
Localized Spanner Construction for Ad Hoc
Networks with Variable Transmission Range

David Peleg ? and Liam Roditty

Department of Computer Science and Applied Mathematics, The Weizmann Institute
of Science, Rehovot 76100, Israel.

Abstract. This paper presents an algorithm for constructing a span-
ner for ad hoc networks whose nodes have variable transmission range.
Almost all previous spanner constructions for ad hoc networks assumed
that all nodes in the network have the same transmission range. This
allowed a succinct representation of the network as a unit disk graph,
serving as the basis for the construction. In contrast, when nodes have
variable transmission range, the ad hoc network must be modeled by a
general disk graph. Whereas unit disk graphs are undirected, general disk
graphs are directed. This complicates the construction of a spanner for
the network, since currently there are no efficient constructions of low-
stretch spanners for general directed graphs. Nevertheless, in this paper
it is shown that the class of disk graphs enjoys (efficiently constructible)
spanners of quality similar to that of unit disk graph spanners. Moreover,
it is shown that the new construction can be done in a localized fashion.

1 Introduction

A wireless ad hoc network is composed of a collection S of n nodes distributed
in the two dimensional plane. The nodes can communicate with each other using
wireless connections. As opposed to cellular networks, there is no wire infrastruc-
ture and the connections between the nodes are restricted by their transmission
energy. As nodes often receive their energy from a battery, reducing energy
consumption is one of the most fundamental problems in the design of ad hoc
networks. A popular approach for coping with the challenge of designing an effi-
cient ad hoc network is to find a topology in which only a linear number of links
need to be maintained, while the degradation of paths that connect any pair of
nodes is restricted.

In the common wireless network model, the power needed to transmit from
p to q is |pq|α, where |pq| is the Euclidean distance between p and q and α
is a constant that varies between 2 and 4. The basic assumption adopted in
most of the literature on ad hoc networks is that all the nodes have the same
transmission range. Consequently, the ad hoc network can be represented using
a unit disk graph, that is, a graph in which two nodes share an edge if their

? Supported in part by grants from the Minerva Foundation and the Israel Ministry
of Science.

Euclidean distance is at most 1. The size (in edges) of the unit disk graph can
be as large as O(n2).

One fundamental object used in the design of ad hoc network topologies is a
spanner [19, 18, 16]. A graph H is a t-spanner of a graph G if δH(u, v) ≤ t·δG(u, v)
for every two nodes u and v, where δG(u, v) denotes the shortest path distance
between u and v in the graph G and H is a subgraph of G. The parameter t is
referred to as the stretch factor of the spanner.

There is an extensive body of literature on spanners in both the geometric
setting and the ad hoc setting. In the geometric setting, the graph G to be
spanned is the complete graph over a set S of n points, where the weight of each
edge of G is the distance between its endpoints in Rd. Yao in [26] , Vaidya [23],
Salowe [21] and Callahan and Kosaraju [3] showed how to compute a geometric
(1+ε)-spanner with O(n/εd) edges in O(n log n) time. In [11], Gao et. al. showed
how to maintain a (1 + ε)-spanner in a distributed manner in a mobile setting,
i.e., when points can move.

In the ad hoc settings, where the graph to be spanned is a unit disk graph,
the most popular constructions that are used as underlying network topologies
for routing are the relative neighborhood graph (RNG) and Gabriel graph (GG)
which are planar subgraphs (see [12, 2]). These graphs might suffer a very high
stretch in the worst-case. Subsequent work by Gao et. al. [10], Wang and Yang-
Li [24] and Yang-Li et. al. [14] considered the restricted Delaunay graph, whose
worst-case stretch is constant (larger than 1 + ε). In [25], Wang and Yang-Li
showed how to construct a spanner of bounded degree which is also planar.
That spanner too has constant stretch.

Spanners in ad hoc networks have crucial role. Not only do they preserve the
connectivity of the network but they also guarantee that the distance between
every pair of nodes is within some constant factor from the shortest possible
distance. Moreover, the size of the spanner is only linear. These properties made
the use of spanners an attractive approach for ad hoc networks. To learn more on
the tight connection between topology control in ad hoc networks and spanners
see [20].

