Faster Deterministic Fully-Dynamic Graph Connectivity

Christian Wulff-Nilsen

Department of Computer Science University of Copenhagen Denmark

Find an efficient data structure supporting the following operations in a dynamic graph G:

Find an efficient data structure supporting the following operations in a dynamic graph G:
 insert(u, v): inserts edge (u, v) in G

Find an efficient data structure supporting the following operations in a dynamic graph G:
 insert(u, v): inserts edge (u, v) in G
 delete(u, v): deletes edge (u, v) from G

Find an efficient data structure supporting the following operations in a dynamic graph G:
insert(u, v): inserts edge (u, v) in G
delete(u, v): deletes edge (u, v) from G
connected(u, v): reports whether vertices u and

v are connected in G

- Find an efficient data structure supporting the following operations in a dynamic graph G:
 - \bullet insert(u, v): inserts edge (u, v) in G
 - \bullet delete(u, v): deletes edge (u, v) from G
 - connected(u, v): reports whether vertices u and v are connected in G
- We refer to insert and delete as update operations and to connected as a query operation

Worst-case bounds

Eppstein, Galil, Italiano, Nissenzweig, 1992: $O(\sqrt{n})$ update, O(1) query

Worst-case bounds

Eppstein, Galil, Italiano, Nissenzweig, 1992: $O(\sqrt{n})$ update, O(1) query

Kapron, King, Mountjoy, 2013: O(polylog n) update and query (Monte Carlo)

Amortized bounds

Randomized:

• Thorup, 2000: $O(\log n (\log \log n)^3)$ update and $O(\log n / \log \log \log n)$ query

- Thorup, 2000: $O(\log n (\log \log n)^3)$ update and $O(\log n / \log \log \log n)$ query
- Deterministic:

• Thorup, 2000: $O(\log n (\log \log n)^3)$ update and $O(\log n / \log \log \log n)$ query

Deterministic:

Holm, de Lichtenberg, Thorup, 1998: O(log² n) update, O(log n / log log n) query

• Thorup, 2000: $O(\log n(\log \log n)^3)$ update and $O(\log n / \log \log \log n)$ query

Deterministic:

- Holm, de Lichtenberg, Thorup, 1998: $O(\log^2 n)$ update, $O(\log n / \log \log n)$ query
- New result: $O(\log^2 n / \log \log n)$ update, $O(\log n / \log \log n)$ query

We assume a pointer machine with words (bitmaps) containing at least $\lfloor \log n \rfloor + 1$ bits

- We assume a pointer machine with words (bitmaps) containing at least $\lfloor \log n \rfloor + 1$ bits
- We allow standard AC^0 instructions:

- We assume a pointer machine with words (bitmaps) containing at least $\lfloor \log n \rfloor + 1$ bits
- We allow standard AC^0 instructions:
 - Addition

- We assume a pointer machine with words (bitmaps) containing at least $\lfloor \log n \rfloor + 1$ bits
- We allow standard AC^0 instructions:
 - Addition
 - Subtraction

- We assume a pointer machine with words (bitmaps) containing at least $\lfloor \log n \rfloor + 1$ bits
- We allow standard AC^0 instructions:
 - Addition
 - Subtraction
 - Comparison

- We assume a pointer machine with words (bitmaps) containing at least $\lfloor \log n \rfloor + 1$ bits
- We allow standard AC^0 instructions:
 - Addition
 - Subtraction
 - Comparison
 - Bit shifts

- We assume a pointer machine with words (bitmaps) containing at least $\lfloor \log n \rfloor + 1$ bits
- We allow standard AC^0 instructions:
 - Addition
 - Subtraction
 - Comparison
 - Bit shifts
 - Boolean 'and', 'or', and 'xor'

Maintain a spanning forest of G

Maintain a spanning forest of G
 For an update insert(u, v), find trees T_u and T_v containing u and v, respectively

Maintain a spanning forest of G

- For an update insert(u, v), find trees T_u and T_v containing u and v, respectively
- If $T_u \neq T_v$, add (u, v) as a tree edge; otherwise do nothing

- Maintain a spanning forest of G
- For an update insert(u, v), find trees T_u and T_v containing u and v, respectively
- If $T_u \neq T_v$, add (u, v) as a tree edge; otherwise do nothing
- For an update delete(u, v), if (u, v) is a non-tree edge, do nothing

- Maintain a spanning forest of G
- For an update insert(u, v), find trees T_u and T_v containing u and v, respectively
- If $T_u \neq T_v$, add (u, v) as a tree edge; otherwise do nothing
- For an update delete(u, v), if (u, v) is a non-tree edge, do nothing
- Otherwise, letting T be the tree containing (u, v), look for an edge (u', v') reconnecting $T \setminus \{(u, v)\}$

- Maintain a spanning forest of G
- For an update insert(u, v), find trees T_u and T_v containing u and v, respectively
- If $T_u \neq T_v$, add (u, v) as a tree edge; otherwise do nothing
- For an update delete(u, v), if (u, v) is a non-tree edge, do nothing
- Otherwise, letting *T* be the tree containing (u, v), look for an edge (u', v') reconnecting $T \setminus \{(u, v)\}$

If (u', v') exists, add it as a tree edge; otherwise do nothing

Assign an integer level $\ell(e)$ to each edge $e \in G$, $0 \le \ell(e) \le \ell_{\max} = \lfloor \log n \rfloor$

Assign an integer level ℓ(e) to each edge e ∈ G, 0 ≤ ℓ(e) ≤ ℓ_{max} = ⌊log n⌋
For 0 ≤ i ≤ ℓ_{max}, let G_i denote the subgraph of G

induced by edges e with $\ell(e) \ge i$

Assign an integer level l(e) to each edge e ∈ G, 0 ≤ l(e) ≤ l_{max} = [log n]
For 0 ≤ i ≤ l_{max}, let G_i denote the subgraph of G induced by edges e with l(e) ≥ i
We have G = G₀ ⊇ G₁ ⊇ G₂ ⊇ ··· ⊇ G_{lmax}

Assign an integer level l(e) to each edge e ∈ G, 0 ≤ l(e) ≤ l_{max} = [log n]
For 0 ≤ i ≤ l_{max}, let G_i denote the subgraph of G induced by edges e with l(e) ≥ i
We have G = G₀ ⊇ G₁ ⊇ G₂ ⊇ ··· ⊇ G_{lmax}

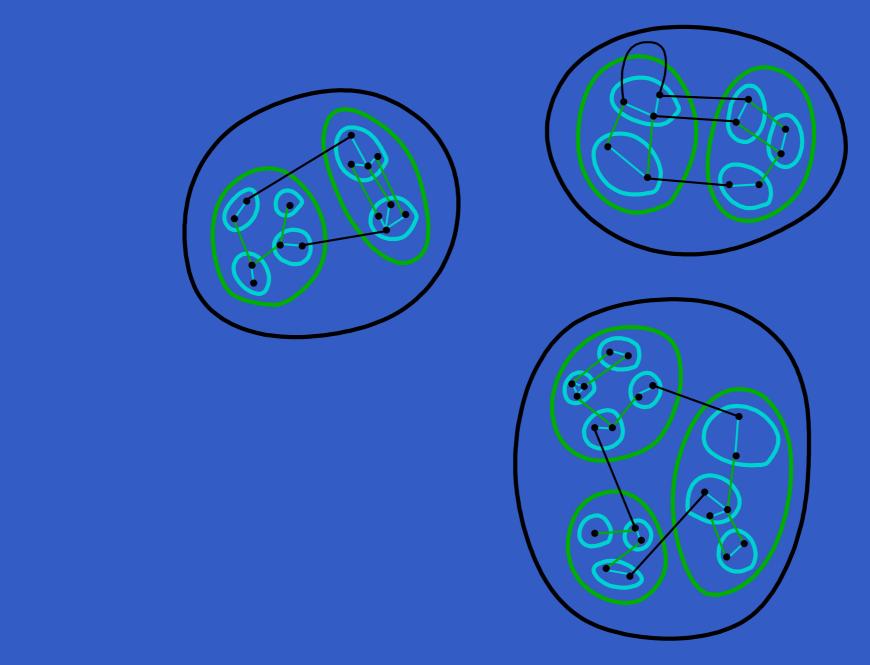
The connected components of G_i are called *level i-clusters* or just *clusters*

Assign an integer level $\ell(e)$ to each edge $e \in G$, $0 \le \ell(e) \le \ell_{\max} = |\log n|$ For $0 \le i \le \ell_{\max}$, let G_i denote the subgraph of G induced by edges e with $\ell(e) > i$ • We have $G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_{\ell_{\max}}$ The connected components of G_i are called *level i-clusters* or just *clusters* Invariant: any level *i*-cluster spans at most $\lfloor n/2^i \rfloor$

vertices

Assign an integer level $\ell(e)$ to each edge $e \in G$, $0 \le \ell(e) \le \ell_{\max} = \lfloor \log n \rfloor$

