
�

�

�

�

�

�

�

�

27

Improved Deterministic Algorithms for Decremental Reachability
and Strongly Connected Components

JAKUB ŁĄCKI, University of Warsaw

This article presents a new deterministic algorithm for decremental maintenance of the transitive closure
in a directed graph. The algorithm processes any sequence of edge deletions in O(mn) time and answers
queries in constant time. Previously, such time bound has only been achieved by a randomized Las Vegas
algorithm. In addition to that, a few decremental algorithms for maintaining strongly connected components
are shown, whose time complexity is O(n1.5) for planar graphs, O(n log n) for graphs with bounded treewidth
and O(mn) for general digraphs.

Categories and Subject Descriptors: E.1 [Data Structures]: Graphs and networks; G.2.2 [Discrete
Mathematics]: Graph Theory—Graph algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Algorithms, dynamic algorithms, decremental algorithms, graph
algorithms, graphs, strongly connected components, transitive closure

ACM Reference Format:
Łącki, J. 2013. Improved deterministic algorithms for decremental reachability and strongly connected
components. ACM Trans. Algorithms 9, 3, Article 27 (June 2013), 15 pages.
DOI:http://dx.doi.org/10.1145/2483699.2483707

1. INTRODUCTION

In this article, we consider decremental maintenance of the transitive closure in a
directed graph. We present a data structure, which supports two operations:

— query(u, v) — check if there is a directed path from u to v,
— delete(u, v) — delete an edge from u to v.

The data structure is based on a novel representation of a strongly connected graph,
which might be of independent interest.

The problem of dynamic maintenance of the transitive closure has been given consid-
erable attention in recent years (e.g., Baswana et al. [2007], Demetrescu and Italiano
[2005], Frigioni et al. [2001], Henzinger and King [1995], Italiano [1988], La Poutré
and van Leeuwen [1987], and Roditty and Zwick [2008]). In this article, we focus
on algorithms with constant query time. One of the most natural measures of effi-
ciency of such algorithms is the total time needed to process an arbitrary sequence of
updates. In particular, for decremental graph problems one usually bounds the total
time needed to update the data structure over deletions of all edges (in arbitrary or-
der). This is caused by the fact that a single edge deletion can cause the maintained

A preliminary version of this article appears in the Proceedings of the 22nd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2011), 1438–1445.
Author’s address: J. Łącki, Institute of Informatics, University of Warsaw, ul.Banacha 2, 02-097 Warsaw,
Poland; email: j.lacki@mimuw.edu.pl.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1549-6325/2013/06-ART27 $15.00
DOI:http://dx.doi.org/10.1145/2483699.2483707

ACM Transactions on Algorithms, Vol. 9, No. 3, Article 27, Publication date: June 2013.

�

�

�

�

�

�

�

�

27:2 J. Łącki

property to change significantly, for example, it might affect as much as �(n2) cells in
the transitive closure matrix.

1.1. Previous Results

Two O(m2) deterministic decremental algorithms for transitive closure were obtained
independently, one by La Poutré and van Leeuwen [1987] and the other by Frigioni
et al. [2001]. Demetrescu and Italiano [2005] gave an O(n3) deterministic algorithm,
which is faster for dense graphs. Since all those three algorithms maintain the transi-
tive closure explicitly, each query can be answered in constant time.

These results have been improved with the use of randomized algorithms. Henzinger
and King [1995] gave a Monte Carlo algorithm, which is capable of handling arbitrary
digraphs with total update time of O(mn log2 n). However, it does not maintain the
transitive closure explicitly and needs as much as O(n

log n) time for each query.

Baswana et al. [2007] showed an O(mn4/3 3
√

log n) Monte Carlo algorithm, whereas
Roditty and Zwick [2008] obtained an O(mn) Las Vegas algorithm. Both these algo-
rithms handle queries in constant time.

The problem of decremental maintenance of strongly connected components has
been addressed less often. An algorithm suggested by Frigioni et al. [2001] requires
O(m2) worst-case time, which is as slow as recomputing the strongly connected compo-
nents after each update from the beginning. However, if all deleted edges are selected
at random, the expected time is O(mn). Roditty and Zwick [2008] showed a Las Vegas
algorithm that maintains strongly connected components in O(mn) total expected time
for any sequence of edge removals.

1.2. Our Results

We present an algorithm that maintains the structure of strongly connected compo-
nents over a sequence of edge deletions in O(mn) total time. It is based on a sim-
ple representation of a strongly connected component, which reduces the problem of
decremental strong connectivity to maintaining connectivity in a set of directed acyclic
graphs. Using our algorithm, we obtain a deterministic decremental O(mn) algorithm
for transitive closure with constant query time, thus solving an open problem posed
in Roditty and Zwick [2008]. This is a significant advancement over the best currently
known deterministic algorithms, which run in O(m2) or O(n3) total time.

Our decremental algorithm for maintaining strongly connected components has
been recently improved by Roditty [2013]. He obtains a O(m log n) worst-case bound
on both the initialization time and the update time. The total time of executing any
sequence of operations remains unchanged and amounts to O(mn).

Moreover, we give two algorithms for decremental maintenance of strongly con-
nected components in special classes of graphs. First, we obtain O(n1.5) time com-
plexity for planar graphs or O(

√
n) amortized time per one deletion, if all edges are

eventually deleted. To the best of our knowledge, the only comparable results are fully
dynamic algorithms for the transitive closure in planar graphs. Although they are
more powerful, they do not process queries in constant time.

The oldest one was shown by Subramanian [1993]. It handles updates and queries
in O(n2/3 log n) time. Diks and Sankowski [2007] presented an algorithm that can pro-
cess updates and queries in O(

√
n log3 n) and O(

√
n log2 n) time respectively. More-

over, Sankowski and Mucha [2010] presented an algorithm processing operations in
O(n(ω−1)/2) amortized time, where ω is the exponent of n × n matrix multiplication.
However, it is an algorithm with lookahead and it needs to know O(

√
n) operations in

advance.