Common to all the papers mentioned above in the ad hoc setting is the as-
sumption that the ad hoc network is represented by a unit disk graph, that
is, every node of the network is assumed to have the same transmission range.
This model is of significant theoretical appeal, but its accuracy is limited due
to the fact that coverage areas are assumed to be disk of equal radius, implying
in particular that transmission coverage must be symmetric. The focus on the
restricted model of unit disk graph is partially explained by the lack of methods
for dealing with more general models on one hand and the attractive proper-
ties of unit disk graphs on the other hand. There are few papers which studied
more general models than the unit disk graph, such as the Quasi-unit disk graph
in [13] and [17], however, these models are still limited. Li, Song and Wang [15]
considered a model similar to ours, in which every node has a different trans-
mission range. In their model an edge connects u and v in the communication

graph only if u can transmit to v and v can transmit to u. Thus, the resulting
graph is still undirected.

The current paper considers a more general and sometimes more natural
case in which any node has a different transmission range, taken from the range
[1, M], and an edge is placed from u to v if u can transmit to v. This yields an
intermediate model between the geometric setting and the usual ad hoc setting,
as the transmission graph induced in this case is no longer a unit disk graph but
a general disk graph. In such graphs, edges have a direction, since the fact that p
can transmit to q does not necessarily imply that q can transmit to p. Thus, the
resulting graph is directed and the transmission coverage is no longer assumed
to be symmetric. In this respect, our work can be viewed as an intermediate step
towards more general coverage models.

The main result of the current paper (in Section 2) is an algorithm for con-
structing a (1 + ε)-spanner for a given disk graph with O(n/ε−d log M) edges.
The algorithm can be implemented in O(m log n) time, where m is the number
of edges in the disk graph.

Our result is also of theoretical significance. Finding good spanners for di-
rected graphs is a difficult problem. A general bound, similar to the one available
for undirected graphs, cannot exist for the directed case, as indicated by con-
sidering the example of a directed bipartite graph in which all the edges are
directed from one side to the other; clearly, any spanner for such a graph must
contain every edge. In that sense, our spanner construction yields the first result
establishing the existence of a directed spanner for a non-trivial class of directed
graphs.

Many routing protocols for ad hoc network use only the local information
which is stored with every node. In such algorithms a packet is routed out from
a node by considering only its neighbors in the topology. See [22, 2, 1, 12] for
more information. As our topology is constructed on top of a directed network
our result opens a new direction for localized routing algorithms.

In addition, the paper also presents (in Section 3) an algorithm for construct-
ing a linear size (O(n/ε−d) edges) (1 + ε)-spanner for a given unit disk graph.
In particular, we show that any geometric (1 + ε)-spanner can be turned into a
(1 + ε′)-spanner for a unit disk graph by applying a simple process.

2 Spanners for general disk graphs

Let S be a set of points in Rd and assume that any point p ∈ S has a transmission
radius r(p), taken from the range [1,M]. The transmission graph of S is a disk
graph I(S, E), whose vertices are the points of S and whose edge set includes an
edge from p to q if p can transmit to q. Obviously, the resulting graph is directed,
as it might happen that p can transmit to q while q cannot transmit to p. In this
section we show how to compute a (1 + ε)-spanner with O(n/ε−d log M) edges
for a given disk graph.

The construction of the spanner is based on hierarchal partition of the points
of S that takes into account the variable transmission radii.

Let ε be an arbitrarily small positive constant and let α and β be two small
constants depending on ε, to be fixed later on. Assume that the transmission
radii are scaled so that the smallest edge in the disk graph is of weight 1. Let
i be an integer from the range [0, blog1+α Mc] and let Mi = M/(1 + α)i. Let
E(Mi+1,Mi) = {(x, y) | Mi+1 ≤ |xy| ≤ Mi}. Let `(x, y) be the level of the edge
(x, y), that is, if (x, y) ∈ E(Mi+1,Mi) then `(x, y) = i. Let p be a point with a
transmission radius r(p) ∈ [Mi+1,Mi]. It follows that level i is the first level in
which p can have outgoing edges. We denote this level with `(p).