- For $0 \le i \le \ell_{\max}$, let G_i denote the subgraph of G induced by edges e with $\ell(e) \ge i$
- We have $G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_{\ell_{\max}}$
- The connected components of G_i are called *level i-clusters* or just *clusters*
- Invariant: any level *i*-cluster spans at most $\lfloor n/2^i \rfloor$ vertices
- Level 0-clusters are the connected components of *G* and level ℓ_{max} -clusters are vertices of *G*



Cluster forest

The *cluster forest* of *G* is a forest C of rooted trees where each node *u* corresponds to a cluster C(u)

Cluster forest

The *cluster forest* of *G* is a forest C of rooted trees where each node *u* corresponds to a cluster C(u)

A node u at level $i < \ell_{\max}$ has as children the level (i+1)-nodes v such that $C(v) \subseteq C(u)$

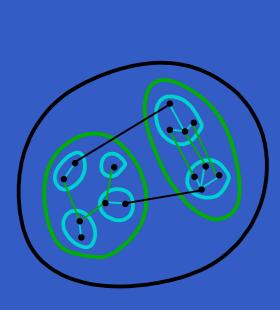
Cluster forest

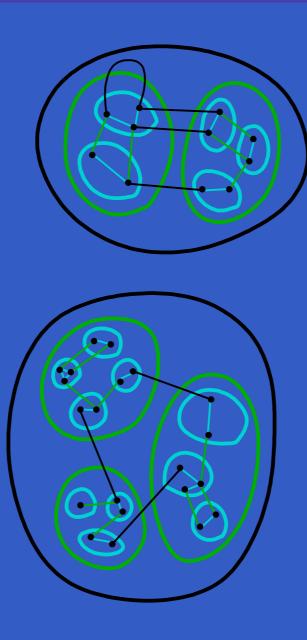
The *cluster forest* of *G* is a forest *C* of rooted trees where each node *u* corresponds to a cluster *C*(*u*)
A node *u* at level *i* < ℓ_{max} has as children the level (*i* + 1)-nodes *v* such that *C*(*v*) ⊆ *C*(*u*)
Roots of *C* correspond to connected components of *G* and leaves of *C* correspond to vertices of *G*

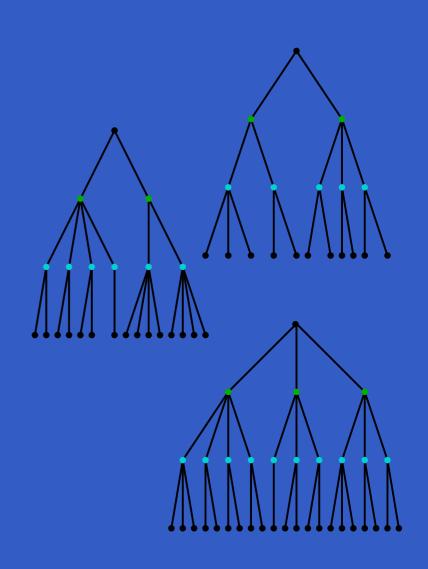
Cluster forest

• The *cluster forest* of G is a forest \mathcal{C} of rooted trees where each node u corresponds to a cluster C(u)A node u at level $i < \ell_{\max}$ has as children the level (i+1)-nodes v such that $C(v) \subseteq C(u)$ Roots of C correspond to connected components of G and leaves of C correspond to vertices of G Given \mathcal{C} , we can determine whether two vertices uand v are connected in G in $O(\log n)$ time

Cluster forest







Initialize $\ell(u, v) \leftarrow 0$

Initialize $\ell(u, v) \leftarrow 0$

Let r_u resp. r_v be the root of the tree of C containing u resp. v

- Initialize $\ell(u, v) \leftarrow 0$
- Let r_u resp. r_v be the root of the tree of C containing u resp. v
- If $r_u = r_v$, C need not be updated

Initialize $\ell(u, v) \leftarrow 0$

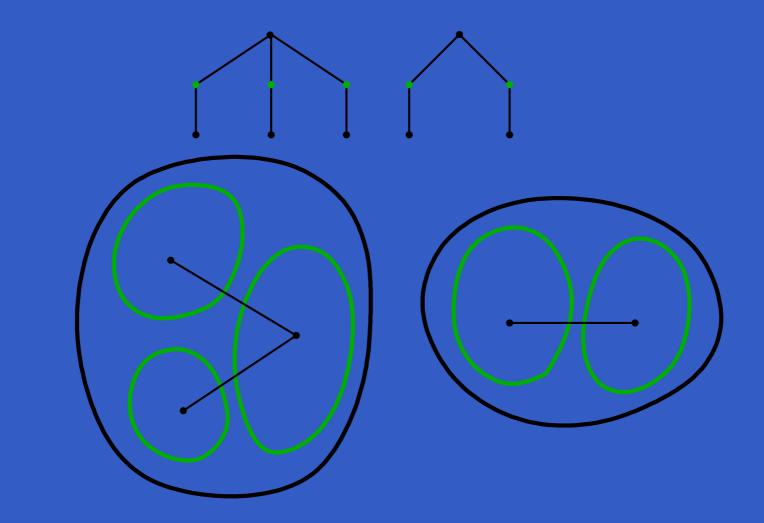
Let r_u resp. r_v be the root of the tree of C containing u resp. v

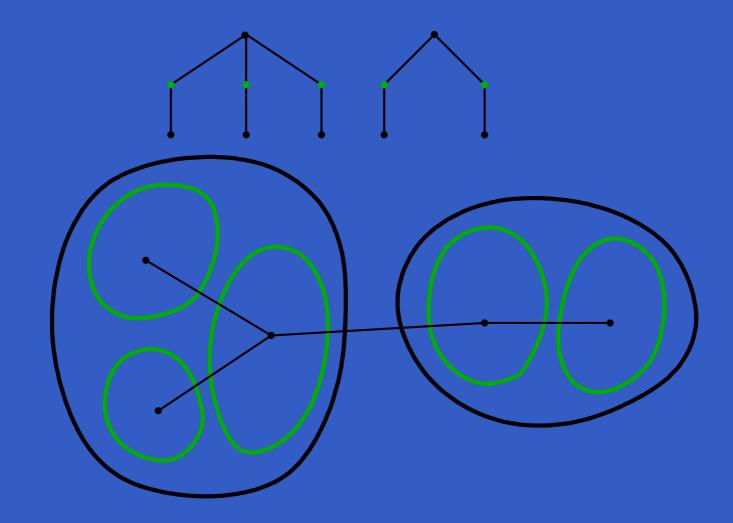
- If $r_u = r_v$, C need not be updated
- Otherwise, r_u and r_v are *merged* into r_u

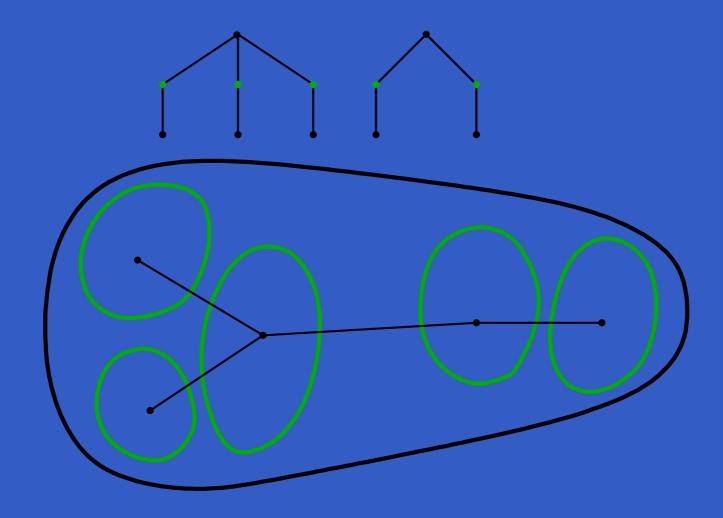
Initialize $\ell(u, v) \leftarrow 0$

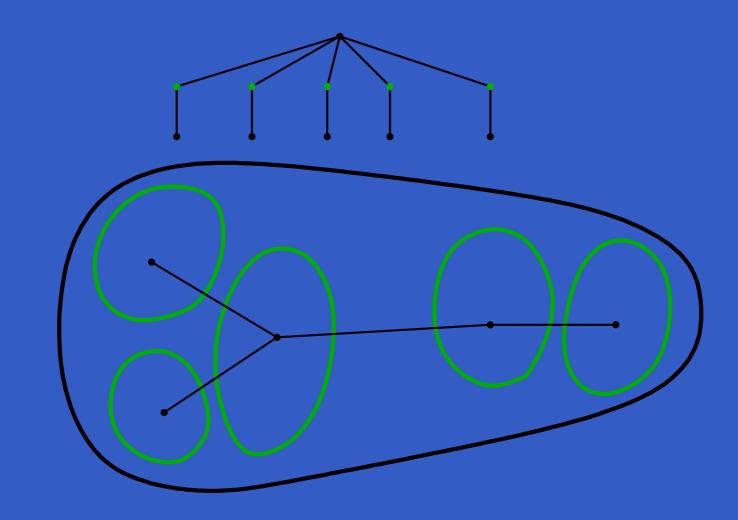
Let r_u resp. r_v be the root of the tree of C containing u resp. v