ACM Transactions on Algorithms, Vol. 9, No. 3, Article 27, Publication date: June 2013.

�

�

�

�

�

�

�

�

Improved Deterministic Algorithms for Decremental Reachability 27:3

We also show an algorithm for decremental maintenance of strongly connected com-
ponents in graphs with treewidth bounded by a constant or, more generally, graphs
with separators of constant size. It runs in O(n log n) time. We have not found any
comparable algorithms solving this problem.

The rest of this article is organized as follows. In the next section, we describe
a simple decremental reachability algorithm for acyclic graphs, which we later use.
Section 3 introduces an SCC-tree, which is a tree-like data structure for represent-
ing strongly connected graphs, capable of efficient updates after edge deletions. Using
this structure, we show how to decrementally maintain the transitive closure. The last
part of the article presents how to build SCC-trees of smaller size for planar graphs
and graphs with bounded treewidth. This leads to more efficient algorithms for these
classes of graphs.

1.3. Preliminaries

Let G = (V, E) be a directed graph. By V(G) and E(G), we denote its vertex and edge

set, respectively. For vertices u, v ∈ V, u
G−→ v is used to denote that there is a directed

path in G from u to v. In particular v
G−→ v, as there is an empty path connecting v

with v.
A nonempty set S ⊆ V is strongly connected if for any two vertices s1, s2 ∈ S, s1

G−→
s2. This is equivalent to stating that there exists a vertex s1 ∈ S, such that for every

s2 ∈ S both s1
G−→ s2 and s2

G−→ s1. An inclusion-maximal strongly connected set is a
strongly connected component or, to shorten notation, an SCC. Every vertex belongs to
exactly one strongly connected component.

Let v ∈ V. An in-edge of v is an arbitrary element of {xv|xv ∈ E}, whereas an
out-edge of v is an element of {vx|vx ∈ E}. If G has no directed cycles, we call it a DAG
(directed acyclic graph). A vertex v in a DAG is called a source if it has no in-edges,
whereas a sink is a vertex with no out-edges. Lastly, we assume that G has no isolated
vertices, which assures that the number of vertices is asymptotically not greater than
the number of edges.

2. DECREMENTAL SINGLE-SOURCE REACHABILITY IN DAGS

In this section, we describe a simple algorithm for single source decremental reachabil-
ity in acyclic graphs. The algorithm is similar to the one presented by Italiano [1988].
We are given a DAG and our aim is to maintain the set of vertices reachable from the
source under a sequence of edge deletions.

Observe that in a single-source DAG every vertex is reachable from the source. This
means that as we delete edges, a vertex v might become disconnected from the source
only if v or some predecessor of v loses its last in-edge.

We show an auxiliary function FINDUNREACHABLEDOWN(D, S, w), which is based
on this observation. Given a DAG D = (V, E) with a distinguished source w and
a set S that contains all its other sources (and possibly also some other vertices),
FINDUNREACHABLEDOWN(D, S, w) returns a pair (U, I), where U is the set of ver-
tices that are not reachable from w and I is the set of all edges incident to U. Note that
this is more than what is necessary for single-source reachability in DAGs, but we use
the additional information later on. The pseudocode of FINDUNREACHABLEDOWN is
given as Algorithm 1.

LEMMA 2.1. Algorithm 1 is correct. It runs in O(|S| + |U| + |I|) time.

PROOF. Fix a topological ordering v1, v2, v3, ... of the DAG. Without loss of general-
ity, we can assume v1 = w. The proof proceeds by induction, we will show that for each

ACM Transactions on Algorithms, Vol. 9, No. 3, Article 27, Publication date: June 2013.

�

�

�

�

�

�

�

�

27:4 J. Łącki

Algorithm 1 FINDUNREACHABLEDOWN((V, E), S, w)

Require: (V, E) is a DAG, S ⊆ V, w has no in-edges
1: U := ∅ {unreachable vertices}
2: I := ∅ {their incident edges}
3: Q := EMPTYQUEUE
4: for all x ∈ S \ {w} do
5: if x has no in-edges then
6: ENQUEUE(Q, x)

7: while Q �= ∅ do
8: v := DEQUEUE(Q)
9: U := U ∪ {v}
10: I := I ∪ INCIDENTEDGES(v)
11: for all vx ∈ E do
12: E := E \ {vx}
13: if x has no in-edges then
14: ENQUEUE(Q, x)

return (U, I)

positive integer k, the procedure correctly identifies the unreachable vertices among
v1, . . . , vk.

Observe that U consists of the vertices that have been inserted to Q at some point.
Hence, the basis of the induction (k = 1) is trivial – w is inserted to Q neither in 6th
line, nor in 14th (for this to happen, w would have to have an in-edge).

Now, assume k > 1. There are two ways for a vertex vk to become unreachable from
w. Either it has no in-edges or all its direct predecessors are not reachable from w. In
the first case, vk has to belong to S, so it is added to queue Q and consequently to U. If
all direct predecessors of vk are not reachable, then, by the induction hypothesis, they
have been correctly identified by the algorithm and all their outgoing edges have been
deleted in the 12th line of the pseudocode. Consequently, vk is also inserted to Q.

To show that I is computed correctly, it suffices to note that for every vertex added
to U, we add all its incident edges to I. Observe that some edges are deleted in the
12th line, but it is easy to see that all these edges already belong to I. This proves the
correctness of the function.

To bound the running time, we first observe the following. The fifth line requires
O(|S|) time. The number of iterations of the while loop can easily be bounded by O(|U|).
Finally, each edge that we examine in the for loop in the 11th line is added to I. Since
a vertex can be added to a queue only at the moment its last in-edge is erased, we do
not process any edge from I more than once.