The spanner construction algorithm receives as input a (directed) disk graph
I(S,E) and a desired approximation factor ε. It constructs the set of span-
ner edges EDIR

SP and returns the graph HDIR(S, EDIR
SP). The construction is as

follows. The edges of I(S,E) are partitioned into classes E(Mi+1,Mi) for i ∈
[0, blog1+α Mc]. Assume that in each class the edges are sorted by their weight.
For every i ∈ [0, blog1+α Mc], starting from i = 0, the edges of the class
E(Mi+1,Mi) are considered in a non-decreasing order. On each stage of the
construction we maintain a set of pivots Pi. Let x ∈ S and let NN(x, Pi) be
the nearest neighbor of x among the points of Pi. For a pivot p ∈ Pi, define
Γi(p) = {x | x ∈ S, NN(x, Pi) = p, r(x) ≥ |xp|}, that is, all the points whose
nearest neighbor from Pi is p which can transmit to p.

When considering the edge (x, y), the algorithm acts according to the follow-
ing rule: If NN(x, Pi) > βMi+1 then x is added to Pi and the edge (x, y) is added
to EDIR

SP . If NN(x, Pi) ≤ βMi+1 and there is no edge (x′, y) ∈ EDIR
SP such that x′ ∈

Γi(NN(x, Pi)) then the edge (x, y) is added to EDIR
SP . When i reaches blog1+α Mc,

the algorithm handles all the edges that belong to E(Mblog1+α Mc+1,Mblog1+α Mc).
This includes also edges whose weight is 1, the minimal possible weight.

The spanner construction algorithm is given in Figure 1. The algorithm re-
turns the directed graph HDIR(S, EDIR

SP). In what follows we prove that HDIR(S,EDIR
SP)

is a (1 + ε)-spanner with O(n/ε−d log M) edges of the directed graph I(S,E).

2.1 The stretch of the spanner

We start by showing that the stretch of the graph HDIR(S,EDIR
SP) returned by

the algorithm is 1 + ε.

Lemma 1 (Stretch). Let ε > 0 and let HDIR(S, EDIR
SP) be the graph returned by

Algorithm disk-spanner. If (x, y) ∈ E then δG(x, y) ≤ (1 + ε)|xy|.

Proof. Assume that the transmission ranges are scaled such that the shortest
edge is of weight 1. Set α = β < ε/6. We prove that every directed edge of an
arbitrary node x ∈ S is approximated with 1+ ε stretch. Let i ∈ [0, blog1+α Mc].
The proof is by induction on i. For a given node x, the base of the induction
is the maximal value of i in which x has an edge in E(Mi+1,Mi). Let j be this
value for x, that is, the set E(Mj+1,Mj) contains the shortest edge that touches
x. Every other node is at distance at least Mj+1 away from x, hence x is a pivot
at this stage and every edge that touches x from the set E(Mj+1,Mj) is added
to EDIR

SP .

Algorithm disk-spanner (I(S, E), ε)

EDIR
SP ← φ

P0 ← φ
for i ← 0 to blog1+α Mc

for each (x, y) ∈ E(Mi+1, Mi) do
if |NN(x, Pi)x| > βMi+1 then
Pi ← Pi ∪ {x}

if @(x′, y) ∈ EDIR
SP s.t. x′ ∈ Γi(NN(x, Pi))

EDIR
SP ← EDIR

SP ∪ {(x, y)}
Pi+1 ← Pi

return HDIR(S, EDIR
SP)

Fig. 1. A high level implementation of the spanner construction algorithm for general
disk graphs

We now turn to prove the induction hypothesis. Let (x, y) ∈ E(Mi+1, Mi) for
some i < j and let p = NN(x, Pi). If the edge (x, y) is not in the spanner, then
there must be an edge (x̂, y) ∈ EDIR

SP , where x̂ ∈ Γi(p). The crucial observation is
that x has a transmission range of at least Mi+1. It follows from the algorithm
that |x̂p| ≤ βMi+1 and |xp| ≤ βMi+1.

