
Fault-Tolerant Spanners for General Graphs

S. Chechik ∗ M. Langberg † D. Peleg ∗ L. Roditty ‡

Abstract

The paper concerns graph spanners that are resistant to vertex or edge failures. Given a weighted
undirected n-vertex graph G = (V, E) and an integer k ≥ 1, the subgraph H = (V, E′), E′ ⊆ E,
is a spanner of stretch k (or, a k-spanner) of G if δH(u, v) ≤ k · δG(u, v) for every u, v ∈ V , where
δG′(u, v) denotes the distance between u and v in G′. Graph spanners were extensively studied since
their introduction over two decades ago. It is known how to efficiently construct a (2k − 1)-spanner of
size O(n1+1/k), and this size-stretch tradeoff is conjectured to be tight.

The notion of fault tolerant spanners was introduced a decade ago in the geometric setting [Lev-
copoulos et al., STOC’98]. A subgraph H is an f -vertex fault tolerant k-spanner of the graph G if
for any set F ⊆ V of size at most f and any pair of vertices u, v ∈ V \ F , the distances in H satisfy
δH\F (u, v) ≤ k · δG\F (u, v). Levcopoulos et al. presented an efficient algorithm that constructs an f -
vertex fault tolerant geometric (1 + ε)-spanner, that is, given a set S of n points in Rd, their algorithm
finds a sparse graph H such that for every set F ⊆ S of size f and any pair of points u, v ∈ S \ F it
satisfies that δH\F (u, v) ≤ (1 + ε)|uv|, where |uv| is the Euclidean distance between u and v. A fault
tolerant geometric spanner with optimal maximum degree and total weight was presented in [Czumaj
and Zhao, SoCG’03]. This paper also raised as an open problem the question whether it is possible to
obtain a fault tolerant spanner for an arbitrary undirected weighted graph.

The current paper answers this question in the affirmative, presenting an f -vertex fault tolerant
(2k − 1)-spanner whose size is O(f3kf+1 · n1+1/k log1−1/k n). Interestingly, the stretch of the spanner
remains unchanged while the size of the spanner only increases by a factor that depends on the stretch k,
on the number of potential faults f , and on logarithmic terms in n. In addition, we consider the simpler
setting of f -edge fault tolerant spanners (defined analogously). We present an f -edge fault tolerant
2k − 1 spanner with edge set of size O(f · n1+1/k) (only f times larger than standard spanners). For
both edge and vertex faults, our results, are shown to hold when the given graph G is weighted.

∗Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel,
email: {shiri.chechik,david.peleg}@weizmann.ac.il

†Computer Science Division, Open University of Israel, 108 Ravutski St., Raanana 43107, Israel, email: mikel@openu.ac.il
‡Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel, email: liamr@macs.biu.ac.il

1 Introduction

Graph Spanners Graph spanners are fundamental graph structures, generalizing the concept of span-
ning trees. A graph spanner can be thought of intuitively as a skeleton structure that allows us to faithfully
represent the underlying network using few edges, in the sense that for any two nodes of the network, the
distance in the spanner is stretched by only a small factor. More formally, consider a weighted undirected
graph G = (V, E) with |V | = n and |E| = m and let k ≥ 1 be an integer. Let δG(u, v) denote the distance
between u and v in G. A graph H = (V, E′), where E′ ⊆ E, is a spanner of stretch k (or, a k-spanner) of
G if and only if δH(u, v) ≤ k · δG(u, v) for every u, v ∈ V .

The notion of graph spanners was introduced in [24, 23] in the late 80’s. It is known how to efficiently
construct a (2k− 1)-spanner of size O(n1+1/k) [1], and this size-stretch tradeoff is conjectured to be tight.
The interest in graph spanners stems from the fact that spanners are used explicitly or implicitly as key
ingredients of various distributed applications, e.g., synchronizers [24], compact routing [25, 31], covers [2],
dominating sets [11], distance oracles [3, 32], emulators and distance preservers [7], broadcasting [16],
or near-shortest path algorithms [12, 13, 15]. Hence, understanding the properties of graph spanners
and providing efficient algorithms for constructing them appear as a fundamental problem in distributed
computing. Recent reviews of the literature on spanners can be found in [26, 35].

In this work we study the notion of fault tolerant spanners. A graph H is an f -vertex (resp. edge) fault
tolerant k-spanner of G if for any set F ⊆ V (resp. F ⊆ E) of size at most f and any pair of vertices
u, v ∈ V \F (resp. u, v ∈ V) it satisfies that δH\F (u, v) ≤ k · δG\F (u, v). (Here, and throughout the paper,
G \ F denotes the subgraph of G obtained by removal of the faults F .) For vertex faults, we present an
f -vertex fault tolerant (2k − 1)-spanner whose size is O(f3kf+1 · n1+1/k log1−1/k n) (only slightly larger
than the best known standard spanners). For edge faults, we present an f -edge fault tolerant 2k − 1
spanner with edge set of size O(f ·n1+1/k) (only f times larger than standard spanners). Our results open
many research directions on fault tolerant constructions and applications. Specifically, any of the above
applications in which spanners were used in the past can now be considered in failure-prone settings, in
which fault-tolerant solutions could be sought.

Background and Previous work Recently, the question of maintaining spanners in dynamic settings
attracted much attention. Baswana and Sarkar [4] presented an algorithm for maintaining a graph spanner
that supports both insertions and deletions of edges in poly-logarithmic amortized update time. Elkin [13,
14] presented a fully dynamic spanner for the distributed and the streaming models. In the geometric
setting, where the vertices of the graph G are assumed to lie in Euclidean space, a (1 + ε)-spanner of size
O(n/εd) can be constructed in O(n log n) time [34, 30, 17, 27]. For dynamic spanners in the geometric
setting, Gao, Guibas and Nguyen [17] presented an algorithm that supports both insertions and deletions
of points in O(log ∆) time, where ∆ is the aspect ratio of the point set (i.e., the ratio between the farthest
pair of points to the closest pair of points). Roditty [27] showed how to obtain an update time that does
not depend on the aspect ratio using a variation of the algorithm of [17]. Most recently, Roditty and
Gottlieb [18, 19] presented two algorithms with O(polylog n) update time.

The traditional fully dynamic model in which graph spanners were studied so far may be too pessimistic
with respect to real world networks, where changes are fairly limited and the core of the network does not
change frequently. For example, in a road network the possible changes to the network are rather limited.
Some roads may be closed for short periods or a major junction may be temporarily blocked, but the basic
structure of the network remains the same. In a standard computer network, some links may occasionally
fail and even some routers may be temporarily out of service, but again the basic structure of the network
remains unchanged.

The focus of this work is the study of fault tolerant spanners. The “fault tolerance” model lends itself
naturally to the scenarios described above. In this model, the input is preprocessed so that after any f

1

failures, a fast recovery of the network information will be possible. For example, if f roads or f junctions
are temporarily closed, we would still like to have a valid spanner of the current network. The idea, as in
dynamic algorithms, is to preprocess the original data (namely, the input graph G) so that a fast recovery of
information is possible. There are three important parameters when considering the fault tolerant model.
The first is the running time of the preprocessing algorithm, the second is the size of the created data
structure, and the third is the time that is needed to update the data structure once failures occur.

Fault tolerance aspects of various problems have attracted considerable attention lately. Pǎtraşcu and
Thorup [22] considered the connectivity problem. They showed that it is possible to preprocess a graph in
polynomial time and to obtain a linear size data structure that allows responding to connectivity queries
in O(f ·polylog(n)) time after the failure of f arbitrary edges. In the context of the all-pairs shortest paths
problem, Demetrescu, Thorup, Chowdhury and Ramachandran [9] showed that it is possible to preprocess
a graph into a data structure that is capable of answering distance queries after a single vertex or edge
failure. Bernstein and Karger [6] improved the running time of [9]. Very recently, Duan and Pettie [10]
presented a data structure that is capable of answering distance queries after two vertex or edge failures.

Fault tolerant spanners were only studied in the context of geometric spanners. A decade ago, Levcopoulos,
Narasimhan and Smid [20] introduced the notion of fault tolerant spanners. They presented an efficient
algorithm for constructing an f -vertex fault tolerant geometric (1 + ε)-spanner, that is, given a set S of n
points in Rd, their algorithm finds a sparse graph H such that for every set F ⊆ S of size f and any pair of
points u, v ∈ S \F , the distances in H satisfy δH\F (u, v) ≤ (1+ ε)|uv|, where |uv| is the Euclidean distance
between u and v. A fault tolerant geometric spanner of improved size was presented by Lukovszki [21].
Finally, Czumaj and Zhao [8] presented a fault tolerant geometric spanner with optimal maximum degree
and total weight. In [8] they raised as an open problem the question whether it is possible to obtain a fault
tolerant spanner for an arbitrary weighted undirected graph.