We also define an analogous function FINDUNREACHABLEUP(G, S, w), where w is
a distinguished sink and S is a set containing all other sinks. It returns a pair (U, I),
where U is the set of vertices from which there is no path to w and I is the set of edges
incident to U.

In the following, these two functions are called together. Let us define
FINDUNREACHABLE(G, S) as the function computing the union of their results. Note
that we do not specify the source and sink, as later on we apply the function only to
DAGs with a clearly distinguished source and sink.

Using FINDUNREACHABLEDOWN, we obtain a single-source decremental reachabil-
ity algorithm for DAGs.

LEMMA 2.2. Let G = (V, E) be a directed acyclic graph, with |E| = m and |V| = n.
There exists a O(m) total time deterministic algorithm for decremental single-source
reachability in G.

ACM Transactions on Algorithms, Vol. 9, No. 3, Article 27, Publication date: June 2013.

�

�

�

�

�

�

�

�

Improved Deterministic Algorithms for Decremental Reachability 27:5

Fig. 1. Graph G, SPLIT(G, 1) and CONDENSE(SPLIT(G, 1)).

PROOF. We maintain the set of vertices that are reachable from a fixed vertex
s. First, we delete all vertices that are not reachable from s in O(m) time, thus
obtaining a DAG with a single source. When an edge uv ∈ E is deleted, we call
FINDUNREACHABLEDOWN(G, {v}, s). The vertices that become unreachable are found
and deleted from the graph, together with their incident edges. Thus, the running
time of FINDUNREACHABLEDOWN(G, {v}, s) is linear in the number of deleted edges.
As there are initially m edges in the graph, it follows that the total time of all delete
operations is O(m). The set of reachable vertices is maintained explicitly, so we can
answer each query in constant time.

By running one copy of the above algorithm for every vertex of the graph, we obtain
an algorithm for the transitive closure.

COROLLARY 2.3. There exists a deterministic algorithm for decremental mainte-
nance of the transitive closure of a DAG, which runs in O(mn) total time.

3. DECREMENTAL MAINTENANCE OF STRONGLY CONNECTED COMPONENTS

In this section, we present an algorithm for maintaining strongly connected compo-
nents under a sequence of edge deletions. It takes a directed graph with n vertices and
m edges as input.

The algorithm handles the following operations:

— query(u, v) — check if u and v are in the same SCC,
— delete(u, v) — delete an edge from u to v.

After an initialization in O(mn) time, it takes O(1) time to answer each query and
the total running time of all delete operations amounts to O(mn). Hence, if all edges are
eventually removed, the amortized running time of a single delete operation is O(n).

Since the edges can only be deleted, the SCCs only decompose. In the beginning,
we partition the graph into SCCs, using a standard linear-time algorithm (see, e.g.,
Cormen et al. [2001]) and after that we work with each SCC separately. Hence, from
now on, we assume that the input graph is initially strongly connected.

We start by introducing some definitions illustrated in Figure 1. Let G = (V, E) be a
directed graph.

Definition 3.1. A condensation of G is a directed graph G′ which is obtained from
G by contracting all its strongly connected components. Each vertex of G′ is a set of
vertices of the corresponding SCC. Possible multiple edges in G′ are preserved, but self
loops are removed.

ACM Transactions on Algorithms, Vol. 9, No. 3, Article 27, Publication date: June 2013.

�

�

�

�

�

�

�

�

27:6 J. Łącki

We denote the condensation of G by CONDENSE(G).

It is well known that a condensation of any graph contains no cycles. Every edge
belonging to CONDENSE(G) corresponds to some edge from G in a natural way. In the
following, we sometimes identify such pairs of edges.

Definition 3.2. Let d ∈ V(G). By SPLIT(G, d) we denote a graph obtained from G
by splitting d into two vertices: din and dout. The edges incident to d are distributed
between those new vertices. The first is given all in-edges and the second all out-edges.
Moreover, we define SPLITANDCONDENSE(G, d) := CONDENSE(SPLIT(G, d)).

Observe that for any digraph G SPLIT(G, d) is not strongly connected and conse-
quently SPLITANDCONDENSE(G, d) contains multiple vertices. In particular, it has a
single source {dout} and a single sink {din}. We treat those two vertices as the distin-
guished source and sink in the graph, that is, they are the source and the sink used by
FINDUNREACHABLE. We also define a reverse operation.

Definition 3.3. Let H be a directed graph or a set of vertices. A merge operation,
denoted by MERGE(H, d1, d2, d), replaces all occurrences of d1 and d2 within H with d.

We remark that d1 and d2 do not necessarily need to be vertices or elements of
H. For example SPLITANDCONDENSE(G, d) contains vertices {dout} and {din} and
MERGE(SPLITANDCONDENSE(G, d), dout, din, d) merges them into a vertex {d}.1 In the
following we usually give only the first argument, as by default we merge the vertices
that are created by SPLIT.

The basis for our algorithm is the observation that by tracing connectivity of Gd :=
SPLITANDCONDENSE(G, d), we can retrieve information about strong connectivity of
G. More precisely, let G be a strongly connected graph, and assume that some edges
are deleted from G one by one. Our goal is to detect the moment when G ceases to be
strongly connected. For the time being, assume that each delete operation removes an
edge that belongs to Gd.

First, we compute Gd. Since this is an acyclic graph, by Lemma 2.2, we can effi-
ciently maintain the set of vertices reachable from {dout} and the set of vertices from
which there is a path to {din}, under a sequence of edge deletions. We claim that the
moment one of this sets becomes different from V(Gd), G stops being strongly con-
nected. In order to handle deletions of edges that are not present in Gd, the same idea
is then recursively applied to the SCCs of Gd. We now give a formal description of these
properties.