By the choice of β, it follows that 2βMi+1 < Mi+1 and (x, x̂) ∈ E. Thus, there
is a (directed) path from x to y of the form 〈x, x̂, y〉 whose length is 2βMi+1+Mi.
However, only the edge (x̂, y) is in EDIR

SP . By the inductive hypothesis, the edge
(x, x̂) whose weight is 2βMi+1 is approximated with 1 + ε stretch. Thus, there
is a path in the spanner from x to y whose length is at most (1 + ε)|xx̂| + Mi,
and this can be bounded by

(1 + ε)2βMi+1 + Mi = ((1 + ε)2β + (1 + α))Mi+1.

As the edge (x, y) ∈ E(Mi+1,Mi) it follows that |xy| ≥ Mi+1. It remains to
prove that 1 + 2εβ + 2β + α ≤ 1 + ε, which follows directly from the choice of α
and β.

2.2 The size of the spanner

We now prove that the size of the spanner HDIR(S, EDIR
SP) is O(n/εd log M). As

a first step, we state the following well-known lemma, cf. [9].

Lemma 2. [Packing Lemma] If all points in a set U ∈ Rd are at least r apart
from each other, then there are at most (2R/r + 1)d points in U within any ball
X of radius R.

The next lemma establishes a bound on the number of incoming spanner
edges that a point may be assigned on stage i ∈ [0, blog1+α Mc] of the algorithm.

Lemma 3. Let i ∈ [0, blog1+α Mc] and let y ∈ S. The total number of incoming
edges of y that were added to the spanner on stage i is O(ε−d).

Proof. Let (x, y) be a spanner edge and let NN(x, Pi) = p. We associate (x, y)
to p. From the spanner construction algorithm it follows that this is the only
incoming edge of y whose source is in Γi(p). Thus, this is the only incoming
edge of y which is associated to p. Now consider all the incoming edges of y on
stage i. The source of each of these edges is associated to a unique pivot within
distance of at most Mi+βMi+1 away from y and any two pivots are βMi+1 apart
from each other. Using Lemma 2, we get that the number of edges entering y is
(Mi+βMi+1

βMi+1
+ 1)d = ((1 + α)/β + 2)d = O(ε−d).

It follows from the above lemma that the total number of edges that were
added to EDIR

SP in the main loop is O(n/εd log M).

2.3 The construction time

We now describe how to efficiently implement the algorithm. Let n be the number
of vertices and let m be the number of edges in the disk graph I(S, E).

First, the algorithm has to partition the set E into the sets E(Mblog1+α Mc+1,

Mblog1+α Mc), . . . , E(M1,M0). This can be done in O(m) time. The algorithm
also preforms nearest neighbor queries. It is easy to see that at most O(m) such
queries are processed. To obtain an efficient implementation we maintain the set
Pi using the dynamic nearest neighbor data structure of Cole and Gottlieb [6].
Every operation is supported in O(log n) time. However, their data structure is
only capable of answering ε-approximate nearest neighbor queries. Luckily, it is
enough for our purpose. The only effect of using an approximation is that the
separation between any two pivots becomes (1 + ε′)βMi+1 for some arbitrarily
small ε′ > 0, instead of βMi+1, which has a negligible effect on our bounds.

Any new pivot is inserted into the data structure in O(log n) time. The set
of pivots on the (i+1)st stage is initiated with the set of pivots of the ith stage.
Thus, any point is inserted exactly once into that data structure.

By the above discussion it follows that the total cost of the construction
algorithm is O(m log n).

2.4 A localized algorithm

We now turn to describe a localized implementation of the algorithm. We assume
a synchronous model in which a unique id is assigned to every node and that
any node knows the id’s of its outgoing neighbors (i.e., the nodes it can reach).

Similarly to the centralized algorithm, the localized algorithm of every node
u has a main loop and in each iteration of the main loop the pivots of the current
level are chosen by a simple adaption of the standard distributed algorithm for
finding a maximal independent set (cf. Peleg [18]; chapter 8). More specifically,
let Ni(u) be the set of nodes at distance at most βMi+1 from u whose transmis-
sion radius is at least Mi+1, where u is the node currently running the algorithm.

