level
(i+ 1)-clusters containing u and v

� Let Mi be the multigraph with level (i+ 1)-clusters
as vertices and level i-edges of G as edges

� In Mi, execute two standard search procedures in
parallel, one starting in Cu, the other starting in Cv

� Terminate both procedures when in one of the
following two cases:
� a vertex of Mi is explored by both search

procedures
� one of the search procedures has no more

edges to explore

Faster Deterministic Fully-Dynamic Graph Connectivity – p.13/23



A vertex of Mi is explored by both search procedures

v u

Cv Cu
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A vertex of Mi is explored by both search procedures
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A vertex of Mi is explored by both search procedures

v u

Cv

Cu
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A search procedure has no more edges to explore

v u

Cv Cu
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A search procedure has no more edges to explore

v u

Cv

Cu
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Traversing a single graph edge
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Local trees

� To search for graph edges of a specific level, we
replace C by a forest of binary trees
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Local trees

� To search for graph edges of a specific level, we
replace C by a forest of binary trees

� For each non-leaf node u ∈ C, we replace the
edges to its children by a local tree L(u)

u
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Local trees

� To search for graph edges of a specific level, we
replace C by a forest of binary trees

� For each non-leaf node u ∈ C, we replace the
edges to its children by a local tree L(u)

u

� Denote by CL the resulting forest of binary trees; its
height is O(log n)
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Searching for multigraph edges

� With each node u ∈ CL, associate a bitmap edge(u)
where edge(u)[i] = 1 iff a level i-edge is incident to a
leaf of the subtree of CL rooted at u
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Searching for multigraph edges

� With each node u ∈ CL, associate a bitmap edge(u)
where edge(u)[i] = 1 iff a level i-edge is incident to a
leaf of the subtree of CL rooted at u

� We can use these bitmaps to search for level
i-edges to be explored by our search procedures
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Searching for multigraph edges

� With each node u ∈ CL, associate a bitmap edge(u)
where edge(u)[i] = 1 iff a level i-edge is incident to a
leaf of the subtree of CL rooted at u

� We can use these bitmaps to search for level
i-edges to be explored by our search procedures

� Whenever an edge is explored, we move up CL to
identify the new level (i+ 1)-cluster visited
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Searching for multigraph edges

� With each node u ∈ CL, associate a bitmap edge(u)
where edge(u)[i] = 1 iff a level i-edge is incident to a
leaf of the subtree of CL rooted at u

� We can use these bitmaps to search for level
i-edges to be explored by our search procedures

� Whenever an edge is explored, we move up CL to
identify the new level (i+ 1)-cluster visited

� Since CL has height O(log n), the search
procedures run in O(log n) time per edge explored
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Performance of simple data structure

� For each edge level increase, we spend O(log n)
time
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time

� Total time charged to an edge: O(log2 n)
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Performance of simple data structure

� For each edge level increase, we spend O(log n)
time

� Total time charged to an edge: O(log2 n)

� O(log2 n) amortized update time
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Performance of simple data structure

� For each edge level increase, we spend O(log n)
time

� Total time charged to an edge: O(log2 n)

� O(log2 n) amortized update time

� Query time: O(log n)
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Performance of simple data structure

� For each edge level increase, we spend O(log n)
time

� Total time charged to an edge: O(log2 n)

� O(log2 n) amortized update time

� Query time: O(log n)

� Goal: improve both bounds by a factor of log log n
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Performance of simple data structure

� For each edge level increase, we spend O(log n)
time

� Total time charged to an edge: O(log2 n)

� O(log2 n) amortized update time

� Query time: O(log n)

� Goal: improve both bounds by a factor of log log n
� Main ideas: add shortcuts to CL and use lazy local

trees
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Shortcuts and our search procedure

� We add shortcuts each skipping order ǫ log log n
nodes on a leaf-to-root path in CL
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� We add shortcuts each skipping order ǫ log log n
nodes on a leaf-to-root path in CL

� Can be maintained efficiently
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Shortcuts and our search procedure

� We add shortcuts each skipping order ǫ log log n
nodes on a leaf-to-root path in CL

� Can be maintained efficiently
� With the shortcuts, we can traverse a leaf-to-root

path in CL in O(log n/ log log n) time
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Shortcuts and our search procedure

� We add shortcuts each skipping order ǫ log log n
nodes on a leaf-to-root path in CL

� Can be maintained efficiently
� With the shortcuts, we can traverse a leaf-to-root

path in CL in O(log n/ log log n) time
� Another system of shortcuts is used to move down
CL in O(log n/ log log n) time per edge explored

Faster Deterministic Fully-Dynamic Graph Connectivity – p.20/23



Shortcuts and our search procedure

� We add shortcuts each skipping order ǫ log log n
nodes on a leaf-to-root path in CL

� Can be maintained efficiently
� With the shortcuts, we can traverse a leaf-to-root

path in CL in O(log n/ log log n) time
� Another system of shortcuts is used to move down
CL in O(log n/ log log n) time per edge explored

� Hence, an edge pays a total of O(log2 n/ log log n)
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Shortcuts and our search procedure

� We add shortcuts each skipping order ǫ log log n
nodes on a leaf-to-root path in CL

� Can be maintained efficiently
� With the shortcuts, we can traverse a leaf-to-root

path in CL in O(log n/ log log n) time
� Another system of shortcuts is used to move down
CL in O(log n/ log log n) time per edge explored

� Hence, an edge pays a total of O(log2 n/ log log n)

� Problem: maintaining local trees is too expensive
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Thorup’s lazy local tree

� To speed up tree updates, Thorup introduced the
lazy local tree
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Thorup’s lazy local tree

� To speed up tree updates, Thorup introduced the
lazy local tree

� Disadvantage: height of trees in CL increases to
O(log n log log n)

Faster Deterministic Fully-Dynamic Graph Connectivity – p.21/23



Thorup’s lazy local tree

� To speed up tree updates, Thorup introduced the
lazy local tree

� Disadvantage: height of trees in CL increases to
O(log n log log n)

top tree

buffer tree
bottom tree

u

O(log log n)

O(log log n)

O(log log n)
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New lazy local tree L(u)

� Hybrid between a local and a lazy local tree
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New lazy local tree L(u)

� Hybrid between a local and a lazy local tree
� Keep heavy children in a local tree of size O(logǫ n)
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New lazy local tree L(u)

� Hybrid between a local and a lazy local tree
� Keep heavy children in a local tree of size O(logǫ n)

� Height of trees in CL: O(1
ǫ
log n)
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New lazy local tree L(u)

� Hybrid between a local and a lazy local tree
� Keep heavy children in a local tree of size O(logǫ n)

� Height of trees in CL: O(1
ǫ
log n)

top tree

Th(u) Tl(u)u

buffer tree
bottom tree
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Concluding remarks

� We gave a deterministic data structure for
fully-dynamic graph connectivity with
O(log2 n/ log log n) update time and
O(log n/ log log n) query time
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Concluding remarks

� We gave a deterministic data structure for
fully-dynamic graph connectivity with
O(log2 n/ log log n) update time and
O(log n/ log log n) query time

� This improves the update time of the deterministic
data structures of Holm, de Lichtenberg, and
Thorup by a factor of log log n
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Concluding remarks
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