LEMMA 3.4. Let G be a directed graph and Gd = SPLITANDCONDENSE(G, d),
where d ∈ V(G). Moreover, let (U, I) be the result of FINDUNREACHABLE(Gd, S), where
S contains all nondistinguished (i.e., different from {dout} and {din}) sources and sinks
of Gd. Then:

(1) All elements of MERGE(U) form separate SCCs of G.
(2) If U �= V(Gd), then the SCC of G that contains d is given by MERGE(

⋃
(V(Gd) \U)).

Otherwise, d belongs to a single-vertex SCC.
(3) The strongly connected components of G are given by MERGE(

⋃
(V(Gd) \ U) ∪ U),

See Figure 2 for illustration.

PROOF. The proof is divided into two cases.

Case 1. {{din}, {dout}} ∩ U = ∅.

1Note the difference between x and {x}.

ACM Transactions on Algorithms, Vol. 9, No. 3, Article 27, Publication date: June 2013.

�

�

�

�

�

�

�

�

Improved Deterministic Algorithms for Decremental Reachability 27:7

Fig. 2. Graph G, SPLITANDCONDENSE(G, 1) and CONDENSE(G). The dotted arrows in
the middle figure represent edges from the set I, where (U, I) is the result computed by
FINDUNREACHABLE(SPLITANDCONDENSE(G, 1), {{4, 5, 6}}).

Proof of Claim (1). This assumption implies that MERGE(U) = U. Fix u ∈ U. It is a
vertex of Gd, so it has to be a strongly connected set in G. We now show that it is also a
maximal strongly connected set. Assume that there is a vertex v1 ∈ u and v2 �∈ u, such

that v1
G−→ v2 and v2

G−→ v1. At least one of these two paths cannot be mapped to a
path between different vertices in Gd, as Gd is acyclic. This means that either v1-to-v2

or v2-to-v1 path in G has to pass through d. Consequently, v1
G−→ d

G−→ v1, so there is
a path from dout to u and from u to din, a contradiction.

Proof of Claim (2). The assumption that {{din}, {dout}} ∩ U = ∅ implies that U �=
V(Gd). From Claim (1), we know that the SCC containing d has to be a subset of
V(G)\⋃ U = MERGE(

⋃
(V(Gd)\U)). It turns out that MERGE(

⋃
(V(Gd)\U)) is strongly

connected. Indeed, by the definition of FINDUNREACHABLE, for every v ∈ V(Gd) \ U,

both {dout} Gd−→ v and v
Gd−→ {din}, so we easily infer that MERGE(

⋃
(V(Gd) \ U)) is an

SCC.

Proof of Claim (3). From Claims (1) and (2), we have that the SCCs are given by
MERGE(U) ∪ MERGE(

⋃
(V(G) \ U)) = MERGE(

⋃
(V(Gd) \ U) ∪ U).

Case 2. {{din}, {dout}} ∩ U �= ∅.

Proof of Claims (1) and (2). If either {dout} or {din} belongs to U then, obviously, they
both do and there is no {dout}-to-{din} path in Gd. This means that U = V(Gd), since if

there was a vertex v ∈ V(Gd) such that v �∈ U, we would have {dout} Gd−→ v
Gd−→ {din}.

Since there is no dout-to-din path in Gd, there is also no simple cycle containing d in
G. This implies that d forms a single-vertex SCC. Splitting d into two vertices does not

ACM Transactions on Algorithms, Vol. 9, No. 3, Article 27, Publication date: June 2013.

�

�

�

�

�

�

�

�

27:8 J. Łącki

break strong connectivity of any set in G, so SCCs in Gd are the same as SCCs in G,
with the exception that we have to replace dout and din with d. Hence, the SCCs are
given by MERGE(V(Gd)) = MERGE(U).

Proof of Claim (3). From the proof of Claims (1) and (2), we know that U = V(Gd),
so

⋃
(V(Gd) \ U) is an empty set. We have already shown that the set of SCCs is equal

to MERGE(U), which is in turn equal to MERGE(
⋃

(V(Gd) \ U) ∪ U), as claimed.

This completes the proof.

Lemma 3.4 is the basis for handling edge deletions in our algorithm. Let G be
a strongly connected graph and Gd = SPLITANDCONDENSE(G, d). After an edge
uv ∈ E(Gd) is deleted, we can delete it from Gd and then use the lemma to check how
the SCCS of G change. We call FINDUNREACHABLE(Gd, {u, v}). Denote the computed
result by (U, I). By the lemma, the SCC containing d shrinks to MERGE(

⋃
(V(Gd) \

U)) ∪ {d}. Moreover, new SCCs, given by MERGE(U) \ {{d}}, emerge in G.
In addition to that, if we maintain SPLITANDCONDENSE(G, d), we can easily com-

pute CONDENSE(G) after each edge deletion.

LEMMA 3.5. Let G be a directed graph and Gd = SPLITANDCONDENSE(G, d). De-
note by (U, I) the result computed by FINDUNREACHABLE(Gd, S), where S contains
all nondistinguished sources and sinks of Gd. Then, CONDENSE(G) = (VC, EC) can be
computed in O(|S| + |VC| + |EC|) time.

PROOF. From Lemma 3.4, it follows that the vertex set of CONDENSE(G) can be
computed with a single call to FINDUNREACHABLE. Moreover, we can easily obtain
EC from I. Let vd be the vertex of CONDENSE(G) representing the SCC containing d.
Fix an edge uv ∈ I. If one of its endpoints does not belong to U, this endpoint has to
be set to vd in CONDENSE(G). For illustration see the dotted edges entering set U in
Figure 2. By Lemma 3.4, FINDUNREACHABLE runs in O(|S| + |VC| + |EC|) time, which
dominates the time needed to compute CONDENSE(G).