Algorithm local-disk-spanner (code for node u)

for i ← 0 to blog1+α Mc
v ← extract-min(Ni(u))
if id(v) > id(u)

EDIR
SP ← φ

obtain Ev(Mi+1, Mi) from every v ∈ Ni(u)

let Ê ← (∪v∈Ni(u)E
v(Mi+1, Mi)) ∪ Eu(Mi+1, Mi)

for every (x, y) ∈ Ê do
if @(x′, y) ∈ EDIR

SP s.t. x′ ∈ Ni(u)
EDIR

SP ← EDIR
SP ∪ {(x, y)}

send (x, y) to x

Fig. 2. A localized spanner construction algorithm for general disk graphs

If the graph was undirected then this set could be obtained easily. However, in
the directed case u may have neighbors whose transmission range it too small,
and thus should not be in Ni(u). By a simple procedure we can overcome this
problem without adding any additional assumption to our model. Notice that
every node in Ni(u) can transmit to u, thus, u can broadcast a message within
its transmission range and every neighbor that gets the message returns an ac-
knowledgment to u if u is within its transmission range. By this procedure, u
can find its neighbors that can transmit to it and this is the only information
that is needed in order to form the set Ni(u).

The pivot selection is done as follows. The node v with minimal id in Ni(u) is
extracted from Ni(u) and if u’s id is smaller than v’s then u marks itself as a pivot
in level i. If u is not a pivot then nothing further is done. However, if u is a pivot
then it performs a centralized computation of the spanner edges emanating from
nodes of Ni(u), and informs these nodes. For a node v, let Ev(Mi+1,Mi) denotes
the set of edges of E(Mi+1,Mi) emanating from v. The edges that emanate from
u and from the nodes of Ni(u) are scanned in a non-decreasing order of length
and an edge (x, y) is added to the spanner if and only if it is the first edge from
a vertex of {u} ∪Ni(u) to y. The algorithm is formally given in Figure 2. Next,
we show that the message complexity is linear in the number of edges of the disk
graph.

Lemma 4. The message complexity of the localized algorithm is O(m + n/εd).

Proof. In the i-th iteration every node v sends its edge set Ev(Mi+1,Mi) to
every pivot u where v ∈ Ni(u). From packing arguments it follows that there is
a constant number of pivots that have v in their close neighbor set. Thus, every
edge of Ev(Mi+1,Mi) is passed to a constant number of pivots and in total
v generates O(deg(v)) messages. When a pivot computes the spanner edges it
sends messages only to points that have to maintain a link that corresponds

to a spanner edge. The total number of such messages is simply the number of
spanner edges which is O(n/εd).

2.5 Topology updates

A fundamental question in topology control is what will happen when the under-
lined communication graph is being changed. For example, points are removed
from the network or new points are added.

In our case it is easy to see that a deletion or an insertion of one point may
remove or add many links which are essential to the connectivity of the network
and thus must be in the spanner without considering the distances. As a result of
that at the worse-case it may take Ω(n) time to update the spanner. Deleting and
inserting the point u causes to update cost which is proportional to the number
of points with small transmission range that are within the transmission range
of u.

2.6 Simulations

We have implemented our spanner construction algorithm and tested it on ran-
domly generated disk graphs. The graphs are generated by picking random points
in a region of predefined size. Each point is also assigned a random transmission
range from a predefined interval. A disk graph is then created by adding an
edge from a point p to q if q is within the transmission radius of p. We have
constructed spanners with required stretch factors of 2 and 3. Given a region
size and a maximal radius, 100 different graphs were generated and the results
were averaged over all these graphs. The results are summarized in Table 1 and
Table 2. A careful look at the spanner construction reveals that the average
degree of a node in the spanner is at most 25 log M . As the results indicate
(and as one may expect), when the random disk graph becomes denser, then
the spanner obtains a better compression rate. The average degree of a node in
the random disk graph is reduced by half or more in most of the cases and the
resulted spanner has an average degree which is less than 25 log M . It implies
that there are many natural instances on which better bounds then the worse
case bound can be obtained by our spanner construction algorithm.

3 A (1 + ε)-spanner for unit disk graphs

In this section we show how to compute a (1 + ε)-spanner for a unit disk graph.
More specifically, we show that given a set of points S any (1 + ε) geometric
spanner of S can be turned into (1 + ε′)-spanner of the unit disk graph of S.

Let H(S,ESP) be a geometric (1+ε)-spanner of S and let I(S, E) be the unit
disk graph of S. The following lemma shows that the distances induced by the
graph I(S, E) are approximated with a stretch factor of 1 + ε in H(S, ESP).