In this paper we provide a positive answer to this question. Not only does such a fault tolerant spanner
exist for general graphs, but as we show, its properties are almost identical to those of a standard spanner
(i.e., one that does not tolerate any faults at all).

Our results This work addresses the design of both vertex and edge fault tolerant spanners. The main
result of this paper is an efficient algorithm that constructs an f -vertex fault tolerant (2k−1)-spanner for a
weighted undirected graph. The size of our spanner is O(f3kf+2n1+1/k log1−1/k n). Our result is especially
appealing in comparison to standard spanners as the stretch of our fault tolerant spanner is the same while
its size is increased only by a factor of f3kf+1 (ignoring logarithmic factors).

A natural approach to constructing an f -vertex fault tolerant spanner would be to construct, for every
F ⊂ V of size at most f , a spanner of G\F (e.g., via some known algorithm for spanner construction), and
to define the final spanner as their union. This approach may appear to be overly naive, as it would seem
to cause an explosion in the size of the resulting spanner. Surprisingly, an algorithm that follows this spirit
is exactly what we present. Our construction is based on the distance oracle construction of Thorup and
Zwick [32]. An approximate distance oracle is a data structure of size O(kn1+1/k) that answers approximate
distance queries in O(k) time. It approximates the distances up to a 2k − 1 multiplicative error. In our
work, we weaken the construction of Thorup and Zwick, in the sense that it no longer remains a distance
oracle, rather, it only holds properties of a standard spanner. The restricted construction combined with
some other new ideas and a careful analysis yield our result.

The simple but clever algorithm presented by Thorup and Zwick [32] lies at the foundations of many
important results. First, Thorup and Zwick [31] presented optimal routing schemes based on it. Roditty
and Zwick [29] used it to obtain a dynamic algorithm to approximate all-pairs shortest paths. Later on
Roditty, Thorup and Zwick [28] presented an efficient deterministic construction. Baswana and Sen [5] and
Baswana and Kavitha [3] improved the running time of the construction algorithm in a variety of settings.
In [33] Thorup and Zwick analyzed their construction in the context of additive spanners, concluding that

2

algorithm clusters(G(V, E), {A0, . . . , Ak}, k)

for every v ∈ V
for i ← 0 to k − 1

let δ(Ai, v) ← min{ δ(w, v) | w ∈ Ai}
let pi(v) ∈ Ai be such that δ(pi(v), v) = δ(Ai, v)

δ(Ak, v) ←∞
for i ← 0 to k − 1

for each w ∈ Ai \Ai+1

[C(w) ← {v|δ(v, w) < δ(v, pi+1(v))}]
C(w) ← {v|δ(v, w) < δ(v, pi+1(v)) ∧ δ(v, w) ≤ k}

let C ← ⋃
w C(w)

return C

algorithm initialize(V, k)

A0 ← V ; Ak ← φ
for i ← 1 to k − 1

Ai ← sample(Ai−1, (n
log n)−1/k)

let A ← {A0, . . . , Ak}
return A

algorithm spanner(G(V, E), k)

A ← initialize(V, k)
C ← clusters(G(V, E),A, k)
return C

Figure 1: The algorithm of [32]. The first cluster definition (in parentheses [·]) is the definition of [32]
and the second is our trimmed cluster definition.

their distance oracles provide also good additive spanners. Our result can be viewed as another unexpected
application of the core ideas in [32].

We also present an f -edge fault tolerant (2k − 1)-spanner with edge set of size is O(f · n1+1/k) (only f
times larger than the standard lower bounds). As in the case of vertex faults, our result holds when the
given graph is weighted.

The rest of this paper is organized as follows. In Section 2 we present our main result, namely, the
construction of vertex fault tolerant spanners. To simplify our presentation, in Section 2 we consider only
unweighed graphs G. We then turn to extend our results to the more involved case of weighted graphs and
analyze the running time of our algorithm. Due to space limitations, the latter two steps are presented in
Sections B and C of the Appendix. In Section 3 we present our algorithm for edge fault tolerant spanners
(for weighted graphs). Finally in Section 4 we present a few concluding remarks.

2 Vertex fault tolerant spanner

In this section we present the main result of this paper, an algorithm for constructing an f -vertex fault
tolerant spanner. One of the ingredients of our algorithm is a non-standard usage of the distance oracle
construction of Thorup and Zwick [32]. That paper presents an algorithm that creates an approximate
distance oracle, which is a data structure of size O(kn1+1/k) that answers approximate distance queries in
O(k) time. It approximates the distances up to a 2k − 1 multiplicative error. The main ingredient of this
data structure is a clever tree cover (which is also a spanner) for the graph. Hence the distance oracle is in
particular a spanner. In the first part of this section we review the construction of [32]. Our presentation
is biased towards our specific usage later on. We then present our algorithm and its analysis.

Let G(V, E) be an unweighted undirected graph. (In Section B of the Appendix, we show how to extend
our result for weighted graphs.) For each vertex w ∈ V , let T (w) be a certain shortest path spanning tree
of G rooted at w. Roughly speaking, the spanner of [32] consists of n clusters, each indexed by a vertex
w ∈ V and denoted by C(w). Each such cluster C(w) consists of a tree rooted at w that spans the set
of vertices that are in C(w). In [32] it is shown that the tree C(w) is always a subtree of T (w), and thus
to simplify notation, we denote both the tree rooted at w and the subset of vertices it spans by C(w).
Finally, the edge set C = ∪w∈V C(w) is defined to be the desired spanner. The algorithm of [32] is given in
Figure 1.

3

Theorem 2.1 [32] Algorithm spanner(G(V, E), k) given in Figure 1 (with the clusters defined as in [32])
returns, with high probability, a (2k − 1)-spanner of G(V, E) with O(n1+1/k log1−1/k n) edges.

The analysis of Thorup and Zwick in fact proved a stronger result, namely, that with high probability, the
number of clusters in which every vertex participates is at most O(n1/k log1−1/k n). This property is very
important to our construction as we will see later on.

We now describe the first change we make in the spanner algorithm of Thorup and Zwick, which is
crucial for our algorithm. Specifically, we change the definition of C(w). Our clusters C(w) differ from
those in [32] in the sense that our clusters are trimmed at depth k. Formally, our clusters are defined
as C(w) = {v | δ(v, w) < δ(v, pi+1(v)) ∧ δ(v, w) ≤ k}. In contrast, the original definition of [32] is
C(w) = {v | δ(v, w) < δ(v, pi+1(v))}. The vertex pi+1(v) is defined to be the closest vertex to v among
the vertices of Ai+1, where ties are broken by the order of the sampling, that is, the vertex that survived
more steps in the sampling process is chosen. This definition is the same as that of [32]. Notice that the
new cluster definition can only affect the stretch of the spanner, as its size can only decrease as a result of
the change.

Theorem 2.2 Algorithm spanner(G(V,E), k) given in Figure 1 (with the new cluster definition) returns,
with high probability, a (2k − 1)-spanner of G(V, E) with O(n1+1/k log1−1/k n) edges.

Proof: For every vertex w ∈ V , let CTRIM(w) be the trimmed cluster obtained from C(w) by removing
any vertex of it whose distance from w is more than k. It is shown in [32] (Lemma 3.3) that for every pair
of vertices u and v there exists a vertex w such that (i) u, v ∈ C(w) and (ii) the paths from u to w and
from v to w satisfy that one is of length at most k times the distance between u and v and the other is
of length at most k − 1 times the distance between u and v. In particular, it must be that for every edge
(u, v) ∈ E there exists a vertex w whose cluster C(w) contains both u and v such that the paths from u to
w and from v to w satisfy that one is of length at most k and the other one is of length at most k−1. This
implies not only that u, v ∈ C(w) but also that u, v ∈ CTRIM(w). Since any edge is approximated with a
path of length at most 2k − 1, the graph ∪w∈V CTRIM(w) is a (2k − 1)-spanner.

Hereafter, for every w ∈ V , we denote its trimmed cluster by C(w). We now present our algorithm for
f -vertex fault tolerant spanners. By our definitions, an f -fault tolerant (2k − 1) spanner C for a graph
G(V, E) must contain, for every subset F ⊂ V of size at most f , a (2k − 1) spanner for the graph G \ F .