- If $r_u = r_v$, C need not be updated
- Otherwise, r_u and r_v are merged into r_u
- This corresponds to merging $C(r_u)$ and $C(r_v)$









Let $i = \ell(u, v)$ and let $C_u \neq C_v$ be the level (i+1)-clusters containing u and v

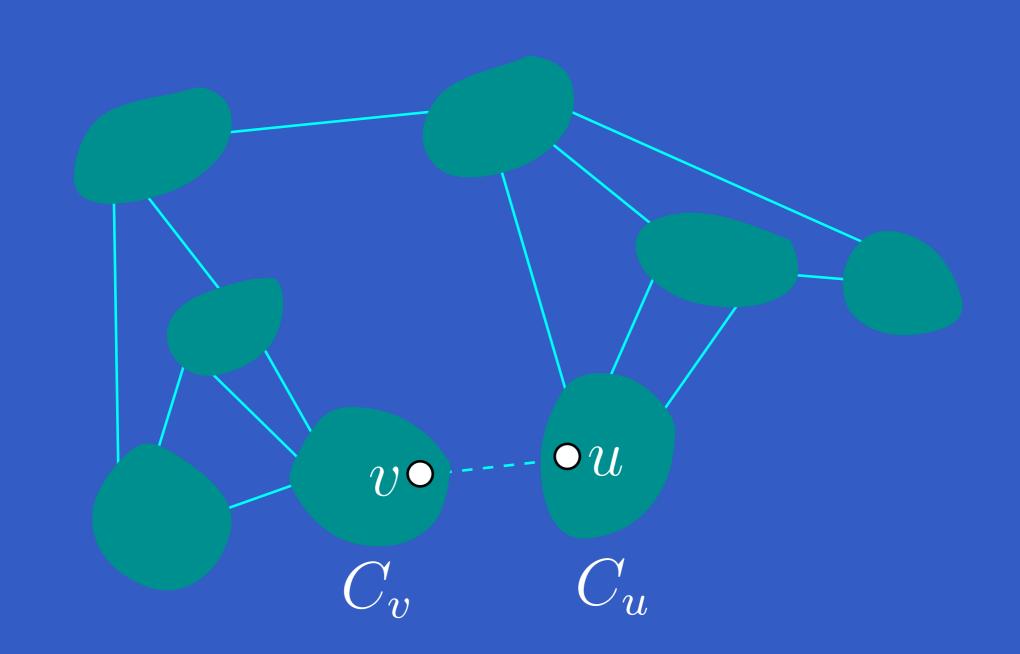
- Let $i = \ell(u, v)$ and let $C_u \neq C_v$ be the level (i+1)-clusters containing u and v
- Let M_i be the multigraph with level (i + 1)-clusters as vertices and level *i*-edges of G as edges

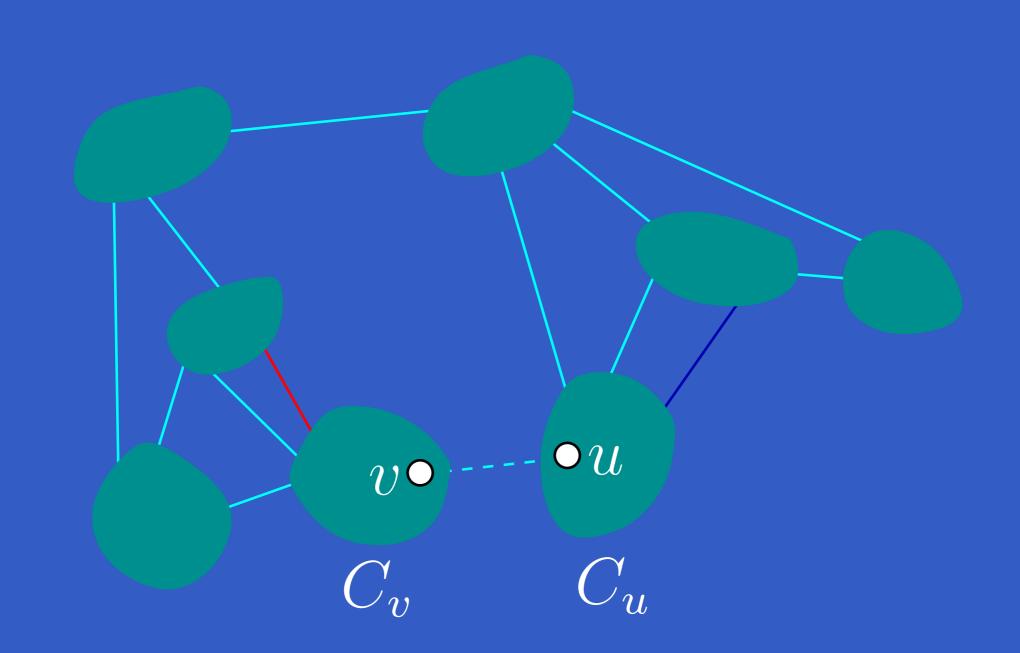
- Let $i = \ell(u, v)$ and let $C_u \neq C_v$ be the level (i+1)-clusters containing u and v
- Let M_i be the multigraph with level (i + 1)-clusters as vertices and level *i*-edges of G as edges
- In M_i , execute two standard search procedures in parallel, one starting in C_u , the other starting in C_v

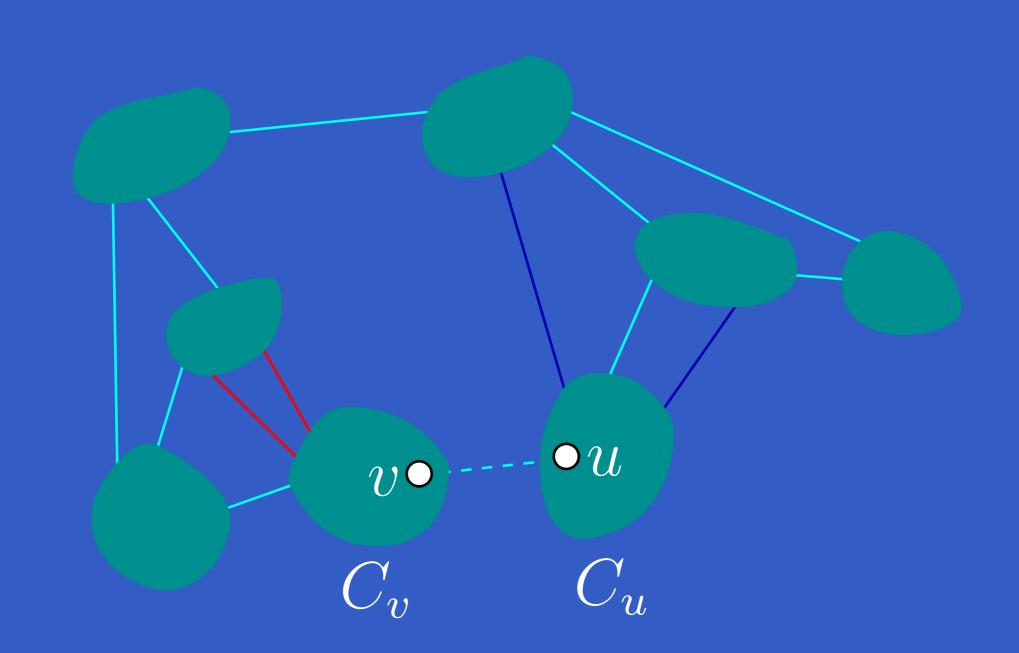
- Let $i = \ell(u, v)$ and let $C_u \neq C_v$ be the level (i+1)-clusters containing u and v
- Let M_i be the multigraph with level (i + 1)-clusters as vertices and level *i*-edges of G as edges
- In M_i , execute two standard search procedures in parallel, one starting in C_u , the other starting in C_v
- Terminate both procedures when in one of the following two cases:

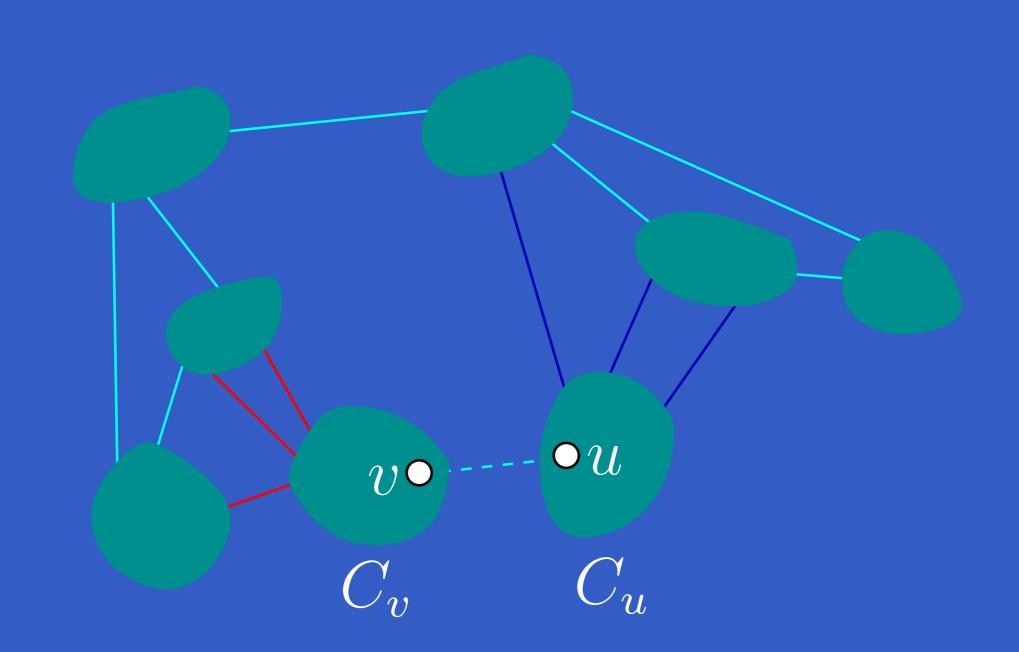
- Let $i = \ell(u, v)$ and let $C_u \neq C_v$ be the level (i+1)-clusters containing u and v
- Let M_i be the multigraph with level (i + 1)-clusters as vertices and level *i*-edges of G as edges
- In M_i , execute two standard search procedures in parallel, one starting in C_u , the other starting in C_v
- Terminate both procedures when in one of the following two cases:
 - a vertex of M_i is explored by both search procedures

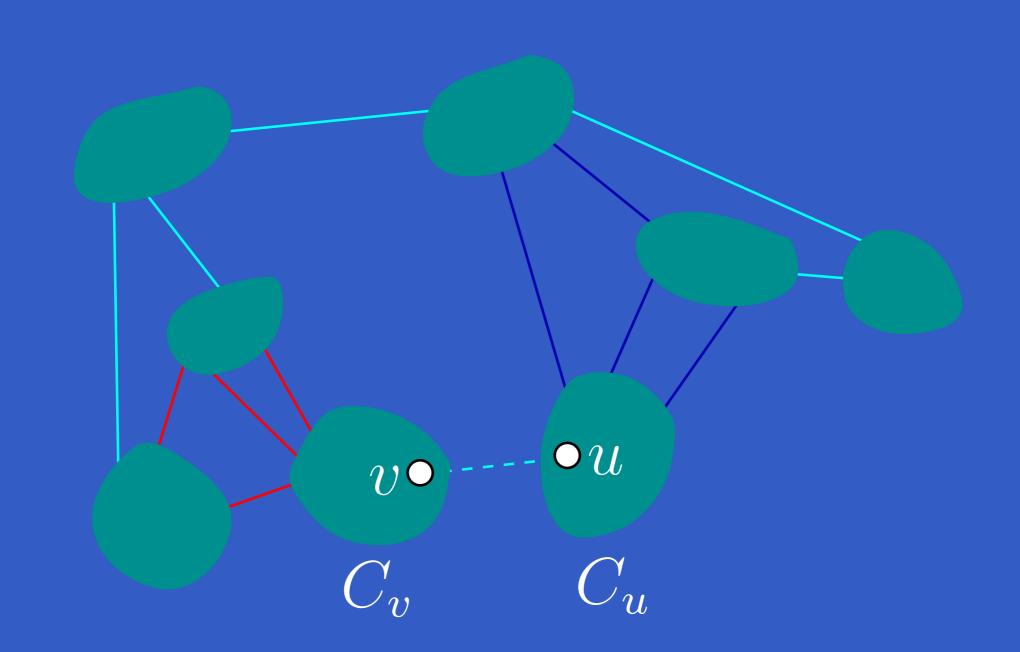
- Let $i = \ell(u, v)$ and let $C_u \neq C_v$ be the level (i+1)-clusters containing u and v
- Let M_i be the multigraph with level (i + 1)-clusters as vertices and level *i*-edges of G as edges
- In M_i , execute two standard search procedures in parallel, one starting in C_u , the other starting in C_v
- Terminate both procedures when in one of the following two cases:
 - a vertex of M_i is explored by both search procedures
 - one of the search procedures has no more edges to explore