Table 1. Stretch 2

Region Max Radius Points Edges Removed Edges Required Stretch Savings

10 × 10 16 50 1565 343 2 0.22

15 × 15 20 100 5769 1878 2 0.33

25 × 25 25 200 18145 6999 2 0.39

30 × 30 35 500 133752 81916 2 0.61

Table 2. Stretch 3

Region Max Radius Points Edges Removed Edges Required Stretch Savings

10 × 10 16 50 1553 697 3 0.45

15 × 15 20 100 5813 3336 3 0.57

25 × 25 25 200 18304 11725 3 0.64

30 × 30 35 500 134203 108331 3 0.81

Lemma 5. Let S be a set of points and let H(S, ESP) be any (1 + ε)-spanner of
S. If I(S, E) is the unit disk graph of S then δH(p, q) ≤ (1 + ε)δI(p, q) for every
pair of points p, q ∈ S.

Proof. Let p, q ∈ S and let p = x1, x2, . . . , x` = q be the vertices on a shortest
path between p and q in I(S, E). By the definition of H, δH(xi, xi+1) ≤ (1 +
ε)|xixi+1|. Thus, δH(p, q) ≤ (1 + ε)

∑`−1
i=1 |xixi+1| = (1 + ε)δI(p, q).

The above lemma states that for any pair of points there exists a path in
H that approximates the shortest path between them in the unit disk graph I.
However, H is not necessarily a spanner of I, as it might have edges that are
not included in I, while a spanner must be a subgraph of the original graph. At
first glance it might seem that a possible solution to this problem is to remove
every edge whose length is strictly greater than 1 from H. Indeed, by doing so we
ensure that the resulting graph is a subgraph of I. However, it might no longer
be a (1 + ε)-spanner for I. In particular, consider two points p and q such that
|pq| = 1. It might so happen that the path σ that approximates this distance in
G is composed of two edges, (p, r) and (r, q), where |pr| = 1+ε/2 and |rq| = ε/2.
In such a situation, if all edges whose weight is greater than 1 are removed from
H, then the path σ is disconnected.

Our solution to this problem is as follows. Starting from a (1 + ε) geometric
spanner H(S,ESP) of S, every edge whose length is in the range (1, 1 + ε] is
removed from ESP. In compensation, for any removed edge we add, if possible,

Algorithm unit-disk-spanner (I(S, E), ε)

H(S, ESP) ← geom-spanner(S, ε)
EUDG

SP ← ESP

for every (x, y) ∈ EUDG
SP do

if |xy| > 1 then
EUDG

SP ← EUDG
SP \ {(x, y)}

if |xy| ∈ (1, 1 + ε] then
if ∃(u, v) ∈ E s.t. |xu| ≤ ε ∧ |vy| ≤ ε

EUDG
SP ← EUDG

SP ∪ {(x, u), (u, v), (v, y)}
return HUDG(S, EUDG

SP)

Fig. 3. A high level implementation of the spanner construction algorithm for unit disk
graphs

at most three replacement edges. Each of these three new edges belongs to the
unit disk graph and their total length is at most 1 + 2ε.

Specifically, let (x, y) be an edge whose weight is in the range (1, 1 + ε]. We
look for a pair of points u and v such that |xu| ≤ ε, |vy| ≤ ε and (u, v) ∈ E.
If such a pair of points exists, we add the edges (x, u), (u, v) and (v, y) to the
spanner instead of the edge (x, y). Such a situation is depicted in Figure 4.
Notice that it might be that u = x or v = y. If no such pair of points u and v
is found, then nothing is done. Denote the resulting spanner by HUDG(S,EUDG

SP).
The algorithm is given in Figure 3.

3.1 The properties of the spanner

In this section we show that the unit disk graph spanner constructed by our
algorithm has the same properties as a regular geometric spanner.

Lemma 6. The graph HUDG(S, EUDG
SP) constructed by unit-disk-spanner Algo-

rithm is a (1 + ε)-spanner of I(S, E) with O(n/εd) edges.