A naive approach to solve this problem is to construct for every F ⊂ V of size at most f , a spanner of
G \ F and to define the final spanner as their union. However, in such a solution, even for a single vertex
fault, the spanner may contain all the edges of the graph and of course will be useless.

Surprisingly, following the spirt of this naive approach using the variation to the spanner of [32] discussed
above (combined with some other new ideas presented later), we obtain an f -fault tolerant (2k−1)-spanner
with only O(f3kf+1n1+1/k log1−1/k n) edges. The crux of this approach lies in its analysis which is possible
due to our trimmed cluster definition.

A high-level description of our algorithm is given in Figure 2. It receives as an input three parameters; a
graph, an integer k for the desired stretch-space tradeoff and an integer f for the desired number of faults.
Let F ⊂ V be a set of size at most f . The algorithm constructs a (2k − 1)-spanner CF of G \ F , for any
such F . We denote by CF (w) the cluster corresponding to w in CF . In order to ensure that the final
f -vertex fault tolerant spanner C (which our algorithm outputs) is sparse, we design CF (w) to satisfy the
following property.

Property 2.3 For any F ′ ⊂ F and any vertex v ∈ V , if the path P connecting v to w in CF ′(w) does not
include any vertices from the set F \ F ′, then P appears in CF (w) as well.

4

algorithm ft-spanner(G(V, E), k, f)

A ← initialize(V, k)
Cφ ← clusters(G(V, E),A, k)
C ← Cφ

for t = 1 to f
for every F ⊆ V of size at most t
CF ← clusters(G \ F,A, k)
C ← C⋃ CF

return C

Figure 2: Our algorithm for constructing an f -vertex fault tolerant (2k − 1)-spanner

To ensure this property, when constructing CF (w) for some vertex w ∈ V and a set F , we enforce the
following rule. Let V = {v1, .., vn}. Assume the cluster is already constructed up to depth r − 1, that is,
there is a path to every vertex at distance of at most r − 1 from w that belongs to the cluster. We now
construct level r of the cluster. Let x be a vertex of level r. Let i be the smallest index such that vi belongs
to level r − 1 and there is an edge between vi and x in G \ F . We set vi to be the parent of x.

We now show that if this rule is applied then Property 2.3 is satisfied. We stress that, as before, throughout
we denote by CF (w) both the set of vertices in the cluster and its corresponding spanning tree obtained
by this procedure.

Lemma 2.4 If the clusters of ft-spanner(G(V, E), k, f) are constructed using the rule described above
then they satisfy Property 2.3.

Proof: Let F ′ ⊂ F , let v ∈ CF ′(w) and let P be the shortest path that connects v to w in CF ′(w).
Assume that P does not include vertices from the set F \ F ′. Thus, the path P still exists in G \ F and is
a shortest path between v and w. Let Q be some other shortest path from v to w in G \ F . Since P is a
shortest path in G \ F ′, Q is also a shortest path in G \ F ′.

It follows directly from the definition of our clusters that if a vertex v is in a cluster C(w) then every vertex
on any shortest path from w to v is also in C(w). Applying this in our context yields that all the vertices
on the paths P and Q appear in both CF ′(w) and CF (w).

Let P = (x0 = w, x1, . . . , xr, v) and Q = (y0 = w, y1, . . . , yr, v), and let i be the largest index such that
xi 6= yi. Let xi = vj and yi = v`. For the sake of contradiction, assume that Q is the path that was chosen
by the algorithm to connect v to w in CF (w). This means that when the algorithm chose a parent for
yi+1, it chose v`, and since yi+1 = xi+1, it follows that v` was chosen over vj and hence ` < j by our rule.
However, this leads to contradiction since P is the path in CF ′(w) that was constructed by following the
same rule and it must be that ` > j. 2

Before we turn to the analysis of our algorithm, we discuss the second change that needs to be applied
to the algorithm of [32]. In our construction we would like that, with high probability, for every v and
every subset F ⊂ V of size at most f , the number of vertices w ∈ V such that v ∈ CF (w) be bounded
by O(fn1/k log1−1/k n). This can be guaranteed using the exact same analysis of [32] when one slightly
increasing the sample probability in initialize. Namely, we prove the following (in the Appendix).

Proposition 2.5 Increasing the sample probability in initialize from (n/ lnn)−1/k to (f+3)1/(k−1)(n
ln n)−1/k

ensures that with probability at least 1 − 1/n, for every v ∈ V , and every F ⊂ V of size at most f , the
number of clusters CF (w) that contain v is bounded by O(f · n1/k ln1−1/k n).

5

Proposition 2.5 implies that, w.h.p, the spanners CF we construct in ft-spanner(G(V,E), k, f) are each
of size O(fn1+1/k log1−1/k n). We can now turn to show that the union of all these Ω(nf) spanners is not
much larger than the size of a single one. We do that in two steps. First, as a warm-up that demonstrates
our ideas in the simplest possible setting, we analyze the case of a single fault, and then we turn to the
general case. We stress that in both cases, our modified definition for C(w), which involves “trimming at
depth k,” plays a major role in our analysis.

2.1 Warmup: 1-vertex fault tolerant spanners

As a warm-up we analyze the algorithm for 1 fault, that is ft-spanner(G(V, E), k, 1). The ideas and
proof techniques used in this section will be extended to deal with f -faults when we analyze the algorithm
ft-spanner(G(V, E), k, f) in Section 2.2.

Theorem 2.6 Algorithm ft-spanner(G(V, E), k, 1) given in Figure 2 returns, with high probability, a 1-
fault tolerant spanner of G(V, E) with stretch 2k − 1 and O(k2n1+1/k log1−1/k n) edges.

Proof: Let Cφ be the spanner returned by the execution of clusters(G,A, k). Here the superscript ‘φ’
refers to the set of vertex faults considered (which is currently empty). Let δφ(u, v) denote the length of the
shortest path between u and v in G. Let δφ(Ai, v) = min{ δφ(w, v) | w ∈ Ai}. Let pφ

i (v) ∈ Ai be such that
δφ(pφ

i (v), v) = δφ(Ai, v). Let Cφ(w) = {v | δφ(v, w) < δφ(v, pφ
i+1(v)) ∧ δφ(v, w) ≤ k}. For, x ∈ V , consider

the execution of clusters(G \ {x},A, k) preformed while running ft-spanner(G(V, E), k, 1). Let δx(u, v)
denote the length of the shortest path between u and v in G\{x}. Let δx(Ai, v) = min{ δx(w, v) | w ∈ Ai}.
Let px

i (v) ∈ Ai be such that δx(px
i (v), v) = δx(Ai, v). Let Cx(w) = {v | δx(v, w) < δx(v, px

i+1(v))∧δx(v, w) ≤
k}. Finally, let Cx =

⋃
w Cx(w).

We first bound the number of edges in the spanner C returned by algorithm ft-spanner(G(V, E), k, 1).
Notice that the spanner C includes the union of the spanner Cφ and the additional spanners Cx (for x ∈ V).
By our preliminary discussion, each such spanner in itself has at most O(n1+1/k log1−1/k n) edges (recall
that in this section f = 1). In what follows we show that the size of the union of these spanners is not
much larger than that.

To this end, we analyze the number of edges in the edge set of C \Cφ, namely, the number of edges added to
the initial spanner Cφ during the execution of algorithm ft-spanner(G(V, E), k, 1). We use the following
definition. For a vertex x, let Cx

NEW(w) ⊆ Cx(w) be the set of vertices v for which the path connecting v
to w in Cx(w) does not appear in Cφ(w). To bound the number of edges in C, it suffices to bound the
number of vertices v in

⋃
w∈V

⋃
x∈V Cx

NEW(w). This follows from Property 2.3, namely, from the fact that
only such vertices v add an edge to C \ Cφ, i.e., the edge connecting v to its parent in the corresponding
cluster Cx(w).

Call a tuple (v, w, x) costly iff v ∈ Cx
NEW(w). The number of edges in C may be bounded by the size of Cφ

plus the number of costly tuples. We show that the latter is bounded by O(k2n1+1/k log1−1/k n).

Let v be any vertex in V . Let i be an integer between 1 and k. In what follows we consider only costly
tuples (v, w, x) for which w ∈ Ai \Ai+1. Later, our bound can be multiplied by kn to obtain our assertion
(a multiplicative factor of k for each of the sets A0 \A1, . . . , Ak−1 \Ak, and a factor of n for each v ∈ V).

We consider two cases. In the first case, consider tuples (v, w, x) for which v ∈ Cφ(w). We claim that in
this case the vertex x must lie on the path Pin connecting v and w in Cφ(w), as otherwise, by Property 2.3,
the path Pin will appear identically in Cx(w), which in turn will imply that v 6∈ Cx

NEW(w).