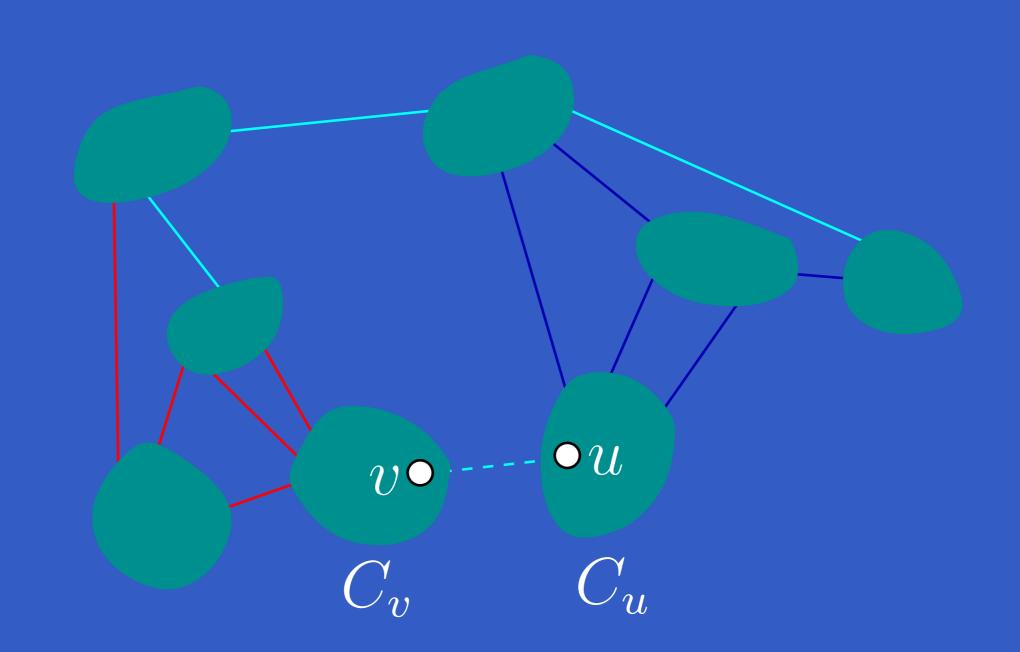


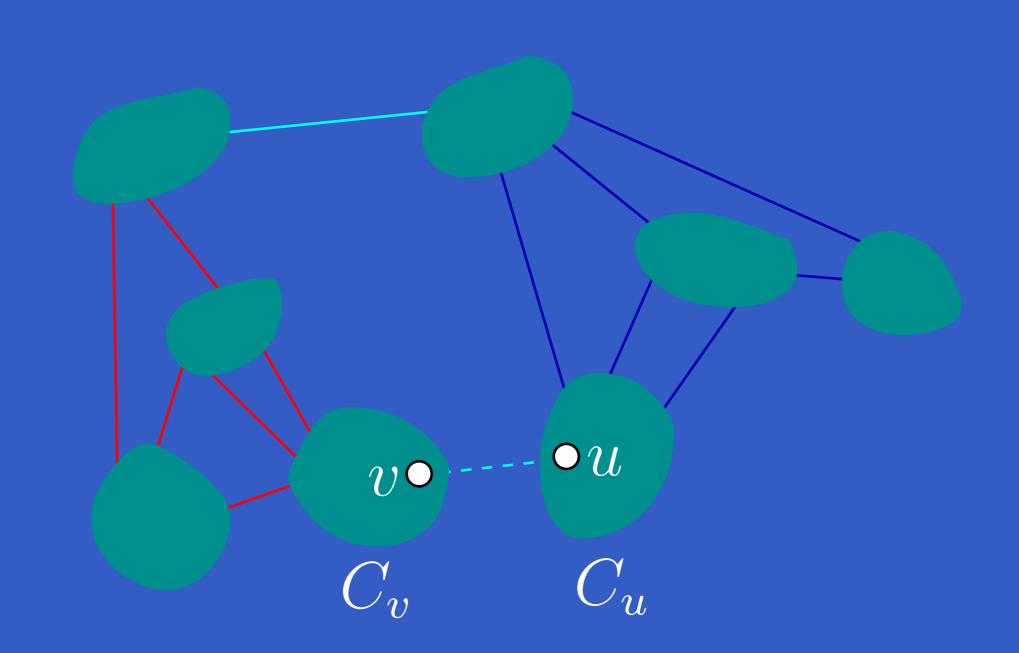


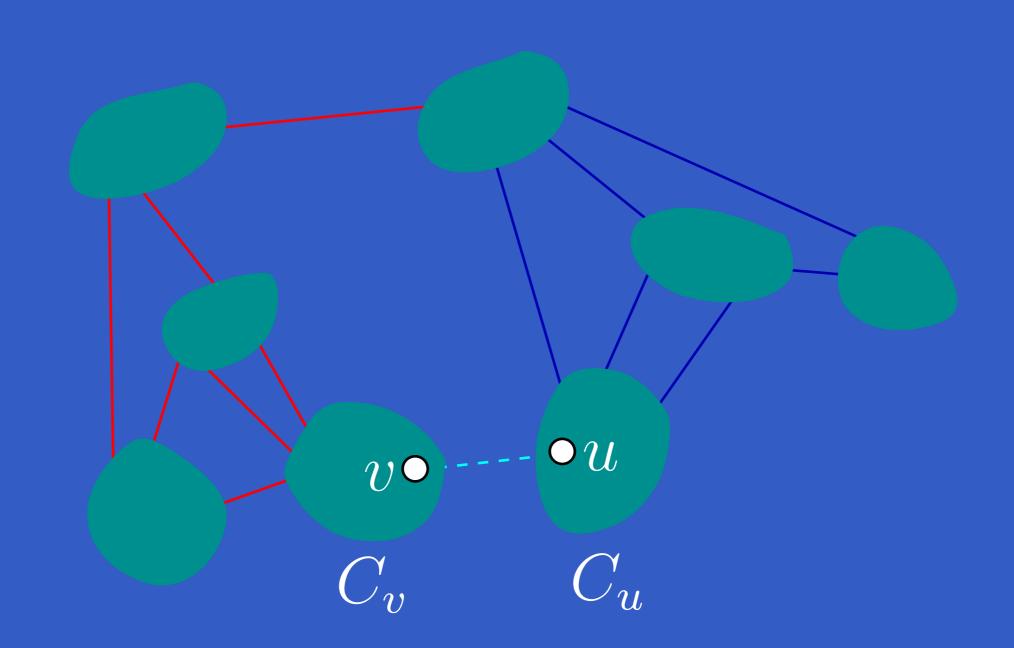


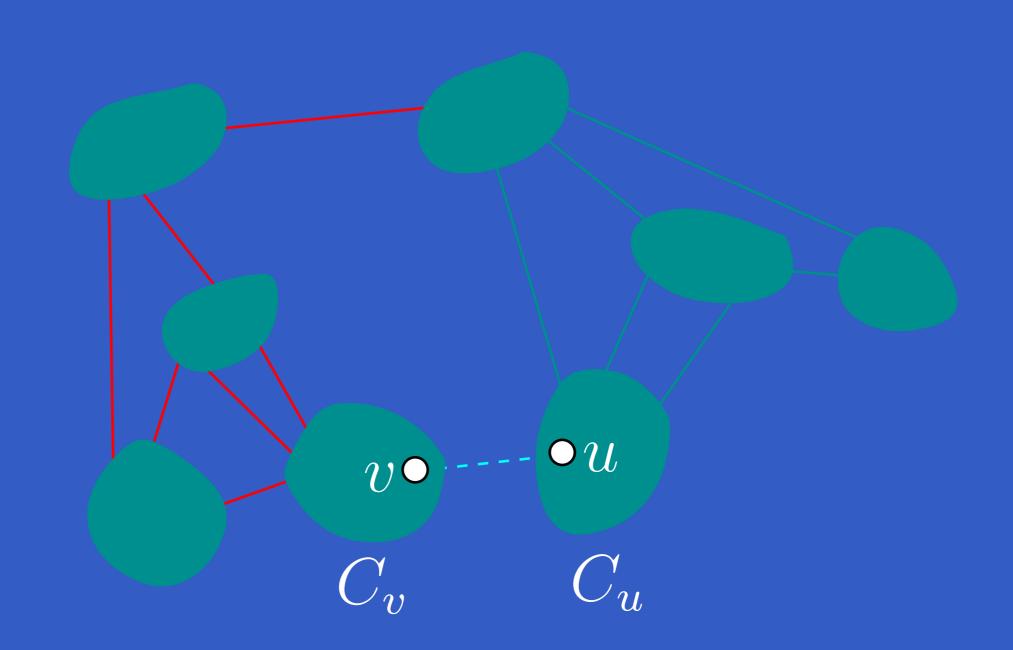


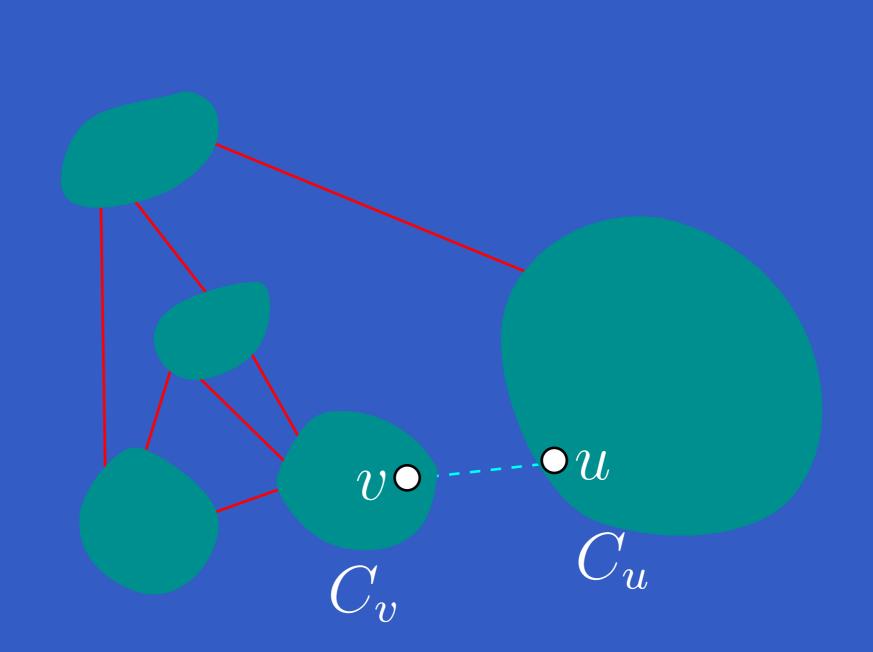


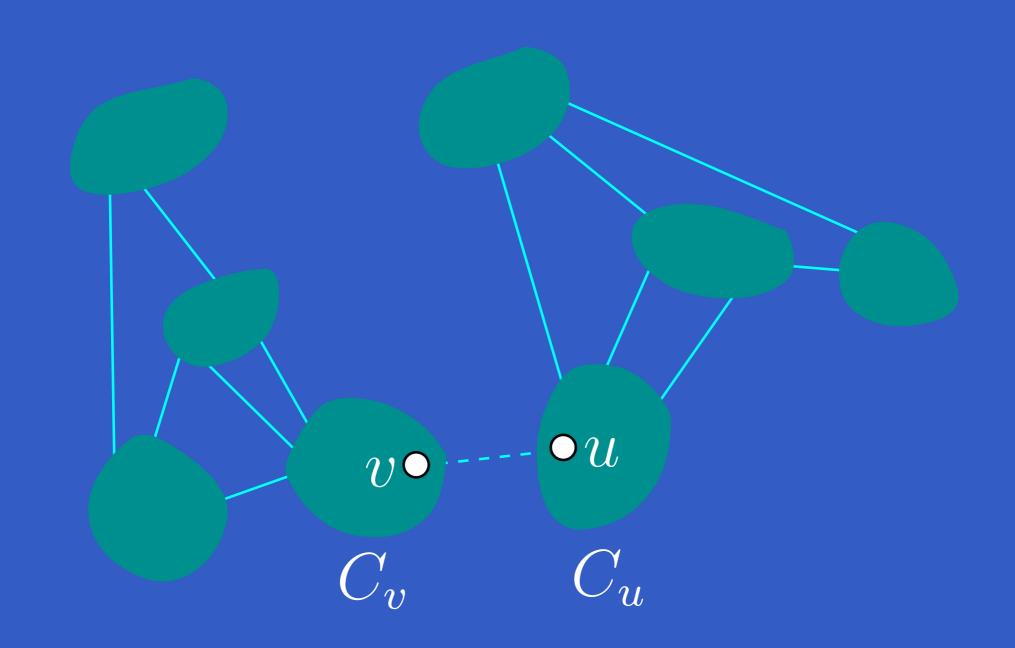


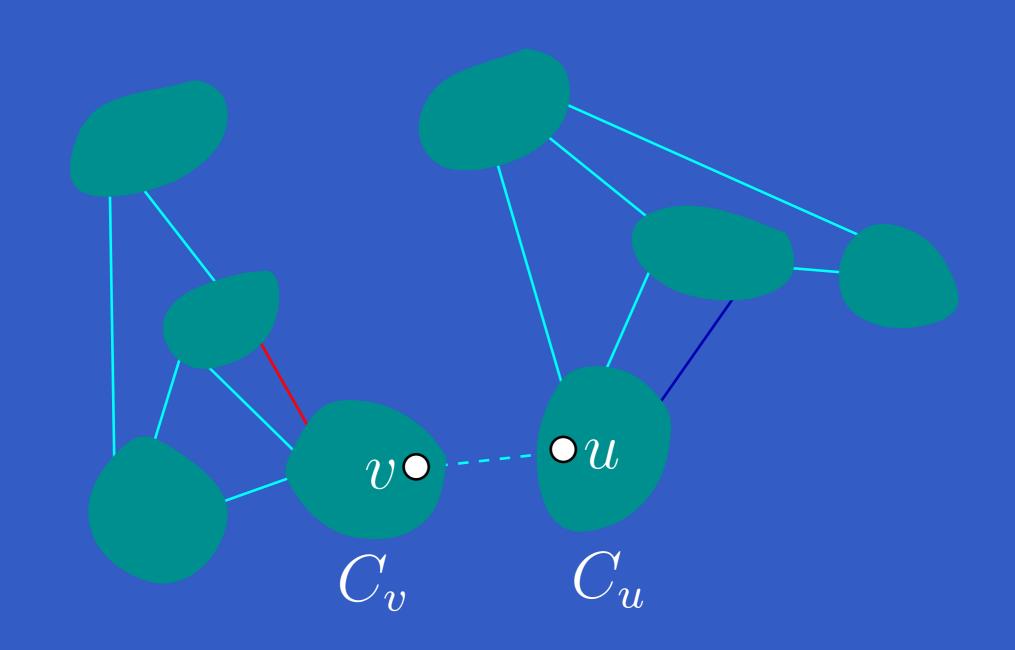


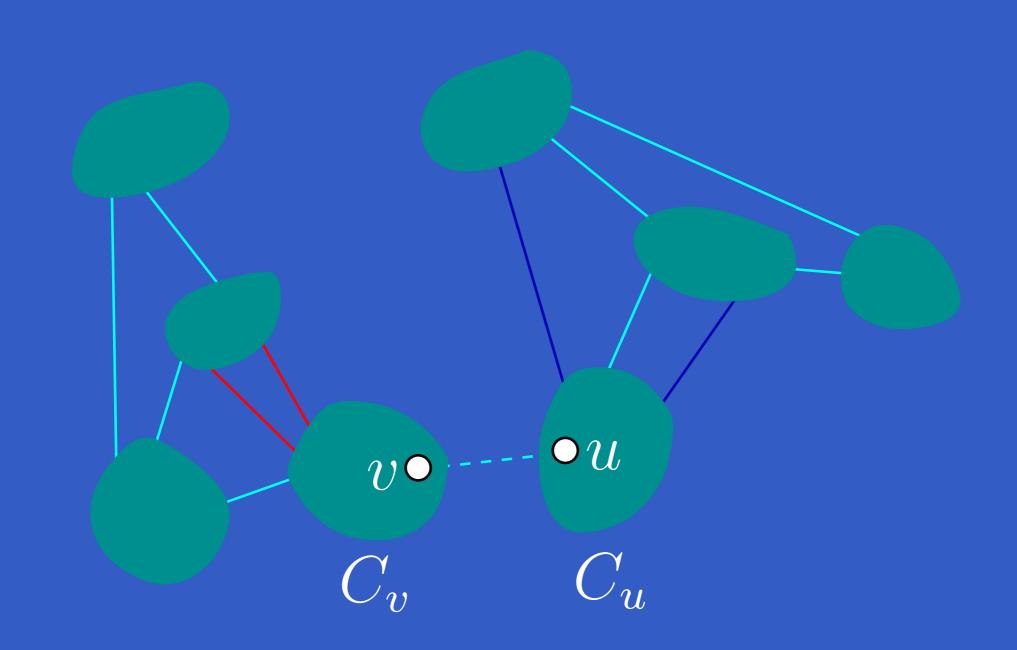