Proof. It is easy to see that EUDG
SP ⊆ E, as every edge of EUDG

SP is of weight at most
1. From Lemma 5 it follows that every edge of I(S,E) is approximated by the
geometric spanner. The removal of an edge whose weight is strictly greater than
1 + ε has no effect on the approximation of edges of the unit disk graph, since
these edges are of weight 1 or less, so edges of weight greater than 1 + ε do not
participate in approximating them. When an edge whose weight is in the range
(1, 1+ε] is replaced with a path of length at most 1+2ε, only the approximation
factor is affected, increasing from 1 + ε to at most (1 + ε)(1 + 2ε) ≤ 1 + 5ε. It
remains to show that if a removed edge whose weight is from the range (1, 1+ ε]
has no replacement path, then its removal is harmless, i.e., there is no edge in
the unit disk graph whose approximation is affected. Consider such a removed

Fig. 4. A geometric spanner edge and its possible replacement path

edge (x, y), and assume that there is no edge (u, v) ∈ E such that |xu| ≤ ε and
|vy| ≤ ε. It follows that for every edge in the unit disk graph, at least one of
its endpoints is at distance strictly greater than ε from both x and y. Thus, the
edge (x, y) cannot be used in the approximation of any edge of the unit disk
graph and it can be removed without effecting the approximation factor.

The size of EUDG
SP remains O(n/εd), as at most three edges are added for any

removed edge.

3.2 The construction time

In this section we explain how to efficiently implement the algorithm when the
set of points is in the plane. For every edge of the geometric spanner whose
weight is in the range (1, 1 + ε], we need to check whether a replacement path
exists. For every p ∈ S, we create a nearest neighbor data structure for the points
within a radius of ε around p (including the point itself). The cost for that is
at most O(deg(p) log deg(p)), where deg(p) is the degree of p in I(S, E) (See, [8,
5]). Queries can be answered in O(log deg(p)) time. Given an edge (x, y) ∈ EUDG

SP

whose weight is in the range (1, 1 + ε], we scan all the edges of length at most ε
that touch x in I(S,E). For each such edge (x, u), the algorithm queries the data
structure of y to find the closest point to u among the points within distance
ε from y. If the closest point is at distance 1 or less, then we have found the
replacement path. If not, then we proceed to the next edge of x. The cost of this
search is O(deg(x) log deg(y)). This is done for every geometric spanner edge
whose weight is in the range (1, 1 + ε]. A problem may arise if a point with
large degree in I(S, E) also has many spanner edges. To avoid that, we use a
geometric spanner of bounded degree [4, 7], that is, one where every point has
O(ε−d) spanner edges. Hence every point will take part in O(ε−d) tests, each of
cost proportional to its degree. The total running time is thus O(m log n).

The next theorem summarizes the above arguments.

Theorem 1. Let S be a set of n points in the plane. Let I(S,E) be the unit disk
graph that corresponds to S, where |E| = m. There exists a (1 + ε) spanner of
I(S,E) with O(n/ε) edges that can be constructed in O(m log n) time.

4 Concluding remarks

We have presented in this paper two constructions. The first and most important
is the first construction ever of spanners for disk graphs. This result raises many
other questions, both practical and theoretical. From the perspective of routing

it is interesting to use this construction as a topology for greedy based routing
algorithms in ad-hoc networks. Our spanner construction allows routing in ad-
hoc networks with variable transmission radii. It is also interesting to consider
the question of whether efficient compact routing schemes exhibiting a tradeoff
between the space usage of each node and the stretch of the paths exist for the
model of disk graphs. From a theoretical perspective it is interesting to explore
which other natural classes of directed graphs have good spanners.

References

1. Prosenjit Bose and Pat Morin. Online routing in triangulations. In ISAAC ’99:
Proceedings of the 10th International Symposium on Algorithms and Computation,
pages 113–122, London, UK, 1999. Springer-Verlag.

2. Prosenjit Bose, Pat Morin, Ivan Stojmenovic, and Jorge Urrutia. Routing with
guaranteed delivery in ad hoc wireless networks. Wireless Networks, 7(6):609–616,
2001.