By Proposition 2.5, the number of vertices w for which v ∈ Cφ(w) is bounded by O(n1/k log1−1/k n). In
addition, for every such w there are at most k vertices x on the path between v and w in Cφ(w). The latter

6

follows by our definition of C(w), which guarantees that δ(v, w) ≤ k for every v ∈ C(w). We conclude that
a total of at most O(kn1/k log1−1/k n) costly tuples are accounted for in this case.

We now turn to the case in which v 6∈ Cφ(w) and show that in any costly tuple (v, w, x), the vertex
x must be on the path Pout that connects v to pφ

i+1(v) in G. Recall that Cφ(w) = {v | δφ(v, w) <

δφ(v, pφ
i+1(v)) ∧ δφ(v, w) ≤ k}. Thus, either δφ(v, w) ≥ δφ(v, pφ

i+1(v)) or δφ(v, w) > k. We are assuming
that (v, w, x) is a costly tuple, i.e., v ∈ Cx

NEW(w) ⊆ Cx(w) = {v | δx(v, w) < δx(v, px
i+1(v)) ∧ δx(v, w) ≤ k},

which implies δx(v, w) ≤ k and in turn δφ(v, w) ≤ δx(v, w) ≤ k. Here we use δφ(v, w) ≤ δx(v, w), which
follows from the fact that distances in G \ {x} are at least as large as those in G. It remains to consider
the case δφ(v, pφ

i+1(v)) ≤ δφ(v, w) ≤ δx(v, w) < δx(v, px
i+1(v)). This, in turn, implies that δφ(v, pφ

i+1(v)) is
strictly less than δx(v, px

i+1(v)), which can only happen if x is on the path Pout specified above. Namely, x
must be one of at most k vertices in the path Pout (note that the discussion above implies that the length
of Pout is indeed bounded by k).

To complete our proof, we recall that for each such x, by Proposition 2.5, there are at most O(n1/k log1−1/k n)
vertices w for which v is in Cx(w), and hence at most O(n1/k log1−1/k n) vertices w for which v is in
Cx

NEW(w). Thus, all in all, the number of costly tuples accounted for in this case is bounded again by
O(kn1/k log1−1/k n).

This completes our proof bounding the number of edges in C. The bound on the stretch of C follows directly
from the properties of the spanners Cφ and Cx outlined in Theorem 2.2. 2

2.2 The general case: f-vertex fault tolerant spanners

Theorem 2.7 Algorithm ft-spanner(G(V, E), k, f) given in Figure 2 returns, with high probability, an
f -fault tolerant spanner of G(V,E) with stretch 2k − 1 and O(f3kf+1n1+1/k log1−1/k n) edges.

Proof: Let Cφ be the spanner returned by the execution of clusters(G,A, k). Let F ⊆ V . Consider the
execution clusters(G \F,A, k) preformed inside the main loop of ft-spanner(G(V, E), k, f). Let δF (u, v)
denote the length of the shortest path between u and v in G \F . Let δF (Ai, v) = min{ δF (w, v) | w ∈ Ai}.
Let pF

i (v) ∈ Ai be such that δF (pF
i (v), v) = δF (Ai, v). Let CF (w) = {v | δF (v, w) < δF (v, pF

i+1(v)) ∧
δF (v, w) ≤ k}. Finally, let CF =

⋃
w CF (w).

Recall that the algorithm clusters(G \ F,A, k) satisfies Property 2.3, that is, for a vertex v ∈ CF ′(w) if
the path P that connects v to w in CF ′(w) does not include any vertex from the set F \ F ′ then P also
connects v to w in CF (w).

Thus, in order to analyze the exact upper bound on the size of our spanner, we only need to count the
new connections that are formed at each stage. To this end, we present the following central definition, to
be used throughout the rest of the proof.

Definition 2.8 For a subset F of faults, let CF
NEW(w) ⊆ CF (w) be the set of vertices v for which the path

connecting v to w in CF (w) does not appear in CF\{x} for any x ∈ F .

Let C be the subgraph returned by algorithm ft-spanner(G(V, E), k, f). To bound the number of edges
in C, it suffices to bound the number of vertices v in

⋃

w∈V

⋃

(F⊆V and |F |≤f)

CF
NEW(w) .

Hence, it suffices to bound the number of tuples (v, w, F) that satisfy |F | ≤ f and v ∈ CF
NEW(w). This

is exactly what we do next. Specifically, for any vertex v ∈ V and any vertex w ∈ Ai \ Ai+1 for which

7

v ∈ CF
NEW(w) and |F | = f , we show that F has a very restricted structure and must be one of few different

subsets of V . We then proceed to show how this claim will conclude our proof.

Throughout the discussion below we only consider triplets (v, w, F) for a specific vertex v, a specific value
of i (which will imply that w ∈ Ai \ Ai+1) and a set F of size f . Thus, to obtain the final bound we will
have to multiply the obtained bound by n (so as to count the cost of all the vertices), by k (for all the sets
A0 \A1, . . . , Ak−1 \Ak) and by f (for all the possible set sizes).

Claim 2.9 Let Ft ⊆ V such that |Ft| = t. If v ∈ CFt(w) for w ∈ Ai \ Ai+1, then the number of tuples
(v, w, F) for which v ∈ CF

NEW(w) and Ft ⊆ F is bounded by kf−t.

Proof: Let w be as defined in the claim. Let F = Ft ∪ {u1, . . . , uf−t}. Assume that v ∈ CF
NEW(w). We

now show that there is a small number of extensions {u1, . . . , uf−t} that may be added to Ft to obtain F .

We first claim that as v ∈ CFt(w) it must be the case that F includes a vertex on the path Pin between v
and w in CFt(w). If this is not the case then it follows from Property 2.3 that for every F ′ that satisfies
Ft ⊆ F ′ ⊂ F the path Pin is in CF ′(w) and in particular there exists x ∈ F such that both v ∈ CF\{x}(w)
and x is not in Pin. This implies that v 6∈ CF

NEW(w) which yields a contradiction. Thus, we can conclude
that there exists a vertex of F in Pin. Assume, w.l.o.g, that u1 ∈ F is this vertex and let Ft+1 = Ft ∪{u1}.
We now consider the cluster CFt+1(w). There are two possible scenarios, the first is that as before v ∈
CFt+1(w) and the second is that v /∈ CFt+1(w). If v is in CFt+1(w) then from the same arguments as before
it must be that F includes a vertex from the path connecting v to w in CFt+1(w). As in the proof of
Theorem 2.6 , in the scenario that v /∈ CFt+1(w) it holds that δFt+1(v, p

Ft+1

i+1 (v)) ≤ δFt+1(v, w) ≤ δF (v, w) <

δF (v, pF
i+1(v)) and δF (v, w) ≤ k. Namely, it must be that there is a vertex from F on the path that connects

v to p
Ft+1

i+1 (v) in G \ Ft+1. Otherwise, the path that connects v to p
Ft+1

i+1 (v) is not affected by the deletion
of the vertices of the set F \ Ft+1 and is still valid in the graph G \ F . The distance between v and w in
G \F can only get larger with respect to the distance between v and w in G \Ft+1 (recall that Ft+1 ⊆ F).
On the other hand, the distance between v and p

Ft+1

i+1 (v) would remain the same. Since v /∈ CFt+1(w), by
definition, this would imply that v 6∈ CF (w) and obviously v 6∈ CF

NEW(w) which yields a contradiction.

We thus conclude that there must be a vertex of F that is either on the path that connects v to w if
v ∈ CFt+1(w) or on the path that connects v to p

Ft+1

i+1 (v) if v /∈ CFt+1(w). In each of these two possible
scenarios there are at most k vertices that can be chosen. Assume, w.l.o.g, that u2 ∈ F is this vertex and
let Ft+2 = Ft+1 ∪ {u2}.
We continue in a similar manner and define Ft+3 which is an extension of Ft+2 by one of k vertices defined
by v, w and Ft+2; and in general we define Ft+j which is an extension of Ft+j−1 by one of 2k vertices defined
by v, w and Ft+j−1. In each iteration, the number of possible subsets Ft+j increases by a multiplicative
factor of k. All in all, we conclude that the number of possible subsets F is bounded by the expression
given in the claim. 2

Let v ∈ V . Consider a triplet (v, w, F) for which v ∈ CF
NEW(w). We now bound the number of such triplets

when w is assumed to be in Ai \Ai+1 and F is assumed to have size f .