3.1. Graph Representation

Lemma 3.4 gives us a way of tracing strong connectivity of G as long as we only delete
edges belonging to SPLITANDCONDENSE(G, d). We also have to maintain SCCs of
SPLIT(G, d) and to do this, we build a graph representation which recursively uses
the same idea.

Definition 3.6. Let G be a strongly connected graph. An SCC-tree is constructed as
follows:

— An SCC-tree for a single-vertex graph G = ({v}, ∅) is a node containing G.
— If G has more than one vertex, the root R of the tree contains

SPLITANDCONDENSE(G, d) (d is chosen arbitrarily) and for each SCC induced by
v ∈ SPLITANDCONDENSE(G, d), we add its SCC-tree as a subtree of R, with the
exception that we only add one child for d instead of two separate children for din
and dout.

An example SCC-tree is depicted in Figure 3. To prevent ambiguity, in the following,
node refers to a vertex of an SCC-tree, so that it would not be confused with vertices
of the original graph. We use capital letters to denote nodes and lowercase letters to
denote vertices. An inner node is any nonleaf node. We denote the parent node of N by
p(N), the graph (which is always a DAG) in node N by D(N) and the induced subgraph
of G represented by the subtree rooted at N by G(N).

ACM Transactions on Algorithms, Vol. 9, No. 3, Article 27, Publication date: June 2013.

�

�

�

�

�

�

�

�

Improved Deterministic Algorithms for Decremental Reachability 27:9

Fig. 3. An example SCC tree of the graph from Figure 1. The root node R corresponds to the entire graph
and for every other inner node the subgraph represented by it is marked in the left figure.

The tree has exactly n leaves, since there is exactly one leaf for every vertex. This
implies that its height δ and the total number of nodes is linear in n, as each inner
node of the tree has at least two children.

Let N be an arbitrary inner node. There exists a natural bijection between vertices of
MERGE(D(N)) and child nodes of N. Hence, there are O(n) vertices in all those DAGs
in total. Recall that each vertex v ∈ V(D(N)) is a subset of vertices of the original
graph. Although these sets can be big, in the implementation we assume that each
vertex can be represented in constant space. The underlying set can be retrieved in
linear time by iterating through the whole subtree corresponding to v.

Each edge of G is stored in only one node, namely, an edge uv is kept in the lowest
common ancestor of the leaves corresponding to u and v. Hence, the resulting structure
uses O(n + m) space.

The tree can be built in O(mδ) time, using a linear-time algorithm for finding SCCs,
because it takes O(m) total time to build its every level. This leads to the following
lemma.

LEMMA 3.7. An SCC-tree can be constructed in O(mδ) time, where δ is the height of
the resulting tree. It requires O(n + m) space.

3.2. Updating an SCC-Tree After Edge Deletion

In this section, we describe the process of handling an edge deletion. The algorithm
maintains one SCC-tree for each SCC of the graph. When an edge belonging to an
SCC is deleted, we update the corresponding SCC-tree, so that it is an SCC-tree for
the modified graph. If an SCC decomposes, we compute an SCC-tree for each newly
created SCC.

In order to answer queries, we maintain an array SCC[v], such that SCC[v] =
SCC[w] iff v and w are in the same strongly connected component, which allows us
to answer queries in constant time. Initially, since we have assumed that the initial
graph is strongly connected, for each v, SCC[v] points to the root of the only SCC-tree.

3.2.1. Deleting an Edge from an SCC-Tree Root. We first consider the case when the
deleted edge uv belongs to the root node of an SCC-tree. Denote the root node by R
and assume that the first vertex chosen to be split during the construction of the tree
is d, that is, D(R) = SPLITANDCONDENSE(G, d) and uv ∈ E(D(R)). Moreover, denote
by G′ the graph obtained from G by deleting uv. We delete uv from D(R). Observe that
D(R) after the deletion is equal to SPLITANDCONDENSE(G′, d).

ACM Transactions on Algorithms, Vol. 9, No. 3, Article 27, Publication date: June 2013.

�

�

�

�

�

�

�

�

27:10 J. Łącki

Following Lemma 3.4, we invoke FINDUNREACHABLE(D(R), {u, v}). Note that {u, v}
contains all nondistinguished sources and sinks of D(R). Assume that it returns a
pair (U, I).

By Lemma 3.4, all elements of MERGE(U) form new SCCs. Observe that for each v ∈
MERGE(U), u �= {d}, there exists a child subtree of R which is an SCC-tree representing
v. We disconnect those subtrees from R and make separate trees out of them.

Then, we update the representation of the SCC containing d. If U �= V(D(R)), the
elements of U are no longer in the SCC containing d, so we remove all vertices of U
(and their incident edges) from D(R). Otherwise, from now on, d belongs to a single-
vertex SCC, so we create leaf node representing it. As a result, we can handle this case
in O(|U| + |I|) time.

It remains to update the SCC array. For each newly born SCC, we iterate through all
its vertices and update the corresponding entries in the SCC array, so that they point
to roots of the appropriate SCC-trees.

3.2.2. Deleting an Edge from an Inner Node. The case when we remove an edge uv from
a graph D(N) in an inner node N of an SCC-tree is only slightly more complex. We
update the SCC-tree starting from N and then going up the tree. Observe that all
other nodes of the SCC-tree are not affected by the deletion, as the induced subgraph
of G represented by each of these nodes remains strongly connected.