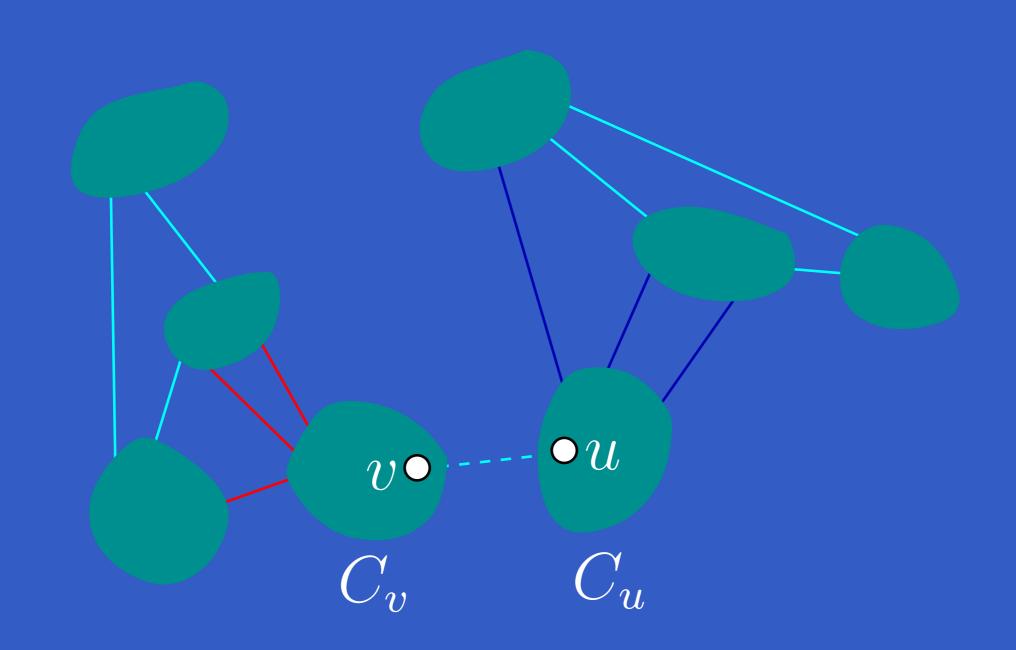


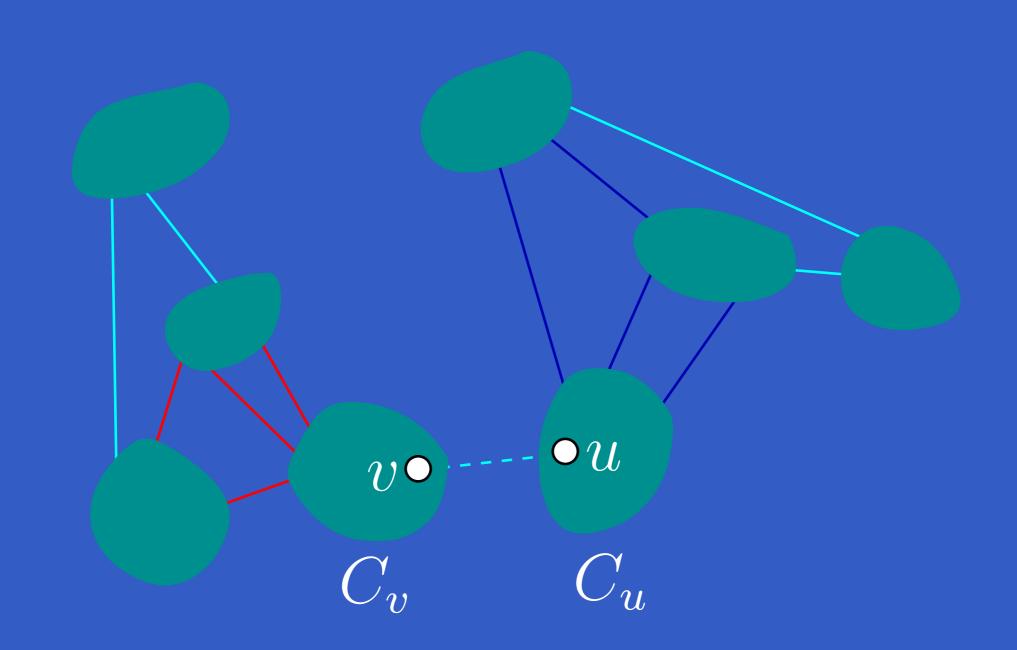


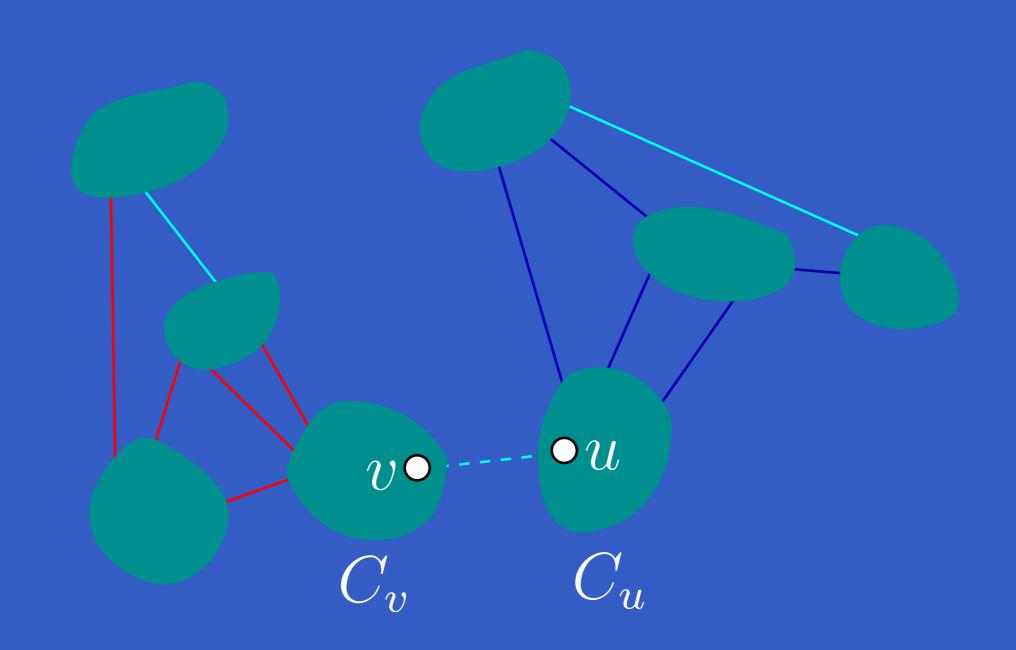


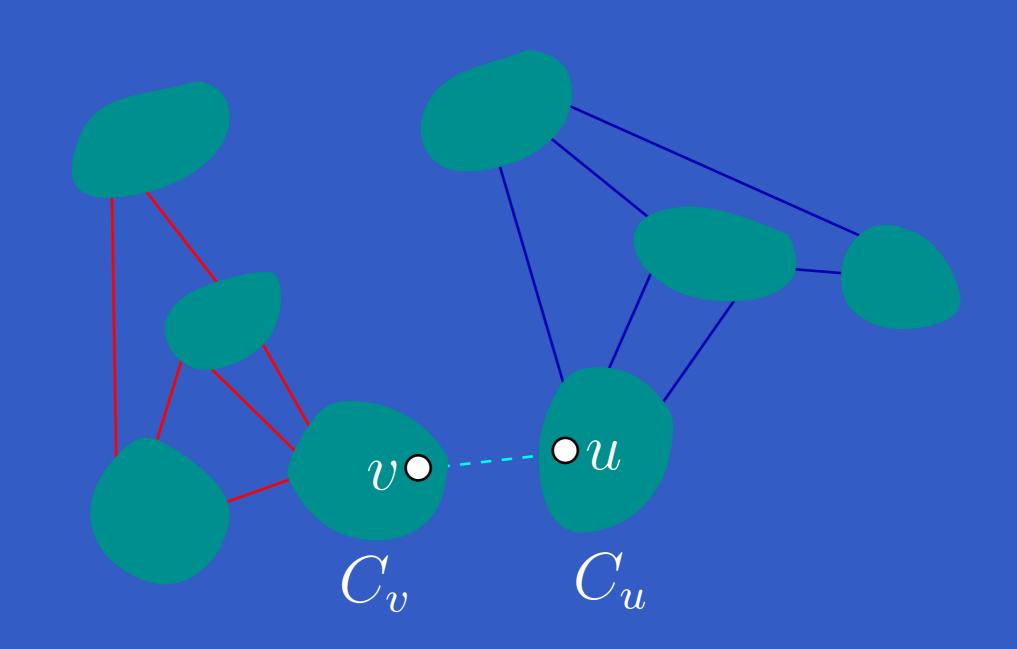


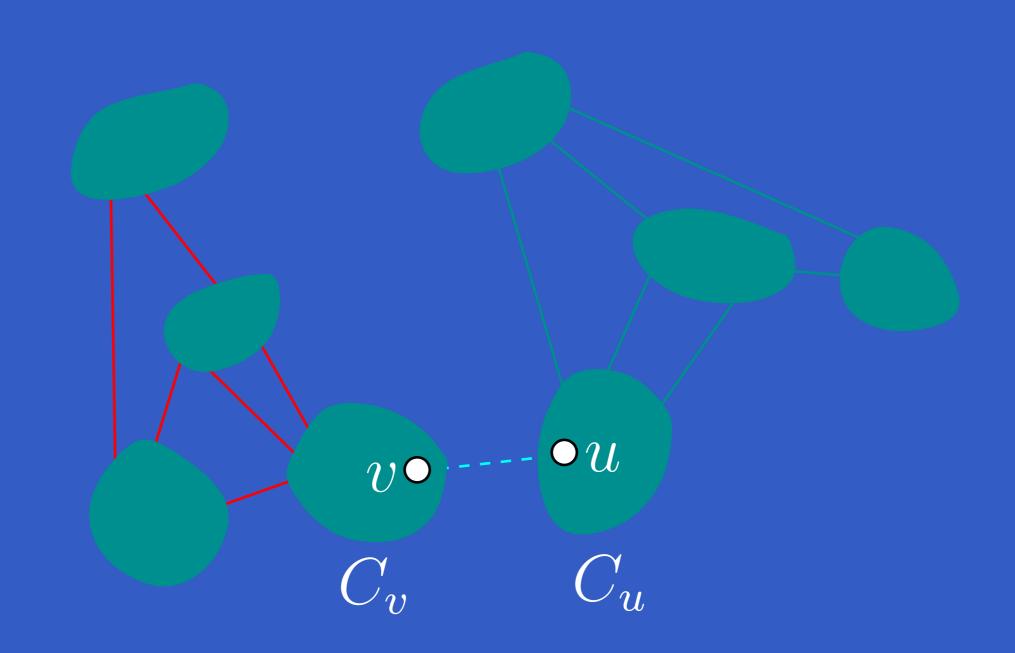


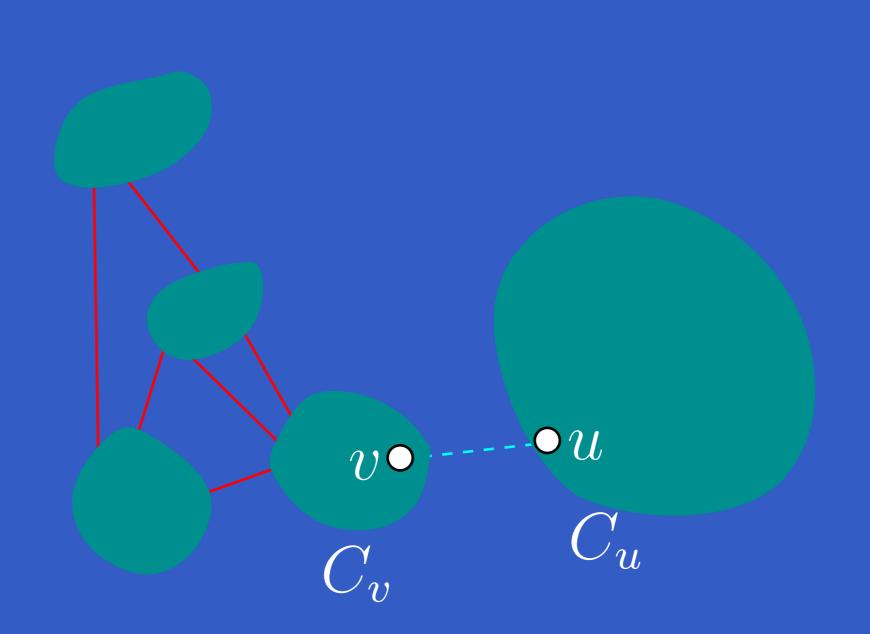












Traversing a single graph edge



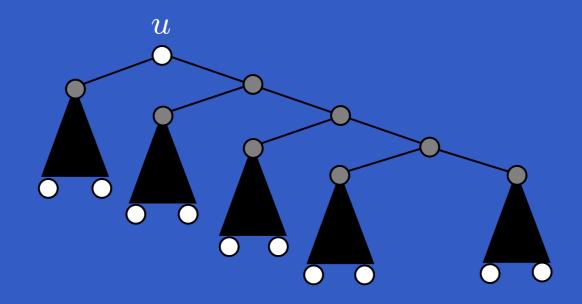
Local trees

To search for graph edges of a specific level, we replace C by a forest of binary trees

Local trees

To search for graph edges of a specific level, we replace C by a forest of binary trees

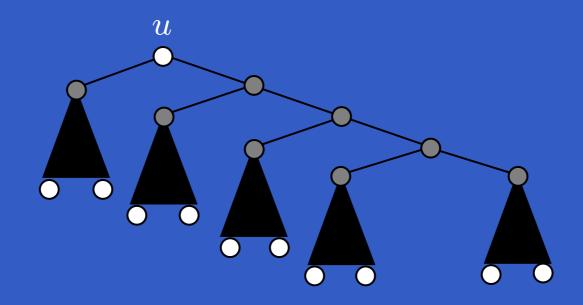
For each non-leaf node $u \in C$, we replace the edges to its children by a *local tree* L(u)