We start with the cluster set Cφ. We consider the case that v ∈ Cφ(w) and the case that v /∈ Cφ(w).
Consider the vertices w such that v ∈ Cφ(w). It follows from Proposition 2.5 that there are only
O(fn1/k log1−1/k n) such vertices w from Ai \ Ai+1 for which v is in their cluster. Here, and through-
out the proof we assume that Proposition 2.5 indeed holds (which happens with high probability over the
sets Ai). For each one of these vertices it follows from Claim 2.9 that there are at most kf possible sets F
that satisfy v ∈ CF

NEW(w).

We now consider the vertices w for which v 6∈ Cφ(w). As in the proof of Claim 2.9, since v ∈ CF
NEW(w) it

must be that the set F includes one of the k vertices on the path between v and pφ
i+1(v) in G, as otherwise,

8

the path that connects v to pφ
i+1(v) is not affected by the deletion of the set F and is valid in G \ F . The

distance between v and w in G \F can only get larger with respect to the distance between v and w in G.
Since v /∈ Cφ(w), by definition, it cannot be that v ∈ CF (w) and obviously it cannot be that v ∈ CF

NEW(w)
which yields a contradiction. We conclude that F must include one of the k vertices on the path that
connects v to pφ

i+1(v). Let u1 be one such vertex, and consider the set F1 = {u1}.
As before, we consider two cases. First consider the vertices w such that v ∈ CF1(w). Again, it follows
from Proposition 2.5 that there are only O(fn1/k log1−1/k n) such vertices w from Ai \Ai+1 for which v is
in their cluster. For each one of these vertices, by Claim 2.9, there are at most kf−1 tuples (v, w, F), where
F1 ⊆ F , for which v ∈ CF

NEW(w). There are k possible values for F1. Summing over all possible values for
F1 results in at most kf tuples (v, w, F) for which v ∈ CF

NEW(w).

Consider any other vertex w for which v 6∈ CF1(w). As before, we now claim that in any tuple (v, w, F),
where F1 ⊆ F , for which v ∈ CF

NEW(w) it must be the case that F includes one of the k vertices on the path
that connects between v and pF1

i+1(v) in G \ F1, as otherwise, the path that connects v to pF1
i+1(v) is not

affected by the deletion of the set F and is valid in G\F . The distance between v and w in G\F can only
get larger with respect to the distance between v and w in G \ F1 and since v /∈ CF1(w) it cannot be that
v ∈ CF (w) and obviously it cannot be that v ∈ CF

NEW(w) which yields a contradiction. We conclude that
F must include one of the k vertices on the path that connects v to pF1

i+1(v). Let u2 be one such vertex,
we can now set F2 = F1 ∪ {u2}.
For a general iteration j we have the case that v ∈ CFj−1(w) and the case that v /∈ CFj−1(w).

For the case that v ∈ CFj−1(w) it follows from Proposition 2.5 that there are only O(fn1/k log1−1/k n) such
vertices w from Ai \Ai+1 that v is in their clusters. Using Claim 2.9, it follows that there are kf−j+1 tuples
(v, w, F), where Fj−1 ⊆ F , for which v ∈ CF

NEW(w). There are kj−1 possible values for Fj−1. Summing over
all possible values for Fj−1 results in at most kf tuples (v, w, F) for which v ∈ CF

NEW(w). For the second
case we define the set Fj to be an extension of Fj−1 by one of at most k vertices on the path that connects
between v and p

Fj−1

i+1 (v) in G \ Fj−1.

In our last step, once Ff−1 has been defined, our first case yields an addition of kf tuples. For our
second case, we notice that Ff may have kf different values. For each possible value F , it follows from
Proposition 2.5 that there are at most O(fn1/k log1−1/k) corresponding vertices w such that w ∈ Ai \Ai+1

and v ∈ CF (w) (and in particular v ∈ CF
NEW(w)). Thus any tuple (v, w, F) for which v ∈ CF

NEW(w) that
has not been counter for so far must be one of O(fkfn1/k log1−1/k) corresponding tuples.

All in all, we have counted
(∑f

i=1 kikf−i + kf
)

O(fn1/k log1−1/k n) = O(f2kfn1/k log1−1/k n) tuples (v, w, F)

for which v ∈ CF
NEW(w). Multiplying this by nfk as discussed in the beginning of the proof yields our as-

sertion. 2

3 Edge fault-tolerant Spanners

In this section we describe our algorithm for creating an f -edge fault tolerant spanner. Our algorithm
presented here is for weighted undirected graphs G. As mentioned before, it is possible to efficiently
construct a (2k − 1)-spanner of size O(n1+1/k). In our construction of f -edge fault tolerant spanners we
may use any such spanner construction. Other than the size and stretch of the resulting spanner, we do
not rely on any other of its properties. Therefore, we can use any construction of spanners that guarantees
a resulting spanner with stretch (2k − 1) and size O(n1+1/k).

The algorithm is given in Figure 3. The algorithm consists of f + 1 iterations. Let ESP be the set of edges
added to the spanner so far. At the beginning of the algorithm initialize it to be empty. In each iteration,
we build a (2k− 1)-spanner for the graph G\ESP via the procedure spanner. At the end of each iteration

9

algorithm edge-ft-spanner(G(V, E), k, f)

ESP ← ∅
for i = 1 to f + 1 do:

(V, ESP
i) = spanner(G\ESP, k)

ESP = ESP ∪ ESP
i

return H ← (V, ESP)

Figure 3: Our algorithm for constructing an f -edge fault tolerant (2k − 1)-spanner

we add the edges of the current (2k − 1)-spanner to ESP. After the last iteration, we return H(V, ESP)
which is the required f -edge fault tolerant spanner.

As mentioned above, the resulting subgraph in each invocation of procedure spanner returns a (2k − 1)-
spanner of size O(n1+1/k). As we invoke procedure spanner f + 1 times, the total number of edges in the
resulting spanner is O(fn1+1/k). We now show that H is indeed an f -edge fault tolerant 2k − 1 spanner.

Lemma 3.1 For every subset E′ ⊆ E, where |E′| ≤ f , the subgraph H ′ = (V, ESP\E′) is a (2k−1)-spanner
of the graph G′ = (V,E \ E′).

Proof: Consider a subset E′ ⊆ E, where |E′| ≤ f . Let H = (V, ESP) be the spanner returned by the
algorithm. Consider an edge e ∈ E \ E′ that is not included in the spanner H. It suffices to show that
H ′ contains an alternative path whose length is at most (2k − 1) times e’s weight. Here, the length of a
path is the sum of its edge weights. Let Hi be the (2k− 1) spanner added during the i’th iteration. Notice
that the edges of the (2k − 1) spanner Hi are disjoint for 1 ≤ i ≤ f + 1. The edge e was not included
in each iteration i for 1 ≤ i ≤ f + 1. Therefore, each Hi contains an alternate path whose length is at
most (2k− 1) times e’s weight. Hence, there are f + 1 disjoint alternative paths of length at most (2k− 1)
times e’s weight in H. As |E′| ≤ f , there must be at least one alternative path left in H ′ of length at most
(2k − 1) times e’s weight.

We thus conclude:

Theorem 3.2 For every f , k, and weighted graph G(V, E) where |V | = n, one can efficiently construct
an f -edge fault tolerant (2k − 1) spanner with O(fn1+1/k) edges.

4 Concluding remarks

In this paper we study the construction of both vertex and edge fault tolerant spanners. We present fault
tolerant (2k−1) spanners of size only slightly larger than that of the best known standard (2k−1) spanners.
The many applications of spanners as a key ingredient in the design of distributed algorithms, naturally
raise the question if such applications still hold in the failure-prone setting. Being such fundamental graph
structures, our study of spanners in the context of fault tolerance opens the door to several intriguing
questions that now seem to be within reach.

10

References

[1] Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and Jose Soares. On sparse spanners of
weighted graphs. Discrete & Computational Geometry, 9:81–100, 1993.

[2] B. Awerbuch, B. Berger, L. Cowen, and David Peleg. Near-linear cost sequential and distributed
constructions of sparse neighborhood covers. In 34th IEEE Symp. on Foundations of Computer Science
(FOCS), pages 638–647, 1993.

[3] S. Baswana and T. Kavitha. Faster algorithms for approximate distance oracles and all-pairs small
stretch paths. In FOCS, pages 591–602. IEEE Computer Society, 2006.

[4] S. Baswana and S. Sarkar. Fully dynamic algorithms for graph spanners with poly-logaritmic update
time. In SODA, pages 672–681. ACM and SIAM, 2008.