Recall that G(N) denotes the induced subgraph of G represented by N, that is,⋃
V(D(N)) = V(G(N)). As in the previous case, after we remove uv from D(N) we

have D(N) = SPLITANDCONDENSE(G, d) (here G is the entire graph after delet-
ing uv). Hence, we can use Lemma 3.5 to compute CONDENSE(G(N)) in linear time.
This can achieved by calling FINDUNREACHABLE(D(N), {u, v}). Denote the result of
FINDUNREACHABLE by (U, I). If CONDENSE(G(N)) is a single-vertex graph, no fur-
ther work needs to be done. Otherwise, we have to update node N and its parent p(N).

Updating N can be done in the same way as in the previous case. Some vertices and
edges are removed from D(N), as well as the subtrees corresponding to the removed
vertices. In the previous cases, for each element of MERGE(U)\ {{d}}, we created a new
SCC-tree. Now, the root of each such SCC-tree will become a sibling of N. The details
follow.

Let vN be the vertex in D(p(N)) that corresponds to N. Before the deletion, it cor-
responded to a strongly connected induced subgraph of G, but now this subgraph is
no longer strongly connected. In order to update D(p(N)), we plant CONDENSE(G(N))
in place of vN in D(p(N)). However, in the algorithm, we do not simply delete vN and
then insert CONDENSE(G(N)) instead of it. We achieve the same effect, but we keep
the vertex vN in D(p(N)) (it will still represent the SCC containing d, which has just
shrunk) and add all other vertices of CONDENSE(G(N)) to D(p(N)). This small change
is important for the running time analysis.

More precisely, the operation consists of three steps. Let U′ = MERGE(U) \ {{d}}.
(1) Vertices from U′ and edges of I are moved from D(N) to D(p(N)).
(2) Each child subtree of N that corresponds to elements of U′ is moved one level up,

that is, it becomes a child of p(N).
(3) Since vN now represents a smaller SCC, some edges that are incident to vN have

to be corrected, as they should now point to the newly inserted elements of U in
D(p(N))

We call this operation a lift up of a graph.
In order to perform the third step, we have to update the edges that belong to

D(p(N)), were incident to vN , but should now be incident to a vertex of U′. We iter-
ate through all vertices of

⋃
U′ and all their incident edges in the entire graph. If we

ACM Transactions on Algorithms, Vol. 9, No. 3, Article 27, Publication date: June 2013.

�

�

�

�

�

�

�

�

Improved Deterministic Algorithms for Decremental Reachability 27:11

find an edge where only one endpoint belongs to
⋃

U′, we update the corresponding
edge in D(p(N)) to point to an appropriate element of U′.

After a graph is lifted up, D(p(N)) may become invalid, namely it might no longer be
a single-source and single-sink DAG. Observe that replacing a vertex with an acyclic
graph cannot result in a cycle emerging in D(p(N)).

Hence, the only problem that can arise after the lift up is that some vertices become
disconnected from the source or lose connection to the sink. This causes the SCC repre-
sented by p(N) to decompose into smaller components. Thus, we use Lemma 3.4 again
and call FINDUNREACHABLE(D(p(N)), U′ ∪ {vN}). Note that we use the fact that all
nondistinguished sources in D(p(N)) are among U′ ∪ {vN}.

If FINDUNREACHABLE(D(p(N)), U ∪ {vN}) returns a nonempty result, G(p(N)) de-
composes into smaller SCCs and, by Lemma 3.5, we compute CONDENSE(G(p(N))) in
linear time. We lift it up to D(p(p(N))) and continue the process going up the tree as
long as necessary. At the end, it might turn out that the whole SCC decomposes into
smaller components and the SCC array has to be updated.

The pseudocode for updating an SCC-tree is given as Algorithms 2 and 3.

Algorithm 2 DELETEEDGE(T, e)

Input: an SCC-tree T and an edge e = uv ∈ E(D(N))

1: N := the node of T containing e
2: remove uv from D(N)
3: UPDATESCC-TREE(N, {u, v})

LEMMA 3.8. Given an SCC-tree of height δ, the algorithm processes any sequence of
edge deletions in O(mδ) total time and answers each query in O(1) time, using O(n+m)
space.

PROOF. By Lemma 3.7, the initialization takes O(mδ) time and the tree uses O(n +
m) space. Line 1 in Algorithm 2 requires O(1) time, as for each edge we can maintain
a pointer to the node containing it. In the remaining part of the proof, we focus on
bounding the running time of Algorithm 3.

The key observation is that throughout all delete operations every vertex and ev-
ery edge moves up the SCC-tree it belongs to and each operation we perform can be
charged to one of these events.

Formally speaking, consider an edge uv of the graph G. It belongs to some DAG
D(N), where N is a node in an SCC-tree T. Define the level of uv as the depth of N in
T. Similarly, we define the level of a vertex v of G as the depth of the leaf containing
v in the SCC-tree that v belongs to. During the course of the algorithm, the level of
each edge and vertex may only decrease. To prove this, we analyze the parts of the
algorithm that affect the levels. Edges and vertices are moved between nodes in lines 5
and 12. In this case, they are moved from N to p(N), so their level decreases. Levels
also change in 16th line. The child subtrees of N that belong to S become siblings of
N. Again, this can only decrease the levels of edges and vertices. A similar argument
can be used for line 31. No other parts of the algorithm modify the levels, so we infer
that the levels can only decrease. The remaining part of the proof shows that all the
operations performed by the algorithm can be charged to decreases in levels of edges
or vertices.

First, we show that all calls to FINDUNREACHABLE take O(mδ) time. By Lemma 2.1,
the running time of a single FINDUNREACHABLE operation is linear with respect to
the size of its input and output. Every edge it returns is immediately either lifted up
(the level of the edge decreases) or deleted from the SCC-tree and its second parameter

ACM Transactions on Algorithms, Vol. 9, No. 3, Article 27, Publication date: June 2013.