Local trees

To search for graph edges of a specific level, we replace C by a forest of binary trees

For each non-leaf node $u \in C$, we replace the edges to its children by a *local tree* L(u)



Denote by C_L the resulting forest of binary trees; its height is O(log n)

With each node $u \in C_L$, associate a bitmap edge(u)where edge(u)[i] = 1 iff a level *i*-edge is incident to a leaf of the subtree of C_L rooted at u

- With each node $u \in C_L$, associate a bitmap edge(u)where edge(u)[i] = 1 iff a level *i*-edge is incident to a leaf of the subtree of C_L rooted at u
- We can use these bitmaps to search for level *i*-edges to be explored by our search procedures

- With each node $u \in C_L$, associate a bitmap edge(u)where edge(u)[i] = 1 iff a level *i*-edge is incident to a leaf of the subtree of C_L rooted at u
- We can use these bitmaps to search for level *i*-edges to be explored by our search procedures
- Whenever an edge is explored, we move up C_L to identify the new level (i + 1)-cluster visited

- With each node $u \in C_L$, associate a bitmap edge(u)where edge(u)[i] = 1 iff a level *i*-edge is incident to a leaf of the subtree of C_L rooted at u
- We can use these bitmaps to search for level *i*-edges to be explored by our search procedures
- Whenever an edge is explored, we move up C_L to identify the new level (i + 1)-cluster visited
- Since C_L has height $O(\log n)$, the search procedures run in $O(\log n)$ time per edge explored

For each edge level increase, we spend O(log n) time

- For each edge level increase, we spend O(log n) time
- Total time charged to an edge: $O(\log^2 n)$

- For each edge level increase, we spend O(log n) time
- Total time charged to an edge: $O(\log^2 n)$
- $O(\log^2 n)$ amortized update time

- For each edge level increase, we spend O(log n) time
- Total time charged to an edge: $O(\log^2 n)$
- $\square O(\log^2 n)$ amortized update time
- **Query time:** $O(\log n)$

- For each edge level increase, we spend O(log n) time
- Total time charged to an edge: $O(\log^2 n)$
- $\bigcirc O(\log^2 n)$ amortized update time
- **Query time:** $O(\log n)$
- Goal: improve both bounds by a factor of $\log \log n$

- For each edge level increase, we spend O(log n) time
- Total time charged to an edge: $O(\log^2 n)$
- $\square O(\log^2 n)$ amortized update time
- **Query time:** $O(\log n)$
- Goal: improve both bounds by a factor of $\log \log n$
- Main ideas: add shortcuts to C_L and use *lazy* local trees

We add shortcuts each skipping order $\epsilon \log \log n$ nodes on a leaf-to-root path in C_L

• We add shortcuts each skipping order $\epsilon \log \log n$ nodes on a leaf-to-root path in C_L

Can be maintained efficiently

- We add shortcuts each skipping order $\epsilon \log \log n$ nodes on a leaf-to-root path in C_L
- Can be maintained efficiently
- With the shortcuts, we can traverse a leaf-to-root path in C_L in $O(\log n / \log \log n)$ time

- We add shortcuts each skipping order $\epsilon \log \log n$ nodes on a leaf-to-root path in C_L
- Can be maintained efficiently
- With the shortcuts, we can traverse a leaf-to-root path in C_L in $O(\log n / \log \log n)$ time
- Another system of shortcuts is used to move down C_L in $O(\log n / \log \log n)$ time per edge explored

- We add shortcuts each skipping order $\epsilon \log \log n$ nodes on a leaf-to-root path in C_L
- Can be maintained efficiently
- With the shortcuts, we can traverse a leaf-to-root path in C_L in $O(\log n / \log \log n)$ time
- Another system of shortcuts is used to move down C_L in $O(\log n / \log \log n)$ time per edge explored
- Hence, an edge pays a total of $O(\log^2 n / \log \log n)$

- We add shortcuts each skipping order $\epsilon \log \log n$ nodes on a leaf-to-root path in C_L
- Can be maintained efficiently
- With the shortcuts, we can traverse a leaf-to-root path in C_L in $O(\log n / \log \log n)$ time
- Another system of shortcuts is used to move down C_L in $O(\log n / \log \log n)$ time per edge explored
- Hence, an edge pays a total of O(log² n / log log n)
 Problem: maintaining local trees is too expensive

Thorup's lazy local tree

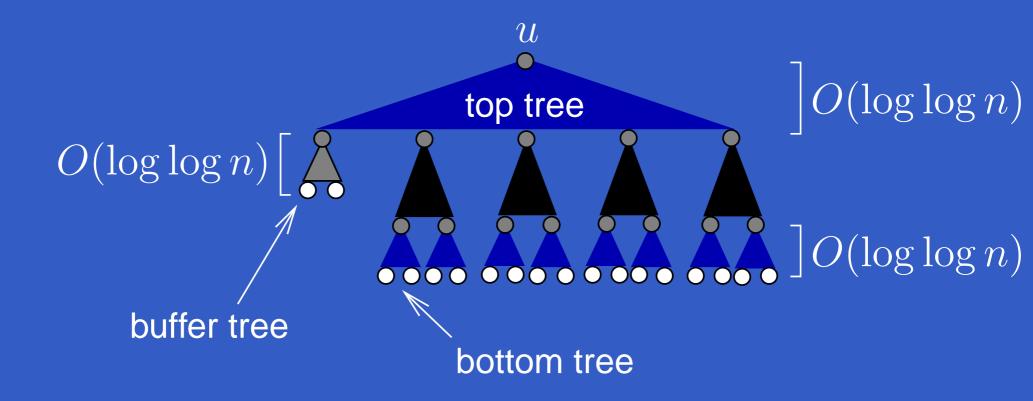
To speed up tree updates, Thorup introduced the lazy local tree

Thorup's lazy local tree

- To speed up tree updates, Thorup introduced the lazy local tree
- Disadvantage: height of trees in C_L increases to $O(\log n \log \log n)$

Thorup's lazy local tree

- To speed up tree updates, Thorup introduced the lazy local tree
- Disadvantage: height of trees in C_L increases to $O(\log n \log \log n)$

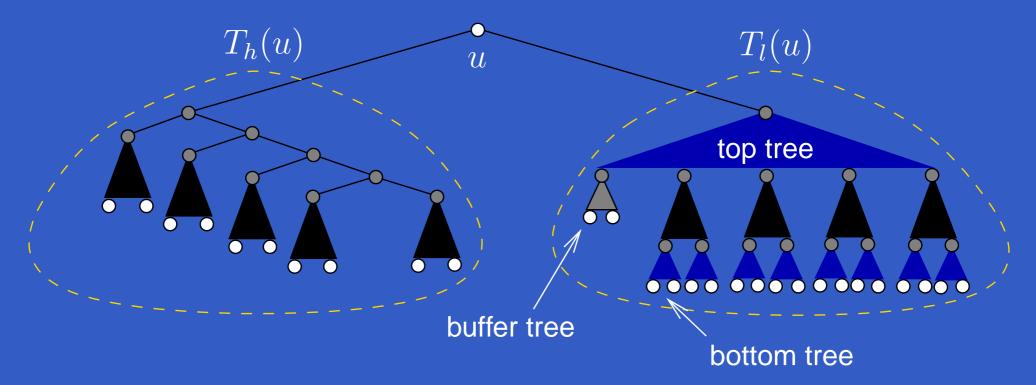


Hybrid between a local and a lazy local tree

Hybrid between a local and a lazy local tree
Keep heavy children in a local tree of size O(log^e n)

Hybrid between a local and a lazy local tree
Keep heavy children in a local tree of size O(log^ϵ n)
Height of trees in C_L: O(¹/_ϵ log n)

Hybrid between a local and a lazy local tree
Keep heavy children in a local tree of size O(log^ϵ n)
Height of trees in C_L: O(¹/_ϵ log n)



• We gave a deterministic data structure for fully-dynamic graph connectivity with $O(\log^2 n / \log \log n)$ update time and $O(\log n / \log \log n)$ query time

• We gave a deterministic data structure for fully-dynamic graph connectivity with $O(\log^2 n / \log \log n)$ update time and $O(\log n / \log \log n)$ query time

This improves the update time of the deterministic data structures of Holm, de Lichtenberg, and Thorup by a factor of log log n

• We gave a deterministic data structure for fully-dynamic graph connectivity with $O(\log^2 n / \log \log n)$ update time and $O(\log n / \log \log n)$ query time

This improves the update time of the deterministic data structures of Holm, de Lichtenberg, and Thorup by a factor of log log n

Does improvement extend to fully-dynamic MSF?

• We gave a deterministic data structure for fully-dynamic graph connectivity with $O(\log^2 n / \log \log n)$ update time and $O(\log n / \log \log n)$ query time

- This improves the update time of the deterministic data structures of Holm, de Lichtenberg, and Thorup by a factor of log log n
- Does improvement extend to fully-dynamic MSF?
- $O(\log n)$ time for both updates and queries?