[5] S. Baswana and S. Sen. Approximate distance oracles for unweighted graphs in expected O(n2) time.
ACM Transactions on Algorithms, 2(4):557–577, October 2006.

[6] A. Bernstein and D. Karger. Improved distance sensitivity oracles via random sampling. In SODA
’08: Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 34–43,
Philadelphia, PA, USA, 2008. Society for Industrial and Applied Mathematics.

[7] B. Bollobás, D. Coppersmith, and M. Elkin. Sparse distance preservers and additive spanners. In
14th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 414–423, 2003.

[8] A. Czumaj and H. Zhao. Fault-tolerant geometric spanners. Discrete & Computational Geometry,
32:2004, 2003.

[9] C. Demetrescu, M. Thorup, R. Alam Chowdhury, and V. Ramachandran. Oracles for distances
avoiding a failed node or link. SIAM J. Comput, 37(5):1299–1318, 2008.

[10] R. Duan and S. Pettie. Dual-failure distance and connectivity oracles. In SODA, 2009.

[11] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A. Srinivasan. Fast distributed algorithms
for (weakly) connected dominating sets and linear-size skeletons. J. Computer and System Sciences,
71:467–479, 2005.

[12] M. Elkin. Computing almost shortest paths. ACM Trans. Algorithms, 1(2):283–323, 2005.

[13] M. Elkin. A near-optimal distributed fully dynamic algorithm for maintaining sparse spanners. In
Indranil Gupta and Roger Wattenhofer, editors, Proceedings of the Twenty-Sixth Annual ACM Sym-
posium on Principles of Distributed Computing (26th PODC’07), pages 185–194, Portland, Oregon,
USA, August 2007. ACM SIGACT/SIGOPS.

[14] M. Elkin. Streaming and fully dynamic centralized algorithms for constructing and maintaining
sparse spanners. In Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, edi-
tors, Automata, Languages and Programming, 34th International Colloquium, ICALP 2007, Wroclaw,
Poland, July 9-13, 2007, Proceedings, volume 4596 of Lecture Notes in Computer Science, pages 716–
727. Springer, 2007.

[15] M. Elkin and J. Zhang. Efficient algorithms for constructing (1 + ε, β)-spanners in the distributed
and streaming models. In 23rd ACM Symp. on Principles of Distributed Computing (PODC), pages
160–168, 2004.

[16] A. M. Farley, A. Proskurowski, D. Zappala, and K. Windisch. Spanners and message distribution in
networks. Discrete Applied Mathematics, 137(2):159–171, 2004.

11

[17] J. Gao, L. Guibas, and A. Nguyen. Deformable spanners and applications. In ACM Symposium on
Computational Geometry, 2004.

[18] L. Gottlieb and L. Roditty. Improved algorithms for fully dynamic geometric spanners and geometric
routing. In Proc. of 19th SODA, pages 591–600, 2008.

[19] L. Gottlieb and L. Roditty. An optimal dynamic spanner for doubling metric spaces. In Proc. of 16th
ESA, pages 478–489, 2008.

[20] C. Levcopoulos, G. Narasimhan, and M. Smid. Efficient algorithms for constructing fault-tolerant
geometric spanners. In STOC ’98: Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pages 186–195, New York, NY, USA, 1998. ACM.

[21] T. Lukovszki. New results of fault tolerant geometric spanners. In WADS ’99: Proceedings of the
6th International Workshop on Algorithms and Data Structures, pages 193–204, London, UK, 1999.
Springer-Verlag.

[22] M. Pǎtraşcu and M. Thorup. Planning for fast connectivity updates. In Proc. 48th IEEE Symposium
on Foundations of Computer Science (FOCS), pages 263–271, 2007.

[23] D. Peleg and A. A. Scháffer. Graph spanners. J. Graph Theory, pages 99–116, 1989.

[24] D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. SIAM J. Computing,
18(4):740–747, 1989.

[25] D. Peleg and E. Upfal. A trade-off between space and efficiency for routing tables. J. ACM, 36(3):510—
530, 1989.

[26] S. Pettie. Low distortion spanners. In 34th Int. Colloq. on Automata, Languages and Programming
(ICALP), pages 78–89, 2007.

[27] L. Roditty. Fully dynamic geometric spanners. In ACM Symposium on Computational Geometry,
2007.

[28] L. Roditty, M. Thorup, and U. Zwick. Deterministic constructions of approximate distance oracles
and spanners. In Proc. of 32th ICALP, pages 261–272, 2005.

[29] L. Roditty and U. Zwick. On dynamic shortest paths problems. In ESA: Annual European Symposium
on Algorithms, 2004.

[30] J. S. Salowe. Constructing multidimensional spanner graphs. Int. J. Comput. Geometry Appl, 1(2):99–
107, 1991.

[31] M. Thorup and U. Zwick. Compact routing schemes. In SPAA ’01: Proceedings of the thirteenth
annual ACM symposium on Parallel algorithms and architectures, pages 1–10, New York, NY, USA,
2001. ACM.

[32] M. Thorup and U. Zwick. Approximate distance oracles. Journal of the ACM, 52(1):1–24, 2005.

[33] M. Thorup and U. Zwick. Spanners and emulators with sublinear distance errors. In SODA ’06:
Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 802–809,
New York, NY, USA, 2006. ACM.

[34] P. M. Vaidya. A sparse graph almost as good as the complete graph on points in K dimensions.
Discrete & Computational Geometry, 6:369–381, 1991.

12

[35] D. P. Woodruff. Lower bounds for additive spanners, emulators, and more. In 47th IEEE Symp. on
Foundations of Computer Science (FOCS), pages 389–398, 2006.

APPENDIX

A Proof of Proposition 2.5

Proof: Our proof is strongly based on Lemma 3.5 from [32]. We set the sampling probability to be
p = (f + 3)1/(k−1)(n

ln n)−1/k. Consider a node v ∈ V and consider a set F ⊂ V such that |F | ≤ f . Let
n′ = |V \ F |. We assume that f ≤ n/2, therefore n′ > n/2.

As discussed in [32], the number of vertices w ∈ V such that v ∈ CF (w) is stochastically dominated by
the sum

∑k−1
i=1 Xi, where Xi for 0 ≤ i ≤ k − 1 are k random variables distributed as follows. The variable

Xk−1 is binomially distributed with parameters n′ and pk−1. The rest of the variables Xi for 0 ≤ i ≤ k− 2
are geometric random variables with parameter p. Moreover, these k random variables are independent.

Let X be a binomial random variable such that E[X] = µ. Chernoff’s bounds say the following:

Pr[X > (1 + δ)µ] <

[
exp(δ)

(1 + δ)1+δ

]µ

,

P r[X < (1− δ)µ] < exp(−µδ2/2).

Notice that, E[Xk−1] = n′pk−1 = n′(f + 3)n1/k−1 ln1−1/k n.

We now use the first Chernoff inequality, with δ = 3 and µ = n′(f + 3)n1/k−1 ln1−1/k n,

Pr[Xk−1 > 4(f + 3)n1/k ln1−1/k n] < Pr[Xk−1 > 4n′(f + 3)n1/k−1 ln1−1/k n]

< (
e3

44
)

n
2
(f+3)n1/k−1 ln1−1/k n = (

e3

44
)

1
2
(f+3)n1/k ln1−1/k n

< exp(−(f + 3)n1/k ln1−1/k n) < exp(−(f + 3) lnn)

=
1

nf+3
<

1
2nf+2

.

Recall that X0, .., Xk−2 are independent geometric random variables with parameter p, therefore for every
s, Pr[

∑k−2
i=0 Xi > s] = Pr[B(s, p) < k], where B(s, p) is a binomial random variable with parameters s and

p.

We get that,

Pr[
k−2∑

i=0

Xi > 16(f + 3) · n1/k ln1−1/k n] = Pr[B(16(f + 3) · n1/k ln1−1/k n, (f + 3)1/(k−1)(
n

ln n
)−1/k) < k].

Note that µ = E[B(16(f +3) ·n1/k ln1−1/k n, (f +3)1/(k−1)(n
ln n)−1/k)] = 16(f +3)1+1/(k−1) lnn. We assume

that k ≤ lnn, therefore k < µ/2. We now use the second Chernoff inequality, with δ = 1/2,

Pr[
k−2∑

i=0

Xi > 16(f + 3) · n1/k ln1−1/k n] < exp(−µ/8) <
1

n2(f+3)
<

1
2nf+2

.