�

�

�

�

�

�

�

�

27:12 J. Łącki

Algorithm 3 UPDATESCC-TREE(N, A)

Input: an SCC-tree node N and a set of altered vertices A ⊆ V(D(N))

1: (U, I) := FINDUNREACHABLE(D(N), A)
2: if U = ∅ then return
3: d := the split vertex for N
4: U′ := MERGE(U) \ {{d}}
5: remove (U′, I) from D(N)
6: if D(N) = ({{din}, {dout}}, ∅) then
7: D(N) := MERGE(D(N))

8: S := subtrees of N corresponding to elements of U′
9: if N is not the root node then
10:
11: {Step 1}
12: add U′ and I to D(p(N))
13:
14: {Step 2}
15: for all S ∈ S do
16: set the parent of S to p(N)

17:
18: {Step 3}
19: for all u ∈ U′ do
20: for all x ∈ u do
21: cv[x] := vertex in D(p(N)) corresponding to u
22: for all v ∈ ⋃

U′ do
23: for all uv incident to v in E(G) do
24: if for some endpoint x of uv, x �∈ U′ then
25: update edge uv in D(p(N)) replacing endpoint x with cv[x]
26:
27: vN := the vertex in D(p(N)) corresponding to N
28: UPDATESCC-TREE(p(N), U′ ∪ {vN})
29: else
30: for all S ∈ S do
31: disconnect S from N and make a separate tree out of it
32: VS := vertices of the subgraph represented by S
33: for all v ∈ VS do
34: SCC[v] := S

is either of constant size or is a set of vertices that have just been lifted up. It follows
that the total running time of FINDUNREACHABLE is linear in the total number of
single edge or vertex level decreases, hence it can be bounded by O(mδ).

Similarly, we bound the running time of the loops from lines 19–25. They run in the
time that is proportional to the number of edges incident to vertices from

⋃
U′ (in the

entire graph). This can, however, be charged to the decrease in the level of elements
of

⋃
U′.

It remains to show that updating the SCC[v] array is efficient, but again every time
we update SCC[v], the level of v decreases (see line 31). The lemma follows.

From this lemma and the fact that the height of an SCC-tree can be bounded by
O(n), we infer the desired result.

THEOREM 3.9. There exists a deterministic algorithm for decremental maintenance
of strongly connected components, which runs in O(mn) total time and answers queries
in O(1) time, using O(n + m) space.

ACM Transactions on Algorithms, Vol. 9, No. 3, Article 27, Publication date: June 2013.

�

�

�

�

�

�

�

�

Improved Deterministic Algorithms for Decremental Reachability 27:13

This result can be used to give a faster dynamic algorithm for decremental transitive
closure. We follow the approach by Roditty and Zwick [2008]. They use an algorithm
by Frigioni et al. [2001] and replace the part responsible for detecting SCCs decompo-
sitions with their decremental randomized algorithm. Then, they observe that Frigioni
et al. [2001] algorithm runs in O(mn) total time, if the time needed to maintain the
structure of SCCs is excluded. This way, they obtain an O(mn) total time random-
ized algorithm for decremental transitive closure. Using our approach for maintaining
SCCs, we obtain the following results.

THEOREM 3.10. There exists a deterministic, decremental algorithm for maintain-
ing the transitive closure of a directed graph that processes any sequence of delete oper-
ations in O(mn) time.

Note that the preliminary version of this article also contained an alternative de-
scription of obtaining a decremental transitive closure algorithm, which did not refer
to other papers, but it was incorrect, as the promised time bounds did not hold.

4. APPLICATIONS TO SPECIAL CLASSES OF GRAPHS

In this section, we show that the decremental algorithm from Section 3 can be im-
proved for some graphs with additional properties. Until now, while building an SCC-
tree for a given graph, in each step we selected an arbitrary vertex to be split. We show
that in some cases, we may obtain an SCC-tree of lower height if this vertex is chosen
in a more careful way. To do that, we utilize separators.

Definition 4.1. A vertex separator of an undirected graph G = (V, E) is a subset of
vertices, whose removal decomposes the graph into components of size at most α|V|,
for some constant 0 < α < 1. A family of graphs F is called f (n)-separable if

— for every F ∈ F , and every subgraph H ⊆ F, H ∈ F ,
— for every graph F ∈ F , such that |V(F)| = n, F has a vertex separator of size f (n).

The input for an algorithm which maintains SCCs is a directed graph. Throughout
this section, the theorems for undirected graphs are often applied to digraphs. In such
cases, we treat all edges of the graph as undirected.

In the following, we consider two important separable families of graphs.

THEOREM 4.2. [LIPTON AND TARJAN 1979]. Planar graphs are
√

8n-separable.
The separators can be found in linear time.

THEOREM 4.3. [BODLAENDER 1996; REED 1992]. Graphs of treewidth at most k
are k-separable. Assuming that k is a constant, the separators can be found in linear
time.

The following lemma shows how to take advantage of small vertex separators.

LEMMA 4.4. Let G = (V, E) be a directed strongly connected graph, such that G ∈ F ,
where F is Cns-separable (s ≥ 0). Moreover, assume that the separators for every graph
in F can be found in linear time. Then, we can build an SCC-tree for G of height O(h(n))
in O(|E|h(n)) time, where h(n) = O(ns) for s > 0 and h(n) = O(log n) for s = 0.

PROOF. First, compute the separator of G in linear time. Then, we build an SCC-
tree for G, and the consecutive elements from the separator are selected as the vertices

ACM Transactions on Algorithms, Vol. 9, No. 3, Article 27, Publication date: June 2013.