3. P. B. Callahan and S. R.Kosaraju. A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM,
42:67–90, 1995.

4. T-H. Chan, A. Gupta, B.M. Maggs, and S. Zhou. On hierarchical routing in
doubling metrics. In Proc. 16th ACM-SIAM Symp. on Discrete Algorithms, pages
762–771, 2005.

5. Timothy Chan and Mihai Patrascu. Point location in sublogarithmic time and
other transdichotomous results in computational geometry. In Proc. 47th IEEE
Symp. on Foundations of Computer Science, pages 325–332, 2006.

6. R. Cole and L. Gottlieb. Searching dynamic point sets in spaces with bounded
doubling dimension. In Proc. 38th ACM Symp. on Theory of Computing, 2006.

7. G. Das, G. Naraimhan, and J. Salowe. A new way to weigh malnourished Euclidean
graphs. In Proc. 6th ACM-SIAM Symp. on Discrete Algorithms, pages 215–222,
1995.

8. David P. Dobkin and Richard J. Lipton. Multidimensional searching problems.
SIAM J. Comput., 5(2):181–186, 1976.

9. J. Gao, L. Guibas, and A. Nguyen. Deformable spanners and applications. In Proc.
20th ACM Symp. on Computational Geometry, pages 179–199, 2004.

10. Jie Gao, Leonidas J. Guibas, John Hershberger, Li Zhang, and An Zhu. Geometric
spanners for routing in mobile networks. IEEE J. on Selected Areas in Communi-
cations, 23(1):174–185, 2005.

11. Jie Gao, Leonidas J. Guibas, and An Nguyen. Distributed proximity maintenance
in ad hoc mobile networks. In Proc. IEEE Conf. on Distributed Computing in
Sensor Systems, pages 4–19, June 2005.

12. Brad Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for wireless
networks. In Proc. 6th Conf. on Mobile computing and networking, pages 243–254,
2000.

13. Fabian Kuhn and Aaron Zollinger. Ad-hoc networks beyond unit disk graphs.
In DIALM-POMC ’03: Proceedings of the 2003 joint workshop on Foundations of
mobile computing, pages 69–78, New York, NY, USA, 2003. ACM.

14. Xiang-Yang Li, Gruia Calinescu, Peng-Jun Wan, and Yu Wang. Localized delaunay
triangulation with application in ad hoc wireless networks. IEEE Trans. on Parallel
and Distributed Systems, 14(10):1035–1047, 2003.

15. Xiang-Yang Li, Wen-Zhan Song, and Yu Wang. Localized topology control for
heterogeneous wireless sensor networks. ACM Transactions on Sensor Networks,
2(1):129–153, February 2006.

16. Giri Narasimhan and Michiel Smid. Geometric Spanner Networks. Cambridge
University Press, 2007.

17. Melih Onus and Andrea Richa. Efficient broadcasting and gathering in wireless
ad-hoc networks. In ISPAN ’2005, 2005.

18. David Peleg. Distributed computing: a locality-sensitive approach. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

19. David Peleg and Alejandro A. Schäffer. Graph spanners. J. Graph Theory, 13:99–
116, 1989.

20. Rajmohan Rajaraman. Topology control and routing in ad hoc networks: a survey.
SIGACT News, 33(2):60–73, 2002.

21. J. S. Salowe. Constructing multidimensional spanner graphs. Int. J. Comput.
Geometry Appl, 1(2):99–107, 1991.

22. Ivan Stojmenovic and Xu Lin. Loop-free hybrid single-path/flooding routing al-
gorithms with guaranteed delivery for wireless networks. IEEE Trans. Parallel
Distrib. Syst., 12(10):1023–1032, 2001.

23. P. M. Vaidya. A sparse graph almost as good as the complete graph on points in
K dimensions. Discrete & Computational Geometry, 6:369–381, 1991.

24. Yu Wang and Xiang-Yang Li. Efficient delaunay-based localized routing for wireless
sensor networks. Int. J. of Communication Systems, 20(7):767–789, 2006.

25. Yu Wang and Xiang-Yang Li. Localized construction of bounded degree and planar
spanner for wireless ad hoc networks. MONET, 11(2):161–175, 2006.

26. Andrew Chi-Chih Yao. On constructing minimum spanning trees in k-dimensional
spaces and related problems. SIAM J. Comput., 11(4):721–736, 1982.