13

The probability that there is a node v ∈ V and a subset F ⊂ V of size at most f where the number of
vertices w ∈ V such that v ∈ CF (w) is greater than 20(f +3) ·n1/k ln1−1/k n is at most 2n ·nf 1

2nf+2 = 1/n.

B Vertex fault tolerant spanners for weighted graphs

In this section we consider the construction of vertex fault tolerant spanners for graphs G(V,E) with edge
weights ω : E → R+. We show that a slightly modified version of the algorithm for unweighted graphs
presented in Section 2 yields a similar result for weighted graphs. Recall that in the case of unweighted
graphs our crucial observation is that we only need to consider the clusters C(w) defined in the algorithm
of [32] up to depth k in order to get a (2k− 1)-spanner (Theorem 2.2). In the case of weighted graphs this
observation no longer holds. Indeed, on input edge (u, v) it could be the case that the algorithm of [32]
returns an estimated path of length at most 2k − 1 times ω(u, v) but with more than 2k edges.

As in the unweighted case, we would like to guarantee for each edge (u, v) in E a corresponding node w
such that (i) u, v ∈ C(w) and (ii) the paths from u to w and from v to w in the spanner both contain at
most k edges and are both of weight at most k times ω(u, v). In what follows we show how to modify the
algorithm of [32] in order to get this property.

Let δi(w, v) be the length of the shortest path from v to w with at most i edges (if such a path does not exist
then δi(w, v) = ∞). Formally, δi no longer satisfies the triangle inequality, nevertheless it will suffice for our
needs. The definition of δi(Aj , v) is changed accordingly, i.e., δi(Aj , v) ← min{δi(w, v) | w ∈ Aj}. The ver-
tex pi(v) is now set to be the vertex w in Ai with the smallest δi(w, v), i.e., δi(pi(v), v) = δi(Ai, v). Namely,
in the definition of pi(v), for small values of i we are considering paths with only few edges. Accordingly,
we change the definition of C(w) for w ∈ Ai \ Ai+1 to be C(w) ← {v | δi+1(v, w) < δi+1(v, pi+1(v))}. So,
for w ∈ Ai \ Ai+1 the clusters C(w) will include only paths with at most i + 1 edges. For a fault set F ,
we also use the analogous definitions for CF (w), δF

i (u, v) and pF
i (v) when considering the graph G \F (as

done in Section 2). The corresponding modified algorithm clusters(G(V, E), {A0, . . . , Ak}, k) is given in
Figure 4.

We now show that the analysis given for the unweighed case in Section 2 can be modified slightly to hold
in the weighted case as well. We first note that Proposition 2.5 holds for the definitions above. Namely,
with high probability for every v ∈ V and F ⊆ V of size at most f the number of clusters that contain
v is O(fn1/k log1−1/k n) in the graph G \ F . Only slight modifications are needed in the proof of Lemma
3.2 in [32] for our analysis to hold. Namely, in Lemma 3.2 of [32], instead of considering the nodes in Ai

in nondecreasing order of distance from v, we now consider the nodes in Ai in nondecreasing order of the
distance δi+1(w, v).

There are two additional differences in procedure clusters. The first difference is when we add a node v
to a cluster C(w) such that w ∈ Ai \Ai+1, we add the entire shortest path from v to w with at most i + 1
edges to the edge set ESP . This is essential in order to get a spanner. In the unweighted case in Theorem
2.7 when considering the shortest path from a node v to w, all nodes in that path belongs to C(w) . In
the new definitions this assumption not longer holds. Consider a shortest path from v to w and assume
this shortest path is of length exactly i + 1. Let z be the parent of v in that path. Assume G contains
a path from z to u ∈ Ai+1 with exactly i + 1 edges. Assume this path is very light and therefore z does
not belongs to C(w). As v is of distance i + 2 from u, v belongs to C(w). The second difference is that
for each v and each i we add the path from v to pi(v) to the spanner edge set ESP . This is also essential
in order to get a spanner. In the unweighted case it holds that v ∈ C(pi(v)). Again in the new distance
definitions this is no longer holds. Consider for example the following case. Assume p1(v) ∈ A1 \ A2, it
could be that A2 contains a node closer to v but with a path of two edges and not one, so v /∈ C(p1(v)).
Notice that in the weighted case we distinguish between the clusters and the edge set ESP as the the edge

14

set ESP contains more edges, for each node v such that v ∈ C(w) we might add k additional edges.

algorithm clusters(G(V, E), {A0, . . . , Ak}, k)

ESP ← ∅
for every v ∈ V

for i ← 0 to k − 1
let δi(Ai, v) ← min{ δi(w, v) | w ∈ Ai}
let pi(v) ∈ Ai be such that δi(pi(v), v) = δi(Ai, v)
let P be the shortest path from v to pi(v) with at most i edges.
add to ESP the edges of P .

δk(Ak, v) ←∞
for i ← 0 to k − 1

for each w ∈ Ai \Ai+1

let C(w) ← {v | δi+1(v, w) < δi+1(v, pi+1(v))}
for each v ∈ C(w)

let P be the shortest path from v to w with at most i + 1 edges.
add to ESP the edges of P .

let C ← ⋃
w C(w)

return H ← (V, ESP)

Figure 4: The algorithm for weighted graphs

algorithm dist(u, v)

w0 ← u; u0 ← u; v0 ← v i ← 0
while vi /∈ C(wi)

i ← i + 1
(ui, vi) ← (vi−1, ui−1)
wi ← pi(ui)

return δi(w, u) + δi(w, v)

Figure 5: Answering a distance query for an edge (u, v)

Next, we show that using the modified algorithm clusters(G(V, E), {A0, . . . , Ak}, k) of Figure 4 in the
framework discussed in Section 2 indeed yields a 2k−1 spanner. In our analysis we use the query algorithm
dist(u, v) from [32] (presented in Figure 5).

Lemma B.1 For a given edge (u, v), there exists a vertex w ∈ Ai+1 \Ai for some 0 ≤ i ≤ k− 1 such that
one of the following occurs (i) w = pi(u), v ∈ C(w), δi(w, u) ≤ (k− 1) ·ω(u, v) and δi+1(w, v) ≤ k ·ω(u, v).
(ii) w = pi(v), u ∈ C(w), δi(w, v) ≤ (k − 1) · ω(u, v) and δi+1(w, u) ≤ k · ω(u, v).

Proof: We follow the proof of Lemma 3.3 in [32]. Denote by ∆ the weight of the edge (u, v), i.e.,
∆ = ω(u, v). It is shown in [32] that δ(wi, ui) ≤ δ(wi−1, ui−1)+∆, if the ith iteration passes the test of the
while-loop of Procedure dist. We need to show that δi(wi, ui) ≤ δi−1(wi−1, ui−1) + ∆, if the ith iteration
passes the test of the while-loop of Procedure dist.

15

algorithm ft-spanner(G(V, E), k, f)

A ← initialize(V, k)
Cφ ← clusters(G(V, E),A, k)
C ← Cφ

for t = 1 to f
for every F ⊆ V of size at most t

EF
SP ← clusters(G \ F,A, k)

ESP ← ESP
⋃

EF
SP

return ESP

Figure 6: Our algorithm for constructing an f -vertex fault tolerant (2k − 1)-spanner for weighted graph

Assume the ith iteration passes the test of the while-loop of Procedure dist, then vi−1 /∈ C(wi−1), so
δi(wi−1, vi−1) ≥ δi(Ai, vi−1) = δi(pi(vi−1), vi−1). Moreover, vi−1 = ui and wi = pi(ui), so we get

δi(wi, ui) = δi(pi(ui), ui) = δi(pi(vi−1), vi−1) ≤ δi(wi−1, vi−1) ≤ δi−1(wi−1, ui−1) + ∆.

Where the last inequality follows from the fact that if there exists a path from wi−1 to vi−1 of length `
and with at most i− 1 edges then there exists a path from wi−1 to ui−1 of length ` + ∆ and with at most
i edges.

Assume the algorithm leaves the while-loop at iteration i. From the algorithm, we get that wi = pi(ui).
From the analysis above we get that δi(wi, ui) < i∆. As the algorithm does not pass iteration i of the
while-loop, vi ∈ C(wi). As δi(wi, ui) < i∆, it must be that δi+1(wi, vi) < (i + 1)∆.

W.l.o.g assume the first part of Lemma B.1 holds, i.e., w = pi(u), v ∈ C(w), δi(w, u) ≤ (k − 1) · ω(u, v)
and δi+1(w, v) ≤ k · ω(u, v). As we add the shortest path from u to w = pi(u) with at most i edges to the
spanner edge set ESP and the shortest path from v to w with at most i + 1 edges, we get that using the
modified algorithm clusters(G(V, E), {A0, . . . , Ak}, k) of Figure 4 in the framework discussed in Section 2
yields a 2k − 1 spanner.