�

�

�

�

�

�

�

�

27:14 J. Łącki

to be split. After using all the vertices from the separator, the graph breaks into com-
ponents of size at most α|V| (0 < α < 1).2 Hence, if we denote the height of an SCC-tree
for a graph with n vertices by h(n), we get

h(n) = O(1) for n = O(1)

h(n) ≤ Cns + h(αn) (1)

≤ ∑O(log n)

i=0 C(αin)s

= ns ∑O(log n)

i=0 Cαis. (2)

Now, if s > 0, the sum converges to a constant, and we obtain h(n) = O(ns). Oth-
erwise, if s = 0, the sum consists of a logarithmic number of constant terms, and we
have h(n) = O(log n). By Lemma 3.7, the whole tree can be built in O(|E|h(n)) time, so
the lemma follows.

THEOREM 4.5. Let G = (V, E) be a directed planar graph and |V| = n. There exists a
decremental algorithm for maintaining its strongly connected components, which runs
in O(n1.5) total time.

PROOF. First, we find strongly connected components of G. We can work with each
SCC separately, so we assume that the graph is strongly connected. By Theorem 4.2
and Lemma 4.4, we can build an SCC-tree of height O(

√
n) in O(n1.5) time. Using

Lemma 3.8, we obtain the algorithm.

THEOREM 4.6. Let G = (V, E) be a directed graph, whose treewidth is bounded by
a constant k. There exists a decremental deterministic algorithm that maintains its
strongly connected components in O(n log n) total time.

PROOF. First, we find strongly connected components of the graph and treat each
of them separately. Without loss of generality, we assume that G is strongly connected.
Using Theorem 4.3, for every subgraph of G we can find a vertex separator in linear
time. The size of this separator is kn0. By Lemma 4.4, we can build SCC-tree for G of
height O(log n) in O(n log n) time. Here, we use the well-known fact that in graphs with
constant treewidth the number of edges is bounded by O(n) (see, e.g., Reed [1992]).
Using Lemma 3.8, we obtain the algorithm.

5. CONCLUSION

We have presented an O(mn) decremental deterministic algorithm for the transitive
closure. It matches the time bound for currently best known decremental deterministic
algorithms for all-pairs reachability in DAGs, as well as single-source reachability in
general graphs. It remains an open problem, if any of those potentially simpler cases
can be solved more efficiently. An interesting question is also whether the structure
of SCC-tree introduced in this paper can be used for constructing any other dynamic
graph algorithms. The main problem regarding decremental maintenance of strongly
connected components, which remains open, is whether SCCs can be maintained in
o(mn) time. In this article, we have shown such results for some specific classes of
graphs.

2Note that it would suffice that the graph breaks into SCCs of size at most α|V|, but we do not see how to
take advantage of this property.

ACM Transactions on Algorithms, Vol. 9, No. 3, Article 27, Publication date: June 2013.

�

�

�

�

�

�

�

�

Improved Deterministic Algorithms for Decremental Reachability 27:15

ACKNOWLEDGMENTS

I would like to thank Łukasz Bieniasz-Krzywiec, Marek Cygan, Krzysztof Diks, Łukasz Kowalik, Dariusz
Leniowski and Piotr Sankowski for their help, support and useful remarks.

REFERENCES

Surender Baswana, Ramesh Hariharan, and Sandeep Sen. 2007. Improved decremental algorithms for
maintaining transitive closure and all-pairs shortest paths. J. Algor. 62, 2, 74–92.

Hans L. Bodlaender. 1996. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM
J. Comput. 25, 6, 1305–1317.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2001. Introduction to
Algorithms 2nd Ed. MIT Press and McGraw-Hill Book Company.

Camil Demetrescu and Giuseppe F. Italiano. 2005. Trade-offs for fully dynamic transitive closure on DAGs:
Breaking through the O(n2) barrier. J. ACM 52, 2, 147–156.

Krzysztof Diks and Piotr Sankowski. 2007. Dynamic plane transitive closure. In Proceedings of ESA.
Lars Arge, Michael Hoffmann, and Emo Welzl Eds., Lecture Notes in Computer Science, vol. 4698,
Springer, 594–604.

Daniele Frigioni, Tobias Miller, Umberto Nanni, and Christos D. Zaroliagis. 2001. An experimental study of
dynamic algorithms for transitive closure. ACM J. Exper. Algorithmics 6, 9.

Monika Rauch Henzinger and Valerie King. 1995. Fully dynamic biconnectivity and transitive closure. In
Proceedings of FOCS. 664–672.

Giuseppe F. Italiano. 1988. Finding paths and deleting edges in directed acyclic graphs. Inf. Process. Lett.
28, 1, 5–11.

Richard J. Lipton and Robert E. Tarjan. 1979. A separator theorem for planar graphs. SIAM J. Appl. Math.
36, 2, 177–189. http://www.jstor.org/stable/2100927.

Johannes A. La Poutré and Jan van Leeuwen. 1987. Maintenance of transitive closures and transitive re-
ductions of graphs. In Proceedings of WG. Herbert Göttler and Hans Jürgen Schneider Eds., Lecture
Notes in Computer Science, vol. 314, Springer, 106–120.

Bruce A. Reed. 1992. Finding approximate separators and computing tree width quickly. In Proceedings of
STOC. ACM, 221–228.

Liam Roditty. 2013. Decremental maintenance of strongly connected components. In Proceedings of SODA.
1143–1150.

Liam Roditty and Uri Zwick. 2008. Improved dynamic reachability algorithms for directed graphs. SIAM J.
Comput. 37, 5, 1455–1471.

Piotr Sankowski and Marcin Mucha. 2010. Fast dynamic transitive closure with lookahead. Algorithmica
56, 2, 180–197.

Sairam Subramanian. 1993. A fully dynamic data structure for reachability in planar digraphs. In Proceed-
ings of ESA. Thomas Lengauer Ed., Lecture Notes in Computer Science, vol. 726, Springer, 372–383.

Received June 2011; revised February 2013; accepted February 2013

ACM Transactions on Algorithms, Vol. 9, No. 3, Article 27, Publication date: June 2013.