Notice that with the new distance definition δi the depth of the produced clusters C(w) is already up to
depth k as we consider only paths with at most k edges. Therefore, we do not need to trim the clusters
up to depth k as in the unweighted case.

The algorithm for constructing an f -vertex fault tolerant (2k − 1)-spanner for weighted graph is given in
Figure 6.

We now show an analogue property to Property 2.3.

Property B.2 For any F ′ ⊂ F and any vertex v ∈ V : if v ∈ CF ′(w) and the path P connecting v to
w added to the spanner edge set ESP in the invocation of procedure clusters on G \ F ′ does not include
any vertices from the set F \ F ′, then P is also added to the spanner edge set ESP in the invocation of
procedure clusters on G \ F .

To ensure this property, when constructing CF (w) for some vertex w ∈ V and a set F , we enforce the
following rule. Let V = {v1, .., vn}. Assume the path from v to w is already constructed up to distance
r− 1 from v and we now add another node at distance r from v. Moreover, let x be the vertex at distance
r− 1. Let i be the smallest index such that there is an edge between vi to x in G \ F and vi is of minimal
distance from w. This implies that vi is on a shortest path from v to w. We add vi to the constructed

16

path from v to w. A similar analysis to Lemma 2.4 show that the modified clusters procedure using the
rule described above satisfies Property B.2.

As Property 2.3 in the unweighted case, Property B.2 is essential here, in order to claim that triplets
(v, w, F) such that v /∈ CF

NEW(w) for nodes v, w and set F such that |F | ≤ f do not contribute additional
edges to the spanner edge set.

We now turn to the analysis of the size.

Only slight modifications are needed in the proof of Theorem 2.7 for the weighted case.

Theorem B.3 The Algorithm given in Figure 6 returns, with high probability, an f-fault tolerant spanner
of G(V, E) with stretch 2k − 1 and O(f3kf+2n1+1/k log1−1/k n) edges.

Proof: As mentioned above Proposition 2.5 also holds for the definitions above. In the proof of Theorem
2.7 we bound the number of tuples (v, w, F) for which v ∈ CF

NEW(w) , w ∈ Ai \Ai+1 and |F | = f for given
v ∈ V , given i such that 1 ≤ i ≤ k− 1 and given f . The analysis of the bound is the same for the weighted
case. We just need to notice that in Theorem 2.7 when considering the shortest path from a node v to w,
all nodes in that path belongs to CF (w) for some subsets |F | ≤ f . In the weighted case this assumption
not longer holds, instead we consider the path from v to w that was added to the spanner.

This gives us a bound on the number of tuples (v, w, F) for which v ∈ CF
NEW(w), w ∈ Ai \Ai+1 and |F | = f

for given v ∈ V , given i such that 1 ≤ i ≤ k − 1 and given f .

As before, to obtain the final bound we will need to multiply by n (to count the cost of all the vertices), by
k for all the sets A0 \A1, . . . , Ak−1 \Ak and by f for all the possible sizes of sets. We get that the number
of tuples (v, w, F) for which v ∈ CF

NEW(w) is bounded by O(f3kf+1n1+1/k log1−1/k n).

We now turn to bound the number of edges added to the spanner edge set ESP . For each such tuple
(v, w, F) we may add k additional edges.

Moreover, in addition we also add edges for the paths from v to pi(v) for all v ∈ V and 1 ≤ i ≤ k − 1.
Using the same logic as in the analysis of Theorem 2.7 the number of such paths is bounded by nkf , for
each such path we add at most k edges.

Finally, with very high probability we get that the number of edges added to the spanner edge set is
bounded by O(f3kf+2n1+1/k log1−1/k n).

C Analyzing the running time

The running time of our algorithm for vertex fault tolerant spanners, presented in Section 2, depends on
nf . This follows from the fact that in algorithm ft-spanner(G(V, E), k, f) we are enumerating over all
subsets f ⊆ V of size at most f . We now show how to modify algorithm ft-spanner(G(V, E), k, f) in
order to get a running time of f · n2 times the number of edges in the spanner, namely, a running time of
O(f4kf+1 · n3+1/k log1−1/k n).

Let m be the number of edges in our spanners, m = O(f3kf+1n1+1/k log1−1/k n). As m << nf , for the vast
majority of subsets F such that |F | < f the spanner CF computed in algorithm ft-spanner(G(V, E), k, f)
doesn’t add any new edges to C. Roughly speaking, we utilize this fact, and instead of invoking the
clusters procedure for every subset F such that |F | < f , we only invoke it for subsets F that might
contribute new edges to C.
More precisely, we follows the analysis of Theorem 2.7 and add only the tuples (v, w, F) that satisfy |F | ≤ f
and v ∈ CF

NEW(w).

We perform the following algorithm for every v ∈ V , every 0 ≤ i ≤ k − 1 and every f ′ ≤ f .

17

Our goal now is to find all tuples (v, w, F) that satisfy |F | = f ′, w ∈ Ai \Ai+1 and v ∈ CF
NEW(w).

We handle the two cases mentioned in Theorem 2.7.

The first case is that v ∈ Cφ(w). The construction for this case follows the analysis of Claim 2.9 in Section
2.2. As in the Theorem 2.7 only subsets F that contains a node in the path P from v to Cφ(w) may
satisfies v ∈ CF

NEW(w). For each w such that w ∈ Ai \ Ai+1 and v ∈ Cφ(w) we do the following. For each
node u1 in the path P , we consider the cluster C{u1}(w). There are two possible scenarios, the first is
that as before v ∈ C{u1}(w) and the second is that v /∈ C{u1}(w). If v is in C{u1}(w) then as before we
consider all nodes u2 in the path from v to w in C{u1}(w) and store temporarily the sets {u1, u2}. The
second scenario is that v /∈ C{u1}(w), here we consider all nodes u2 in the path from v to p

{u1}
i+1 (v) and

store temporarily the sets {u1, u2}. We continue in a similar manner and for general j for all stored tuples
F ′ of size j − 1 we consider one of 2k vertices defined by v, w and F ′ and store the relevant sets F such
that |F | = j. We continue with this manner until we reach subsets F of size f ′. For each such subset F ,
we add the tuple (v, w, F) to our list.

The aim of the second case is to handle the vertices w for which v 6∈ Cφ(w). The construction for the
second case follows the analysis that appears after Claim 2.9 in Section 2.2. We consider all nodes u1 in
the path from v to pφ

i+1(v). For each such node u1, we consider two subcases. First consider the vertices w

such that v ∈ C{u1}(w), for each such u1 and w we follow the same algorithm as in the case for v ∈ Cφ(w)
(the only difference is that our starting point is not φ but the set {u1}) and we find all tuples (F, w, P)
that satisfy |F | = f ′, u1 ∈ F and v ∈ CF

NEW(w). The goal of the second subcase is to handle any other
vertex w for which v 6∈ C{u1}(w). As before, we consider the path that connects between v and p

{u1}
i+1 (v) in

G \ {u1}. For each node u2 in that path we consider the set {u1, u2} and again store it temporarily. For
a general iteration j we consider the case that v ∈ CF ′(w) and the case that v /∈ CF ′(w) for all stored F ′

such that |F ′| = j. For the first subcase, consider the vertices w such that v ∈ CF ′(w), for each such node
w we follow the same algorithm as in the case for v ∈ Cφ(w) where our starting point is F ′ and not φ
and we find all tuples (v, w, F) that satisfy |F | = f ′, F ′ ⊆ F and v ∈ CF

NEW(w). We now handle any other
vertex w for which v 6∈ CF ′(w). We again consider all nodes u in the path between v and pF ′

i+1(v) in G \F ′

and store all subsets F ′ ∪ {u}. Again, we continue with this manner until we reach subsets F of size f ′.
For each such subset F , we find the vertices w such that v ∈ CF

NEW(w) and add the tuple (v, w, F) to our
list.

As in the analysis of 2.7 the number of tuples (v, w, F) we consider is O(f3kf+1n1+1/k log1−1/k n). For each
such tuple (v, w, F) where w ∈ Ai\Ai+1, we do some operations as finding pF

i+1(v) and constructing the clus-
ter CF (w). This can be done in O(|E|) = O(n2) time. We consider each (v, w, F) at most f times, for each
size of the subsets f ′ ≤ f . We conclude that the running time is bounded by O(f4kf+1n3+1/k log1−1/k n).

18

